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ABSTRACT

DPO and related algorithms align language models by directly optimizing the
RLHF objective: find a policy that maximizes the Bradley-Terry reward while
staying close to a reference policy through a KL divergence penalty. Previous
work showed that this approach could be further generalized: the original prob-
lem remains tractable even if the KL divergence is replaced by a family of f -
divergence with a convex generating function f . Our first contribution is to show
that convexity of f is not essential. Instead, we identify a more general condition,
referred to as DPO-inducing, that precisely characterizes when the RLHF prob-
lem remains tractable. Our next contribution is to establish a second condition on
f that is necessary to prevent probability displacement, a known empirical phe-
nomenon in which the probabilities of the winner and the loser responses approach
zero. We refer to any f that satisfies this condition as displacement-resistant. We
finally focus on a specific DPO-inducing and displacement-resistant f , leading to
our novel SQUAREDPO loss. Compared to DPO, this new loss offers stronger
theoretical guarantees while performing competitively in practice.

1 INTRODUCTION

Language models (LMs) have emerged as a promising path towards achieving AGI. As they be-
come increasingly integrated into real-world applications, it is important to ensure that LMs behave
in accordance with human preferences. A major step towards enabling LM alignment was the re-
inforcement learning from human feedback (RLHF) framework (Christiano et al., 2017). In this
context, the alignment problem is formulated as maximizing a learned Bradley-Terry (BT) reward
signal while ensuring that the final LM does not deviate too much from a reference policy. This
is a guardrail achieved by penalizing deviations through a KL-divergence penalty. A breakthrough
was due to Rafailov et al. (2024) who showed that the RLHF problem could be solved directly in
a single step by leveraging the fact that (I) the problem has a closed-form solution, and (II) plug-
ging the closed-form solution into the BT model removes intractable quantities, leading to simple
optimization.

More recent work showed that the so-called DPO approach of Rafailov et al. (2024) can be gener-
alized. In particular, Wang et al. (2024) showed that it is possible to maintain tractable optimization
while moving from the KL divergence to a family of f -divergences. More precisely, they showed
that if f is convex, differentiable, and f ′ is invertible with 0 /∈ dom(f ′), then the new optimization
problem remains directly solvable, akin to solving the original RLHF problem using DPO.

Our first contribution is to show that the RLHF problem remains tractable for even a broader class
of functions than those discovered by Wang et al. (2024). In particular, we show that surprisingly
one can relax the convexity assumption and that even for some non-convex functions f , one can get
f -divergences that maintain tractability. In fact, we discover the full characterization of functions
f for which the original RLHF problem remains tractable. Referred to as DPO-inducing, the new
condition is less restrictive than the class of functions discussed by prior work.

The richness of the class of DPO-inducing functions gives us significant flexibility, but also raises
a natural question: which specific choice of DPO-inducing f is best equipped to improve align-
ment? To answer this question, we note that an empirical pitfall of DPO and related algorithms is
probability displacement, a phenomenon in which both winner and loser properties approach zero
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during optimization (Fisch et al., 2025). Our second contribution is to show that within the class of
DPO-inducing functions, there exists a subset of functions that provably hedge against probability
displacement. We refer to such functions as displacement-resistant.

We finally focus on a novel loss, called SQUAREDPO, which arises by using a nonconvex f -
divergence that is both DPO-inducing and displacement-resistant. We show that optimizing
this novel loss results in comparative empirical performance while enjoying robustness to over-
optimization and empirically mitigating displacement. Together, our results suggest that DPO-
inducing f -divergences can be used effectively for preference optimization, and that displacement-
resistant f -divergences, in particular, are best suited for aligning LMs.

2 PRELIMINARIES

A key step in training Language Models (LMs) is to align them with human preferences. In this task,
we leverage a preference dataset D, often consisting of triplets (x, yw, yl). Here, x is a prompt, and
yw, yl are two responses, where a human, or a strong LLM, has annotated yw to be a better response
for the prompt x than yl. The response yw is referred to as the chosen or winner response, and yl as
the rejected or loser response.

The original technique to solve this task was to perform a two-stage optimization (Christiano et al.,
2017). Namely, we first train a parameterized reward model rϕ by minimizing the negative-log-
likelihood loss:

min
ϕ

E(x,yw,yl)∼D [− log σ (rϕ (x, yw)− rϕ (x, yl))] , (1)

under the assumption that our preferences follow the Bradley-Terry (BT) (Bradley & Terry, 1952)
model, i.e., that there exists a reward function r such that the probability of yw being preferred over
yl given a prompt x is σ (r (x, yw)− r (x, yl)), where σ (t) = 1/ (1 + e−t) is the sigmoid function.
The learned reward model rϕ is then used by the PPO algorithm to optimize the following objective:

max
θ

Ex

[
Ey∼πθ(·|x) [rϕ (x, y)]− βKL [πθ (· | x) ∥ πref (· | x)]

]
. (2)

Here, higher values of β > 0 provide more incentive for the final policy to remain close to πref, where
πref, called the reference policy, is the checkpoint from which optimization is initialized (often the
SFT checkpoint).

Noting that Problem (2) admits a closed-form solution, Rafailov et al. (2023) derived a one-stage
algorithm, called DPO, as an alternative for the two-stage RLHF optimization described above. Note
that the closed-form solution of (2) is given by πθ (y | x) = πref (y | x) exp (rϕ (x, y) /β) /Z (x),
where the so-called partition function Z (x) does not depend on y. This closed-form solution can be
rewritten as:

rϕ (x, y) = β log
πθ (y | x)
πref (y | x)

+ β logZ (x) . (3)

Substituting this into (1) leads to the single-stage loss:

min
θ

{
LDPO (θ) := E(x,yw,yl)∼D

[
− log σ

(
β log

πθ (yw | x)
πref (yw | x)

− β log
πθ (yl | x)
πref (yl | x)

)]}
, (4)

which can be minimized directly.

While simple and effective, DPO exhibits a counterintuitive empirical phenomenon. This so-called
probability displacement phenomenon refers to the tendency of DPO to take the probability of both
the preferred and the dispreferred responses to zero (Pang et al., 2024; Xiao et al., 2024; Shen et al.,
2024; Nvidia et al., 2024; Wu et al., 2025; Pal et al., 2024; Rafailov et al., 2024; Fisch et al., 2025;
D’Oosterlinck et al., 2025; Asadi et al., 2025; Razin et al., 2025). While the research on this topic
is active and ongoing, the theoretical understanding remains partial. Our goal is to advance this
understanding by identifying the precise requirements that ensure both tractability and stability of
DPO optimization.
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3 DPO WITH NON-CONVEX f -DIVERGENCES

Note that the RLHF objective (2) employs the KL divergence to measure the discrepancy between
the learned policy and the reference policy. However, this discrepancy could be measured using a
more general notion of distance, such as with the family of f -divergences (Wang et al., 2024; Huang
et al., 2025) defined next (Csiszár, 1972).
Definition 1. Let f : R+ → R be a function1 such that f (1) = 0. For two probability distributions
p,q ∈ ∆n, the f -divergence between p and q is defined as

Df (p ∥ q) =

n∑
i=1

qif (pi/qi) .

KL-divergence is an instantiation of f -divergence with fKL (t) = t ln t. This naturally allows choos-
ing various f -s to obtain various alternatives instead of the KL divergence in the RLHF problem.
Therefore, we now focus on the following more general RLHF problem:

max
πθ

Ex∼D
[
Ey∼πθ(·|x) [rϕ (x, y)]− βDf [πθ (· | x) ∥ πref (· | x)]

]
. (5)

However, recall that our desire is to keep the original RLHF problem tractable and easy to optimize,
and so the choice of f needs to be made with this consideration in mind. Interestingly, Wang et al.
(2024) show that for any convex f with invertible f ′ that satisfies 0 /∈ dom (f ′), substituting the
optimal solution of the generalized RLHF problem (5) into the original BT model (1) yields the
following DPO-like loss, referred to as f -DPO:

min
θ

{
Lf -DPO (θ) := E(x,yw,yl)∼D

[
− log σ

(
βf ′

(
πθ (yw | x)
πref (yw | x)

)
− βf ′

(
πθ (yl | x)
πref (yl | x)

))]}
.

(6)

In the next section, we show that convexity is not necessary, meaning that there exist non-convex f
for which the problem remains tractable.

3.1 WHICH f -S Can BE USED?

We now provide a characterization that fully specifies the class of functions f for which the RLHF
optimization problem is tractable. To this end, we introduce the following definition:
Definition 2. We say a function f : R+ → R is DPO-inducing if substituting any optimal solution
of (5) into the BT model (1) yields the f -DPO loss (6).

Our aim is then to characterize which functions f are DPO-inducing and which are not. The com-
plete characterization is provided in Theorem 1 in the Appendix. As the Theorem 1 is rather tech-
nically involved, in Corollary 1 we add a slight assumption (existence of the limit limt→0+ f ′ (t))
under which the characterization becomes simpler and straightforward to check.
Corollary 1. [Proof in Appendix D.2] Let f : R+ → R be a continuous function in R+, which
is continuously differentiable in R++. Assume that limt→0+ f ′ (t) exists (can be ±∞). Then, f is
DPO-inducing if and only if limt→0+ f ′ (t) = −∞.

See Figure 1, where functions inside and outside the DPO-inducing region are examples of functions
that do and do not satisfy the condition in Corollary 1, respectively. An interesting point about the
proof of Theorem 1 is that it uses the equivalence of the DPO-inducing property to a property we
call interior-inducing (see Definition 3 in the Appendix). In short, f is interior-inducing if optimal
solutions to (5) assign non-zero probability to all responses.

The importance of this result is two-fold. First, it reveals a broader family of functions f that can
be used in f -DPO, not just convex functions as discussed by Wang et al. (2024). Second, the result
shows that failure to satisfy limt→0+ f ′ (t) = −∞ means that the optimization problem will become
intractable.

1We note that traditionally f -divergences are defined for convex functions f . However, as we shall see in
§ 3.1, in the context of direct preference optimization with f -divergence, convexity is not necessary.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 WHICH f -S Should BE USED?

Having characterized the class of DPO-inducing functions, i.e., the functions f that can be used in
f -DPO, we now show that some functions in this class are theoretically less favorable. To this end,
given a preference dataset D and a prompt x from the dataset, we denote by Sx the set of responses y
that appeared in the preference dataset as a response for x (either as a winner or as a loser). Consider
the following optimization problem

max
πθ

Ex∼D

Ey∼πθ(·|x) [rϕ (x, y)]− β
∑
y∈Sx

πref (y | x) f
(

πθ (y | x)
πref (y | x)

) , (7)

which differs from the modified RLHF objective (5) only by the summation in the f -divergence term
being only over Sx instead of over the entire response space. Note that Problem (7) might admit
optimal solutions that are very different than those of Problem (5) (see Appendix C.2).

We begin with Lemma 1, which is interesting in its own right and, as we will see in Lemma 2, also
plays a key role in understanding the likelihood displacement phenomenon.

Lemma 1 (Proof in Appendix D.3). Let f : R+ → R be a DPO-inducing function. Then, substi-
tuting any optimal solution to (7) into the BT model (1) yields the same f -DPO loss (6) as obtained
from substituting any optimal solution to (5) into the BT model.

Lemma 1 reveals a counterintuitive and concerning property of f -DPO: while it solves the two
RLHF losses (5) and (1), it is also true that it solves the two losses (7) and (1). One way to see why
this result is concerning is that Problem (7) is conceptually problematic, as its regularization term
acts only over in-sample responses y ∈ Sx, while intuitively we want to regularize πθ to remain
close to πref over the entire response space. To gain additional insight, in Appendix C.2 we find the
set of optimal solutions to this problem in the special case where f is convex. Another aspect, which
holds regardless of the convexity of f , is that based on the value of argmint∈R+

f (t), the optimal
solutions to (7) could have undesirable properties, as Lemma 2 shows.

Lemma 2 (Proof in Appendix D.4). Let f be a DPO-inducing function with a unique global min-
imum at c ∈ (0, 1]. Suppose rϕ (x, y) ≤ maxy′ /∈Sx

rϕ (x, y
′) for all y ∈ Sx. Then, any optimal

solution to (7) satisfies
πθ (y | x) ≤ c · πref (y | x) , (8)

for any prompt x and in-sample response y ∈ Sx.

Lemma 2 shows that under mild assumptions2, if we use any f for which argmint∈R+
f(t) < 1,

optimal solutions to (7) suffer from likelihood displacement. As a special case, consider fKL (t) =
t ln t, which is the generating function for the KL divergence and hence corresponds to the original
loss of DPO. Since argmint∈R+

fKL (t) = e−1, we get a probability decrease in the in-sample
responses by a factor of at least e−1. Although a similar result was shown in previous work (Asadi
et al., 2025), it was only for DPO, whereas here we prove this for general f . The importance of
generalizing this statement to a general f is that from Lemma 2 arises a theoretically grounded
way to mitigate the likelihood displacement issue - choosing an f for the f -divergence that satisfies
argmint∈R+

f(t) ≥ 1. We refer to any f that satisfies this property as a displacement-resistant
function.

To summarize this section, our theory imposes two desiderata for the function f of the f -divergence
that nicely translate to easy-to-check mathematical properties: it should be DPO-inducing, i.e.,
limt→0+ f ′ (t) = −∞, and it should be displacement-resistant, i.e., argmint∈R+

f(t) ≥ 1. In
the next section, we propose one specific f that satisfies our two desiderata, discuss the resulting
loss, and report empirical evaluations.

A note on convexity Notice that as long as f satisfies our two properties, there seems to be no
reason to require f to be convex. In fact, recall that a main reason to require f to be convex in

2To see why the assumption in Lemma 2 is mild, notice that it is equivalent to requiring the existence of a
response y′ /∈ Sx with higher reward than y. As Sx typically consists of only two responses, its complement
covers almost the entire response space, making the condition very likely to hold.
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f : R+ → R

Convex DPO-Inducing

Displacement-Resistant

Ours:
f(t) = 1

2 (ln t)
2

χ2-divergence:
f(t) = (t− 1)2

KL:
f(t) = t ln t

f(t) = 1
2 t(ln t)

2

Jeffrey: f(t) = t ln t− ln t

Reverse KL: f(t) = − ln t

Jensen–Shannon: f(t) = −(t+ 1) ln t+1
2 + t ln t

α-divergence : f(t) = t1−α−(1−α)t−α
α(α−1)

Figure 1: A Venn diagram illustrating a taxonomy of some generating functions f . The diagram
includes classical examples of f -s used in f -divergences, as well as the functions f(t) = 1

2 (ln t)
2

and f(t) = 1
2 t(ln t)

2, which correspond to a Monte Carlo approximation of KL proposed by Schul-
man (2020). DPO-inducing refers to Definition 2 and displacement-resistant refers to the condition
1 ≤ argmint∈R+

f (t) proposed in §3.2 to mitigate likelihood displacement. The gray area is the
intersection of these two sets of functions..

f -divergences is that together with Jensen’s inequality and the assumption f(1) = 0, it guarantees
that the divergence is non-negative. However, our result in Lemma 1 undermines this logic, as in
Problem (7) the summation in the ‘divergence’ term is over a strict subset of the response space.
As a result, Jensen’s inequality does not apply, hence convexity of f no longer guarantees the non-
negativity of this term.

4 SQUAREDPO

Our proposed method is the instantiation of the f -DPO loss (6) obtained by choosing
fSQUAREDPO (t) := (ln t)2/2. We refer to the resulting algorithm as SQUAREDPO. The function
fSQUAREDPO is one possibility for a function that satisfies the two properties suggested in §3, as
demonstrated in Figure 1. This particular function is both DPO-inducing and displacement-resistant
thus making it a natural choice for preference optimization. Note that we deliberately chose a non-
convex f , in order to explore the broader (compared to prior work) class of functions that Corollary 1
enables. We note that non-convex losses have proven effective in the past for preference alignment,
e.g., LLM-proposed losses presented in Lu et al. (2024). However, we are the first to explore f -DPO
(6) with non-convex functions f .
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The explicit formula for the SQUAREDPO loss, obtained by substituting f ′
SQUAREDPO (t) = (ln t)/t

in (6), is given by

LSquaredPO := E(x,yw,yl)∼D

[
− log σ

(
βθ (yw, x) log

(
πθ(yw|x)
πref(yw|x)

)
− βθ (yl, x) log

(
πθ(yl|x)
πref(yl|x)

))]
,

(9)
where βθ (y, x) := β/ πθ(y|x)

πref(y|x) , and β > 0 is as usual the regularization hyperparameter. Com-
pared to the original DPO loss (4), the SQUAREDPO loss can be viewed as “DPO with adaptive
β-s”. There is a connection between our approach and some of the recent approaches (Meng et al.,
2024; Wu et al., 2024; Lee et al., 2025) in that we both use adaptive β-s, but here the adaptive β-s
are derived from theory and first principles rather than introduced heuristically. The adaptive β-s
in SQUAREDPO can act as a safeguard against severe likelihood displacement; when πθ (yw | x)
decreases, as is often observed in practice, βθ (yw, x) increases. An increase in the effective reg-
ularization coefficient intuitively means stronger regularization, thereby counteracting the decrease
in probability.

5 EXPERIMENTS

In this section, we validate our theoretical findings regarding the ability of SQUAREDPO to mitigate
likelihood displacement, demonstrate that it is robust to over-optimization compared to DPO, and
that it performs competitively on standard benchmarks.

5.1 EXPERIMENTAL SETUP

Model and Dataset Our reference model πref, i.e., the model from which we initialize preference
optimization, is Meta-Llama-3-8B-Instruct (AI@Meta, 2024). The preference dataset we use to
align πref is TL;DR (Völske et al., 2017). We use a version of this dataset provided by von Werra
et al. (2020) that is preprocessed for preference optimization. The dataset consists of Reddit posts
from various topics, each paired with a preferred and a dispreferred summary.

Evaluation We compare SQUAREDPO with DPO on three axes. First, we want to empirically
probe our theoretical findings that SQUAREDPO is more resistant to likelihood displacement than
DPO. This is done by computing the chosen log-ratios, log (πθ (yw | x) /πref (yw | x)), for all train-
ing samples (x, yw, yl) ∈ D, in different checkpoints throughout training. Second, we measure the
performance of each method on the dataset’s validation split, reporting win rates as judged by GPT-
4. Lastly, to assess SQUAREDPO’s ability to generalize to out-of-distribution tasks, we compare its
performance against DPO on standard evaluation benchmarks.

The evaluation benchmarks we considered are AlpacaEval 2 (Li et al., 2023; Dubois et al., 2024)
and MT-Bench (Zheng et al., 2023). AlpacaEval 2 contains 805 single-turn prompts, where GPT-4
judges3 compute both win rate (fraction of cases a model beats a strong baseline) and a length-
controlled win rate that corrects for verbosity bias. MT-Bench consists of 80 multi-turn questions
across diverse categories, scored on a 1–10 scale by GPT-4.

5.2 EXPERIMENTAL RESULTS

We align Meta-Llama-3-8B-Instruct on the TL;DR dataset over four training epochs using LoRA
(Hu et al., 2022). Full hyperparameter and implementation details are provided in Appendix A.

Performance on The Validation Set We sample a set of 512 examples from the validation split of
the dataset. Inspired by the experimental setting in (Huang et al., 2025), for each epoch in {1, 2, 4}
we use the checkpoint obtained at the end of this epoch to generate responses to each of the 512
samples. We then take two approaches to assess the performance of our method. First, in Figure 2
we use GPT-4 to compute the win rate of SQUAREDPO against DPO. Second, in Table 1 we use
GPT-4 to compute win rates of each of the two methods against the reference model, i.e. the model
before alignment.

3We use OpenAI’s gpt-4o instead of the default judge gpt-4-1106-preview for reduced API costs. Dubois
et al. (2025) show that the induced rankings are very robust to the choice of the judge.
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Figure 2: Head-to-head win rate of SQUAREDPO against DPO on TL;DR’s validation split across
training epochs when using these methods to finetune Meta-Llama-3-8B-Instruct on TL;DR for 4
epochs. Error bars over 10 seeds are reported.

In both approaches, it is evident that SQUAREDPO is robust to over-optimization. In Table 1 we
see that while DPO’s win rate against the reference model drops below 50% already in the second
epoch, this is not the case for our loss. The gap in performance grows with the number of epochs.
In Figure 2 we see the same phenomenon from a different angle: when computing the win rate of
SQUAREDPO against DPO, SQUAREDPO achieves statistically significant improvements over DPO
in regimes prone to over-optimization (i.e. after two epochs or more).

One can see in Figure 2 and Table 1 that, albeit not in a statistically significant manner, DPO outper-
forms SQUAREDPO on the first epoch. In this context, it is worth emphasizing that the hyperparam-
eters used for training were standard choices for DPO (e.g. β = 0.01), and we did not tune them for
our loss. This suggests that with appropriate hyperparameter tuning, SQUAREDPO may potentially
surpass DPO also in the first epoch.

Table 1: Win Rate on TL;DR’s validation set against the base model Meta-Llama-3-8B-Instruct
when trained on TL;DR. These results demonstrate SQUAREDPO’s robustness to over-optimization
compared to DPO.

Epochs SQUAREDPO (%) DPO (%)

1 50.8 ± 0.7 51.8 ± 1.0
2 50.6 ± 1.1 45.0 ± 1.1
4 51.0 ± 0.7 34.7 ± 1.3

Standard Benchmarks In Table 2 we present benchmark results for the models obtained by train-
ing Meta-Llama-3-8B-Instruct for one epoch on TL;DR with DPO or SQUAREDPO. Each AlpacaE-
val number is averaged over 10 seeds with confidence intervals. The MT-Bench score is an average
over eight categories; the per-category breakdown is shown in Figure 4. Additional implementation
details can be found in Appendix A. The results in Table 2 show that SQUAREDPO is almost on par
with DPO on these benchmarks, with DPO slightly outperforming. Again it is worth emphasizing
that we did not tune hyperparameters for SQUAREDPO.

Likelihood Displacement Mitigation To gauge SQUAREDPO’s ability to mitigate likelihood dis-
placement, i.e. the phenomenon where winner probabilities decrease during preference optimiza-
tion, we begin with the histograms in Figure 3 (left), which visualize the distribution of the values
{log (πθ (yw | x) /πref (yw | x))}(x,yw,yl)∈D, dubbed ‘chosen log-ratios’. This value is negative for

7
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Table 2: Benchmark results for DPO and SQUAREDPO. For AlpacaEval 2 we report both raw win
rate (WR) and length-controlled win rate (LC).

Method AlpacaEval 2 MT-Bench
LC (%) WR (%) Score (1-10)

DPO 29.6 ± 0.4 24.8 ± 0.4 7.925
SQUAREDPO 29.2 ± 0.4 24.5 ± 0.3 7.924

Figure 3: Left: histograms of chosen log-ratios log (πθ(yw | x)/πref(yw | x)) for all chosen re-
sponses in the training set D after one epoch of training. With SQUAREDPO, likelihood displace-
ment is less severe; probabilities decrease less than under DPO. Right: the evolution of the mean
and the median chosen log-ratio over epochs of training.

winners that suffered from probability displacement. In Figure 3, πθ is the model obtained after
one training epoch. We see that SQUAREDPO is able to mitigate the likelihood displacement issue:
while winner probabilities still decrease, the magnitude of the decrease is smaller. Notably, the most
extreme decreases observed under DPO are absent in SQUAREDPO.

Beyond analyzing the snapshot after one epoch of training, we also examine how likelihood dis-
placement evolves over the course of training. In Figure 5 in the appendix, we provide histograms
for the chosen log-ratios of the models obtained from 1, 2, 3 and 4 epochs of alignment. These re-
sults indicate that the mitigation of extreme displacement by SQUAREDPO grows more pronounced
with additional training. At an aggregate level, the right panel of Figure 3 presents the mean and
median chosen log-ratios for each epoch, demonstrating that the decrease in DPO is by far more
radical than in SQUAREDPO.

Lastly, we report an intriguing ‘monotonicity’ phenomenon we observe in the training dynamics of
DPO: we find that in our experimental setting, nearly all (99.63%) of the chosen responses whose
probability decreased in the first epoch, continued decreasing monotonically in the three subsequent
epochs. That is, for nearly all responses whose probability reduced from the reference checkpoint
to the first epoch, the probability was also reduced from the first epoch to the second epoch and so
on. While the literature contains many reports of the likelihood displacement phenomenon, we are,
to the best of our knowledge, the first to report this monotonicity phenomenon, which is checked on
a per-winner basis.

This phenomenon is substantially reduced under SQUAREDPO, as only 4.21% of chosen responses
that decreased in the first epoch continued to decrease monotonically thereafter. This empirical ob-
servation is in accordance with our mechanistic understanding of the SQUAREDPO loss (§4): when
a winner yw suffers from likelihood displacement, its effective regularization coefficient βθ(yw, x)
increases. This strengthens the regularization on that response and intuitively encourages its proba-
bility to return toward πref(yw | x), thereby breaking the downward monotonicity. See Figure 6 in
the appendix for the evolution of log-ratios across training for ten individual winners, and Table 3
for additional details on monotonicity in several experimental settings.
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6 RELATED WORK

The use of f -divergences for direct preference optimization was recently introduced by Wang et al.
(2024), who proposed the f -DPO loss. Our theoretical results in §3.1 are a non-trivial generalization
of theirs. Perhaps closest to our work is Huang et al. (2025), who also analyze an instantiation of f -
DPO with formal guarantees and robustness to over-optimization. While their focus is analyzing one
specific instance in depth, we take a broader perspective and provide theoretical results that hold for
general f . Another work that uses f -divergences in the context of preference optimization is (Han
et al., 2024), albeit they define a different kind of loss, dubbed f -PO, rather than using f -divergence
as an alternative to the KL in the RLHF loss.

There are several works that propose losses that are similar in flavor to ours, however they are
introduced heuristically rather than arise from theory. Similar to SQUAREDPO, SimPO (Meng et al.,
2024) can also be viewed as DPO with adaptive β-s; however, in their case, the β-s depend only on
the responses’ length and are static throughout training. In β-DPO (Wu et al., 2024) and ε-DPO
(Lee et al., 2025), the β-s, just as in our loss, depend both on the current model and on the specific
prompt and response, however, they both, unlike us, introduce an additional hyperparameter.

Among the works that deal with likelihood displacement, our theoretical analysis most closely re-
sembles that of Asadi et al. (2025). They, as well as others, e.g. (Pal et al., 2024; Wu et al., 2025),
add an ad-hoc penalty term to the DPO loss to fight likelihood displacement, while we propose a
one-term loss that arises from theory, and importantly does not add a hyperparameter, unlike the
mentioned approaches that have the coefficient of the penalty term (typically λ) as an additional
hyperparameter.

7 CONCLUSION

We characterized the set of DPO-inducing functions, i.e. functions f that can be used in f -DPO,
showing that convexity of f is not a necessity. We studied the effect of the choice of f on likelihood
displacement, which is the phenomenon where during preference optimization both the rejected
and the chosen responses decrease in probability, finding that 1 ≤ argmint∈R+

f (t) is a neces-
sary condition to mitigate the decrease. We believe that the two properties we propose, namely
displacement-resistant and DPO-inducing, may provide a general design principle for future meth-
ods in direct preference optimization.

With these two properties in mind, we analyze an example of a function that satisfies both desiderata,
resulting in a novel loss we call SQUAREDPO. We find that this novel loss is not only competitive
with DPO on standard benchmarks, but also offers a substantially greater degree of robustness to
over-optimization and a clear empirical mitigation of likelihood displacement. Alongside our em-
pirical examination of SQUAREDPO and DPO, we report a monotonicity phenomenon of DPO that
is related to, but different from, likelihood displacement. We show that SQUAREDPO manages to
alleviate this behavior of DPO as well.

Limitations First, our experimental evaluation is restricted to a single dataset and model; although
we provide additional displacement experiments with another model and another dataset in Ap-
pendix B.2. Second, the theoretical results regarding likelihood displacement focused on optimal
solutions, abstracting away from optimizer behavior and training dynamics. Third, on the empirical
side, we compared our method only to DPO, while stronger baselines exist. Extending the compar-
ison to recent DPO successors, especially those designed to mitigate displacement, is an important
direction for future work. Another limitation is that all our experiments were conducted under LoRA
finetuning. On the theoretical side, while our proposed method does mitigate displacement empiri-
cally, the displacement-resistance condition we introduce is formally proved to be necessary, though
not established as sufficient. Finally, while our analysis applies to general choices of f , our experi-
ments instantiate only one such function. Exploring other functions f that satisfy our desiderata is a
promising avenue for future research.
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Figure 4: MT-Bench results for the models obtained from training Meta-Llama-3-8B-Instruct for
one epoch on TL;DR using DPO and SQUAREDPO.

A HYPERPARAMETERS AND IMPLEMENTATION DETAILS

General training details Our implementation of the training pipeline is based on the DPO trainer
from the TRL repository (von Werra et al., 2020). For both DPO and SQUAREDPO, we use a
learning rate of 5e−7, β = 0.01 (standard choices for DPO in this setting, e.g. (Meng et al., 2024)),
a batch size of 64, a max sequence length of 2048, a linear learning rate scheduler, and the optimizer
is AdamW (Loshchilov & Hutter, 2019). We use LoRA (Hu et al., 2022) with rank r = 16, scaling
factor α = 32, and dropout rate 0.05. Training was performed in bf16 precision on 4×NVIDIA
A100-SXM4-40GB GPUs. While we focus on LoRA fine-tuning for computational reasons, we
expect the same empirical trends to hold under full fine-tuning.

Clipping Recall that to calculate the SQUAREDPO loss for a sample (x, yw, yl), we need to cal-
culate βθ (y, x) := β/ πθ(y|x)

πref(y|x) for any y ∈ Sx, that is, for yw and yl. In the TRL repository, and in
general, one works with log-probabilities rather than with raw probabilities. We calculate βθ (y, x)
by β exp (min {log πref (y | x)− log πθ (y | x) , 50}). Apart from the clipping, this is equivalent to
the original expression. The threshold for clipping, 50, is safe enough to prevent numerical issues
and does not substantially change the learning curves based on some preliminary experiments we
performed. We found it necessary to clip from above to prevent βθ (y, x) from diverging to infinity
in floating-point representation, whereas clipping from below was not necessary because βθ (y, x)
approaching zero is less problematic.

Evaluation details To calculate win rates for the validation split, and to calculate win rates and
length-controlled win rates for AlpacaEval 2, we use the alpaca eval repository (Li et al., 2023).
To calculate the MT-Bench results, we use the FastChat repository. In all settings, we generate
responses to prompts by sampling with a temperature of 0.7.

B ADDITIONAL EMPIRICAL RESULTS

B.1 MT-BENCH RESULTS BY CATEGORY

Figure 4 presents a radar chart that breaks down the MT-Bench results from Table 2 into MT-Bench’s
eight categories. SQUAREDPO shows slight gains over DPO in coding tasks, performs worse on
STEM tasks, and is otherwise largely on par.
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(a) After 1 epoch (b) After 2 epochs

(c) After 3 epochs (d) After 4 epochs

Figure 5: Histograms of chosen log-ratios log(πθ(yw | x)/πref(yw | x)) for all chosen responses
in the training set D at different stages of training. With SQUAREDPO, likelihood displacement is
consistently less severe compared to DPO, and the difference becomes more pronounced as training
progresses.

B.2 ADDITIONAL RESULTS ON LIKELIHOOD DISPLACEMENT

In Figure 5 we present histograms of the distribution of the log-ratios log(πθ(yw | x)/πref(yw | x))
for all the 92.9K chosen responses yw in the training split of TL;DR when using this dataset to
perform preference optimization on Meta-Llama-3-8B-Instruct. The smaller the term log(πθ(yw |
x)/πref(yw | x)) is, the more severe the likelihood displacement this winner witnessed. Notice
how with DPO, already after one epoch a significant portion of the winners suffered from severe
likelihood displacement, while SQUAREDPO manages to control the extent to which probabilities
get reduced. As training progresses, under DPO we see the distribution shifting to more negative
values, while SQUAREDPO remains relatively stable.

In Table 3 we provide additional results regarding the monotonicity phenomenon reported in §5.2.
For example, when using the TL;DR dataset to finetune Meta-Llama-3-8B-Instruct with DPO,
99.99% of the winners whose probability decreased after the first epoch continued decreasing in
the second, compared to only 10.91% under SQUAREDPO.

To diversify our experimental setting in the context of likelihood displacement across models and
datasets, we additionally train Qwen2-0.5B-Instruct (Yang et al., 2024) on the UltraFeedback dataset
(Cui et al., 2024) for four epochs. The empirical monotonicity analysis for this case is reported in
Table 3. In this setting, 35.57% of winners who decreased under DPO in the first epoch contin-
ued to decrease monotonically until the fourth epoch, whereas under SQUAREDPO this proportion
is merely 1.64%. Importantly, the trend that SQUAREDPO manages to break the downward mono-
tonicity of winner probabilities compared to DPO holds consistently across all experimental settings.
A mechanistic explanation of this trend is provided in the last paragraph of §5.2.
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Table 3: Among the winners whose probability decreased after the first epoch, we report the per-
centage that continued decreasing in later epochs. Results are shown for DPO and SQUAREDPO in
two settings: Llama + TL;DR and Qwen + UltraFeedback.

Llama + TL;DR Qwen + UltraFeedback
Condition DPO (%) SQUAREDPO (%) DPO (%) SQUAREDPO (%)
Decrease from 1 → 2 99.99 10.91 93.72 25.56
Monotone decrease 1 → 3 99.74 9.38 39.99 6.24
Monotone decrease 1 → 4 99.63 4.21 35.57 1.64

(a) DPO (b) SQUAREDPO

Figure 6: The evolution of the log-ratios log(πθ(yw | x)/πref(yw | x)) during training for a random
subset of 10 samples from the TL;DR training set. SQUAREDPO mitigates the ‘monotonicity’ phe-
nomenon observed in DPO.

To further illustrate the trend in Table 3, we track the log-ratio trajectories of ten randomly selected
winners from the TL;DR training set across the four training epochs of Meta-Llama-3-8B-Instruct
under both DPO and SQUAREDPO, using the same winners for each method. We visualize this in
Figure 6. Notice that under DPO, all ten winners display a monotonic decrease in probability, while
for SQUAREDPO this is not the case. Moreover, notice the different scales in the y-axes; under
SQUAREDPO, the decrease is of smaller magnitude.

C THEORETICAL RESULTS OMITTED FROM THE PAPER

C.1 THEORETICAL RESULTS OMITTED FROM SUBSECTION 3.1

We start by defining the notion of an interior-inducing function, briefly mentioned in §3.1.
Definition 3. We say a function f : R+ → R is interior-inducing if for any reward model rϕ,
any reference policy πref, and any regularization coefficient β > 0, every optimal solution πθ to
the generalized RLHF problem (5) assigns strictly positive probability to all continuations, i.e.,
πθ (y | x) > 0 for all x, y.

The condition in Definition 3 is equivalent to requiring that, for each prompt x, πθ (· | x) is in the
relative interior (Beck, 2017) of the simplex, which motivates our terminology. Next, we establish
that this definition is equivalent to the definition of a DPO-inducing function.
Lemma 3. Let f : R+ → R be a continuous function in R+, which is continuously differentiable in
R++. Then, f is DPO-inducing if and only if it is interior-inducing.

Proof. Assume first that f is not interior-inducing. Then, there exist rϕ, πref, and β such that an
optimal solution to (5) satisfies πθ (yw | x) = 0 for some (x, yw, yl) ∈ D. Now, recall that for f
to be DPO-inducing, substituting optimal solutions to (5) into the BT model (1) should yield the

15
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f -DPO loss. However, to perform this substitution one needs to express the rewards difference
rϕ (x, yw)− rϕ (x, yl) in terms of the optimal πθ (yw | x), πθ (yl | x). Since we have πθ (yw | x) =
0, this is impossible.

Assume that f is interior-inducing. We need to show that f is DPO-inducing, i.e., that substituting
any optimal solution of problem (5) into the BT model (1) yields the f -DPO loss (6). Let πθ be an
optimal solution to (5). Since f is interior-inducing, by definition πθ (yw | x) > 0 and πθ (yl | x) >
0 for any (x, yw, yl) ∈ D. Now, we define

g(πθ) := Ey∼πθ(·|x) [rϕ (x, y)]− βDf [πθ (· | x) ∥ πref (· | x)] ,

which is the objective function of problem (5). Using a technical result (see Lemma 4 below) implies

∂g(πθ)

∂πθ (yw | x)
=

∂g(πθ)

∂πθ (yl | x)
,

which reads as follows

rϕ (x, yw)− βf ′
(

πθ (yw | x)
πref (yw | x)

)
= rϕ (x, yl)− βf ′

(
πθ (yl | x)
πref (yl | x)

)
.

Rearranging the equation gives

rϕ (x, yw)− rϕ (x, yl) = βf ′
(

πθ (yw | x)
πref (yw | x)

)
− βf ′

(
πθ (yl | x)
πref (yl | x)

)
,

and substituting this difference into the BT model (1) yields the f -DPO loss (6), as required.

We next state Theorem 1, which provides a full characterization of DPO-inducing functions.
Theorem 1. Let f : R+ → R be a continuous function in R+, which is continuously differentiable
in R++.

i If f (0) = ∞, then f is DPO-inducing.

ii Suppose f (0) < ∞. Then, f is DPO-inducing if and only if it the ratio f(t)−f(0)
t is not

bounded from below in any right neighborhood of 0 (i.e., ∀a > 0,∀M ∈ R,∃t ∈ (0, a)

such that f(t)−f(0)
t < M ).

The proof for Theorem 1 can be found in Appendix D.1. Recall that in Corollary 1 we add an
assumption under which the condition of the characterization becomes easier to check.

C.2 THE OPTIMAL SOLUTIONS OF PROBLEM (7)

In this appendix, we provide and briefly discuss the optimal solution(s) to Problem 7 under the
additional assumption that f is convex, differentiable, and f ′ is invertible. We do not prove it here,
but rather rephrase it in simpler notations and prove it in Lemma 5.

First, notice that Problem 7 is separable over different x-s and hence we can provide the optimal
solution πθ separately for each x ∈ D. So let x ∈ D. Denote r̂x := maxy/∈Sx

rϕ(x, y). If the
condition ∑

y∈Sx

πref (y | x) f ′−1

(
rϕ (x, y)− r̂x

β

)
< 1 (10)

holds, then the set of optimal solutions πθ (· | x) is the set of πθ (· | x) that satisfy

πθ (y | x) = πref (y | x) f ′−1
(

rϕ(x,y)−r̂x
β

)
, ∀y ∈ Sx,

πθ (y | x) = 0, ∀y /∈ Sx, rϕ (x, y) < r̂x∑
y/∈Sx

rϕ(x,y)=r̂x

πθ (y | x) = 1−
∑

y∈Sx

πref (y | x) f ′−1
(

rϕ(x,y)−r̂x
β

)
.

(11)
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Otherwise, the unique optimal solution is:πθ (y | x) = πref (y | x) f ′−1
(

rϕ(x,y)+µ
β

)
, ∀y ∈ Sx,

πθ (y | x) = 0, ∀y /∈ Sx.
(12)

where µ is a solution to
∑

y∈Sx
πref (y | x) f ′−1

(
rϕ(x,y)+µ

β

)
= 1.

This wraps up the characterization of the optimal set of the weird optimization problem (7). Notice
that in both cases, the optimal solutions can assign zero probability to out-of-sample responses. This
demonstrates that Problem (7) does not guardrail out-of-sample responses to stay close in probability
to πref. We rephrase and prove this characterization with more convenient notations in Lemma 5.
We note that this result appears in Asadi et al. (2025) for the special case fKL (t) = t ln t.

D PROOFS

D.1 PROOF OF THEOREM 1

Proof. For simplicity of the proof, we define

max
p∈∆n

g (p) :=
{
rTp− βDf (p ∥ q)

}
. (13)

We first prove the first item. Assume that f (0) = ∞, and we will show that any optimal solution p
must be in ∆n

++ = {p ∈ ∆n | p > 0}. Indeed, any vector p, for which pi = 0 for some i ∈ [n],
we have that g(p) = −∞. This obviously implies that such vectors p cannot be maximizers of g.
Therefore, we get that any optimal solution lies in ∆n

++.

We now prove the second item. Assume that f (0) < ∞.

=⇒: We assume on the way of contradiction that the ratio t−1[f (t)−f (0)] is bounded from below.
We will prove that f is not interior-inducing by constructing an instance of the problem (13) with
specific r and q such that p∗ = e1 is an optimal solution.

To this end, since the ratio t−1[f (t)− f (0)] is bounded from below, there exist M ∈ R and a > 0
such that for all t ∈ (0, a) we have t−1[f (t)− f (0)] ≥ M . Since t−1[f (t)− f (0)] is continuous
in [a, n], by the Extreme Value Theorem there exists K1 such that t−1[f (t) − f (0)] ≥ K1 for all
t ∈ [a, n]. Denoting m = min {K1,M}, we get t−1[f (t)−f (0)] ≥ m for all t ∈ (0, n]. Moreover,
let D = maxt∈[1,2n] f

′ (t), which is finite by the assumption that f is continuously differentiable in
R++ and by the Extreme Value Theorem.

Now, we are ready to define r and q. We consider problem (13) with qi = 1/n for all i ∈ [n],
r1 = max {βD − βm+ 1, 1}, and ri = 0 for all i ≥ 2. We will show that p∗ = e1 is an optimal
solution. To this end, since the problem obviously must have a maximizer, it is enough to show that
no p with pi < 1 can be an optimal solution.

We take p ∈ ∆n with p1 < 1 such that pi > 0 for some i ∈ [n]. Let p′ = p+ pi (e1 − ei), that is,
the probability vector obtained by moving all the mass from i to 1.

Then, from the definition of p′, we get

g (p′)− g (p) = r1 (p1 + pi)− β

n∑
ℓ=1

1

n
f (np′ℓ)− r1p1 + β

n∑
ℓ=1

1

n
f (npℓ)

= r1pi −
β

n
f (n (p1 + pi))−

β

n
f (0) +

β

n
f (np1) +

β

n
f (npi)

= r1pi +
β

n
(f (npi)− f (0))− β

n
(f (np1 + npi)− f (np1)) .

Dividing by pi > 0 we get

17
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g (p′)− g (p)

pi
= r1 + β

f (npi)− f (0)

npi
− β

f (np1 + npi)− f (np1)

npi

≥ r1 + βm− β
f (np1 + npi)− f (np1)

npi
, (14)

where the inequality is because npi ∈ (0, n].

Now, to bound the last term, first we notice that if p1 < 1/n, then p is not optimal. Indeed, in this
case there is necessarily j ̸= 1 such that pj > 1/n. Therefore, by considering the value of g on the
vector where pj and p1 switches, we get higher value than g(p) since r1 ≥ 1 > 0 = rj .

Therefore, we can assume p1 ≥ 1/n. Moreover, by Lagrange’s mean value theorem, there exists a
c ∈ (np1, np1 + npi) such that

f (np1 + npi)− f (np1)

npi
= f ′ (c) ≤ max

t∈[1,2n]
f ′ (t) = D

where the inequality follows from the fact that c ∈ [1, 2n]. Indeed, since p1 ≥ 1/n, we have
1 ≤ np1. Also, np1 + npi ≤ n since p1 + pi ≤ 1. Therefore, c ∈ [1, n].

Using this in (14), we get

g (p′)− g (p)

pi
≥ r1 + βm− βD ≥ βD − βm+ 1 + βm− βD = 1 > 0 ,

where the second inequality follows from the fact that r1 ≥ βD − βm+ 1. Therefore,

g (p′)− g (p) > 0 , (15)

which shows that p is not optimal, as required.

⇐=: Assume that f (0) < ∞ and that the ratio t−1[f (t) − f (0)] is not bounded from below, and
we will prove that f is interior-inducing.

Let r ∈ Rn,q ∈ ∆n
++, and β > 0. We need to show that any optimal solution to

max
p∈∆n

g (p) :=
{
rTp− βDf (p ∥ q)

}
satisfies p ∈ ∆n

++. We assume in contradiction that pi = 0 for some i ∈ [n] and we will prove that
p is not an optimal solution.

Let j ∈ [n] be such that pj > 0, and define pε = p+ ε (ei − ej). Notice that for every ε < pj , we
indeed have pε ∈ ∆n. Then, for all ε < pj , we have

g (pε)− g (p) = rT (pε − p)− β

n∑
ℓ=1

qℓf

(
pεℓ
qℓ

)
+ β

n∑
ℓ=1

qℓf

(
pℓ
qℓ

)
= εrT (ei − ej)− β

(
qif

(
pεi
qi

)
+ qjf

(
pεj
qj

))
+ β

(
qif

(
pi
qi

)
+ qjf

(
pj
qj

))
= ε (ri − rj)− βqi

(
f

(
ε

qi

)
− f (0)

)
+ βqj

(
f

(
pj
qj

)
− f

(
pj − ε

qj

))
. (16)

We now wish to find ε such that g (pε) − g (p) > 0, which will prove that p is not an optimal
solution. Note that

lim
ε→0+

qj

(
f
(

pj

qj

)
− f

(
pj−ε
qj

))
ε

= lim
ε→0+

f
(

pj

qj
− ε

qj

)
− f

(
pj

qj

)
− ε

qj

= f ′
(
pj
qj

)
∈ R ,

18
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since f is differentiable at R++. Therefore, by the definition of the limit, there exists ε̄ > 0 such
that for all ε ∈ (0, ε̄), ∣∣∣∣∣∣

qj

(
f
(

pj

qj

)
− f

(
pj−ε
qj

))
ε

− f ′
(
pj
qj

)∣∣∣∣∣∣ < 1 ,

which means that
qj

(
f
(

pj

qj

)
− f

(
pj−ε
qj

))
ε

> f ′
(
pj
qj

)
− 1 . (17)

Considering the ratio condition with M = f ′
(

pj

qj

)
+ 1

β (rj − ri)− 2 and a = min {ε̄, pj} /qi, we

get that there exists t ∈ (0, a) such that f(t)−f(0)
t < M . Defining ε0 = tqi, we then get ε0 ∈ (0, ε̄)

and ε0 ∈ (0, pj). Thus,

f
(

ε0
qi

)
− f (0)

ε0
qi

=
f (t)− f (0)

t
< M . (18)

Therefore, by combining from (16), (17), and (18) we get

g (pε0)− g (p) > ε0 (ri − rj)− βMε0 + βε0

(
f ′
(
pj
qj

)
− 1

)
= βε0 > 0 ,

where the last equality follows from the definition of M . This shows that g (pε0) > g (p), which
contradicts the optimality of p.

D.2 PROOF OF COROLLARY 1

Proof. Since limt→0+ f ′ (t) exists and f ′ is continuous, there is L such that

lim
t→0+

f (t)− f (0)

t
= f ′ (0) = lim

t→0+
f ′ (t) = L. (19)

Therefore, L = −∞ if and only if the ratio t−1[f (t) − f (0)] is not bounded from below. This
concludes the result as an immediate consequence of Theorem 1.

D.3 PROOF OF LEMMA 1

Proof. Since f is DPO-inducing, it satisfies the conditions in Theorem 1. Therefore, a straight-
forward generalization of our proof of Theorem 1 can show that any optimal solution πθ to Prob-
lem (7) satisfies πθ (y | x) > 0 for any y ∈ Sx. Therefore, for any (x, yw, yl) ∈ D we have
πθ (yw | x) > 0 and πθ (yl | x) > 0. This implies, by Technical Lemma 4, the following equality of
derivatives:

∂g(πθ)

∂πθ (yw | x)
=

∂g(πθ)

∂πθ (yl | x)
, (20)

where we denote by g (πθ) the objective function of (7). By calculation, this gives us

rϕ (x, yw)− rϕ (x, yl) = βf ′
(

πθ (yw | x)
πref (yw | x)

)
− βf ′

(
πθ (yl | x)
πref (yl | x)

)
, (21)

which when substituted into the BT model (1) yields the f -DPO loss (6), as required.

D.4 PROOF OF LEMMA 2

Proof. Suppose in contradiction that there exists an optimal solution πθ to Problem (7) such that for
some x and for some y ∈ Sx, πθ (y | x) > c · πref (y | x). Denote by ŷ ∈ argmaxy′ /∈Sx

rϕ (x, y
′)

an out-of-sample response for x with a maximal reward. We define

π′
θ (z | x) =


c · πref (y | x) , z = y,

πθ (ŷ | x) + πθ (y | x)− π′
θ (y | x) , z = ŷ

πθ (z | x) , z /∈ {y, ŷ}.

19
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Since c ∈ (0, 1], we immediately obtain that π′
θ (· | x) is indeed a valid probability distribution.

From (7) and using the definition of π′
θ (z | x), we have

g (π′
θ)− g (πθ) = π′

θ (ŷ | x) rϕ (x, ŷ) + π′
θ (y | x) rϕ (x, y)− βπref (y | x) f

(
π′
θ (y | x)

πref (y | x)

)
−
(
πθ (ŷ | x) rϕ (x, ŷ) + πθ (y | x) rϕ (x, y)− βπref (y | x) f

(
πθ (y | x)
πref (y | x)

))
= rϕ (x, ŷ) (πθ (y | x)− π′

θ (y | x))− rϕ (x, y) (πθ (y | x)− π′
θ (y | x))

− βπref (y | x) f (c) + βπref (y | x) f
(

πθ (y | x)
πref (y | x)

)
.

Now, since c is the unique global minimum of f , we have f (c) < f
(

πθ(y|x)
πref(y|x)

)
, and by our assump-

tion πref > 0, which implies that

g (π′
θ)− g (πθ) > rϕ (x, ŷ) (πθ (y | x)− π′

θ (y | x))− rϕ (x, y) (πθ (y | x)− π′
θ (y | x)) .

Now, recalling that rϕ (x, ŷ) = maxy′ /∈Sx
rϕ (x, y

′) ≥ rϕ (x, y) by the assumption of the Lemma
and that πθ (y | x) > π′

θ (y | x) by construction of π′
θ, we get that g (π′

θ)− g (πθ) > 0 in contradic-
tion to the optimality of πθ.

E TECHNICAL LEMMAS AND THEIR PROOFS

We denote and define the n− 1 dimensional simplex by ∆n =
{
p ∈ Rn

+ |
∑n

i=1 pi = 1
}

.

Lemma 4. Let g : ∆n → R be a function and let p∗ be an optimal solution of the problem

max
p∈∆n

g (p) . (22)

Suppose that g is differentiable at p∗. Then, for any i, j ∈ [n] for which p∗i , p
∗
j > 0, we have

∂g(p∗)
∂pi

= ∂g(p∗)
∂pj

.

Proof. Suppose in contradiction ∂g(p∗)
∂pi

< ∂g(p∗)
∂pj

. Let v = ej − ei, where ei and ej are the i-th
and j-th standard basis vectors in Rn. Then, we have

vT∇g (p∗) =
∂g (p∗)

∂pj
− ∂g (p∗)

∂pi
> 0 .

Since g is differentiable at p∗, using the definition of the directional derivative of g along the vector
v (see Section 1.5.1 in Beck (2014)), we get that

0 < vT∇g (p∗) = lim
h→0

g (p∗ + hv)− g (p∗)

h
.

Therefore, for a small enough h > 0, we have

g (p∗ + hv) > g (p∗) .

Furthermore, since p∗i , p
∗
j > 0, there exsits a small enough h > 0 such that p∗ + hv ∈ ∆n. These

two facts contradict the optimality of p∗. Since similar arguments will derive a contradiction in the
case where ∂g(p∗)

∂pi
> ∂g(p∗)

∂pj
, we obtain the desired result.

Lemma 5. Let f : R+ → R be a convex DPO-inducing function, which is differentiable and f ′ is
invertible. Let S be a strict subset of [n] := {1, . . . , n}. For given r ∈ Rn, q ∈ ∆n, β > 0, we
consider the following problem:

max
p∈∆n

{
n∑

i=1

piri − β
∑
i∈S

qif (pi/qi)

}
. (23)
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Denote r̂ = maxi/∈S ri and zi = qif
′−1 ((ri − r̂)/β) for any i ∈ S. If

∑
i∈S zi < 1, then the set of

optimal solutions to (23) can be described as all vectors p satisfying


pi = zi, ∀i ∈ S,

pi = 0, ∀i /∈ S, ri < r̂∑
i/∈S
ri=r̂

pi = 1−
∑

i∈S zi.
(24)

Otherwise, the unique optimal solution to (23) is:pi = qif
′−1
(

ri+µ
β

)
, ∀i ∈ S,

pi = 0, ∀i /∈ S.
(25)

where µ is a solution to
∑

i∈S qif
′−1 ((ri + µ)/β) = 1.

Proof. Since the problem is convex (since f is convex) and Slater’s condition holds, the set of
optimal solutions coincides with the set of KKT points. The Lagrangian in this case is given by

L (p,λ, µ) = ⟨r,p⟩ − β
∑
i∈S

qif

(
pi
qi

)
+ ⟨λ,p⟩+ µ

(
n∑

i=1

pi − 1

)
, (26)

where λ ∈ Rn
+ and µ ∈ R. The KKT conditions are



∂L
∂pi

= ri − βf ′
(

pi

qi

)
+ λi + µ = 0, ∀i ∈ S,

∂L
∂pi

= ri + λi + µ = 0, ∀i /∈ S,

pi ≥ 0,
∑n

i=1 pi = 1, (feasibility),

λi ≥ 0, ∀i ∈ [n] , (multipliers),

λipi = 0, ∀i ∈ [n] , (complementary slackness).

Since we assume that f is DPO-inducing, by Lemma 3 we get that it is also interior-inducing, and
therefore any solution p to (23) satisfies pi > 0 for all i ∈ S. Therefore λi = 0 for all i ∈ S, and
the KKT conditions can be equivalently written as:

pi = qif
′−1
(

ri+µ
β

)
, ∀i ∈ S.

ri + λi + µ = 0, ∀i /∈ S,

p ∈ ∆n, (feasibility),

λi ≥ 0, ∀i /∈ S, (multipliers),

λipi = 0, ∀i /∈ S, (complementary slackness).

We now split the proof into the two cases as mentioned in the lemma. Recall that r̂ = maxi/∈S ri
and zi = qif

′−1 ((ri − r̂)/β).

• Assume that
∑

i∈S zi < 1. First, the points described in (24) are all KKT points with
µ = −r̂ and {

λi = 0, ∀i /∈ S, ri = r̂,

λi = r̂ − ri, ∀i /∈ S, ri < r̂.
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It remains to show that no other KKT points exist. To this end, let p be any KKT point.
We will prove that p coincides with one of the solutions in (24). By feasibility, it suffices
to establish that pi = zi for all i ∈ S and pi = 0 for all i /∈ S such that ri < r̂.

For any i /∈ S, we have that ri + λi + µ = 0. Since λi ≥ 0, we have that µ ≤ −ri for all
i /∈ S and therefore also µ ≤ −r̂. If pi = 0 for all i /∈ S, since

∑
i∈S zi < 1, we obtain a

contradiction since

1 =
∑
i∈S

pi =
∑
i∈S

qif
′−1

(
ri + µ

β

)
≤
∑
i∈S

qif
′−1

(
ri − r̂

β

)
=
∑
i∈S

zi < 1,

where the first inequality is because f ′−1 is increasing (by convexity of f ) and since µ ≤
−r̂.

Hence some pi > 0 for i /∈ S. Complementary slackness implies λi = 0 and thus ri = −µ.
Moreover, ri = rj + λj for all j /∈ S, since rj + λj = −µ. Since λj ≥ 0, we have that
ri ≥ rj for all j /∈ S, which means that ri = r̂. Hence µ = −r̂, which means that pi = zi
as desired.

• Assume that
∑

i∈S zi ≥ 1. In this case, we prove that the unique KKT point is the point
given in (25). Note that by feasibility it is enough to show that pi = 0 for all i /∈ S.

Suppose, in contradiction, that pℓ > 0 for some ℓ /∈ S. Then, λℓ = 0 and hence µ = −rℓ.
Moreover,

1 ≥ pℓ +
∑
i∈S

qif
′−1

(
ri − rℓ

β

)
≥ pℓ +

∑
i∈S

qif
′−1

(
ri − r̂

β

)
≥ pℓ + 1 > 1 , (27)

where the first inequality is by feasibility of p, the second inequality is since f ′−1 is in-
creasing (by convexity of f ) and rℓ ≤ r̂, and the penultimate inequality is a rearrangement
of the assumption of Case II (recall that zi = qif

′−1 ((ri − r̂)/β)).
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