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Abstract

We introduce a class of algorithms, termed prox-
imal interacting particle Langevin algorithms (PI-
PLA), for inference and learning in latent vari-
able models whose joint probability density is non-
differentiable. Leveraging proximal Markov chain
Monte Carlo techniques and interacting particle
Langevin algorithms, we propose three algorithms
tailored to the problem of estimating parameters
in a non-differentiable statistical model. We prove
nonasymptotic bounds for the parameter estimates
produced by the different algorithms in the strongly
log-concave setting and provide comprehensive nu-
merical experiments on various models to demon-
strate the effectiveness of the proposed methods.
In particular, we demonstrate the utility of our fam-
ily of algorithms for sparse Bayesian logistic re-
gression, training of sparse Bayesian neural net-
works or neural networks with non-differentiable
activation functions, image deblurring, and sparse
matrix completion. Our theory and experiments
together show that PIPLA family can be the de
facto choice for parameter estimation problems in
non-differentiable latent variable models.

1 INTRODUCTION

Latent variable models (LVMs) are a class of probabilistic
models which are widely used in machine learning and
computational statistics for various applications, such as
image, audio, and text modelling as well as in the analysis of
biological data [Bishop, 2006, Murphy, 2012]. LVMs have
demonstrated great success at capturing (often interpretable)
latent structure in data, which is crucial in different scientific
disciplines such as psychology and social sciences [Bollen,
2002, Marsh and Hau, 2007], ecology [Ovaskainen et al.,
2016], epidemiology [Chavance et al., 2010, Muthén, 1992]

and climate sciences [Christensen and Sain, 2012].

An LVM can be described as compactly as a parametrised
joint probability distribution pθ(x, y) ∝ e−U(θ,x), where θ
is a set of static parameters, x denotes latent (unobserved,
hidden, or missing) variables, and finally y denotes (fixed)
observed data. Given an LVM, there are two fundamental,
intertwined statistical estimation tasks that must be solved
simultaneously: (i) inference, which involves estimating the
latent variables given the observed data and the model para-
meters through the computation of the posterior distribution
pθ(x|y), and (ii) learning, which involves estimating the
model parameters θ given the observed data y through the
computation and maximisation of the marginal likelihood
pθ(y). The learning problem is often termed maximum mar-
ginal likelihood estimation (MMLE) and the main challenge
is that pθ(y) is often intractable.

The marginal likelihood pθ(y) (also called the model evid-
ence [Bernardo and Smith, 2009]) in an LVM can be ex-
pressed as an integral, pθ(y) =

∫
pθ(x, y)dx, over the latent

variables. Hence the task of learning in an LVM can be for-
mulated as solving the following optimisation problem

θ̄⋆ ∈ argmax
θ∈Θ

pθ(y) = argmax
θ∈Θ

∫
pθ(x, y)dx, (1)

where Θ is the parameter space (which will be Rdθ in our
setting throughout). A classical algorithm for this setting
is the celebrated expectation-maximisation (EM) algorithm
[Dempster et al., 1977], which was first proposed in the
context of missing data. The EM algorithm is an iterative
procedure consisting of two main steps. Given a parameter
estimate θk, the expectation step (E-step) computes the ex-
pected value of the log likelihood function log pθ(x, y) with
respect to the current conditional distribution for the latent
variables given the observed data pθk(x|y), i.e., Q(θ, θk) =
Epθk

(x|y)[log pθ(x, y)]. The second step is a maximisation
step (M-step) which consists of maximising the expect-
ation computed in the E-step. The EM algorithm, when
it can be implemented exactly, builds a sequence of para-
meter estimates (θk)k∈N where θk ∈ argmaxθ Q(θ, θk−1),
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which monotonically increase the marginal likelihood, i.e.,
log pθk(y) ≥ log pθk−1

(y) [Dempster et al., 1977].

The wide use of the EM algorithm is due to the fact that it
can be implemented using approximations for both steps
[Lange, 1995, Meng and Rubin, 1993, Wei and Tanner,
1990], leveraging significant advances in Monte Carlo meth-
ods for the E-step and numerical optimisation techniques for
the M-step. In particular, in most modern statistical models
in machine learning, the posterior distribution, pθ(x|y) for
fixed θ, is intractable, requiring an approximation for the E-
step. One way to address this is by designing Markov chain
Monte Carlo (MCMC) samplers. This approach has led to
significant developments, where Markov kernels based on
the unadjusted Langevin algorithm (ULA) [Durmus and
Moulines, 2017, Roberts and Tweedie, 1996b] have become
a widespread choice in high dimensional settings thanks to
their favourable theoretical properties [Chewi et al., 2022,
Dalalyan, 2017, De Bortoli et al., 2021, Durmus and Mou-
lines, 2019, Vempala and Wibisono, 2019].

Recently, Kuntz et al. [2023] explore an alternative approach
for MMLE based on Neal and Hinton [1998], where they ex-
ploit the fact that the EM algorithm is equivalent to perform-
ing coordinate descent of a free energy functional, whose
minimum is the maximum likelihood estimate of the latent
variable model. They propose several interacting particle al-
gorithms to address the optimisation problem. This method
has led to subsequent works [Akyildiz et al., 2025, Caprio
et al., 2024, Gruffaz et al., 2024, Johnston et al., 2024, Lim
et al., 2024, Sharrock et al., 2023] including ours.

Contribution. This work focuses on LVMs whose joint
probability density is non-differentiable by leveraging prox-
imal methods [Combettes and Pesquet, 2011, Parikh and
Boyd, 2014]. In the classical sampling case, this setting
has been considered in a significant body of works, see,
for example, Atchadé et al. [2017], Bernton [2018], Chen
et al. [2022], Crucinio et al. [2025], Diao et al. [2023], Dur-
mus et al. [2018], Lee et al. [2021], Pereyra [2016], Salim
and Richtarik [2020], Salim et al. [2019], due to significant
applications in machine learning, most notably in the use
of non-differentiable regularisers. For example, this type
of model naturally arises when including sparsity-inducing
penalties, such as Laplace priors for regression problems or
Bayesian neural networks [Williams, 1995, Yun et al., 2019],
and total variation priors in image processing [Durmus et al.,
2018]. They are also relevant for non-differentiable activa-
tion functions in neural networks. Specifically, we summar-
ise our contributions below.

• We develop the first proximal interacting particle
Langevin algorithm (PIPLA) family. Similar al-
gorithms so far are investigated in the usual differenti-
able setting [Akyildiz et al., 2025, Johnston et al., 2024,
Kuntz et al., 2023]. We extend these methods to the
non-differentiable setting via the use of proximal tech-

niques. Specifically, we propose two main algorithms,
termed Moreau-Yosida interacting particle Langevin
algorithm (MYIPLA) and proximal interacting particle
gradient Langevin algorithm (PIPGLA).

• We present a theoretical analysis of our methods and,
for comparison, of the proximal extensions we develop
for the method in Kuntz et al. [2023], which we termed
Moreau-Yosida particle gradient descent (MYPGD).

• We apply our methods to a variety of examples and
demonstrate that the PIPLA family is a viable option
for the MMLE problem in non-differentiable settings.

This paper is organised as follows. Section 2 introduces
the technical background necessary to develop our methods.
In Sections 3 and 4, we present the proposed algorithms
along with their theoretical analysis. Section 5 presents
comprehensive numerical experiments before concluding.

Notation. We endow Rd with the Borel σ-field B(Rd)
with respect to the Euclidean norm ∥ · ∥ when d is clear
from context. N (x|µ,Σ) is the multivariate Gaussian, I
is the identity matrix, and U(x|a, b) is a uniform distribu-
tion. C1 denotes the space of continuously differentiable
functions. We denote by P(Rd) the set of probability meas-
ures over B(Rd) and endow this space with the topology
of weak convergence. For all p ≥ 1, we denote by Pp(Rd)
the set of probability measures over B(Rd) with finite p-th
moment. For any µ, ν ∈ P2(Rd), we denote by W2(µ, ν)
the 2-Wasserstein distance between µ and ν. (Bt)t≥0 is a
d-dimensional Brownian motion, and (ξn)n∈N is a sequence
of i.i.d. d-dimensional standard Gaussian random variables.

In the following we adopt the convention that the solution to
the continuous time solution is given by bold letters, whilst
other processes (including the time discretisation) are not.

2 BACKGROUND

We present the background and setting for our analysis.

2.1 LANGEVIN DYNAMICS

At the core of our approach is the use of Langevin dif-
fusion processes [Roberts and Tweedie, 1996b], which are
widely used for building advanced sampling algorithms. The
Langevin stochastic differential equation (SDE) is given by

dXt = −∇U(Xt)dt+
√
2dBt, (2)

where U : Rd → R is a continuously differentiable function.
Under mild assumptions, (2) admits a strong solution, and
its associated semigroup has a unique invariant distribution
given by π(x) ∝ e−U(x) [Pavliotis, 2014]. In most cases,
solving (2) analytically is not possible, however, we can



resort to a discrete-time Euler-Maruyama approximation
with step size γ which gives the following Markov chain

Xn+1 = Xn − γ∇U(Xn) +
√
2γξn+1. (3)

This algorithm, known as the unadjusted Langevin al-
gorithm (ULA) [Durmus and Moulines, 2019], exhibits
favourable properties when U is µ-strongly convex and
L-smooth (i.e. ∇U(x) is L-Lipschitz). In particular, it con-
verges exponentially fast to its biased limit πγ and the
asymptotic bias is of order γ1/2 [Durmus and Moulines,
2019].

2.2 MMLE WITH LANGEVIN DYNAMICS

A recent approach to solve the MMLE problem in (1) is to
build an extended stochastic dynamical system which can be
run in the space Rdθ × Rdx , with the aim of jointly solving
the problem of latent variable sampling and parameters
optimisation. Kuntz et al. [2023] first proposed a method
termed particle gradient descent (PGD) which builds on the
observation made in Neal and Hinton [1998], that the EM
algorithm can be expressed as a minimisation problem of
the free-energy objective (see Appendix B.1 for details). By
constructing a gradient flow with respect to this functional,
Kuntz et al. [2023] propose the following system of SDEs

dθN
t = − 1

N

N∑
i=1

∇θU(θN
t ,Xi,N

t )dt, (4)

dXi,N
t = −∇xU(θN

t ,Xi,N
t )dt+

√
2dBi,N

t , i = 1, . . . , N,

where U(θ, x) = − log pθ(x, y) given fixed observations y.
By introducing a noise term in the dynamics of θ (4), which
may facilitate escaping local minima in non-convex settings,
Akyildiz et al. [2025] propose an interacting Langevin SDE:

dθN
t = − 1

N

N∑
i=1

∇θU(θN
t ,Xi,N

t )dt+

√
2

N
dB0,N

t , (5)

dXi,N
t = −∇xU(θN

t ,Xi,N
t )dt+

√
2dBi,N

t , i = 1, . . . , N.

An Euler-Maruyama discretisation of (5), provides the in-
teracting particle Langevin algorithm (IPLA). Under strong-
convexity and smoothness of U , IPLA and PGD exhibit
favourable convergence properties [Akyildiz et al., 2025,
Caprio et al., 2024].

2.3 PROXIMAL METHODS

Proximal methods [Combettes and Pesquet, 2011, Parikh
and Boyd, 2014] use proximity mappings of convex func-
tions, instead of gradient mappings, to construct fixed point
schemes and compute function minima. We now introduce
some important definitions. Consider U : Rd → R.

Definition 1 (Proximity mappings). The λ-proximity map-
ping or proximal operator function of U is defined for any
λ > 0 as

proxλU (x) := argmin
z∈Rd

{
U(z) + ∥z − x∥2/(2λ)

}
.

Intuitively, the proximity operator behaves similarly to a
gradient map by moving points in the direction of the min-
imisers of U . In fact, when U is differentiable, the proximal
mapping corresponds to the implicit gradient step, as op-
posed to the explicit gradient step, which is known to be
more stable [Parikh and Boyd, 2014]. Note that as λ → 0,
the proximity operator converges to the identity operator,
while as λ→ ∞, the proximity operator maps all points to
the set of minimisers of U .

The idea of proximal methods is to approximate the non-
differentiable target density π ∝ e−U , where U is a convex
lower semi-continuous function, by substituting the poten-
tial U with a smooth approximation Uλ, where the level
of smoothness is controlled by the parameter λ > 0. The
proximity map allows us to define a family of approxima-
tions to π, indexed by λ, and referred to as Moreau-Yosida
approximation [Moreau, 1965].

Definition 2 (λ-Moreau-Yosida approximation). For any
λ > 0, define the λ-Moreau-Yosida approximation of U as

Uλ(x) := min
z∈Rd

{
U(z) + ∥z − x∥2/(2λ)

}
= U(proxλU (x)) + ∥ proxλU (x)− x∥2/(2λ).

Consequently, we define the λ-Moreau-Yosida approxima-
tion of π as the following density πλ(x) ∝ e−Uλ(x).

The approximation πλ converges to π as λ → 0 [Durmus
et al., 2018, Rockafellar and Wets, 2009] and is differenti-
able even if π is not, with log-gradient

∇ log πλ(x) = −∇Uλ(x) = (proxλU (x)− x)/λ. (6)

Since πλ is continuously differentiable, proximal MCMC
methods [Durmus et al., 2018, Pereyra, 2016] rely on dis-
cretisations of the Langevin diffusion associated with πλ,
given by replacing the drift term in Eq. (2) with ∇Uλ, to
approximately sample from π. We consider two classes of
proximal Langevin algorithms, based on different discret-
isation schemes: Euler-Maruyama discretisations Durmus
et al. [2018], Pereyra [2016], and splitting schemes Durmus
et al. [2019], Ehrhardt et al. [2024], Habring et al. [2024],
Klatzer et al. [2024], Salim et al. [2019].

2.3.1 Proximal Langevin methods

When U(x) = − log π(x) can be expressed as U(x) =
g1(x)+ g2(x), with g1, g2 convex lower bounded functions,
g1 differentiable and g2 proper and lower semi-continuous,
Durmus et al. [2018] consider πλ ∝ e−Uλ

with Uλ(x) =
g1(x) + gλ2 (x), and the corresponding Langevin diffusion

dXλ,t = −(∇g1(Xλ,t) +∇gλ2 (Xλ,t))dt+
√
2dBt, t ≥ 0.

An Euler-Maruyama discretisation with step size γ > 0
results in the Moreau-Yosida ULA (MYULA) algorithm.



2.3.2 Proximal gradient MCMC methods

Inspired by the proximal gradient algorithm (see, e.g.,
Parikh and Boyd [2014, Section 4.2] or Combettes and
Pesquet [2011]), which is a forward-backward splitting op-
timisation algorithm, Salim et al. [2019] propose a sampling
algorithm for the case Uλ(x) = g1(x) + gλ2 (x) termed
proximal gradient Langevin algorithm (PGLA). The method
consists of a forward step in the direction of ∇g1 with an ad-
ditional stochastic term, followed by a backward step using
the proximity map of g2:

Xn+1/2 = Xn − γ∇g1(Xn) +
√

2γξn+1

Xn+1 = proxλg2
(
Xn+1/2

)
,

These algorithms were originally proposed as an alternative
to MYULA to deal with cases in which U is the sum of a
differentiable likelihood g1 and a compactly supported g2,
since the application of the proximity map after the addition
of the stochastic term guarantees that Xn+1 remains in
the support of g2 [Salim and Richtarik, 2020]. In addition,
Ehrhardt et al. [2024] give conditions under which using
an approximate proximity map does not affect numerical
results and generalise existing convergence bounds.

3 PROXIMAL INTERACTING PARTICLE
METHODS FOR MMLE

Our goal is to extend interacting particle algorithms for
the MMLE problem (1) to cases where the distribution
pθ(x, y) = π(θ, x) ∝ e−U(θ,x) may be non-differentiable.
To achieve this, we build on the previously presented meth-
odology, approximating the target distribution π ∝ e−U =
e−g1−g2 with a Moreau-Yosida envelope πλ and deriving
a numerical scheme using either an Euler-Maruyama dis-
cretisation or a splitting scheme. In particular, we introduce
three classes of proximal algorithms.

Recall that U(θ, x) = − log pθ(x, y) where y is fixed. The
proximal map in the MMLE setting is given below.

Remark 1. In our scenario, the argmin in the proximal
map is taken over both variables (θ, x), that is,

proxλU (θ, x) = (proxλU (θ, x)θ,prox
λ
U (θ, x)x)

= argmin
z0∈Rdθ ,z∈Rdx

{
U(z0, z) + ∥(z0, z)− (θ, x)∥2/(2λ)

}
.

3.1 PROXIMAL INTERACTING PARTICLE
ALGORITHMS

Our algorithms are based on different discretisation schemes
of the following continuous-time interacting SDEs:

dθN
t = − 1

N

N∑
i=1

∇θU
λ(θN

t ,Xi,N
t )dt+

√
2

N
dB0,N

t , (7)

dXi,N
t = −∇xU

λ(θN
t ,Xi,N

t )dt+
√
2dBi,N

t , (8)

where Uλ = g1 + gλ2 is the Moreau-Yosida approximation
of U . As in the case of the interacting SDE in Eq. (5), we
show that (7)–(8) converges to an SDE of the McKean–
Vlasov type (MKVSDE) as N → ∞. In particular, if the
potential U is regular enough, the MKVSDE that (7)–(8)
approximates becomes arbitrarily close to that approximated
by (5) as λ→ 0 (see Appendix C for a proof).

3.1.1 Moreau-Yosida Interacting Particle Langevin
Algorithm (MYIPLA)

If we consider Uλ = g1+g
λ
2 as in Durmus et al. [2018], and

substitute its gradient in the Euler-Maruyama discretisation
of (7)–(8) we derive MYIPLA (Moreau-Yosida Interacting
Particle Langevin algorithm):

θNn+1 =
(
1− γ

λ

)
θNn +

γ

N

N∑
i=1

(
−∇θg1(θ

N
n , Xi,N

n )

+
1

λ
proxλ

g2
(θNn , Xi,N

n )θ
)
+

√
2γ

N
ξ0,Nn+1, (9)

Xi,N
n+1 =

(
1− γ

λ

)
Xi,N

n − γ∇xg1(θ
N
n , Xi,N

n )

+
γ

λ
proxλ

g2
(θNn , Xi,N

n )x +
√

2γ ξi,Nn+1, (10)

where the notation proxλg2(θ,X)θ, proxλg2(θ,X)x refers to
the θ and x component of the proximal mapping proxλg2 , as
mentioned in Remark 1. Setting γ = λ and g1 = 0 as in
Pereyra [2016], we obtain a specific case of the previous
algorithm, that we refer to as PIPULA (proximal interacting
particle ULA).

3.1.2 Proximal Interacting Particle Gradient Langevin
Algorithm (PIPGLA)

Inspired by the proximal gradient method [Ehrhardt et al.,
2024, Salim et al., 2019], we employ a splitting scheme to
discretise (7)–(8) and obtain PIPGLA (Proximal Interacting
Particle Gradient Langevin algorithm). In this case, we per-
form one ULA step for both the θ and x component using
∇g1 followed by a backward step using proxλg2 :

θNn+1/2 = θNn − γ

N

N∑
i=1

∇θg1(θ
N
n , Xi,N

n ) +

√
2γ

N
ξ0,Nn+1, (11)

Xi,N
n+1/2 = Xi,N

n − γ∇xg1(θ
N
n , Xi,N

n ) +
√

2γ ξi,Nn+1, (12)

θNn+1 =
1

N

N∑
i=1

proxλ
g2

(
θNn+1/2, X

i,N
n+1/2

)
θ

, (13)

Xi,N
n+1 = proxλ

g2

(
θNn+1/2, X

i,N
n+1/2

)
x
, (14)

Setting λ = γ, as is common in proximal gradient al-
gorithms (see, e.g., Salim et al. [2019]), we obtain an al-
gorithm similar to MYIPLA except for the fact that ∇gλ2 is
evaluated at (θn+1/2, X

i,N
n+1/2) instead of (θn, Xi,N

n ).

Similarly to PGLA, this algorithm ensures that Xi,N
n+1 be-

longs to the support of g2 for all i. If the parameter space Θ



is convex, then also θNn+1 belongs to the support of g2 since
θNn+1 is a convex combination of elements of Θ.

3.2 PROXIMAL PARTICLE GRADIENT DESCENT
METHODS (PPGD)

All the methods above incorporate a noise term in the θ-
dimension, making the system more akin to a Langevin-
type system, as in Akyildiz et al. [2025]. However, we also
explore the case where the noise term is removed from the
dynamics of θ, similar to Kuntz et al. [2023]. By removing
the noise term from the dynamics of θ in (7), we obtain the
following system of SDEs

dθN
t = − 1

N

N∑
i=1

∇θU
λ(θN

t ,X
i,N
t )dt,

dXi,N
t = −∇xU

λ(θN
t ,X

i,N
t )dt+

√
2dBi,N

t .

Discretising this SDE system, we obtain similar algorithms
to MYIPLA and PIPULA without the term

√
2γ/Nξ0,Nn+1 in

(9), which can be seen as proximal versions of PGD. Accord-
ingly, we term these methods as proximal PGD (PPGD) and
Moreau-Yosida PGD (MYPGD), respectively. We provide a
detailed description of these methods and their theoretical
analysis in Appendix B.

4 NONASYMPTOTIC ANALYSIS

This section presents a theoretical analysis of the parameter
estimates obtained by the PIPLA family. It is important to
note that similar assumptions across algorithms enable a fair
comparison of convergence rates.

4.1 ASSUMPTIONS

Let g1, g2 : Rdθ × Rdx → R and U = g1 + g2.

A1. g1 is continuously differentiable, convex, Lg1-smooth
and lower bounded, and g2 is proper, convex, lower semi-
continuous and lower bounded.

A1 guarantees that proxλg2 is well defined and that ∇Uλ is
Lipschitz in both variables with constant L ≤ Lg1 + λ−1

[Durmus et al., 2018, Proposition 1].

A 2. The initial condition ZN
0 = (θ0, N

−1/2X1,N
0 , . . . ,

N−1/2XN,N
0 ) satisfies E[∥ZN

0 ∥2] ≤ H for H > 0.

A3. g2 is Lipschitz with constant ∥g2∥Lip.

A4. g1 is µ-strongly convex.

Remark 2. Let v = (θ, x) and v′ = (θ′, x′). We have
that ∇gλ2 (v) = (v − proxλg2(v))/λ and proxλg2 is firmly

non expansive [Durmus et al., 2018, Eq. (7)] which implies
Lipschitzness. By the Cauchy-Schwarz inequality,

⟨v − v′,∇gλ2 (v)−∇gλ2 (v
′)⟩

≥ 1

λ
(∥v − v′∥2 − ∥v − v′∥∥proxλ

g2
(v)− proxλ

g2
(v′)∥) ≥ 0.

Therefore, under A4, ∇Uλ is also µ-strongly convex.

Remark 3. Let Ω ⊂ Rdθ × Rdx denote the (nonempty) set
where g2 is twice differentiable. Theorem 25.5 in [Rockafel-
lar, 1970], guarantees that if g2 is a proper, convex func-
tion, then g2 is differentiable except in a set of measure
zero, i.e., Ωc has measure zero. Also, by Alexandrov’s The-
orem [Rockafellar, 1999], g2 is twice differentiable almost
everywhere—in particular, these points form a subset of
dom(∇g2). In addition, the Hessian ∇2g2 (or alternatively
its distributional counterpart, D2g2, if ∇2g2 does not exist)
is symmetric and positive definite [Alberti and Ambrosio,
1999, Proposition 7.11].

Let θ̄⋆ be the maximiser of pθ(y). Let mθ̄⋆ be the restric-
tion of the Lebesgue measure m on Rdθ × Rdx to the set
{θ̄⋆} × Rdx , which is well defined (see, e.g., [Bogachev,
2007, Section 10.6]).

A5. We assume that mθ̄⋆(Ω
c∩({θ̄⋆}×Rdx)) = 0. Moreover,

EX [∥∇θU(θ̄⋆, X)∥] ≤ A,

EX [∥∇2
(θ,x)g2(θ̄⋆, X)∇(θ,x)g2(θ̄⋆, X)∥] ≤ B

where X ∼ ρθ̄⋆(x) with ρθ̄⋆(x) ∝ e−Uλ(θ̄⋆,x).

4.2 THE PROOF STRATEGY

Our objective is to find the MMLE θ̄⋆ = argmaxθ pθ(y),
where pθ(y) =

∫
e−U(θ,x)dx. Therefore, we provide an

upper bound on the distance between the iterates of our
algorithms and θ̄⋆, that is, E[∥θ̄⋆ − θn∥2]1/2.

Let (θN
t )t≥0 be the θ-marginal of the solution to the SDE

(7)–(8) and (θNn )n∈N be the θ iterates of any algorithm
which is a discretisation of (7)–(8). Denote the θ-marginal
of the target measure of (7)–(8) by πN

λ,Θ,

πN
λ,Θ(θ) ∝

(∫
Rdx

e−Uλ(θ,x)dx

)N

. (15)

Note that E[∥θ̄⋆ − θNn ∥2]1/2 =W2(δθ̄⋆ ,L(θ
N
n )). Applying

the triangle inequality of the W2 metric, it follows:

W2(δθ̄⋆ ,L(θ
N
n )) ≤W2(δθ̄⋆ , π

N
λ,Θ)︸ ︷︷ ︸

concentration

+W2(π
N
λ,Θ,L(θN

nγ))︸ ︷︷ ︸
convergence

+W2(L(θNn ),L(θN
nγ))︸ ︷︷ ︸

discretisation

. (16)

The concentration term characterises the concentration of
the θ-marginal of the target measure of the SDE (7)–(8),



given by (15), around the maximiser of pθ(y), denoted by
θ̄⋆. Handling this term is not trivial since the maximisers of
pθ(y) and of pλθ (y) :=

∫
Rdx

pλθ (x, y)dx are not necessarily
the same as we clarify in the next section. The convergence
term captures the convergence of the solution of the SDE
to its target measure (15). Finally, the discretisation term
characterises the error introduced by discretising the SDE.
We provide nonasymptotic results for the convergence of
the PIPLA family, proofs of the results are provided in
Appendices A and B.

4.3 NONASYMPTOTIC ANALYSIS OF MYIPLA

Theorem 4.1 (MYIPLA). Let A1–A5 hold. Let θNn denote
the iterate (9) and θ̄⋆ be the maximiser of pθ(y). Fix γ0 ∈
(0,min{(Lg1 +λ

−1)−1, 2µ−1}). Then for every λ > 0 and
γ ∈ (0, γ0], one has

E[∥θNn − θ̄⋆∥2]1/2 ≤ λ

µ

(∥g2∥2Lip

2
A+B

)
+

√
dθ
Nµ

+ e−µnγ

(
E[∥ZN

0 − z⋆∥2]1/2 +
(dxN + dθ

Nµ

)1/2)
+ C1(1 +

√
dθ/N + dx)γ

1/2 +O(λ2),

for all n ∈ N, where z⋆ = (θ⋆, N
−1/2x⋆, . . . , N

−1/2x⋆)
and (θ⋆, x⋆) is the minimiser of Uλ and C1 > 0 is a con-
stant independent of t, n,N, γ, λ, dθ, dx.

See Appendix A.2 for the full proof. Below, we provide a
sketch of the proof, following the error decomposition in
(16). The concentration term can be split into two parts: (1)
the distance between the MMLE of the original distribution,
θ̄⋆, and the MMLE of the MY approximation, θ̄⋆,λ, and
(2) the concentration of the MMLE of the MY approxim-
ation around the target regularised marginal measure πN

λ,Θ

provided in (15). This results in

W2(δθ̄⋆ , π
N
λ,Θ) ≤ ∥θ̄⋆ − θ̄⋆,λ∥+W2(δθ̄⋆,λ , π

N
λ,Θ),

where θ̄λ,⋆ denotes the maximiser of pλθ (y). We derive in
Proposition A.1 a novel bound for the distance between the
maximisers θ̄⋆, θ̄⋆,λ, given by

∥θ̄⋆ − θ̄⋆,λ∥ ≤ λ

µ

(
∥g2∥2Lip

2
A+B

)
+O(λ2),

with A,B given in A5. We observe that stronger regularisa-
tion (i.e., larger values of λ) increases the distance between
the two MMLEs—intuitively, in the limit λ→ ∞, all points
collapse to the minimiser of the potential U , therefore this
leads to a larger difference between θ̄⋆ and θ̄⋆,λ.

Next, consider the stationary measure of the SDE (7)–(8),
denoted by πN

λ,⋆(θ, x1, . . . , xN ), and its θ-marginal given
by πN

λ,Θ. Using a form of the Prékopa-Leindler inequality

for strong convexity [Saumard and Wellner, 2014, Theorem
3.8], πN

λ,Θ is Nµ-strongly log-concave and by [Altschuler
and Chewi, 2023, Lemma A.8]

W2(δθ̄⋆,λ , π
N
λ,Θ) ≤

√
dθ
Nµ

, (17)

which concludes the bound for the concentration term. Be-
sides, the convergence term is characterised by the exponen-
tial decay of the Wasserstein-2 distance between πN

λ,Θ and
the θ-marginal of the solution of the SDE L(θN

nγ), that is,

W2(π
N
λ,Θ,L(θN

nγ)) ≤ e−µnγ

(
E[∥ZN

0 − z⋆∥2]1/2 +

√
dxN + dθ

Nµ

)
.

Finally, the discretisation term is bounded by

W2(L(θNn ),L(θN
nγ)) ≤ C1(1 +

√
dθ/N + dx)γ

1/2.

This bound is derived using a strategy similar to that used
in classical Langevin methods.

4.4 NONASYMPTOTIC ANALYSIS OF PIPGLA

We introduce an extra assumption regarding the least norm
element ∇0g2 in the subdifferential of g2, defined in A.4.

C 1. We assume that ∥∇0g2(θ, x)∥2 ≤ C for all θ ∈ Rdθ

and x ∈ Rdx .

For the convergence analysis of PIPGLA, we present a novel
proof that differs from the error decomposition used for
MYIPLA.

Theorem 4.2 (PIPGLA). Let A1, A2, A4 and C1 hold. Let
θNn denote the iterate (13) and θ̄⋆ be the maximiser of pθ(y).
Then for γ ≤ 1/Lg1 and γ ≤ λ ≤ γ/(1−µγ), the following
holds

E
[
∥θNn − θ̄⋆∥2

]1/2 ≤

√
λn(1− γµ)n

γn
W2(L(ZN

0 ), πN )

+

√
dθ
Nµ

+

√
λ(2γLg1(dθ +Ndx) + λNC)

N (1− λ(1− µγ)/γ)
,

for all n ∈ N, with ZN
0 given in A2 and C > 0 given in C1

and independent of t, n,N, γ, dθ, dx.

See Appendix A.4 for the proof. Similarly to the previous
result, we can split the errors as follows

W2(L(θNn ), δθ̄⋆) ≤W2(δθ̄⋆ , π
N
Θ ) +W2(π

N
Θ ,L(θNn )).

The concentration term W2(δθ̄⋆ , π
N
Θ ) can be bounded as in

(17), thanks to the strong convexity assumption A1 and the
fact that the set of non-differentiable points of the potential
U(θ, x) has measure zero. For the other error term, we de-
rive novel nonasymptotic bounds for general λ, unlike Salim



Table 1: Comparison between algorithms (Section 4.5). δ > 0 is any small positive constant.

λ N γ n Evaluations of ∇g1 and proxλg2 Indep. 1d Gaussians

MYIPLA O(ε) O(dθε
−2) O(d−1

x ε2) O(dxε−2−δ) O(dθdx(dθ + dx)ε−4−δ) O(dθd
2
xε

−4−δ)

PIPGLA O(ε2) O(dθε
−2) O(d−1

x ε2) O(log ε2/ log dx) O(dθ(dθ + dx)ε−2 log ε2

log dx
) O(dθdxε

−2 log ε2

log dx
)

MYPGD O(ε) O(dxε−2) O(d−1
x ε2) O(dxε−2−δ) O(d2x(dθ + dx)ε−4−δ) O(d3xε

−4−δ)

et al. [2019] (see Corollary A.13 in App. A.4). Intuitively,
W2(π

N
Θ ,L(θNn )) controls the convergence of the solution

of the SDE to πN
Θ and the error due to time discretisation.

The bound for the latter term is derived without introducing
the law of the solution of the SDE, L(θN

nγ), in contrast to
the approach taken for MYIPLA.

4.5 ALGORITHM COMPARISON

Theorems 4.1, 4.2 and B.1 (Appendix) allow us to de-
rive complexity estimates for λ, the number of particles
N , γ, and the number of steps n to achieve an error
E
[
∥θNn − θ̄⋆∥2

]1/2
= O(ε), see blue columns of Table

1. These bounds are expressed in terms of the key paramet-
ers dθ, dx. Details for deriving these bounds are provided
in Appendix D. It is important to mention that although all
algorithms yield the same complexity estimates in terms
of γ, MYPGD requires more stringent assumptions on
γ. Specifically, while MYIPLA (Theorem 4.1) requires
γ0 < min{(Lg1+λ

−1)−1, 2µ−1}, MYPDG (Theorem B.1)
requires γ0 < (Lg1 + λ−1 + µ)−1, which is strictly smaller.
In contrast, PIPGLA allows for a more flexible choice of
γ ≤ 1/Lg1 , but requires stronger assumptions on λ.

We also compare the algorithms in terms of their computa-
tional requirements. In particular, we evaluate the computa-
tional cost of running each algorithm for n iterations withN
particles and a time discretisation step γ, while guaranteeing
an O(ε) error. The comparison is based on the number of
component-wise evaluations of ∇g1 and proxλg2 , and inde-
pendent standard 1-d Gaussians samples. These costs are
summarised in the green columns of Table 1.

5 EXPERIMENTS

The code is available in https://github.com/
paulaoak/proximal-ipla. Additional experiments
for low-rank matrix completion are provided in Appendix
E.5, where the goal is to recover a low-rank matrix from
partially observed and noisy data.

5.1 BAYESIAN LOGISTIC REGRESSION

We consider a similar set-up to De Bortoli et al. [2021] and
employ a synthetic dataset consisting of dy = 900 data-
points (see Appendix E.2 for details). The latent variables
are the dx = 50 regression weights, to which we assign an
isotropic Laplace prior pθ(x) =

∏dx

i=1 Laplace(xi|θ, 1) or a
uniform prior pθ(x) =

∏dx

i=1 U(xi|−θ, θ). The likelihood is
given by pθ(y|x) =

∏dy

j=1 s(v
T
j x)

yjs(−vTj x)1−yj , where
vj ∼ U(−1, 1)⊗dx are a set of dx-dimensional covariates
sampled from a uniform distribution and s(u) is the logistic
function. The true value of θ is set randomly to θ = −4 for
the Laplace prior and θ = 1.5 for the uniform one.

Approximations of the proximal mapping for both priors
are derived in Appendices E.1.1 and E.1.3, as closed-form
solutions are unavailable. We compare these approxima-
tions to an iterative approach for computing the proximal
map, which is feasible only for the Laplace prior due to
instabilities in the uniform case. Figure 1 shows the vari-
ance of the θ estimates produced by MYIPLA and PIPGLA
computed over 100 runs for different initialisations (left)
and the sequence of θ estimates for 50 particles (right) in
the case of a Laplace prior. We observe that the variance
of the parameter estimates decreases with rate O(1/N) as
suggested by Theorems 4.1 and 4.2, and that the iterative
algorithms have a slightly lower variance compared to their

Table 2: Performance of Bayesian logistic regression for Laplace and uniform priors.

Algorithm Approx./Iterative NMSE (%) Times (s)

Laplace Unif Laplace Unif

MYPGD Approx 6.09± 0.34 0.60± 0.23 91.9± 4.8 109.3± 4.6
Iterative 4.44± 1.40 − 129.7± 15.8 −

MYIPLA Approx 4.42± 1.32 15.26± 4.44 89.9± 4.2 97.0± 4.2
Iterative 4.67± 1.60 − 120.5± 10.1 −

PIPGLA Approx 2.30± 0.58 6.83± 3.97 116.5± 5.5 103.1± 8.0
Iterative 2.02± 0.54 − 122.9± 6.9 −

https://github.com/paulaoak/proximal-ipla
https://github.com/paulaoak/proximal-ipla
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Figure 1: Laplace prior. Left: convergence rate of the vari-
ance of the parameter estimates againstN produced by MYI-
PLA and PIPGLA over 100 runs. We see that the O(1/N)
convergence rate holds for the second moments. Right: evol-
ution of the normalised MSE for 50 particles over 100 runs.

approximate versions, with PIPGLA having better perform-
ance than MYIPLA. It is also important to highlight that
for all algorithms considered, approximate solvers are on
average 25% faster than iterative solvers (see Table 2). Be-
sides, in Table 2 (expanded in Table 6), we compare the
performances of the different proximal algorithms through
the normalised MSEs (NMSE) for θ. In the uniform case,
MYPGD outperforms all other algorithms; this is likely due
to the lack of diffusive term in the corresponding SDE which
is beneficial when dealing with a compactly supported prior.
While PIPGLA also produces estimates within the support,
they exhibit a larger bias.

5.2 BAYESIAN NEURAL NETWORK

To evaluate our algorithms on complex multimodal pos-
teriors, we consider a Bayesian neural network with a
sparsity-inducing prior on the weights for MNIST image
classification. Following Yao et al. [2022] and Kuntz et al.
[2023], we use a two-layer network with tanh activation
functions and avoid the cost of computing the gradients
on a big dataset by subsampling 1000 data points with
labels 4 and 9. The input layer of the network has 40
nodes and 784 inputs and the output layer has 2 nodes.
The latent variables are the weights, w ∈ Rdw:=40×784

and v ∈ Rdv :=2×40 of the input and output layers, respect-
ively. We assign priors pα(w) =

∏
i Laplace(wi|0, e2α)

and pβ(v) =
∏

i Laplace(vi|0, e2β) and learn θ = (α, β)
from the data. One may ask whether the Laplace prior is
more appropriate in this setting than the Normal one. Jaynes
[1968] shows that the Laplace prior naturally arises for
Bayesian neural network models (see Appendix E.3.1 for de-
tails). We analyse the sparsity-inducing effect of the Laplace
prior by examining the distribution of the weights for a ran-
domly chosen particle from the final particle cloud and
comparing it to that obtained with a Normal prior. We note
that our methods (Fig. 2a, 2b) lead to final weights with
values highly concentrated around zero in comparison to
the Normal prior (Fig. 2c). The sparse representation of our
algorithm has the advantage of producing models that are
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Figure 2: Histogram (blue) and density estimation (red)
of the BNN weights for a randomly chosen particle. Our
methods (top) produce sparser weights, which is crucial for
compressibility, compared to IPLA (bottom), which ignores
the non-differentiabilities.

Table 3: Bayesian neural network. Test errors and log point-
wise predictive density (LPPD) achieved using the final
particle cloud with N = 50. Computation times and stand-
ard deviation of the empirical distribution of the weight
matrix w are also provided.

Algorithm Error (%) LPPD (×10−1) Times (s) Std. w

MYPGD 1.50± 0.77 −1.02± 0.15 20 2.02
MYIPLA 2.00± 0.85 −1.07± 0.19 22 2.27
PIPGLA 2.00± 0.75 −0.96± 0.09 33 1.73
PGD 2.00± 0.98 −0.98± 0.10 19 8.80
SOUL 6.37± 1.56 −3.50± 2.43 55 12.09
IPLA 1.99± 1.01 −1.01± 0.25 19 11.70

smaller in terms of memory usage when small weights are
zeroed out. This is investigated in Table 8 in the Appendix.
Furthermore, we compare the performance of the PIPLA
family against IPLA which ignores the non-differentiability
of the model density. Figure 2d shows that, despite using a
Laplace prior, IPLA fails to induce sufficient sparsity com-
pared to our proposed methods. Quantitative results for the
variance of the weights and error metrics are shown in Table
1, comparing our approach with other algorithms in the lit-
erature. Appendix E.3.2 provides additional results on more
complex datasets. In particular, we apply our methods to a
classification task using CIFAR10 dataset. Furthermore, in
Appendix E.3.3, we also explore the application of our meth-
ods to neural networks with non-differentiable activation
functions, such as ReLU.



5.3 IMAGE DEBLURRING

The objective of image deconvolution is to recover a
high-quality image from a blurred and noisy observation
y = Hx + ε, where H is a circulant blurring matrix and
ε ∼ N (0, σ2I). This inverse problem is ill-conditioned,
a challenge that Bayesian methods address by incorporat-
ing prior knowledge. A common choice is the total vari-
ation prior, which promotes smoothness and is defined as
TV (x) = ∥∇dx∥1, where ∥ · ∥1 is the ℓ1 norm and ∇d is
the two-dimensional discrete gradient operator. However,
the strength of this prior depends on a hyperparameter θ
that typically requires manual tuning. Instead of fixing this
parameter manually, we estimate its optimal value. Thus,
the posterior distribution for the model takes the form
pθ(x|y) ∝ C(θ) exp

(
−∥y −Hx∥2/(2σ2)− eθTV (x)

)
.

For the experiments, we use the algorithm proposed by
[Douglas and Rachford, 1956] to numerically evaluate the
proximal operator of the total variation norm. Qualitative
results are presented in Figure 3, with additional results
provided in Appendix E.4.

(a) Original (b) Blurred (c) MYIPLA

Figure 3: Image deblurring experiment.

6 CONCLUSION

Our algorithms present a novel approach for handling
Bayesian models arising from different types of non-
differentiable regularisations, including Lasso, elastic net,
nuclear-norm and total variation norm. While our theoretical
guarantees are established under strong convexity assump-
tions, in practice, our methods perform well under more
general conditions and demonstrate robustness and stability
across a range of regularisation parameter values. Moreover,
unlike standard Langevin algorithms—which fail to con-
verge for light-tailed distributions [Roberts and Tweedie,
1996a]—our proximal variants remain effective, due to the
implicit regularisation introduced by the proximal map. Fu-

ture work holds many promising avenues. Our theoretical
framework can be extended to the non-convex setting using
recent non-convex optimisation bounds [Zhang et al., 2023]
and their non-differentiable adaptations. Additionally, our
novel bounds on the difference between the true minimiser
and the minimiser of the Moreau-Yosida approximation can
also be used within recent multiscale approaches to extend
them to non-differentiable settings, see, e.g., Akyildiz et al.
[2024].
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A THEORETICAL ANALYSIS OF PROXIMAL INTERACTING LANGEVIN
ALGORITHMS

A.1 APPROXIMATION OF MINIMISERS

Before proceeding with the proof of Theorem 4.1 and 4.2, we derive a result controlling the distance between the maximiser
of pθ(y) =

∫
Rdx

e−U(θ,x)dx, denoted by θ̄⋆, and the maximiser of pλθ (y) =
∫
Rdx

e−Uλ(θ,x)dx, denoted by θ̄λ,⋆.

For simplicity let us denote

kλ(θ) :=

∫
Rdx

e−Uλ(θ,x)dx, k(θ) :=

∫
Rdx

e−U(θ,x)dx

and Kλ(θ) := − log kλ(θ).

Let Ω ⊂ Rdθ × Rdx denote the set on which g2 is twice differentiable. Let θ̄⋆ be the maximiser of k and let Ω̃ =
Ω ∩ ({θ̄⋆} × Rdx). By A5

k(θ̄⋆) =

∫
e−U(θ̄⋆,x)dx =

∫
Ω̃

e−U(θ̄⋆,x)dx.

Since, k achieves a maximum at θ̄⋆ and g1, g2 are differentiable in Ω̃, then

0 = ∇θk(θ̄⋆) = ∇θ

∫
Ω̃

e−U(θ̄⋆,x)dx = −
∫
Ω̃

(
∇θg1(θ̄⋆, x) +∇θg2(θ̄⋆, x)

)
e−U(θ̄⋆,x)dx. (18)

Proposition A.1 (Convergence of minimisers). Under assumption A1, the Lipschitzness of g2 given by A3, the strong
convexity assumption A4 and A5, it follows that

∥θ̄λ,⋆ − θ̄⋆∥ ≤ λ

µ

(∥g2∥2Lip

2
A+B

)
+O(λ2),

where ∥g2∥Lip is the Lipschitz constant of g2 and A,B are given in A5.

Proof. To obtain a bound of ∥θ̄λ,⋆ − θ̄⋆∥ in terms of λ, we first define the measure π1
λ ∝ e−Uλ(θ,x) and observe that π1

λ

is µ-strongly log-concave, since π1
λ ∝ e−Uλ(θ,x) and Uλ is strongly convex by A4. Therefore, by a form of the Prékopa-

Leindler inequality for strong convexity [Saumard and Wellner, 2014, Theorem 3.8], π1
λ,Θ ∝ e−Kλ(θ) = kλ(θ) is µ-strongly

log-concave, which results in

⟨θ̄λ,⋆ − θ̄⋆,∇Kλ(θ̄λ,⋆)−∇Kλ(θ̄⋆)⟩ ≥ µ∥θ̄λ,⋆ − θ̄⋆∥2. (19)
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Since, θ̄λ,⋆ is the maximiser of kλ(θ) and kλ(θ) is differentiable, it follows that ∇kλ(θ̄λ,⋆) = 0 and therefore ∇Kλ(θ̄λ,⋆) =
0. Using the Cauchy-Schwarz inequality, we can rearrange (19) to obtain

∥θ̄λ,⋆ − θ̄⋆∥ ≤ 1

µ
∥∇Kλ(θ̄λ,⋆)−∇Kλ(θ̄⋆)∥ =

1

µ
∥∇Kλ(θ̄⋆)∥ =

1

µkλ(θ̄⋆)
∥∇kλ(θ̄⋆)∥. (20)

We now focus on the term ∥∇kλ(θ̄⋆)∥

∥∇kλ(θ̄⋆)∥ =
∥∥∥∇θ

∫
e−Uλ(θ̄⋆,x)dx

∥∥∥ =
∥∥∥∫ ∇θU

λ(θ̄⋆, x)e
−Uλ(θ̄⋆,x)dx

∥∥∥.
Recall that Uλ(θ, x) = g1(θ, x) + gλ2 (θ, x). For simplicity, let us assume that ∇θg1(θ, x) = 0, later we will show that this
condition is not necessary. Then, we have that

∥∇kλ(θ̄⋆)∥ =
∥∥∥∫ ∇θg

λ
2 (θ̄⋆, x)e

−Uλ(θ̄⋆,x)dx
∥∥∥ =

∥∥∥∫ θ̄⋆ − proxλg2(θ̄⋆, x)θ

λ
e−Uλ(θ̄⋆,x)dx

∥∥∥. (21)

Since g2 is convex, the problem minu
{
g2(u) + ∥v − u∥2/(2λ)

}
with v = (θ, x) has a unique minimum w that satisfies

λ∇g2(w)− (v − w) = 0. We consider the implicit system ϕ(λ,w) = λ∇g2(w)− (v − w), and note that ϕ(0, v) = 0 and

∂ϕ(λ,w)

∂w
= λ∇2g2(w) + I ≻ 0,

i.e. positive definite due to Remark 3 and assumption A5. Thus the Jacobian of ϕ w.r.t. w is invertible. Hence, the implicit
function theorem shows that there is some locally defined ζ, such that ζ(0) = v and ϕ(λ, ζ(λ)) = 0. Furthermore,

∂ϕ(λ, ζ(λ))

∂λ

∣∣∣∣
λ=0

=

(
∇g2(ζ(λ)) + λ∇2g2(ζ(λ))

∂ζ(λ)

∂λ
+
∂ζ(λ)

∂λ

)∣∣∣∣
λ=0

= 0,

∂2ϕ(λ, ζ(λ))

∂λ2

∣∣∣∣
λ=0

=

(
2∇2g2(ζ(λ))

∂ζ(λ)

∂λ
+ λ

∂

∂λ

(
∇2g2(ζ(λ))

∂ζ(λ)

∂λ

)
+
∂2ζ(λ)

∂2λ

)∣∣∣∣
λ=0

= 0,

which provides

∂ζ(0)

∂λ
= −∇g2(v),

∂2ζ(0)

∂λ2
= −2∇2g2(v)∇g2(v).

Using Taylor’s expansion at λ = 0 we have

proxλg2(v) = ζ(λ) = v − λ∇g2(v)− λ2∇2g2(v)∇g2(v) +O(λ3). (22)

Therefore
θ̄⋆ − proxλg2(θ̄⋆, x)θ

λ
= ∇θg2(θ̄⋆, x) + λ[∇2

(θ,x)g2(θ̄⋆, x)]1:dθ
∇(θ,x)g2(θ̄⋆, x) +O(λ2), (23)

where the notation [∇2
(θ,x)g2(θ, x)]1:dθ

means that we only take the first dθ rows of the Hessian. For simplicity, we denote
h(θ, x) = [∇2

(θ,x)g2(θ, x)]1:dθ
∇(θ,x)g2(θ, x).

Substituting (23) in (21), we have

∥∇kλ(θ̄⋆)∥ =
∥∥∥∫

Ω̃

(∇θg2(θ̄⋆, x) + λh(θ̄⋆, x) +O(λ2))e−Uλ(θ̄⋆,x)dx
∥∥∥

≤
∥∥∥∫

Ω̃

∇θg2(θ̄⋆, x)e
−Uλ(θ̄⋆,x)dx

∥∥∥+ λ

(∫
Ω̃

∥h(θ̄⋆, X)∥e
−Uλ(θ̄⋆,x)

kλ(θ̄⋆)
dx

)
kλ(θ̄⋆) +O(λ2)kλ(θ̄⋆)

=
∥∥∥∫

Ω̃

∇θg2(θ̄⋆, x)e
−Uλ(θ̄⋆,x)dx

∥∥∥+ λEX [∥h(θ̄⋆, X)∥]kλ(θ̄⋆) +O(λ2)kλ(θ̄⋆).



Subtracting (18) in the first term, we have

∥∇kλ(θ̄⋆)∥ ≤
∥∥∥∫

Ω̃

∇θg2(θ̄⋆, x)
(
e−Uλ(θ̄⋆,x) − e−U(θ̄⋆,x)

)
dx
∥∥∥+ (λEX [∥h(θ̄⋆, X)∥] +O(λ2)

)
kλ(θ̄⋆)

≤
∫
Ω̃

∥∇θg2(θ̄⋆, x)∥e−Uλ(θ̄⋆,x)
(
1− e−U(θ̄⋆,x)+Uλ(θ̄⋆,x)

)
dx+

(
λEX [∥h(θ̄⋆, X)∥] +O(λ2)

)
kλ(θ̄⋆)

≤
(
1− e−λ∥g2∥2

Lip/2
) ∫

Ω̃

∥∇θg2(θ̄⋆, x)∥e−Uλ(θ̄⋆,x)dx+
(
λEX [∥h(θ̄⋆, X)∥] +O(λ2)

)
kλ(θ̄⋆)

=
(
1− e−λ∥g2∥2

Lip/2
)(∫

Ω̃

∥∇θg2(θ̄⋆, x)∥
e−Uλ(θ̄⋆,x)

kλ(θ̄⋆)
dx

)
kλ(θ̄⋆)

+
(
λEX [∥h(θ̄⋆, X)∥] +O(λ2)

)
kλ(θ̄⋆)

where we used the fact that, since g2 is Lipschitz by A1, 0 ≤ U(v) − Uλ(v) ≤ λ∥g2∥2
Lip

2 for v = (θ, x), as shown in the
proof of Durmus et al. [2018, Proposition 1].

By A5, we further have EX [∥∇θg2(θ̄⋆, X)∥] ≤ A, EX [∥h(θ̄⋆, X)∥] ≤ B and thus

∥∇kλ(θ̄⋆)∥ ≤
(
1− e−λ∥g2∥2

Lip/2
)
EX [∥∇θg2(θ̄⋆, X)∥]kλ(θ̄⋆) +

(
λEX [∥h(θ̄⋆, X)∥] +O(λ2)

)
kλ(θ̄⋆)

=

(
λ
∥g2∥2Lip

2
EX [∥∇θg2(θ̄⋆, X)∥] + λEX [∥h(θ̄⋆, X)∥] +O(λ2)

)
kλ(θ̄⋆)

≤ λ
(∥g2∥2Lip

2
A+B

)
kλ(θ̄⋆) +O(λ2)kλ(θ̄⋆). (24)

Putting together (20) and (24), we get that

∥θ̄λ,⋆ − θ̄⋆∥ ≤ 1

µkλ(θ̄⋆)
∥∇kλ(θ̄⋆)∥ ≤ λ

µ

(∥g2∥2Lip

2
A+B

)
+

1

µ
O(λ2) =

λ

µ

(∥g2∥2Lip

2
A+B

)
+O(λ2).

For the case ∇θg1(θ, x) ̸= 0, the same results follows since

∥∇kλ(θ̄⋆)∥ =
∥∥∥∫

Ω̃

(
∇θg1(θ̄⋆, x) +

θ̄⋆ − proxλg2(θ̄⋆, x)

λ

)
e−Uλ(θ̄⋆,x)dx

∥∥∥
≤
∥∥∥ ∫

Ω̃

(
∇θg1(θ̄⋆, x) +∇θg2(θ̄⋆, x)

)
e−Uλ(θ̄⋆,x)dx

∥∥∥+ (λEX [∥h(θ̄⋆, X)∥] +O(λ2)
)
kλ(θ̄⋆)

=
∥∥∥ ∫

Ω̃

∇θU(θ̄⋆, x)
(
e−Uλ(θ̄⋆,x) − e−U(θ̄⋆,x)

)
dx
∥∥∥+ (λEX [∥h(θ̄⋆, X)∥] +O(λ2)

)
kλ(θ̄⋆)

≤
∫
Ω̃

∥∇θU(θ̄⋆, x)∥e−Uλ(θ̄⋆,x)
(
1− e−U(θ̄⋆,x)+Uλ(θ̄⋆,x)

)
dx

+
(
λEX [∥h(θ̄⋆, X)∥] +O(λ2)

)
kλ(θ̄⋆)

≤
(
1− e−λ∥g2∥2

Lip/2
) ∫

Ω̃

∥∇θU(θ̄⋆, x)∥e−Uλ(θ̄⋆,x)dx+
(
λEX [∥h(θ̄⋆, X)∥] +O(λ2)

)
kλ(θ̄⋆)

=
(
1− e−λ∥g2∥2

Lip/2
)
EX [∥∇θU(θ̄⋆, x)∥]kλ(θ̄⋆) +

(
λEX [∥h(θ̄⋆, X)∥] +O(λ2)

)
kλ(θ̄⋆)

=

(
λ
∥g2∥2Lip

2
EX [∥∇θg2(θ̄⋆, X)∥] + λEX [∥h(θ̄⋆, X)∥] +O(λ2)

)
kλ(θ̄⋆)

≤ λ
(∥g2∥2Lip

2
A+B

)
kλ(θ̄⋆) +O(λ2)kλ(θ̄⋆).

A.2 MYIPLA

Following Akyildiz et al. [2025], we have the following results.



Proposition A.2. Assuming conditions A1 and A2 hold, there exist a unique strong solution to (7)–(8).

Proof. The proof follows from Karatzas and Shreve [1991] and Akyildiz et al. [2025, Proposition 1].

Proposition A.3 (Invariant measure). For any N ∈ N, the measure πN
λ,⋆(θ, x1, . . . , xN ) ∝ exp(−

∑N
i=1 U

λ(θ, xi)) is an
invariant measure for the interacting particle system (7)-(8).

Proof. The proof follows from Proposition 2 of Akyildiz et al. [2025].

Therefore, the system (7)-(8) has an invariant measure which admits

πN
λ,Θ(θ) ∝

∫
Rdx

· · ·
∫
Rdx

e−
∑N

i=1 Uλ(θ,xi)dx1 . . . dxN =
(∫

Rdx

e−Uλ(θ,x)dx
)N

= kλ(θ)
N ,

as θ-marginal and can therefore act as a global optimiser of kλ(θ), or more precisely of log kλ(θ). That is, let Kλ(θ) =
− log kλ(θ), then πN

λ,Θ(θ) ∝ exp(−NKλ(θ)), concentrates around the minimiser of Kλ(θ), hence the maximiser of kλ(θ)
as N → ∞. This is a classical setting in global optimisation, where N acts as the inverse temperature parameter. We now
analyse the rate at which πλ,Θ concentrates around the maximiser of k(θ).

Proposition A.4 (Concentration bound). Let πN
λ,Θ be as defined above and θ̄⋆, θ̄λ,⋆ be the maximisers of k(θ), kλ(θ),

respectively. Then, under assumption A1, the Lipschitzness of g2 (A3), the strong convexity assumption A4 and assumption
A5, it follows

W2(π
N
λ,Θ, δθ̄⋆) ≤W2(π

N
λ,Θ, δθ̄λ,⋆

) + ∥θ̄λ,⋆ − θ̄⋆∥ ≤

√
dθ
µN

+
λ

µ

(∥g2∥2Lip

2
A+B

)
+O(λ2),

where dθ is the dimension of the parameter space Θ and ∥g2∥Lip is the Lipschitz constant for g2.

Proof. Using a form of the Prékopa-Leindler inequality for strong convexity [Saumard and Wellner, 2014, Theorem 3.8],
πN
λ,Θ is Nµ-strongly log-concave. Since it is also smooth, we can apply Lemma A.8 of Altschuler and Chewi [2023] to

obtain a convergence bound for W2(π
N
λ,Θ, δθ̄λ,⋆

),

W2(π
N
λ,Θ, δθ̄λ,⋆

) ≤

√
dθ
µN

. (25)

On the other hand, the 2-Wasserstein distance between two degenerate distributions satisfies

W2(δθ̄λ,⋆
, δθ̄⋆) = ∥θ̄λ,⋆ − θ̄⋆∥. (26)

By the triangular inequality the Wasserstein distance W2(π
N
λ,Θ, δθ̄⋆) is upper bounded by the sum of (25)-(26). We then

conclude using Proposition A.1.

The main difference with earlier works in the previous concentration bound are the second and third terms, which result
from the Moreau-Yosida approximation of the non-differentiable target density π. Following on the assumptions made
above and the smoothness of πN

λ,Θ, we have similar results to Propositions 4 and 5 of Akyildiz et al. [2025], establishing
exponential ergodicity of (7)-(8) and analysing the time-discretised scheme (9)-(10).

Combining all these results, we can provide specific bounds on the accuracy of MYIPLA in terms of N, γ, n, λ and the
convexity properties of U .

Theorem A.5 (Theorem 4.1 restated). Let A1–A5 hold. Then for every λ and γ0 ∈ (0,min{(Lg1 + λ−1)−1, 2µ−1}) there
exist constants C1 > 0 independent of t, n,N, γ, λ, dθ, dx such that for every γ ∈ (0, γ0], one has

E[∥θNn − θ̄⋆∥2]1/2 ≤

√
dθ
Nµ

+
λ

µ

(∥g2∥2Lip

2
A+B

)
+ e−µnγ

(
E[∥ZN

0 − z⋆∥2]1/2 +
(dxN + dθ

Nµ

)1/2)
+ C1(1 +

√
dθ/N + dx)γ

1/2 +O(λ2)

for all n ∈ N, where z⋆ = (θ∗, N
−1/2x⋆, . . . , N

−1/2x⋆) and (θ⋆, x⋆) is the minimiser of Uλ.



Proof. Let us denote by L(θNn ) the θ-marginal of the measure associated to the law of MYIPLA and L(θN
t ) the θ-marginal

of the measure associated to the law of interacting particle system (7)-(8) at time t. The expectation of the norm can be
decomposed into a term involving the difference between the maximisers of the marginal maximum likelihood of the
Moreau-Yosida approximation of the joint density and the original density, a term concerning the concentration of πN

λ,Θ

around the marginal maximum likelihood estimator θ̄⋆, a term describing the convergence of (7)-(8) to its invariant measure,
and a term involving the error induced by the time discretisation.

The first two terms are upper bounded by Proposition A.4, the third and fourth inequalities result from Proposition 4 and
Proposition 5 of Akyildiz et al. [2025].

A.3 PIPULA

To study the theoretical guarantees of PIPULA, we observe that PIPULA is equivalent to MYIPLA when γ = λ and g1 = 0.
We recall that in the case g1 = 0, ∇Uγ is Lipschitz in both variables with constant L ≤ γ−1 [Durmus et al., 2018]. To
obtain a similar result to Theorem 4.1 we introduce the following additional assumption.

B 1. We assume that there exists µ > 0 such that ⟨v − v′,proxγU (v) − proxγU (v
′)⟩ ≤ (1 − µ)∥v − v′∥2, for all v, v′ ∈

Rdθ × Rdx .

B1 implies that ∇Uγ is µ-strongly convex, i.e. ⟨v − v′,∇Uγ(v) − ∇Uγ(v′)⟩ ≥ µ∥v − v′∥2 for all v, v′ ∈ Rdx × Rdθ .
In addition, since U is a proper convex function we have that U is twice differentiable almost everywhere (see the
discussion below A5). Let Ω ⊂ Rdθ × Rdx denote the points where U is twice differentiable, θ̄⋆ be the maximiser of k and
Ω̃ = Ω ∩ ({θ̄⋆} × Rdx).

Using a similar strategy to that used to obtain the error bound in Theorem 4.1, we obtain the following result for PIPULA.

Corollary A.6. Let A1–A3, A5 and B1 hold. Then for every γ0 ∈ (0, 2µ−1) there exist constants C1 > 0 independent of
t, n,N, γ, λ, dθ, dx such that for every γ ∈ (0, γ0], one has

E[∥θNn − θ̄⋆∥2]1/2 ≤

√
dθ
Nµ

+
γ

µ

(∥g2∥2Lip

2
A+B

)
+ e−µnγ

(
E[∥ZN

0 − z⋆∥2]1/2 +
(dxN + dθ

Nµ

)1/2)
+ C1(1 +

√
dθ/N + dx)γ

1/2 +O(γ2)

for all n ∈ N, where z⋆ = (θ∗, N
−1/2x⋆, . . . , N

−1/2x⋆) and (θ⋆, x⋆) is the minimiser of Uγ .

Proof. Under A1–A3, A5 and B1 Propositions A.1, A.2, A.3, A.4 and Proposition 4 of Akyildiz et al. [2025] hold with
λ = γ. To obtain a bound on the discretisation error observe that under B1 Uγ is strongly convex, since ∇Uγ is also
Lipschitz continuous with constant L ≤ γ−1 [Durmus et al., 2018, Proposition 1], we have that ∇Uγ is co-coercive (see
Theorem 1 in Gao and Pavel [2017])

⟨∇Uγ(x)−∇Uγ(y), x− y⟩ ≥ 1

L
∥∇Uγ(x)−∇Uγ(y)∥2 (27)

≥ γ∥∇Uγ(x)−∇Uγ(y)∥2,

for every x, y ∈ Rd. By plugging this result into the proof of Akyildiz et al. [2025, Lemma B.1] we obtain an equivalent
result to that of Akyildiz et al. [2025, Proposition 5]:

W2(L(θNn ),L(θN
nγ)) ≤ C1(1 +

√
dθ/N + dx)γ

1/2,

where C1 > 0 is independent of t, n,N, γ, dθ, dx and γ ∈ (0, γ0) with γ0 ∈ (0, 2µ−1).



A.4 PIPGLA

Recall that PIPGLA is given by the following scheme

θNn+1/2 = θNn − γ

N

N∑
j=1

∇θg1(θ
N
n , X

j,N
n ) +

√
2γ

N
ξ0,Nn+1,

Xi,N
n+1/2 = Xi,N

n − γ∇xg1(θ
N
n , X

i,N
n ) +

√
2γ ξi,Nn+1,

θNn+1 =
1

N

N∑
i=1

proxλg2

(
θNn+1/2, X

i,N
n+1/2

)
θ

, Xi,N
n+1 = proxλg2

(
θNn+1/2, X

i,N
n+1/2

)
x
.

We want to prove a bound for W2(L(θNn ), δθ̄⋆), where L(θNn ) denotes the distribution of the random variable θNn . Applying
the triangular inequality for Wasserstein distances

W2(L(θNn ), δθ̄⋆) ≤W2(δθ̄⋆ , π
N
Θ ) +W2(π

N
Θ ,L(θNn )). (28)

The concentration term W2(δθ̄⋆ , π
N
Θ ) is analysed in Lemma A.14 and Theorem A.15. For the term W2(π

N
Θ ,L(θNn )), we

derive a novel bound. The roadmap for obtaining this latter bound is as follows:

1. We first analyse the PGLA updates targetting a distribution πλ ∝ exp(−(g1 + gλ2 )) in Rd given by

Zn = Xn − γ∇g1(Xn),

Yn = Zn +
√
2γ ξn,

Xn+1 = proxλg2(Yn).

We provide an error on W2(L(Xn+1), π) where πλ ∝ exp(−(g1 + g2)) for arbitrary λ and γ. One key idea for this is
the use of the minimal section which quantifies the least norm element in the subdifferential set ∂g(x) introduced in
Definition 3.

2. We show in Corollary A.12 that the results established in 1. can be applied to a proximal gradient scheme in which the
noise is scaled by

√
N

Vn+1/2 = Vn − γ∇g1(Vn) +
√

2γ

N
ξn,

Vn+1 = proxλ
g2
(Vn+1/2) = Vn+1/2 − λ∇gλ2 (Vn+1/2).

3. Taking Zn = (θNn , N
−1/2X1,N

n , . . . , N−1/2XN,N
n ), PIPGLA can be expressed as

Zn+1/2 = Zn − γ∇G1(Zn) +

√
2γ

N
ξn+1,

Zn+1 = proxλG2
(Zn+1/2) = Zn+1/2 − λ∇Gλ

2 (Zn+1/2).

where G1 and G2 are defined as

G1(zθ, z1, . . . , zN ) =
1

N

N∑
i=1

g1(zθ,
√
Nzi),

Gλ
2 (zθ, z1, . . . , zN ) =

1

N

N∑
i=1

gλ2 (zθ,
√
Nzi).

Since G1 and Gλ
2 preserve the properties (strong convexity and Lipschitzness) of g1 and gλ2 (see Corollary A.13),

we use the result in 2. to bound the error W2(L(Zn), π
N ). Finally, using a data processing inequality it follows

W2(L(θNn ), πN
Θ ) ≤W2(L(Zn), π

N ).

We begin by presenting some results that will be useful for proving a bound for W2(π
N
Θ ,L(θNn )).



A.4.1 Error bound for proximal gradient Langevin algorithm

We collect here a number of results adapted from Salim et al. [2019] which show convergence of the proximal gradient
Langevin algorithm (PGLA) introduced in Salim et al. [2019] and recalled in Section 2.3.2. In particular, we derive
convergence of the splitting scheme for general λ (which includes as a special case λ = γ) when both ∇g1 and proxλg2 can
be computed exactly (which is a special case of the result in Salim et al. [2019] in the case λ = γ).

For convenience we consider the following decomposition of the PGLA update targeting a distribution πλ ∝ exp(−(g1+g
λ
2 ))

over Rd

Zn = Xn − γ∇g1(Xn),

Yn = Zn +
√

2γ ξn,

Xn+1 = proxλg2(Yn).

We are going to derive a bound for W2(L(Xn+1), π), where L(Xn+1) denotes the distribution of the random variable Xn+1.
For every π-integrable function g : Rd → R, we define Eg(π) =

∫
gdπ and we denote F = Eg1+g2 +H, where H is the

negative entropy H(π) =
∫
log π dπ. We also introduce the subdifferential of a convex function and its minimal section,

since we will use them for our proofs.

Definition 3. [Subdifferential and minimal section] For any convex function g : Rd → R, its subdifferential evaluated at x
is the set

∂g(x) := {d ∈ Rd | g(x) + ⟨d, y − x⟩ ≤ g(y)∀y ∈ Rd}.

Thanks to Bauschke and Combettes [2017, Proposition 16.4], we have that ∂g(x) is a nonempty closed convex set. So the
projection of 0 onto ∂g(x), that is, the least norm element in the set ∂g(x), is well defined, and we refer to this element as
∇0g(x). Following Salim et al. [2019, Section 3.1], we name the function ∇0g : Rd → R the minimal section of ∂g.

Following Salim et al. [2019], we derive our results under the following assumptions on g1, g2.

D 1. We assume that g1 ∈ C1 is convex, gradient Lipschitz with constant Lg1 and lower bounded, and g2 is proper, convex,
lower semi-continuous and lower bounded.

D 2. g1 is µ-strongly convex.

D 3. Assume that ∥∇0g2(x)∥2 ≤ C for every x ∈ Rd.

In particular, D1 and D2 are equivalent to A1 and A4 for the target πλ(θ, x) ∝ exp(−Uλ(θ, x)). Similarly, D3 is equivalent
to C1.

Lemma A.7. Let D1 and D2 hold and assume γ ≤ 1/Lg1 . Then, for all n ∈ N

2γ
[
Eg1(L(Zn))− Eg1(π)

]
≤ (1− γµ)W 2

2 (L(Xn), π)−W 2
2 (L(Zn), π).

Proof. Let a ∈ Rd, using that g1 is µ–strongly convex

∥Zn − a∥2 = ∥Xn − a∥2 − 2γ⟨∇g1(Xn), Xn − a⟩+ γ2∥∇g1(Xn)∥2

≤ ∥Xn − a∥2 + 2γ
(
g1(a)− g1(Xn)−

µ

2
∥Xn − a∥2

)
+ γ2∥∇g1(Xn)∥2

= (1− γµ)∥Xn − a∥2 + 2γ
(
g1(a)− g1(Xn)

)
+ γ2∥∇g1(Xn)∥2. (29)

Since g1 is gradient Lipschitz with constant Lg1 and Zn −Xn = −γ∇g1(Xn)

g1(Zn) ≤ g1(Xn) + ⟨∇g1(Xn), Zn −Xn⟩+
Lg1

2
∥Zn −Xn∥2

= g1(Xn)− γ
(
1− γLg1

2

)
∥∇g1(Xn)∥2

≤ g1(Xn)−
γ

2
∥∇g1(Xn)∥2,



where in the last inequality we have used that γ ≤ 1/Lg1 . Reordering terms gives the following upper bound

γ2∥∇g1(Xn)∥2 ≤ 2γ
(
g1(Xn)− g1(Zn)

)
.

Plugging this into (29) we have

∥Zn − a∥2 ≤ (1− γµ)∥Xn − a∥2 + 2γ
(
g1(a)− g1(Zn)

)
.

It is important to note, the above inequality is true for any a, Xn, and Zn where Zn = Xn − γ∇g1(Xn) (as deterministic
vectors with appropriate dimension). Now, let (a,Xn) ∼ ν(da,dxn) with marginal νa(da) = π(da). Taking conditional
expectation w.r.t. Zn given σ(a,Xn), we obtain

E
[
∥Zn − a∥2

∣∣σ(a,Xn)] ≤ (1− γµ)∥Xn − a∥2 + 2γ
(
g1(a)− E

[
g1(Zn)|σ(a,Xn)

])
.

By taking the unconditional expectation (i.e. w.r.t. ν), we get

E
[
∥Zn − a∥2

]
≤ (1− γµ)Eν

[
∥Xn − a∥2

]
+ 2γ

(
Eg1(π)− Eg1(L(Zn))

)
.

By the definition of the Wasserstein distance we get

W 2
2 (L(Zn), π) ≤ (1− γµ)Eν

[
∥Xn − a∥2

]
+ 2γ

(
Eg1(π)− Eg1(L(Zn))

)
.

Note that the last inequality is true for all ν with prescribed marginal above. In particular, we can take the infimum over all
such couplings and inequality would still hold for the infimum. This leads to

W 2
2 (L(Zn), π) ≤ (1− γµ)W 2

2 (L(Xn), π) + 2γ
(
Eg1(π)− Eg1(L(Zn))

)
,

which is the desired result.

Lemma A.8. Let g : Rd → R be a convex function and gλ its λ-Moreau-Yosida approximation. Consider a, y0, y1 ∈ Rd

such that y1 = proxλg (y0). Then,

∥y1 − a∥2 ≤ ∥y0 − a∥2 − 2λ (g(y0)− g(a)) + λ2∥∇g0(y0)∥2.

Proof. Recalling that proxλg (y0) = y0 − λ∇gλ(y0) we have

∥y1 − a∥2 = ∥y0 − a∥2 − 2λ⟨∇gλ(y0), y0 − a⟩+ λ2∥∇gλ(y0)∥2. (30)

Using that y1 = y0 − λ∇gλ(y0) we can write

⟨∇gλ(y0), y0 − a⟩ = ⟨∇gλ(y0), y1 − a⟩+ λ∥∇gλ(y0)∥2.

Since ∇gλ(y0) belongs to the subdifferential of g(y1), i.e. ∇gλ(x) ∈ ∂g(proxλg (x)) [Bauschke and Combettes, 2017,
Proposition 16.44], we further have that

⟨∇gλ(y0), y1 − a⟩ ≥ g(y1)− g(a),

from which we obtain
−2λ⟨∇gλ(y0), y0 − a⟩ ≤ −2λ

(
g(y1)− g(a) + λ∥∇gλ(y0)∥2

)
.

Recalling the definition of Moreau-Yosida approximation in Definition 2 we have that gλ(y0) = g(y1) + ∥y0 − y1∥2/(2λ);
plugging this into the equation above gives

−2λ⟨∇gλ(y0), y0 − a⟩ ≤ −2λ
(
gλ(y0)− g(a)

)
− 2λ2∥∇gλ(y0)∥2 + ∥y1 − y0∥2 (31)

= −2λ(gλ(y0)− g(a))− λ2∥∇gλ(y0)∥2.

Finally, using Salim et al. [2019, Lemma 9] which states that gλ(x) ≥ g(x)− λ∥∇0g(x)∥/2, where ∇0g is the minimal
section introduced in Definition 3, and combining (30) and (31) we have

∥y1 − a∥2 ≤ ∥y0 − a∥2 − 2λ
(
gλ(y0)− g(a)

)
≤ ∥y0 − a∥2 − 2λ (g(y0)− g(a)) + λ2∥∇0g(x)∥2.



Lemma A.9. Let D1–D3 hold. Then,

2λ
[
Eg2(L(Yn))− Eg2(π)

]
≤W 2

2 (L(Yn), π)−W 2
2 (L(Xn+1), π) + λ2C

Proof. Applying Lemma A.8 with y0 = Yn, y1 = Xn+1 and g = g2, we have

∥Xn+1 − a∥2 ≤ ∥Yn − a∥2 − 2λ
(
g2(Yn)− g2(a)

)
+ λ2∥∇0g2(Yn)∥2.

Now, let a be a random vector sampled from the distribution with density π. Taking expectations in the previous expression
and using the definition of the Wasserstein distance we obtain

W 2
2 (L(Xn+1), π) ≤ E

[
∥Yn − a∥2

]
− 2λ

(
Eg2(L(Yn))− Eg2(π)

)
+ λ2E[∥∇0g2(Yn)∥2]

≤ E
[
∥Yn − a∥2

]
− 2λ

(
Eg2(L(Yn))− Eg2(π)

)
+ λ2C.

Finally, taking the infimum over all couplings Yn, a of L(Yn), π, it follows that

W 2
2 (L(Xn+1), π) ≤W 2

2 (L(Yn), π)− 2λ
(
Eg2(L(Yn))− Eg2(π)

)
+ λ2C.

Theorem A.10. Let D1–D3 hold and assume that γ ≤ 1/Lg1 . Then, for all n ∈ N

2γKL(L(Yn) | π) ≤(1− γµ)W 2
2 (L(Xn), π)−

γ

λ
W 2

2 (L(Xn+1), π)

−
(
1− γ

λ

)
W 2

2 (L(Yn), π) + γ(2γLg1d+ λC).

Proof. Since g1 + g2 is convex by assumption the following holds π ∈ P2(Rd), H(π) < ∞, Eg1+g2(π) < ∞ and for all
µ ∈ P2(Rd) satisfying Eg1+g2(µ) <∞,

KL(µ | π) = Eg1+g2(µ) +H(µ)− (Eg1+g2(π) +H(π)) = F(µ)−F(π).

We can further decompose Eg1+g2(µ) = Eg1(µ) + Eg2(µ). Using Durmus et al. [2019, Lemma 5] we have that the negative
entropy satisfies the following inequality

2γ
[
H(L(Yn))−H(π)

]
≤W 2

2 (L(Zn), π)−W 2
2 (L(Yn), π). (32)

Since g1 is Lg1 -gradient Lipschitz and strongly convex, it follows that

0 ≤ g1(Yn)− g1(Zn) + ⟨∇g1(Zn), Zn − Yn⟩ ≤
Lg1

2
∥Yn − Zn∥2.

Note that Yn − Zn =
√
2γξn is independent of Zn, E[Yn − Zn] = 0 and E[∥Yn − Zn∥2] = 2γd, where d is the dimension

of the standard Gaussian random variable ξn. Therefore, taking expectations in the previous inequality we get

2γ
[
Eg1(L(Yn))− Eg1(L(Zn))

]
≤ 2γ2Lg1d. (33)

On the other hand, by Lemmas A.7 and A.9 we have

2γ
[
Eg1(L(Zn))− Eg1(π)

]
≤ (1− γµ)W 2

2 (L(Xn), π)−W 2
2 (L(Zn), π), (34)

2γ
[
Eg2(L(Yn))− Eg2(π)

]
≤ γ

λ
W 2

2 (L(Yn), π)−
γ

λ
W 2

2 (L(Xn+1), π) + γλC. (35)

Summing up (32)-(35) and using that KL(L(Yn) | π) = F(L(Yn))−F(π) we have the desired result.

Corollary A.11. Let D1–D3 hold and assume that γ ≤ 1/Lg1 and γ ≤ λ ≤ γ/(1− µγ). Then

W 2
2 (L(Xn), π) ≤

λn(1− γµ)n

γn
W 2

2 (L(X0), π) +
λ(2γLg1d+ λC)

1− λ(1− µγ)/γ
.



Proof. Since the KL divergence and the Wasserstein distance are always non-negative and we assume that γ ≤ λ, we have
by Theorem A.10 that for all n ∈ N

W 2
2 (L(Xn+1), π) ≤

λ(1− γµ)

γ
W 2

2 (L(Xn), π) + λ(2γLg1d+ λC).

Unrolling this recurrence we get

W 2
2 (L(Xn), π) ≤

λn(1− γµ)n

γn
W 2

2 (L(X0), π) + λ(2γLg1d+ λC)

n−1∑
i=0

λi(1− γµ)i

γi

≤ λn(1− γµ)n

γn
W 2

2 (L(X0), π) +
λ(2γLg1d+ λC)

1− λ(1− γµ)/γ
,

where we have used the assumption λ ≤ γ/(1− µγ).

A.4.2 Convergence and discretisation bounds

We start by showing that the results established above can be applied to a proximal gradient scheme in which the noise is
scaled by

√
N

Vn+1/2 = Vn − γ∇g1(Vn) +
√

2γ

N
ξn, (36)

Vn+1 = Vn+1/2 − λ∇gλ2 (Vn+1/2).

Corollary A.12 (Rescaled noise). Let D1–D3 hold and assume that γ ≤ 1/Lg1 and γ ≤ λ ≤ γ/(1− µγ). Then,

W 2
2 (L(Vn), πN ) ≤ λn(1− γµ)n

γn
W 2

2 (L(V0), πN ) +
λ(2γLg1d+ λNC)

N (1− λ(1− µγ)/γ)
.

Proof. Let g̃1 = Ng1 and g̃2 = Ng2. It is easy to check that g̃1 is (NLg1)–gradient Lipschitz and (Nµ)–strongly convex.
In addition, we have that

proxλg2(x) = argmin
z∈Rd

g̃2(x)

N
+

∥x− z∥2

2λ
= argmin

z∈Rd

1

N

(
g̃2(x) +

∥x− z∥2

2λ/N

)
= prox

λ/N
g̃2

(x),

since the argmin does not change if the function is multiplied by a constant, which results in ∇gλ2 = ∇g̃λ/N2 /N . Thus, (36)
can be rewritten as

Vn+1/2 = Vn − γ̃∇g̃1(Vn) +
√
2γ̃ ξn,

Vn+1 = Vn+1/2 − λ̃∇g̃λ̃2 (Vn+1/2),

where γ̃ = γ/N and λ̃ = λ/N . Note that the subdifferential set satisfies ∂g̃2 = N∂g2. Therefore, since ∥∇0g2(x)∥2 ≤ C
for all x ∈ Rd by D3, it follows that ∥∇0g̃2(x)∥2 ≤ N2C. Therefore, taking γ̃ ≤ 1/(NLg1) which is equivalent to
γ ≤ 1/Lg1 , and applying Corollary A.11 the result follows.

In order to be able to use the bound obtained in Corollary A.12, we rewrite PIPGLA as the algorithm given in (36). To do so,
define

G1(zθ, z1, . . . , zN ) =
1

N

N∑
i=1

g1(zθ,
√
Nzi),

Gλ
2 (zθ, z1, . . . , zN ) =

1

N

N∑
i=1

gλ2 (zθ,
√
Nzi).



Note that the gradients of these functions are given by

∇G1(zθ, z1, . . . , zN ) =

(
N−1

N∑
i=1

∇θg1(zθ,
√
Nzi), N

−1/2∇z1g1(zθ,
√
Nz1), . . . , N

−1/2∇zN g1(zθ,
√
NzN )

)⊺

and similarly for Gλ
2 .

Taking Zn = (θNn , N
−1/2X1,N

n , . . . , N−1/2XN,N
n ), PIPGLA can be expressed as

Zn+1/2 = Zn − γ∇G1(Zn) +

√
2γ

N
ξn+1, (37)

Zn+1 = Zn+1/2 − λ∇Gλ
2 (Zn+1/2).

Corollary A.13. Let Zn = (θNn , N
−1/2X1,N

n , . . . , N−1/2XN,N
n ) and πN ∝ exp(−N(G1 +G2)). Suppose that A1, A4

and C1 hold true and assume γ ≤ 1/Lg1 and γ ≤ λ ≤ γ/(1− µγ). Then,

W 2
2 (L(Zn), π

N ) ≤ λn(1− γµ)n

γn
W 2

2 (L(Z0), π
N ) +

λ(2γLg1(dθ +Ndx) + λNC)

N (1− λ(1− µγ)/γ)
.

Proof. Note that if C1 holds then ∥∇0G2(z)∥2 ≤ C for every z. To see this note that

∂G2(z) = ∂G2(zθ, z1, . . . , zN ) =
1

N

N∑
i=1

∂g2(zθ,
√
Nzi).

Therefore, using the fact that (N−1
∑

i ai)
2 ≤ N−1

∑
i a

2
i , we get that the minimal section satisfies

∥∇0G2(z)∥2 ≤ 1

N

N∑
i=1

∥∥∥∇0g2(zθ,
√
Nzi)

∥∥∥2 ≤ C.

In addition, observe that A1, A4 imply that G1, G2 and Gλ
2 are convex since g1, g2 and gλ2 are convex, and G1 is also

µ-strongly convex and Lg1 -gradient Lipschitz. The proof then follows from Corollary A.12.

Before proving our final result for W2(L(θNn ), δθ̄⋆), we provide a result adapted from Altschuler and Chewi [2023, Lemma
A.8] to our non-differentiable setting that will be useful to bound the first term of (28).

Lemma A.14. Suppose that the distribution π ∝ exp(−f) on Rd is α-strongly log-concave, almost everywhere differentiable
and that x⋆ is the minimiser of f . Then,

EX∼π[∥X − x⋆∥2] ≤ d/α.

Proof. Let Ω ⊂ Rd denote the set of differentiable points of f , note that when f is convex and differentiable at x ∈ Ω, then
∂f(x) = {∇f(x)}, that is, its gradient is its only subgradient. Recall also that f is strongly convex, so for every x, y ∈ Rd

we have that
⟨∂f(x), x− y⟩ ≥ α∥x− y∥2.

Integration by parts shows that for any smooth function ϕ : Rd → R of controlled growth, it holds that

0 =

∫
Ω

(∆ϕ− ⟨∇f,∇ϕ⟩) dπ = EX∼π[∆ϕ− ⟨∇f,∇ϕ⟩]. (38)

Applying (38) to the function ϕ(x) := ∥x − x⋆∥2/2, for which ∇ϕ(x) = x − x⋆ and ∆ϕ = d, together with the strong
convexity of f , the result follows.

To conclude we present the following theorem that provides a convergence bound for PIPGLA in terms of N, γ, n, λ and the
convexity properties of U .



Theorem A.15. [Theorem 4.2 restated] Let A1, A2, A4 and C1 hold. Then for γ ≤ 1/Lg1 and γ ≤ λ ≤ γ/(1 − µγ),
PIPGLA satisfies

W2(L(θNn ), δθ̄⋆) ≤

√
dθ
Nµ

+
λn/2(1− γµ)n/2

γn/2
W2(L(ZN

0 ), πN ) +

(
λ(2γLg1(dθ +Ndx) + λNC)

N (1− λ(1− µγ)/γ)

)1/2

for all n ∈ N, with ZN
0 given in A2 and C > 0 given in C1 and independent of t, n,N, γ, dθ, dx.

Proof. Using a form of the Prékopa-Leindler inequality for strong convexity [Saumard and Wellner, 2014, Theorem 3.8],
πΘ is µ-strongly log-concave. Therefore, πN

Θ is Nµ-strongly log-concave and satisfies all the assumptions of Lemma A.14.
So, we have that

W2(δθ̄∗ , π
N
Θ )2 ≤ dθ

Nµ
.

On the other hand, note that πN (z) ∝ exp(−N(G1(z) + G2(z))) = exp(−
∑

i U(zθ,
√
Nzi)). By Corollary A.13 it

follows that

W2(L(θNn ), πN
Θ ) ≤W2(L(Zn), π

N ) ≤

√
λn(1− γµ)n

γn
W 2

2 (L(ZN
0 ), πN ) +

λ(2γLg1(dθ +Ndx) + λNC)

N (1− λ(1− µγ)/γ)
.

Using that
√
x+ y ≤

√
x+

√
y, we have

W2(L(θNn ), πN
Θ ) ≤ λn/2(1− γµ)n/2

γn/2
W2(L(ZN

0 ), πN ) +

(
λ(2γLg1(dθ +Ndx) + λNC)

N (1− λ(1− µγ)/γ)

)1/2

.

The proof then follows from (28) and the above.

B THEORETICAL ANALYSIS OF PROXIMAL PARTICLE GRADIENT DESCENT

B.1 BACKGROUND ON PARTICLE GRADIENT DESCENT

The PGD algorithm [Kuntz et al., 2023] relies on the perspective that the MMLE problem can be solved by minimising the
free energy

F (θ, q) =

∫
log
(
q(x)

)
q(x)dx+

∫
U(θ, x)q(x)dx (39)

for all (θ, q) ∈ Θ × P(Rdx), where Θ denotes the parameter space and U(θ, x) := − log pθ(x, y). Kuntz et al. [2023]
propose a discretisation of a gradient flow associated with (39), where they endow Θ with the Euclidean geometry and
P(Rdx) with the 2-Wasserstein one to take gradients. This leads to the Euclidean-Wasserstein gradient flow of F

θ̇t = −∇θF (θt, qt) = −
∫

∇θU(θt, x)qt(x)dx, (40)

q̇t = −∇qF (θt, qt) = ∇x ·
[
qt∇x log

( qt
pθt

(·, y)

)]
.

Kuntz et al. [2023] prove that the gradient ∇F (θ, q) vanishes if and only if θ is a stationary point of pθ(y) and q is its
corresponding posterior. Based on the observation that (40) is a Fokker-Planck equation satisfied by the law of a McKean-
Vlasov SDE, and using a finite number of particles (Xi,N

t )Ni=1 to estimate qt, they obtain the following approximation, for
t ≥ 0,

dθN
t = − 1

N

N∑
i=1

∇θU(θN
t ,X

i,N
t )dt, (41)

dXi,N
t = −∇xU(θN

t ,X
i,N
t )dt+

√
2dBi,N

t , i = 1, . . . , N,



Algorithm 1 Moreau-Yosida Particle Gradient Descent (MYPGD)

Require: N,K, λ, γ, πinit ∈ P(Rdθ )× P((Rdx)N )

Draw (θ0, {Xi,N
0 }Ni=1) from πinit

for n = 0 : K do

θNn+1 =
(
1− γ

λ

)
θNn +

γ

N

N∑
i=1

(
−∇θg1(θ

N
n , X

i,N
n ) +

1

λ
proxλg2(θ

N
n , X

i,N
n )θ

)
Xi,N

n+1 =
(
1− γ

λ

)
Xi,N

n − γ∇Xg1(θ
N
n , X

i,N
n ) +

γ

λ
proxλg2(θ

N
n , X

i,N
n )X +

√
2γ ξi,Nn+1

end for
return θNK+1

where (Bi,N
t )t≥0 for i = 0, . . . , N are dx-dimensional Brownian motions. Using a simple Euler–Maruyama discretisation

with step size γ > 0 of (41) one obtains the particle gradient descent (PGD) algorithm [Kuntz et al., 2023]

θn+1 = θn − γ

N

N∑
j=1

∇θU(θn, X
j,N
n ),

Xi,N
n+1 = Xi,N

n − γ∇xU(θn, X
i,N
n ) +

√
2γξi,Nn+1, i = 1, . . . , N,

where (ξn) for n ≥ 0 are dx-dimensional i.i.d. standard Gaussians.

B.2 PROXIMAL PARTICLE GRADIENT DESCENT

Similar to the approach we have taken in the main text, we can also provide a proximal version of the PGD algorithm. As
mentioned in the main text, if we remove the noise term in the dynamics of θ, we obtain

dθN
t = − 1

N

N∑
i=1

∇θU
λ(θN

t ,X
i,N
t )dt, (42)

dXi,N
t = −∇xU

λ(θN
t ,X

i,N
t )dt+

√
2dBi,N

t . (43)

We can then provide an algorithm which is a discretisation of (42)-(43), termed Moreau-Yosida Particle Gradient Descent
(MYPGD), analogous to MYIPLA. The algorithm is given in Algorithm 1.

We extend the results of Caprio et al. [2024] to provide a nonasymptotic bound for MYPGD. To do so, we consider the
following metric on Rdθ × P2(Rdx)

d((θ, q), (θ′, q′)) =
√

∥θ − θ′∥2 +W 2
2 (q, q

′).

Under similar assumptions to those used in Theorem 4.1 we obtain the following result.

Theorem B.1 (MYPGD). Let A1–A5 hold. If X1
0 , . . . , X

N
0 are drawn independently from a distribution q0 in P2(Rdx) and

λ > 0, γ ≤ 1/(Lg1 + λ−1 + µ), then

E[∥θNn − θ̄⋆∥2]1/2 ≤λ
µ

(∥g2∥2Lip

2
A+B

)
+

(Lg1 + λ−1)
√
2

µ
√
N

√
B0 +

2dx
µ

+ d((θ0, q0), (θ̄⋆,λ, π⋆,λ))e
−µnγ +A0,γ,λγ

1/2 +O(λ2)

for all n ∈ N; where B0 = ∥θ0∥2 + supi∈1,...,N E[∥Xi,N
0 ∥2] <∞ and

A0,γ,λ =

√
4γ + 4/a

a
220(Lg1 + λ−1)2

(
γ(Lg1 + λ−1)2

[
B0 +

2dx
µ

]
+ dx

)
, a =

2(Lg1 + λ−1)µ

Lg1 + λ−1 + µ
.



Proof. Let us denote by (θNn , Q
N,γ
n ) the MYPGD output after n iterations using a discretisation step γ and by QN

⋆,λ the
empirical distribution of N i.i.d. particles drawn from πθ̄⋆,λ . Using the triangular inequality, we have

E[∥θNn − θ̄⋆∥2]1/2 ≤ ∥θ̄⋆ − θ̄⋆,λ∥+ E[∥θNn − θ̄⋆,λ∥2]1/2 ≤ ∥θ̄⋆ − θ̄⋆,λ∥+ d((θNn , Q
N,γ
n ), (θ̄⋆,λ, Q

N
⋆,λ)).

The term ∥θ̄⋆ − θ̄⋆,λ∥ can be upper bounded by λ
µ

(
∥g2∥2

Lip

2 A+B
)
+O(λ2) using Proposition A.1, while a bound for the

second term d((θNn , Q
N,γ
n ), (θ̄⋆,λ, Q

N
⋆,λ)) is derived in Caprio et al. [2024, Theorem 7], which gives the desired result.

Selecting γ = λ and g1 = 0 in MYPGD we obtain an extension of PGD corresponding to the PIPULA algorithm introduced
in Section 3.1.1, that we termed Proximal PGD (PPGD). Obtaining a rigorous bound like that in Theorem B.1 for this
algorithm is more challenging due to the presence of γ both as time discretisation parameter and in the Lipschitz constant of
∇Uγ . In particular, while under A1–A3, A5 and B1 Caprio et al. [2024, Lemma 10 and 11] hold with λ = γ, establishing a
result controlling the time discretisation error like that in Caprio et al. [2024, Lemma 12] is not straightforward.

C CONVERGENCE TO WASSERSTEIN GRADIENT FLOW

We now show that the continuous time interacting particle system introduced in (7)–(8) converges in the large N limit (i.e.
N → ∞) to a McKean–Vlasov SDE with a solution whose law satisfies the Euclidean-Wasserstein gradient flow

θ̇λ,t = −∇θF (θλ,t, qλ,t) = −
∫

∇θU
λ(θλ,t, x)qλ,t(x)dx,

q̇λ,t = −∇qF (θλ,t, qλ,t) = ∇x ·
[
qλ,t∇x log

( qλ,t
pλθλ,t

(·, y)

)]
,

where pλθλ,t
denotes the Moreau-Yosida envelope of pθλ,t

. This result is classical in the study of McKean–Vlasov SDEs,
where is referred to as propagation of chaos (e.g. Sznitman [1991, Theorem 1.4]).

We start by proving the following auxiliary result. Let us denote, for any θ ∈ Rdθ and ν ∈ P(Rdx), g(θ, ν) :=∫
Rdx

∇θU
λ(θ, x′)ν(x′)dx′.

Lemma C.1. The function g : Rdθ × P(Rdx) → Rdθ is Lipschitz continuous in both arguments, i.e.,

∥g(θ1, ν1)− g(θ2, ν2)∥ ≤ λ−1 (∥θ1 − θ2∥+W1(ν1, ν2)) .

Proof. Rockafellar and Wets [2009, Proposition 12.19] shows that ∇Uλ is Lipschitz continuous with Lipschitz constant
λ−1. Then the result follows from Akyildiz et al. [2025, Lemma 5].

We can now show convergence of (7)–(8) to the following McKean–Vlasov SDE

dθλ,t = −
[∫

∇θU
λ(θλ,t, x)qλ,t(x)dx

]
dt (44)

dXλ,t = −∇xU
λ(θλ,t,Xλ,t)dt+

√
2dBt.

Proposition C.2 (Propagation of chaos). For any (exchangeable) initial condition (θN0 , X
1:N
0 ) such that (θN0 , X

j,N
0 ) =

(θ0, X0) for j = 1, . . . , N with E
[
|θ0|2 + |X0|2

]
<∞, we have for any T ≥ 0

E

[
sup

t∈[0,T ]

(
∥θλ,t − θN

t ∥+ ∥Xλ,t −Xj,N
t ∥

)]
≤

√
2(
√
CTλ

−1 +
√
T )e2Tλ−1

N1/2
(45)

where CT := supt≤T E
[
|θN

t |2 + |Xj,N
t |2

]
<∞, for any j = 1, . . . , N .

Proof. The proof exploits the Lipschitz continuity of ∇Uλ and of g established in Lemma C.1. The argument is classical
and omitted, see Akyildiz et al. [2025, Proposition 8] for the proof in a similar context.



We can further show that (44) converges to the following MKVSDE

dθt = −
[∫

∇θU(θt, x)qt(x)dx

]
dt (46)

dXt = −∇xU(θt,Xt)dt+
√
2dBt,

associated with the gradient flow (40), when λ→ 0.

Proposition C.3. Assume that U is gradient Lipschitz with constant ∥∇U∥Lip. For any initial condition (θ0, X0) such that
E
[
|θ0|2 + |X0|2

]
<∞, we have for any T ≥ 0

E

[
sup

t∈[0,T ]

(
∥θλ,t − θt∥2 + ∥Xλ,t −Xt∥2

)]
≤
(
λ2∥∇U∥4LipCT + ∥∇U∥2LipO(λ4)

)
T exp(2∥∇U∥2LipT ),

where CT := supt≤T E
[
|θλ,t|2 + |Xλ,t|2

]
<∞. It follows that, as λ→ 0, (44) converges to (46) in L2.

Proof. For any t ≥ 0, we have

θt = θ0 +

∫ t

0

[
−
∫

∇θU(θs, x)qs(x)dx

]
ds,

Xt = X0 −
∫ t

0

∇xU(θs,Xs)ds+
√
2Bt,

and equivalently for θλ,t, Xλ,t. We first observe that

∥θλ,t − θt∥2 =
∥∥∥∫ t

0

[∫
∇θU

λ(θλ,s, x)qλ,s(x)dx−
∫

∇θU(θs, x)qs(x)dx

]
ds
∥∥∥2

=
∥∥∥∫ t

0

E
[
∇θU

λ(θλ,s,Xλ,s)−∇θU(θs,Xs)
]
ds
∥∥∥2

≤ E
[∥∥∥∫ t

0

[∇θU
λ(θλ,s,Xλ,s)−∇θU(θs,Xs)]ds

∥∥∥2] ,
and

E
[
∥Xλ,t −Xt∥2

]
= E

[∥∥∥∫ t

0

[∇xU(θs,Xs)−∇xU
λ(θλ,s,Xλ,s)]ds

∥∥∥2] .
Combining the above we obtain

E
[

sup
s∈[0,t]

∥θλ,s − θs∥2 + E[∥Xλ,s −Xs∥2]
]
≤ E

[∫ t

0

∥∇U(θs,Xs)−∇Uλ(θλ,s,Xλ,s)∥2ds
]

≤ 2E
[∫ t

0

∥∇U(θs,Xs)−∇U(θλ,s,Xλ,s)∥2ds
]

+ 2E
[∫ t

0

∥∇U(θλ,s,Xλ,s)−∇Uλ(θλ,s,Xλ,s)∥2ds
]

≤ 2∥∇U∥2Lip

∫ t

0

(
∥θλ,s − θs∥2 + E[∥Xλ,s −Xs∥2]

)
ds

+ 2E
[∫ t

0

∥∇U(θλ,s,Xλ,s)−∇Uλ(θλ,s,Xλ,s)∥2ds
]
.

In the case in which ∇U is Lipschitz continuous, we further have that ∇Uλ(v) = ∇U(proxλU (v)) for v = (θ, x) [Pereyra,
2016, Section 2], and we have

∥∇U(v)−∇Uλ(v)∥ = ∥∇U(v)−∇U(proxλU (v))∥ ≤ ∥∇U∥Lip∥v − proxλU (v)∥.



Recalling that, since U is gradient Lipschitz, proxλU (v) = v − λ∇U(v) +O(λ2) [Parikh and Boyd, 2014, Section 3.3], we
further have that

∥∇U(v)−∇Uλ(v)∥ ≤ ∥∇U∥Lip(λ∥∇U(v)∥+O(λ2))

≤ ∥∇U∥Lip(λ∥∇U∥Lip(1 + ∥v∥) +O(λ2)), (47)

and we can bound

E
[∫ t

0

∥∇U(θλ,s,Xλ,s)−∇Uλ(θλ,s,Xλ,s)∥2ds
]

≤ λ2∥∇U∥4Lip

∫ t

0

E
[
1 + ∥(θλ,s,Xλ,s)∥2

]
ds+ ∥∇U∥2LipO(λ4)t

≤ λ2∥∇U∥4LipCT t+ ∥∇U∥2LipO(λ4)t

with CT given in the statement of the result.

Let us denote by h(t) = sups∈[0,t] ∥θλ,s − θs∥2 + E[∥Xλ,s −Xs∥2]. Then, using the bounds above we have that

h(t) ≤ 2∥∇U∥2Lip

∫ t

0

h(s)ds+
(
λ2∥∇U∥4LipCT + ∥∇U∥2LipO(λ4)

)
t.

Using Gronwall’s inequality we obtain

h(t) ≤
(
λ2∥∇U∥4LipCT + ∥∇U∥2LipO(λ4)

)
t exp(2∥∇U∥2Lipt),

from which the result follows.

D ALGORITHM COMPARISON

We provide further details on computing the complexity estimates of Section 4.5. For convenience, we summarise the
complexity estimates for λ, the number of particlesN , γ, and the number of steps n to achieve an error E

[
∥θNn − θ̄⋆∥2

]1/2
=

O(ε) from Table 1. The values are provided in terms of the key parameters dθ, dx and δ > 0 is any small positive constant.

λ N γ n

MYIPLA O(ε) O(dθε
−2) O(d−1

x ε2) O(dxε
−2−δ)

PIPGLA O(ε2) O(dθε
−2) O(d−1

x ε2) O(log ε2/ log dx)
MYPGD O(ε) O(dxε

−2) O(d−1
x ε2) O(dxε

−2−δ)

The bound for MYIPLA follows from first choosing λ so that the first term in Theorem 4.1 is O(ε), then choosing N so
that the second term is O(ε) and γ sufficiently small to counteract the dependence on dx in the fourth term. Finally, since
for every p ∈ N one has ex ≥ xp/p! for x > 0, for every δ > 0 (by choosing p ∈ N large enough) one has e−εδ ≤ Cε.
Therefore, as long as n is chosen sufficiently large that µnγ = O(ε−δ), the exponential decay is strong enough so that the
middle term is of order O(ε). A similar approach based on the bound in Theorem B.1 provides the bounds for MYPGD.

On the other hand, the bound for PIPGLA follows from first choosing N so that the first term in Theorem 4.2 is O(ε), then
λ and γ to counteract the dependence of dx on the third term. Finally, considering the values of λ and γ, we select n to
ensure that the second term is O(ε).

On the other hand, we also compared the algorithms in terms of their computational requirements. We account for the
computational cost of running each algorithm for n iterations with N particles and time discretisation step γ, while
guaranteeing an O(ε) error, in terms of component-wise evaluations of ∇g1 and proxλg2 , and number of independent
standard 1-dimensional Gaussian samples.

For every step of MYIPLA, PIPGLA and MYPGD one requires N(dθ + dx) evaluations of ∇g1 component-wise and
N(dθ + dx) evaluations of proxλg2 component-wise. In the case of MYIPLA and PIPGLA, we need dθ +Ndx independent
standard 1-dimensional Gaussians for each iteration; since MYPGD does not have a noise in the θ-component this reduces
to Ndx.



Evaluations of ∇g1 Evaluations of proxλg2 Indep. 1d Gaussians

MYIPLA O(dθdx(dθ + dx)ε
−4−δ) O(dθdx(dθ + dx)ε

−4−δ) O(dθd
2
xε

−4−δ)

PIPGLA O(dθ(dθ + dx)ε
−2 log ε2

log dx
) O(dθ(dθ + dx)ε

−2 log ε2

log dx
) O(dθdxε

−2 log ε2

log dx
)

MYPGD O(d2x(dθ + dx)ε
−4−δ) O(d2x(dθ + dx)ε

−4−δ) O(d3xε
−4−δ)

Finally, Table 4 summarises the key differences and advantages of each algorithm. We recall that Lg1 and µ denote the
Lipschitz continuity and strong-convexity parameters of g1, introduced in assumptions A1 and A4, respectively.

Table 4: Comparison of convergence assumptions, parameter constraints, and advantages of each algorithm.

Assumptions for Constraints on λ Constraints on γ Advantagesconvergence

MYIPLA A1–A5 λ ≥ 0 γ < min
{
(Lg1 + λ−1)−1, 2µ−1

} Noise in the θ-dynamics
helps escape local minima.

PIPGLA A1, A2, A4 and C1 γ ≤ λ ≤ γ/(1− µγ) γ ≤ 1/Lg1
Ensures θ estimates remain
within the support of the distribution.

MYPGD A1–A5 λ ≥ 0 γ < (Lg1 + λ−1 + µ)−1 Produces lower-variance estimates
for MMLE in the strongly convex setting.

E NUMERICAL EXPERIMENTS

E.1 DERIVATION OF THE PROXIMAL OPERATORS

E.1.1 Laplace Prior with Unknown Mean θ

We recall that using a Laplace prior g2(θ, x) =
∑dx

i=1 |xi − θ|.

proxλg2(θ, x) = argmin
(u0,u)

h(u0, u) = argmin
(u0,u)

{g2(u0, u) + ∥(u0, u)− (θ, x)∥2/(2λ)}.

The first order optimality condition is given by

0 ∈ ∂g2(u0, u) +∇
(
∥(u0, u)− (θ, x)∥2/(2λ)

)
.

We recall that ϕ ∈ Rd is a subdifferential of the ℓ1-norm at x ∈ Rd if and only if ϕi(x) = sign(xi) if xi ̸= 0 and |ϕi(x)| ≤ 1
otherwise [Parikh and Boyd, 2014].

Let us define the set D = {i ∈ {1, . . . , dx}|ui − u0 = 0}. Then, the first order optimality condition becomes

0 ∈

{
−
∑
i/∈D

ti −
∑
i/∈D

sign(ui − u0) + (u0 − θ)/λ | |ti| ≤ 1

}
{
0 ∈

{
ti +

ui−xi

λ | |ti| ≤ 1
}

if i ∈ D

0 = sign(ui − u0) + (ui − xi)/λ if i ̸∈ D
.

Reordering terms, we get

u0 ∈

{
θ + λ

(∑
i/∈D

ti −
∑
i/∈D

sign(ui − u0)

)
| |ti| ≤ 1

}
, (48){

ui ∈ {xi − λti | |ti| ≤ 1} if i ∈ D,

ui = xi − λ sign(ui − u0) if i ̸∈ D.
(49)

Assuming that D = ∅, the previous system of equations can be solved iteratively using a fixed point algorithm.



Alternatively, for a lower computational cost we can obtain an approximate solution by setting u0 = θ in (49){
ui ∈ {xi − λti | |ti| ≤ 1} if i ∈ D,

ui = xi − λ sign(ui − θ) if i ̸∈ D.

which is solved applying the soft-thresholding operator

ui = θ + [xi − θ − λ sign(xi − θ)]1{|xi − θ| ≥ λ}.

Using these ui’s, taking u0 = θ in the right-hand side of (48) and assuming D = ∅, we obtain

u0 = θ + λ

dx∑
i=1

sign(ui − θ).

E.1.2 Laplace Prior with Unknown Scale e2θ

For the Bayesian neural network experiment we consider a Laplace prior with zero mean and unknown scale parameterised
by e2θ (which ensures that the scale is positive), we have g2(θ, x) = dxα+

∑
i |xi|e−2α. Its proximal operator is given by

proxλg2(θ, x) = argmin
(u0,u)

h(u0, u), h(u0, u) = u0dx +
∑
i

|ui|e−2u0 + ∥(u0, u)− (θ, x)∥2/(2λ).

The optimality condition is given by

0 ∈ ∂
(
u0dx +

∑
i

|ui|e−2u0
)
+∇

(
∥(u0, u)− (θ, x)∥2/(2λ)

)
,

which provides the following system of equations

0 = dx − 2e−2u0

dx∑
i=1

|ui|+
1

λ
(u0 − θ),{

0 ∈
{
e−2u0ti + (ui − xi)/λ | |ti| ≤ 1

}
if ui = 0,

0 = e−2u0 sign(ui) + (ui − xi)/λ if ui ̸= 0.

Reordering terms, we get

u0 = θ − λdx + 2λe−2u0

∑
i

|ui| (50){
ui ∈ {xi − λe−2u0ti | |ti| ≤ 1} if ui = 0,

ui = xi − λe−2u0 sign(ui) if ui ̸= 0.
(51)

This system of equations can be solved using an iterative solver, however this will incur in a high computational cost.
Therefore, we opt for the following approximation of (51), where we set u0 = θ,{

ui ∈ {xi − λe−2θti | |ti| ≤ 1} if ui = 0,

ui = xi − λe−2θ sign(ui) if ui ̸= 0.
(52)

The solution of (52) is
ui ≈ [xi − λe−2θ sign(xi)]1{|xi| ≥ λe−2θ}.

Using these ui’s together with the Lambert W function, the solution of (50) is given by

u0 ≈ θ − λdx +
1

2
W

(
4λe−2θ

∑
i

|ui|

)
.



E.1.3 Uniform Prior

We recall that using a uniform prior

g2(θ, x) = dx log(2θ) +

dx∑
i=1

ı[−θ,θ](xi),

where ıK is the convex indicator of K defined by ıK(x) = 0 if x ∈ K and ıK(x) = ∞ otherwise. In this case, the proximal
operator satisfies

proxλg2(θ, x) = argmin
(u0,u)

{g2(u0, u) + ∥(u0, u)− (θ, x)∥2/(2λ)}

= argmin
(u0,u)
|ui|≤u0

{dx log(2u0) + ∥(u0, u)− (θ, x)∥2/(2λ)}.

We can obtain an approximate solution by deriving the first order conditions for ui with i = 0, 1, . . . , dx and combining
them with the constraint |ui| ≤ u0:

u0 =

{
θ+

√
θ2−4λdx

2 if θ2 ≥ 4λdx,

maxi |xi| otherwise,

ui = sign(xi) ·min{|xi|, |u0|}.

E.1.4 Approximation for PIPULA and PPGD

In PIPULA and PPGD, we need to compute the proximal operator of U = g1 + g2 which is usually not available in closed
form. Since γ is normally set to a small enough value, we follow Pereyra [2016] and approximate the proximity map of U as

proxγU (v) = argmin
v′

{g1(v′) + g2(v
′) + ∥v′ − v∥2/(2γ)}

≈ argmin
v′

{g1(v) + (v′ − v)⊺∇g1(v) + g2(v
′) + ∥v′ − v∥2/(2γ)}

≈ argmin
v′

{g2(v′) + ∥v′ − v + 2γ∇g⊺1 (v)∥2/(2γ)}

≈ proxγg2(v + 2γ∇g⊺1 (v)),

where v = (θ, x), v′ = (θ′, x′).

E.2 BAYESIAN LOGISTIC REGRESSION

In the case of the Laplace prior, the negative log joint likelihood is given by

− log pθ(x, y) =

dx∑
i=1

|xi − θ|︸ ︷︷ ︸
g2(θ,x)

+ dx log 2− log p(y|x)︸ ︷︷ ︸
g1(θ,x)

;

and for the uniform prior, we obtain

− log pθ(x, y) = dx log(2θ) +

dx∑
i=1

ı[−θ,θ](xi)︸ ︷︷ ︸
g2(θ,x)

− log p(y|x)︸ ︷︷ ︸
g1(θ,x)

,

where g1 is differentiable and g2 is lower semi-continuous, and ıK is the convex indicator of K defined by ıK(x) = 0 if
x ∈ K and ıK(x) = ∞ otherwise.

In both cases we have that

g1(θ, x) =

dy∑
j=1

(
yj log(s(v

T
j x)) + (1− yj) log(s(−vTj x))

)
+ C



where C is a constant. As shown in Akyildiz et al. [2025, Section 6.1.1], the function g1 is gradient Lipschitz and strictly
convex but not strongly convex. The function g2 satisfies A1 for both the Laplace and the uniform prior, as observed in
Pereyra [2016], in the case of the Laplace prior g2 also satisfies A3 while the uniform prior does not lead to a Lipschitz g2.
Since g1 does not depend on θ, A5 holds for the Laplace prior.

Dataset. We create a synthetic dataset by first fixing the value of θ and sampling the latent variable x ∈ R50 from the
corresponding prior. We then sample the 900 observations from a Bernoulli distribution with parameter s(vTj x), where s is
the logistic function and the entries of the covariates vj are drawn from a uniform distribution U(−1, 1). The true value of θ
is set to θ̄⋆ = −4 for the Laplace prior and θ̄⋆ = 1.5 for the uniform one.

Implementation details. The x-gradients of g1 can be computed analytically. To choose the optimal values of γ and λ
for the different implementations, we perform a grid search in the range [5× 10−4, 0.5]. The selected optimal values are
displayed in Table 5. We note that in PIPGLA the optimal values for λ, γ turn out to be when λ = γ.

Table 5: Optimal hyperparameters for Bayesian logistic regression example. Recall that for PPGD and PIPULA we only
have the γ parameter since we set λ = γ.

Algorithm Approx./Iterative γ λ

Laplace Unif Laplace Unif

PPGD Approx 0.1 0.03 − −
Iterative 0.06 − − −

PIPULA Approx 0.06 0.03 − −
Iterative 0.06 − − −

MYPGD Approx 0.05 0.001 0.25 0.01
Iterative 0.05 − 0.005 −

MYIPLA Approx 0.05 0.001 0.35 0.01
Iterative 0.05 − 0.005 −

PIPGLA Approx 0.01 0.02 0.01 0.02
Iterative 0.01 − 0.01 −

Results. Table 6 extends the results in Table 2 by also including the results for PPGD, PIPULA and IPLA (as a benchmark).
Figure 4 shows the θ-iterates obtained with MYIPLA and PIPGLA starting from 7 different initial values θ0 and using the
approximate solver for proxλg2 with g2(θ, x) =

∑dx

i=1 |xi − θ| and an iterative procedure using 40 iterations in each step. We
observe that the iterative solver results in a slightly slower convergence to stationarity, but overall the two sets of algorithms
converge to the same true value of θ. We also observe that the convergence to stationarity for PIPGLA is much slower
compared to MYIPLA. However, if we increase the value of γ in the hope of faster convergence, the iterates either do not
converge to the true value or the standard deviation is significantly larger. For all algorithms considered, approximate solvers
are 25% faster than iterative solvers (see Table 6).

We also compare the results for the uniform prior, in this case we only use the approximate proximity map (Figure 5), as the
iterative approach is not numerically stable.

Since all the algorithms considered aim at estimating the parameter θ by sampling from a distribution which concentrates
around θ̄⋆, we compare the estimators of θ̄⋆ obtained by using only the last iterate θNK+1 and averaging over a number
of iterates. We compare the normalised MSE (NMSE) for θ for the estimator obtained by averaging the θ-iterates after
discarding a burn-in of 1500 samples (column named avg) against using the last θ of the chain (column last). The results are
in agreement, with the NMSE for the averaged estimator having lower variance in most settings (Table 7).
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Figure 4: Bayesian logistic regression with isotropic Laplace priors on the regression weights
∏

i Laplace(xi|θ, 1), with true
θ = −4. Each plot shows the θ-iterates for 7 different starting points.
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Figure 5: Bayesian logistic regression with isotropic uniform priors on the regression weights
∏

i U(xi| − θ, θ), with true
θ = 1.5. The plot displays the θ-iterates for 7 randomly chosen starting points.



Table 6: Bayesian logistic regression for Laplace and uniform priors. Normalised MSE (NMSE) for θ for different algorithm
when run 500 times using 50 particles, 5000 steps and different starting points. Computation times and NMSEs are averaged
over the 500 replicates. The second column indicates whether the proximal map is calculated approximately or iteratively,
using 40 steps in each iteration. For the uniform prior case we have not implemented the iterative method.

Algorithm Approx./Iterative NMSE (%) Times (s)

Laplace Unif Laplace Unif

PPGD Approx 14.70± 4.42 3.63± 4.93 102.6± 5.1 107.9± 5.5
Iterative 19.04± 1.34 − 122.3± 5.1 −

PIPULA Approx 12.18± 1.62 4.71± 6.02 98.8± 5.7 101.0± 4.0
Iterative 19.22± 1.28 − 126.2± 3.8 −

MYPGD Approx 6.09± 0.34 0.60± 0.23 91.9± 4.8 109.3± 4.6
Iterative 4.44± 1.40 − 129.7± 15.8 −

MYIPLA Approx 4.42± 1.32 15.26± 4.44 89.9± 4.2 97.0± 4.2
Iterative 4.67± 1.60 − 120.5± 10.1 −

PIPGLA Approx 2.30± 0.58 6.83± 3.97 116.5± 5.5 103.1± 8.0
Iterative 2.02± 0.54 − 122.9± 6.9 −

IPLA – 7.76± 3.39 20.12± 2.88 81.1± 3.0 82.9± 4.9

E.3 BAYESIAN NEURAL NETWORK

E.3.1 Sparsity Inducing Prior: MNIST

Our setting is equivalent to assuming that the datapoints’ labels l are conditionally independent given the features f and
network weights x = (w, v), and therefore have the following probability density

p(l|f, x) ∝ exp

( 40∑
j=1

vlj tanh
( 784∑

i=1

wjifi

))
.

We assign priors pα(w) =
∏

i Laplace(wi|0, e2α) and pβ(v) =
∏

i Laplace(vi|0, e2β) to the input and output layer’s
weights, respectively, and learn θ = (α, β) from the data. The model’s density is given by

pθ(x,Ytrain) =
∏
i

Laplace(wi|0, e2α)
∏
j

Laplace(vj |0, e2β)
∏

(f,l)∈Ytrain

p(l|f, x),

where x denotes the weight matrices, i.e. x = (w, v). We note that the log density can be decomposed as

− log pθ(x,Ytrain) = dwα+
∑
i

|wi|e−2α + dvβ +
∑
j

|vj |e−2β

︸ ︷︷ ︸
g2(θ,x)

−
∑

(f,l)∈Ytrain

log p(l|f, x)

︸ ︷︷ ︸
g1(θ,x)

,

where dw and dv denote the dimensions of the weights w and v, respectively, g1 is differentiable and does not depend on θ
and g2 is proper, convex and lower semi-continuous. We have derived an approximation to the proximity map of g2 in E.1.2.

Dataset. We use the MNIST dataset. Features are normalised so that each pixel has mean zero and unit standard deviation
across the dataset. We split the dataset into 80/20 training and test sets.

Proximal operator of g2. As g2 can be expressed as g2(θ, x) = g2(α,w) + g2(β, v), we can compute their proximal
operators separately. It is sufficient to calculate the proximal operator for g2(w,α) since it is equivalent to that of g2(v, β).
To do so, we have that

proxλg2(α,w) = argmin
(u0,u)

h(u0, u), h(u0, u) = u0dw +
∑
i

|ui|e−2u0 + ∥(u0, u)− (α,w)∥2/(2λ),

whose approximate solution is calculated in Section E.1.2.



Table 7: Bayesian logistic regression for Laplace and uniform priors. Normalised MSE (NMSE) for the last iterate of θ
(last) and the posterior mean after discarding a burn-in of 1500 samples (avg). Each different algorithm is run 500 times
for different starting points using 50 particles and 5000 steps. NMSEs are averaged over the 500 replicates. The second
column indicates whether the proximal map is calculated approximately or iteratively, using 40 steps in each iteration. For
the uniform prior case, we did not implement the iterative method due to numerical instabilities.

Algorithm Approx/ Laplace Uniform

Iterative NMSE last(%) NMSE avg(%) NMSE last(%) NMSE avg(%)

PPGD Approx 14.70± 4.42 16.73± 0.83 3.63± 4.93 0.11± 0.04
Iterative 19.04± 1.34 18.66± 0.60 − −

PIPULA Approx 12.18± 1.62 12.34± 0.82 4.71± 6.02 0.12± 0.01
Iterative 19.22± 1.28 18.63± 0.79 − −

MYPGD Approx 6.09± 0.34 4.94± 0.51 0.60± 0.23 0.60± 0.02
Iterative 4.44± 1.40 4.33± 0.59 − −

MYIPLA Approx 4.42± 1.32 4.31± 0.67 15.26± 4.44 16.01± 2.01
Iterative 4.67± 1.60 4.45± 0.42 − −

PIPGLA Approx 2.30± 0.58 2.45± 0.94 6.83± 3.97 4.22± 0.07
Iterative 2.02± 0.54 2.03± 0.88 − −

Implementation details. For the x-gradients of g1, we use JAX’s grad function (implementing a version of autograd).
Plugging the expressions above in the corresponding equations, we can implement the proposed algorithms. However, due
to the high dimensionality of the latent variables, we stabilise the algorithm using the heuristics discussed in Section 2 of
Kuntz et al. [2023]. This simply entails dividing the gradients and proximal mapping terms of the updates of α and β by dw
and dv . We then set γ = 0.05 and λ = 0.5 (after performing a grid search) which ensures that the algorithms are not close
to losing stability. In addition, the weights of the network are initialised according to the assumed prior. This is done by
setting each weight to ± a log u where u ∼ U(0, 1), the sign is chosen uniformly at random and a > 0 is interpreted as the
average initial size of the weights. Williams [1995] suggests setting a = 1/

√
2m for w and a = 1.6/

√
2m for v, where m

is the fan-in of the destination unit.

Predictive performance metrics. To allow comparison, we use the same performance metrics as in Kuntz et al. [2023].
We include their presentation of this metrics for completeness.

Given a new feature vector f̂ , the posterior predictive distribution for a label l̂ associated with the marginal likelihood
maximiser θ̄⋆ is given by

pθ̄⋆(l̂|f̂ ,Ytrain) =

∫
p(l̂|f̂ , x)pθ̄⋆(x|Ytrain)dx.

As pθ̄⋆(x|Ytrain) is unknown, we approximate it with the empirical distribution of the final particle cloud q = N−1
∑N

i=1 δXi
K

,
leading to

pθ̄⋆(l̂|f̂ ,Ytrain) ≈
∫
p(l̂|f̂ , x)q(dx) = 1

N

N∑
i=1

p(l̂|f̂ , Xi
K) =: g(l̂|f̂).

The metrics considered to evaluate the approximation of the predictive power are the average classification error over the
test set Ytest, i.e.

Error :=
1

|Ytest|
∑

(f,l)∈Ytest

1{l = l̂(f)}, where l̂(f) := argmax
l̂

g(l̂|f̂),

and the log pointwise predictive density (LPPD, Vehtari et al. [2017])

LPPD :=
1

|Ytest|
∑

(f,l)∈Ytest

log(g(l|f)).

Under the assumption that data is drawn independently from p(l, f), we have the following approximation for large test data



Table 8: Bayesian neural network. Performance of BNN with Laplace (implemented using MYIPLA) and Normal priors
(implementation with PGD) when setting weights from the final particle cloud below a certain threshold to zero. The second
column refers to whether the particles are averaged before (✓) or after (✗) calculating the performance.

Prior Average over % of zero weights Thresholds Error (%) LPPD

particles? Layer 1 Layer 2 Layer 1 Layer 2

Laplace ✓ 74 48 0.2 0.2 7.0 −0.23
✗ 56 35 1 1 1.5 −0.07

Normal

✓ 74 48 0.5 1.1 15 −0.74
✓ 16 15 0.2 0.2 16 −0.78
✗ 56 35 7 4 2.0 −0.11
✗ 8.6 7.1 1 1 1.5 −0.10

sets,

LPPD ≈
∫

log(g(l|f))p(dl,df) =
∫ [ ∫

log
(g(l|f)
p(l|f)

)
p(dl|df)

]
p(df) +

∫
log(p(l|f))p(dl,df)

= −
∫

KL(g(·|f)∥p(·|f))p(df) +
∫

log(p(l|f))p(dl,df).

This means that the larger the LPPD is, the smaller the mean KL divergence between our classifier g(l|f) and the optimal
classifier p(l|f).

Results. First, it is important to discuss whether the Laplace prior is more appropriate in this setting than the Normal
one. Jaynes [1968] provides two reasons why the Laplace prior is particularly suitable for Bayesian neural network models.
Firstly, for any feedforward network there is a functionally equivalent network in which the weight of a non-direct connection
has the same size but opposite sign, therefore consistency demands that the prior for a given weight w is a function of
|w| alone. Secondly, if it is assumed that all that is known about |w| is its scale, and that the scale of a positive quantity
is determined by its mean rather than some higher order moment, then the maximum entropy distribution for a positive
quantity constrained to a given mean is the exponential distribution. It would follow that the signed weight w has a Laplace
density [Williams, 1995].

We have examined the sparsity-inducing nature of the Laplace prior versus a normal one in Figure 2 and Table 3. As
mentioned in the main text, the sparse representation of our experiment also has the advantage of producing models that
are smaller in terms of memory usage when small weights are zeroed out. To investigate this, we set to zero all weights
below a certain threshold and analyse the performance of the compressed weight matrices. We consider two cases, averaging
the particles of the final cloud X1

500, . . . , X
100
500 , applying the threshold and then calculating the performance, and secondly,

setting to zero small values of each particle of the cloud and averaging the performance of each particle. We compare the
results for the Bayesian neural networks with Laplace and Normal priors (Table 8). It is important to note that when applying
the same threshold to both cases, the Laplace prior leads to a very compressed weight matrix compared to the Normal
prior, i.e. there is a significant difference in the percentage of weights set to zero. We observe that when setting the same
proportion of weights to zero in both layers, the performance of the BNN with Laplace priors is better in terms of the log
pointwise predictive density than that of the BNN with Normal priors, especially when averaging the final cloud of particles
before computing the performance.

Figure 6 shows how the performance metrics evolve when weights below a certain threshold are set to zero, when particles
are averaged before (6a) or after (6b) computing the performance for MYIPLA.

Once we have set the weights of the matrix below a certain threshold to zero, it is necessary to explore the dead units. These
are hidden units all of whose input or output weights are zero [Williams, 1995]. In both cases, the unit is redundant and it
can be eliminated to obtain a functionally equivalent network architecture, we will called this new effective weight matrix
wpruned. The occupancy ratio of a weight matrix w [Marinó et al., 2023] is defined as ψ = size(wpruned)/size(w), where size
denotes the memory size. The inverse of ψ is the compression ratio. We compute the occupancy ratio of the weight matrix
for both the hidden and output layer for different values of the pruning threshold. We do this for each particle of the final
cloud and obtain the average as well as for the averaged final particle cloud, results are shown in Figure 7.
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Figure 6: Evolution of the performance metrics when weights below a certain threshold are set to zero, when particles are
averaged before (a) or after (b) computing the performance.
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Figure 7: Occupancy ratio for the weights matrices of the hidden and output layers as a function of the pruning threshold,
when particles are averaged before (a) or after (b) computing the occupancy ratio.

E.3.2 Sparsity Inducing Prior: CIFAR10

We further evaluate our methods on a classification task using a more complex dataset: CIFAR10. As with the MNIST
dataset, to reduce the cost of computing the gradients on a big dataset, we subsample 5000 data points with labels plane, car,
ship and truck.

Given that the data consists of colour images, we employ a convolutional neural network (CNN) architecture. Specifically,
we use a combination of convolutional layers, max pooling layers, and linear layers with non-linear activation functions.
For simplicity, we apply a sparsity-inducing prior only to the linear layers, and not to the convolutional ones. The sparsity
inducing prior for each layer with weight matrix w is given by pα(w) =

∏
i Laplace(wi|0, e2α) where α is learn from the

data. The network structure and layer dimensions are as follows.

• Convolutional layer (Deterministic): Conv2d(3, 6, 5)

• Max pooling layer (Deterministic): MaxPool2d(2, 2)

• Convolutional layer (Deterministic): Conv2d(6, 16, 5)

• Linear layer with sparsity inducing prior + SELU activation function: Linear(16 × 5 × 5, 512)

• Linear layer with sparsity inducing prior + SELU activation function: Linear(512, 256)

• Linear layer with sparsity inducing prior + SELU activation function: Linear(256, 128)

• Linear layer with sparsity inducing prior: Linear(128, 4)

Table 9 presents quantitative results for the variance of the weights and error metrics. The last column provides a measure of
the sparsity-inducing effect of the Laplace prior on the linear layers.

E.3.3 Non-Differentiable Activation Functions

During gradient checking in neural network training, a potential source of inaccuracy arises from the presence of non-
differentiable points in the objective function [Kumar, 2024]. These non-smooth points often result from the use of activation



Table 9: Bayesian neural network on CIFAR10 dataset. Test errors and log pointwise predictive density (LPPD) achieved
using the final particle cloud with N = 50. Computation times and standard deviation of the empirical distribution of the
weight matrix w for linear layers are also provided.

Algorithm Error (%) LPPD (×10−1) Time (s) Std. w

MYPGD 5.27± 0.95 −4.41± 0.38 201 3.10
MYIPLA 5.23± 1.31 −5.05± 0.45 199 3.22
PIPGLA 5.39± 1.02 −4.32± 0.37 295 2.85
PGD 6.01± 1.15 −5.73± 0.40 178 11.51
SOUL 9.11± 2.03 −7.68± 1.56 433 15.68
IPLA 5.40± 1.33 −5.90± 0.75 181 15.73

functions such as the Rectified Linear Unit (ReLU), defined as max(0, x), as well as from the hinge loss in support vector
machines, maxout neurons, among others. To give a concrete example, consider the ReLU activation function and x < 0 but
very close to 0. The analytic gradient evaluated at x is equal to 0. However, the numerical gradient can be non-zero when
using a finite difference approximation in case x+ h > 0.

Our method provides a principled way of dealing with these non-differentiable points. To illustrate this, we present a simple
example similar to the one in the previous section. Here, we consider a Bayesian neural network with a Normal prior
distribution on the weights to classify MNIST digits 1 and 7, instead of 4 and 9. Additionally, we use a linear approximation
of tanh as the activation function to mitigate the dying neuron problem associated with ReLU [Lu et al., 2020], while noting
that it still remains non-differentiable. This linear approximation is defined as

h(x) =


−1 if x < −1,

x if x ∈ [−1, 1],

1 if x > 1.

Furthermore, we can compute the proximal mapping of h which is given by

proxλh(x) =



x if x < −1,

−1 if x ∈ [−1,−1 + λ],

x− λ for x ∈ [−1 + λ, 1− λ],

1 for x ∈ [1− λ, 1],

x if x > 1,

(53)

where we have applied the first order optimality condition and used the subgradient of the function at x = −1 and 1 which
is given by the sets [0, 1] and [−1, 0], respectively. Therefore, in this setting we have the following likelihood

p(l|f, x) ∝ exp

( 40∑
j=1

vljhLR

( 784∑
i=1

wjifi

))
.

We assign priors pα(w) =
∏

i N (wi|0, e2α) and pβ(v) =
∏

i N (vi|0, e2β) to the input and output layer’s weights,
respectively, and learn θ = (α, β) from the data. Hence, model’s density is given by

pθ(x,Ytrain) =
∏
i

N (wi|0, e2α)
∏
j

N (vj |0, e2β)
∏

(f,l)∈Ytrain

p(l|f, x),

where x denotes the weight matrices, i.e. x = (w, v). We note that the log density can be decomposed as

− log pθ(x,Ytrain) = dwα+
1

2

∑
i

|wi|2e−2α + dvβ +
1

2

∑
j

|vj |2e−2β

︸ ︷︷ ︸
g1(θ,x)

−
∑

(f,l)∈Ytrain

log p(l|f, x)

︸ ︷︷ ︸
g2(θ,x)

,

where dw and dv denote the dimensions of the weights w and v, respectively, g1 is differentiable and depends on θ and x,
while g2 is proper, convex and lower semi-continuous and only depends on x, that is, g2(θ, x) = g2(x). As a result, the



Table 10: Bayesian neural network with non-differentiable activation function. Test errors and log pointwise predictive
density (LPPD) achieved using the final particle cloud with N = 50 and 500 iterations.

Algorithm Error (%) LPPD
(
×10−2

)
Times (s)

MYPGD 0.75± 0.68 −3.36± 1.18 40
MYIPLA 0.70± 0.50 −4.28± 2.86 40
PIPGLA 0.90± 0.49 −3.76± 0.96 68
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(a) Test error. N = 5
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(b) Test error. N = 50
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(c) Test error. N = 100
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(d) LPPD. N = 5
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(e) LPPD. N = 50
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(f) LPPD. N = 100

Figure 8: Evolution of the classification error on a test set (top) and the log pointwise predictive density (LPPD) (bottom)
over iterations in the BNN experiment with non-differentiable activation function, using 250 iterations. Values averaged
over 100 runs.

non-differentiability affects only the latent variables x. In this case, we can compute the proximity map of g2 by using the
expression for the proximity map of the activation function, provided in (53).

We follow the same implementation details as outlined in the previous section and use the same performance metrics: average
classification error over a test set and log pointwise predictive density. The results for the proposed proximal algorithms are
provided in Table 10 together with the computation times for N = 50 and 500 iterations. In addition, plots of the evolution
of the different performance metrics for different number of particles are shown in Figure 8. We observe that the standard
deviation of the LPPD across runs decreases as the number of particles increases. Moreover, PIPGLA exhibits a lower
standard deviation compared to the other methods.

E.4 IMAGE DEBLURRING

We consider the problem of recovering a high-quality image from a blurred and noisy observation y = Hx + ε, where
H is a blurring operator that blurs a pixel xi,j uniformly with its closest neighbours (10 × 10 patch), and ε ∼ N (0, σ2I).
The log prior is proportional to the total variation defined as TV (x) = ∥∇dx∥1, where ∥ · ∥1 is the ℓ1 norm and ∇d is the
two-dimensional discrete gradient operator, which is non-differentiable. The proportionality parameter, eθ, which controls
the strength of this log prior, typically requires manual tuning. Instead of fixing this parameter manually, we estimate its
optimal value using our proposed algorithms. Note that we exponentiate θ to ensure its positivity.



The posterior distribution for the model takes the form

pθ(y|x) ∝ exp
(
−∥y −Hx∥2/(2σ2)− eθTV (x) + logC(θ)

)
,

where C(θ) is proportional to the normalising constant of the prior distribution. To compute C(θ), we start by considering
the case when θ = 0. In this case, the total variation prior is given by

p(x) = C exp(−TV (x)),

where C is constant. For θ ̸= 0, the prior pθ(x) can be expressed using the pushforward measure as

pθ(x) = Teθ#p(x) = edxθp(eθx),

where Teθ# denotes the pushforward operator and dx is the dimension of x. Due to the linearity of the total variation norm,
it follows that

pθ(x) = Cedxθ exp
(
−eθTV (x)

)
.

Thus, we obtain that theta C(θ) = edxθ. For the experiments, we employ the algorithms proposed by [Douglas and Rachford,
1956] and [Chambolle, 2004] to efficiently compute the proximal operator of the total variation norm. Due to the difficulty
of computing the joint proximal operator over the parameter θ and latent variables x, we have consider hybrid versions of
the algorithms, which use standard gradient-based updates for the parameters and proximal updates for the particles. That is,
the updates for the hybrid MYIPLA algorithm are given by

θNn+1 =θNn − γ

dxN

N∑
i=1

eθ
N
n TV (Xi,N

n ) + γ +

√
2γ

N
ξ0,Nn+1,

Xi,N
n+1 =

(
1− γ

λ

)
Xi,N

n − γ
H⊺(HXi,N

n − y)

σ2
+
γ

λ
proxλ

eθ
N
n TV

(Xi,N
n ) +

√
2γ ξi,Nn+1.

Note that as in the Bayesian neural network example, we apply the heuristic of dividing the gradient term in the θ updates by
dx for numerical stability. For PIPGLA, the update for the parameter θ remains the same, while the updates for the particles
are of the form

Xi,N
n+1/2 = Xi,N

n − γ
H⊺(HXi,N

n − y)

σ2
+
√
2γ ξi,Nn+1,

Xi,N
n+1 = proxλ

e
θN
n+1TV

(
Xi,N

n+1/2

)
.

Analogous forms are defined for the proximal PGD algorithms.

Dataset. We use black and white images with pixels values ranging from 0 to 255. The dimensions of the acoustic guitar
image are dx = n1 × n2 = 584 × 238, while the dimensions of the boat image (a standard benchmark in the image
reconstruction literature) are dx = 512× 512.

Implementation details. We implement the proximal operator of the total variation using the proxTV Python package
[Barbero and Sra, 2011, 2018]. Specifically, we employ the Douglas-Rachford method introduced by Douglas and Rachford
[1956] and the Chambolle-Pock method [Chambolle, 2004]. The Douglas-Rachford method is significantly faster than the
Chambolle-Pock method. It is important to note that increasing the precision of the Moreau-Yosida envelope significantly
slows down the computation of the proximal operator when using these numerical schemes. We set γ = 0.01, and λ = 0.4
for MYPGD and MYIPLA and λ = 0.001 for PIPGLA (after performing a grid search) which ensures that the algorithms
are not close to losing stability. In addition, the pixels of the initial particles are drawn from a normal distribution with
mean µ = 50 and scale parameter 10, while the initial parameter estimate θ0 is sampled from a uniform distribution over
[−15, 10].

Performance metrics. To evaluate the performance of our algorithms in image reconstruction, we evaluate the mean
squared error (MSE) and the structural similarity index (SSIM) between the particle cloud and the ground-truth image. The
SSIM quantifies image quality by comparing luminance, contrast, and structural details.



(a) Original (b) Blurred (c) MYPGD (d) MYIPLA (e) PIPGLA

Figure 9: Image deblurring experiment. All the algorithms use N = 10 particles and are run for 3000 iterations with a
burn-in of 100 iterations.
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(a) θ estimates
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Figure 10: Evolution of different quantities over iterations in the image deblurring experiment with N = 10 particles for the
acoustic guitar image. The plots are shown after discarding a burn-in period of 100 iterations and the initial parameter is
θ0 = −10.5.

Results. Figures 9 and 11 display the original and blurred images alongside the reconstructed images obtained using
our different proximal algorithms. The methods are run for 3000 iterations (with a burn-in of 100 iterations) and N = 10
particles, employing the Douglas-Rachford method to numerically evaluate the proximal operator of the total variation
norm. Figures 10 and 12 illustrate the evolution of the parameter estimates θ, the mean squared error and the SSIM, after
discarding a burn-in period of 100 iterations. The high MSE for PIPGLA (Figures 10b and 12b) arises from the difference
in the shades of grey between the reconstructed and the original images, remaining large regardless of the choice of the
proximal parameter λ. Besides, the optimal value for the strength of the total variation prior achieved by the algorithms,
eθ ≈ 0.35 (for both test images) is close to the value set manually in similar works for image reconstruction (e.g. Durmus
et al. [2018], Goldman et al. [2022], Pereyra [2016]).

E.5 NUCLEAR-NORM MODELS FOR LOW RANK MATRIX ESTIMATION

In this section, we demonstrate another application of our methods: the problem of matrix completion. Matrix completion
[Candès and Plan, 2010, Liu et al., 2018] focuses on recovering an intact matrix with low-rank property from incomplete data.
Its application varies from wireless communications [Kortas et al., 2017], traffic sensing [Mardani and Giannakis, 2014] to



(a) Original (b) Blurred (c) MYPGD (d) MYIPLA (e) PIPGLA

Figure 11: Image deblurring experiment. All the algorithms use N = 10 particles and are run for 3000 iterations with a
burn-in of 100 iterations.
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Figure 12: Evolution of different quantities over iterations in the image deblurring experiment with N = 10 particles for the
boat image. The plots are shown after discarding a burn-in period of 100 iterations and the initial parameter is θ0 = −8.1.

integrated radar and recommender systems [Gogna and Majumdar, 2015]. The low-rank prior knowledge is incorporated in
the model using the nuclear-norm of the matrix [Fazel, 2002]. However, similar to the image deblurring example, the strength
of this prior is a hyperparameter that must be set manually. Instead, we estimate the optimal value of this parameter, thereby
extending the applicability of proximal methods that typically perform MLE, rather than MMLE, as in our algorithms.

We conduct a graphical posterior predictive check of the widely used nuclear norm model for low-rank matrices, similar to
the example in Pereyra [2016], but in the context of matrix completion rather than matrix denoising. Let x be an unknown
low-rank matrix of size n1 × n2. Consider a mask MΩ, where Ω is a set of indices from a matrix of size n1 × n2. When
the mask is applied to the matrix x, i.e., MΩX , only the entries of the matrix corresponding to indices in Ω are observed.
Furthermore, after the masking operation, we do not have direct access to the observed entries but instead observe a noisy
version of them, where the observational noise has mean zero and covariance σ2I . Thus, our observations are given by
y = MΩx+ σ2ε, with ε ∼ N (0, I). It is important to highlight, that we will also estimate with our algorithms the scale
parameter σ, rather than requiring it to be fixed manually.

Our objective is to recover x from y under the prior knowledge that x has low rank, that is, most of its singular values are
zero. A convenient model for this type of problem is the nuclear norm prior, which is a sparsity-inducing prior, given by

pθ(x) = C(θ1)e
−eθ1∥x∥tr ,

where ∥ · ∥tr is the trace (or nuclear) norm, which is a convex envelope of the rank function [Bach, 2008], and is defined as

∥x∥tr =

r∑
i=1

σi(x),

r = rank(x) and σ1(x) ≥ · · · ≥ σr(x) ≥ 0 are the singular values. Besides, the constant C(θ1) can be computed
using the pushforward argument, as in Section E.4, leveraging the linearity of the trace norm. Specifically, it is given by
C(θ1) = Cedxθ1 , where dx denotes the dimension of the original matrix x and C is a constant. The posterior distribution of
our model can be written as

pθ(y|x) ∝
edxθ1

edyθ2
exp

(
−∥MΩx− y∥2

2e2θ2
− eθ1∥x∥tr

)
.



Therefore, the negative log density can be decomposed as

U(θ, x) = −dxθ1 + dyθ2 +
∥MΩx− y∥2

2e2θ2︸ ︷︷ ︸
g1(θ,x)

+ eθ1∥x∥tr︸ ︷︷ ︸
g2(θ,X)

,

where dy denotes the number of observed entries. Note that we exponentiate the parameters θ1 and θ2 to ensure their
positivity.

Dataset. We use the checkerboard image of size 188×188 and rank 2. We add Gaussian observational noise with variance
σ2 = 0.1 and mask 30% of the pixels in the image.

Proximal operator of g2. Recall that g2(θ, x) is of the form

g2(θ, x) = eθ1∥x∥tr.

To compute the proximal map, we first observe that if θ1 is known, then by Cai et al. [2010, Theorem 2.1], it follows that

proxλg2(x) = argmin
z

{eθ1∥z∥tr +
1

2λ
∥x− z∥2F } = Seθ1λ(x) := UΣeθ1λV

T ,

where UΣV T is a singular value decomposition, and Σβ is diagonal with entries (Σβ)ii = max{Σii − β, 0}. Based on this,
we calculate

proxλg2(θ, x) = argmin
(α,z)

{eα∥z∥tr +
1

2λ

(
∥θ1 − α∥2 + ∥x− z∥2F

)
},

where ∥ · ∥ denotes the Frobenius norm. The minimisers (α, z) satisfy the following system of equations

α = θ1 + λeα∥Seαλ(x)∥tr =⇒ (α− θ)eθ1−α = λeθ1∥Seαλ(x)∥tr, (54)
z = Sλeα(x). (55)

Solving this system is complicated due to the dependence between α and z and using an iterative solver can be computation-
ally burdensome. Therefore, we have decided to approximate (54) by

(α− θ1)e
θ1−α ≈ λeθ1∥Seθλ(x)∥tr =⇒ α ≈ θ1 +W (λeθ1∥Seθ1λ(X

l)∥tr),

where W is the Lambert W function. Substituting this value of α into (55), we obtain

z ≈ Seαλ(x).

Implementation. To stabilise the implementation of the algorithms, we divide the gradient and proximal mapping terms in
the updates of θ1 and θ2 by the dimension of the the matrix x, dx, and the number of observed entries in y, dy , respectively.
We then set γ = 0.01, and λ = 0.25 for MYPGD and MYIPLA and λ = 0.01 for PIPGLA. The pixels of the initial particles
are drawn from a normal distribution with mean µ = 50 and scale parameter 10, while the initial values of the parameters θ1
and θ2 are drawn from uniform distributions over [−15, 5] and [−10, 10], respectively.

Performance metrics. To asses the performance of our algorithms for low-rank matrix completion, we analyse the
normalised mean squared error (NMSE) for both the entire matrix and the missing entries.

Results. Figure 13 displays the original and observed matrices alongside the reconstructed matrices obtained using our
different proximal algorithms. The methods are run for 3000 iterations (with a burn-in of 100 iterations) and N = 10
particles. The NMSEs for the entire matrix and the missing entries for the final particle cloud are displayed in Table 11,
together with the computation times.



(a) Original (b) Observed (c) MYPGD (d) MYIPLA (e) PIPGLA

Figure 13: Low-rank matrix completion. All the algorithms use N = 10 particles and are run for 3000 iterations. The blue
pixels in (b) represent the mask.

Table 11: Low-rank matrix completion. Normalised mean squared errors (NMSE) for the entire matrix and the missing
entries achieved using the final particle cloud with N = 10 and 3000 iterations.

Algorithm NMSE entire (%) NMSE missing (%) Times (min)

MYPGD 1.21± 0.49 1.67± 0.52 4.1
MYIPLA 1.13± 0.48 1.53± 0.44 4.7
PIPGLA 2.02± 0.29 2.11± 0.31 5.5

E.6 ABLATION STUDY

In this section, we analyse how the choice of the regularisation parameter λ in the Moreau–Yosida approximation affects the
performance and stability of the algorithm.

Choosing an appropriate value for λ is a challenging task as this parameter controls both the level of regularisation and
the closeness to the target, and is closely tied to the step size parameter γ. Durmus et al. [2018] provides some empirical
guidance on the choice of γ, λ for sampling tasks. Crucinio et al. [2025] shows that λ ≤ γ generally leads to better results
in the case of grad Lipschitz potentials, while one should choose λ ≥ γ for light tail distributions. Adaptive strategies to
choose λ have been considered in the optimisation literature (see Oikonomidis et al. [2024] and references therein) but
equivalent results for sampling have not been obtained yet.

We conduct additional experiments to analyse the impact of the regularisation parameter λ in the Bayesian logistic regression
task with Laplace prior. In Figure 14, we report the performance (measured by NMSE) of MYIPLA, MYPGD and PIPGLA
algorithms using approximate proximity maps, evaluated over a fine grid of λ values. The step size parameters used are
those listed in Table 5: γ = 0.05 for MYIPLA and MYPGD, and γ = 0.01 for PIPGLA. Each configuration is run with 100
different random seeds to compute confidence intervals. We observe that our algorithms exhibit stable performance across a
broad range of λ values.
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Figure 14: Normalised MSE (%) for different values of the regularisation parameter λ and a fixed step size γ. Each
configuration is run with 100 random seeds for 50 particles and 5000 steps. The proximal map for all algorithms is computed
approximately.
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