Under review as a conference paper at ICLR 2025

APOLLO-MILP: AN ALTERNATING PREDICTION-
CORRECTION NEURAL SOLVING FRAMEWORK FOR
MIXED-INTEGER LINEAR PROGRAMMING

Anonymous authors
Paper under double-blind review

ABSTRACT

Leveraging machine learning (ML) to predict an initial solution for mixed-integer
linear programming (MILP) has gained considerable popularity in recent years.
These methods predict a solution and fix a subset of variables to reduce the prob-
lem dimension. Then, they solve the reduced problem to obtain the final solu-
tions. However, directly fixing variable values can lead to low-quality solutions or
even infeasible reduced problems if the predicted solution is not accurate enough.
To address this challenge, we propose an Alternating prediction-correction neural
solving framework (Apollo-MILP) that can identify and select accurate and reli-
able predicted values to fix. In each iteration, Apollo-MILP conducts a prediction
step for the unfixed variables, followed by a correction step to obtain an improved
solution (called reference solution) through a trust-region search. By incorporat-
ing the predicted and reference solutions, we introduce a novel Uncertainty-based
Error upper BOund (UEBO) to evaluate the uncertainty of the predicted values and
fix those with high confidence. A notable feature of Apollo-MILP is the superior
ability for problem reduction while preserving optimality, leading to high-quality
final solutions. Experiments on commonly used benchmarks demonstrate that our
proposed Apollo-MILP significantly outperforms other ML-based approaches in
terms of solution quality, achieving over a 50% reduction in the solution gap.

1 INTRODUCTION

Mixed-integer linear programming (MILP) is one of the most fundamental models for combinato-
rial optimization with broad applications in operations research (Bixby et al.l 2004)), engineering
(Ma et al., 2019), and daily scheduling or planning (Pochet & Wolseyl 2006). However, solving
large-size MILPs remains time-consuming and computationally expensive, as many are NP-hard
and have exponential expansion of search spaces as instance sizes grow. To mitigate this challenge,
researchers have explored a wide suite of machine learning (ML) methods (Gasse et al} [2022). In
practice, MILP instances from the same scenario often share similar patterns and structures, which
ML models can capture to achieve improved performance (Bengio et al., [2021).

Recently, extensive research has focused on using ML models to predict solutions for MILPs. No-
table approaches include Neural Diving (ND) (Nair et al.,|2020; | Yoon, [202 1} Paulus & Krausel[2023))
and Predict-and-Search (PS) (Han et al.| 2023} [Huang et al.,[2024)), as illustrated in Figurem Given a
MILP instance, ND and PS begin by employing an ML model to predict an initial solution. ND with
SelectiveNet (Nair et al., 2020) assigns fixed values to a subset of variables based on the prediction,
thereby constructing a reduced MILP problem with a reduced dimensionality of decision variables.
Then, ND solves the reduced problem to obtain the final solutions. However, the fixing strategy
faces several limitations. The solving efficiency and the quality of the final solutions heavily depend
on the accuracy of the ML-based predictor for initial solutions (Huang et al., 2024]), but achieving
an accurate ML-based predictor is often challenging due to the complex combinatorial nature of
MILPs, insufficient training data, and limited model capacity. Consequently, enforcing variables to
fixed values that may not be accurate can misguide the search toward areas that do not contain the
optimal solution, leading to low-quality final solutions or even infeasible reduced problems. Instead
of fixing variables, PS offers a more effective search strategy for a pre-defined neighborhood of the

Under review as a conference paper at ICLR 2025

Neural Divin Predict-and-Search
MILP Problem g | ‘
Predict Fix and Optimize Predict Search
Predicted Partial Best Predi?ted Part.ial Bes.t
Solution 3 Solutionz[P] SolutionZ* Solution 2 Solution 3, Solution z+
Solution ::> I El,/\/ g I Solution ::> I Hl> g !
Predictor Predictor
z[P] = [P] [=z[P] — 2[P][1 < A
M Predicted variablesin [Variables with changed B Variables with fixed Variables with values [Unfixed variables
the partial solutions values after search values found by the solver

Figure 1: Illustration of Neural Diving (ND) and Predict-and-Search (PS). For a given MILP prob-
lem, both methods begin by using a GNN predictor to generate an initial solution & and construct
a partial solution &[P]. ND then fixes the variable values in this partial solution and optimizes the
reduced problem. While PS searches within a neighborhood around the partial solution.

predicted partial solution, leading to better feasibility and higher-quality final solutions. The trust-
region search strategy in PS allows better feasibility but is less effective than the fixing strategy in
terms of problem dimension reduction, as it requires a larger search space.

To address the aforementioned challenges, a natural idea is to refine the predicted solutions before
fixing them. We observe that the search process in PS provides valuable feedback to enhance solu-
tion quality for prediction, an aspect that has been overlooked in existing research. Specifically, the
solver guides the searching direction toward the optimal solution while correcting variable values
that are inappropriately fixed. Theoretically, incorporating this correction yields higher precision for
predicted solutions (please see Theorem [3).

In light of this, we propose a novel MILP optimization approach, called the Alternating Prediction-
Correction Neural Solving Framework (Apollo-MILP), that can effectively identify the correct and
reliable predicted variable values to fix. In each iteration, Apollo-MILP conducts a prediction step
for the unfixed variables, followed by a correction step to obtain an improved solution (called refer-
ence solution) through a trust-region search. The reference solution serves as guidance provided by
the solver to correct the predicted solution. By incorporating both predicted and reference solutions,
we introduce a novel Uncertainty-based Error upper BOund (UEBO) to evaluate the uncertainty of
the predicted values and fix those with high confidence. Furthermore, we also propose a straightfor-
ward variable fixing strategy based on UEBO. Theoretical results show that this strategy guarantees
improved solution quality and feasibility for the reduced problem. Experiments demonstrate that
Apollo-MILP reduces the solution gap by over 50% across various popular benchmarks, while also
achieving higher-quality solutions in one-third of the runtime compared to traditional solvers.

We highlight our main contributions as follows. (1) A Novel Prediction-Correction MILP Solving
Framework. Apollo-MILP is the first framework to incorporate a correction mechanism to enhance
the precision of solution predictions, enabling effective problem reduction while preserving opti-
mality. (2) Investigating Effective Problem Reduction Techniques. We rethink the existing problem-
reduction techniques for MILPs and establish a comprehensive criterion for selecting an appropriate
subset of variable values to fix, combining the advantages of existing search and fixing strategies. (3)
High Performance across Various Benchmarks. We conduct extensive experiments demonstrating
Apollo-MILP’s strong performance, generalization ability, and real-world applicability.

2 RELATED WORKS

ML-Enhanced Branch-and-Bound Solver In practice, typical MILP solvers, such as SCIP
(Achterberg, 2009) and Gurobi (Gurobi Optimization, 2021), are primarily based on the Branch-
and-Bound (B&B) algorithm. ML has been successfully integrated to enhance the solving efficiency
of these B&B solvers (Bengio et al. 2021} |Gasse et al., 2022} |Scavuzzo et al.| [2024). Specifically,
many researchers have leveraged advanced techniques from imitation and reinforcement learning to
improve key heuristic modules. A significant portion of this work aims to learn heuristic policies for
selecting variables to branch on (Khalil et al.|[2016;|Gasse et al., 2019} |Gupta et al.,|2020; Zarpellon
et al.,2021; |Gupta et al.| 2022} [Scavuzzo et al.,2022; Lin et al., 2024; Zhang et al., 2024), selecting

Under review as a conference paper at ICLR 2025

cutting planes (Tang et al.,[2020; Wang et al., 2023} [Huang et al.| 2022} |[Balcan et al., [2022; Paulus
et al.}2022; |Puigdemont et al., |2024)), and determining which nodes to explore next (He et al., 2014;
Labassi et al., 2022). These ML-enhanced methods have demonstrated substantial improvements
in solving efficiency. Additionally, extensive research has been dedicated to boosting other critical
modules in the B&B algorithm, such as separation (Li et al., [2023)), scheduling of primal heuristics
(Khalil et al., 2017, |Chmiela et al., [2021)), presolving (Liu et al.l 2024), and large neighborhood
search (Song et al.,|2020; Wu et al.||2021; Sonnerat et al., 2021} Huang et al.,|2023). Beyond practi-
cal applications, theoretical advancements have also emerged to analyze the expressiveness of GNNs
for MILPs and LPs (Chen et al.,2023azb)), as well as to develop landscape surrogates for ML-based
solvers (Zharmagambetov et al., 2023)).

ML for Solution Prediction Another line of research leverages ML models to directly predict
solutions (Ding et al., [2020; |Yoon, 2021} |Khalil et al., [2022} Paulus & Krause, 2023 |[Zeng et al.,
2024;|Cai et al.| 2024)). Neural Diving (ND) Nair et al.|(2020) is a pioneering approach in this field.
Specifically, ND predicts a partial solution based on coverage rates and utilizes SelectiveNet to
determine which predicted variables to fix. To enhance the quality of the final solution, subsequent
methods incorporate search mechanisms, such as trust-region search (PS) Han et al.| (2023)); Huang
et al.| (2024) and large neighborhood search Sonnerat et al.| (2021); [Ye et al. (2023; 2024) with
sophisticated neighborhood optimization techniques. In this paper, we focus on ND and PS, both of
which have gained significant popularity in recent years.

3 PRELIMINARIES

3.1 MIXED INTEGER LINEAR PROGRAMMING

A mixed-integer linear programming (MILP) is defined as follows,

min c'x, st. Ar<bl<ax<wuxzecZl xR"7P, (1)

xzER™
where x denotes the n-dimensional decision variables, consisting of p integer components and n —p
continuous variables. The vector ¢ € R"™ denotes the coefficients of the objective function, A €
R™*™ is the constraint coefficient matrix, and b € R™ represents the right-hand side terms of the
constraints. The vectors I € (RU {—o0})” and u € (R U {400})" specify the lower and upper
bounds for the variables, respectively. It is reasonable that PS primarily focuses on mixed-binary
programming with € {0, 1}? x R™~? for simplification, as it can be easily generalized to general
MILPs using the well-established modification techniques proposed in |Nair et al.| (2020).

3.2 BIPARTITE GRAPH REPRESENTATION FOR MILPS

A MILP instance can be represented as a weighted bipartite graph G = (W U V, E) |Gasse et al.
(2019), as illustrated in Figure Q} In this bipartite graph, the two sets of nodes, ¥V and V, represent
the constraints and variables in the MILP instance, respectively. An edge is constructed between a
constraint node and a variable node if the variable has a nonzero coefficient in the constraint. For
further details on the graph features utilized in this paper, please refer to Appendix

3.3 PREDICT-AND-SEARCH

Predict-and-Search (PS) Han et al.| (2023) is a two-stage MILP optimization framework that uti-
lizes machine learning models to learn the Bernoulli distribution for the solution values of binary
variables. It then performs a trust-region search within a neighborhood of the predicted solution
& to enhance solution quality. Given a MILP instance Z, PS considers approximating the solution
distribution g(x | Z) by weighing the solutions with their objective value,

exp(=E(z, 7))
2ees xp(—E(x), 1))’

and S is a collected set of optimal or near-optimal solutions. PS learns the solution distribution
using a GNN model py and computes the marginal probability pg(x | Z) to predict a solution.
To simplify the formulation, PS assumes that the variables are independent, as described in Nair,

c'x, ifxisfeasible,
400, otherwise,

q(x | T) = where the energy function E(x,Z) = {

Under review as a conference paper at ICLR 2025

et al. (2020), i.e., po(z | Z) = [[;_, po(x; | Z). PS then selects k; binary variables with the
highest predicted marginal values py(x; | Z) and fixes them to 1. Similarly, PS fixes ko binary
variables with the lowest marginal values to 0. The hyperparameters k(o and k; are called partial
solution size parameters, and we denote the fixed partial solution as &[P], where P is the index
set for the fixed variables with ko + k1 elements. Instead of directly fixing the variables &[P], PS
employs a traditional solver, such as SCIP or Gurobi, to explore the neighborhood Bp(&[P], AA) of
the predicted partial solution &[P] in search of the best feasible solution. Here A represents the trust-
region radius (neighborhood parameter), and Bp(2[P], A) = {x[P] € R™ | ||#[P]—x[P]|1 < A}
is the trust region. The neighborhood search process is formulated as the following MILP problem,
referred to as the trust-region search problem,

min cT:c, st. Ax <b,l <z <u,

xTER™ (2)

x[P] € Bp(z[P],A),z € ZP x R"7P.

Notice that PS reduces to ND (without SelectiveNet) when the neighborhood parameter A = 0.

4 THE PROPOSED ALTERNATING PREDICTION-CORRECTION FRAMEWORK

“How to identify and fix a high-quality partial solution” is a longstanding challenge for ML-based
solution prediction approaches. Unlike existing works that primarily focus on enhancing the pre-
diction accuracy of ML models, we offer a new perspective by identifying and selecting the correct
and reliable predicted values to fix, thereby improving the quality of final solutions and overall
solving efficiency. The proposed Apollo-MILP framework alternates between prediction (Sec-
tion [4.I) and correction (Section £.2)) steps, progressively identifying high-confidence variables
and expanding the subset of fixed variables. As the algorithm proceeds, we obtain a sequence
of MILPs Z(® — 7(I) — ... — T with fewer decision variables, where the superscripts
{(k)| k=0,---, K} is the iteration number. The overview of our architecture is in Figure 2}

As shown in Figure [2| during the k™ iteration, Apollo-MILP processes a MILP Z(¥), which may
be either the original problem or a reduced version. In this section, we assume that the prediction
and correction steps are performed within the k' iteration. Therefore, we simplify the notation
by omitting the superscript (k) without leading to misunderstanding. For example, we denote the
predicted solution by @ instead of &(*).

4.1 PREDICTION STEP

In each prediction step, our goal is to predict the solution for the current MILP problem Z, which is
represented as a bipartite graph, as discussed in Section[3.2]

We employ a GNN-based solution predictor py to predict the marginal probabilities of values py(|
T) for binary variables in the optimal solution, similar to the method employed in PS (Han et al.,
2023). Assuming independence among the variables, the predictor outputs the probability that the
variable equals 1, i.e., pg(x; =1|Z)fori=1,--- ,n.

As mentioned above, the predictor takes either the original or reduced MILP problems as input.
However, the distribution of the reduced problems may differ from that of the original problems. To
address this issue, we employ data augmentation to align the distributional shifts. Specifically, for
a given MILP instance Z in the training dataset, we collect a set Sz of m optimal or near-optimal
solutions to approximate the solution distribution ¢(x | Z) mentioned in Section We then
randomly sample a solution * from this solution pool Sz, along with a subset of variables from Z.
We fix the selected variables to the corresponding values in x* to generate a reduced instance 7.
For each reduced instance Z’, we also collect m optimal or near-optimal solutions to estimate the
solution distribution g(x | Z'). All instances and solutions are combined, resulting in an enriched
training dataset denoted as D.

To calculate the prediction target for training, we construct the estimated probability target vector
(p(wy =1|I),p(xy =1|1T), - ,p(x, =1|I)) . Here, we let

Zw’esz,w;=1 exp(—c'x’)

Dares; exp(—cTa)

pi=plx;=1|7)= 3)

Under review as a conference paper at ICLR 2025

Original
Instance X I(k) XC T (k+1) A/
70 : . Reducing :

> g e S
. T mnc T min ¢ T
IIIDICRT) s.t. Az <b s.t. Az <b
s.t. Az <b I<z<u I<z<u
I<z<u o[P'0] = gComrt[pr) [P0 um[P)
z €ZP x R"P t=1,.,k L. =1,
T €ZP x R*? Fleng zezPx (R
‘ :E[Pl(k)] _ zCorrr,k[Pl(k)] ‘
Consmainevariableprediction Step Correction Step
Predicted Partial Refference B Variables to B Variables with fixed values
Solution &* Selution ; “[r‘ o Solution, S o)] M Predicted variables in the
GNN :l; Variable Fixing . .
Predictor (H‘ ‘\ Criterion UEBO panml solutions
/‘ (5)-+ ol) [Variables with changed
. . 'H +d(p, q)
Bipartite Graph [FPO] — 30 [PO) = A ° values after. search
of the (Reduced) . - ‘ 9 Trust -Region ‘ 9 Variable } (@ Problem ‘ Unfixed variables
Problem [0501ut|0n Preducnon] Search | Fixing Strategy Reductlon

Figure 2: The overview of Apollo-MILP. Apollo-MILP operates through an iterative process that
alternates between prediction and correction steps to reduce the original MILP problem progres-
sively. In the prediction step, Apollo-MILP (1) employs a GNN to generate a partial solution. In
the correction step, (2) a trust region-based search is conducted to refine this solution to obtain the
reference solution. (3) The proposed variable fixing criterion, UEBO, is then calculated to identify
which variables should be fixed. (4) Finally, we reduce the problem dimension by enforcing the
selected variable values to fix values.

be the probability of variable x; being assigned the value 1, given the instance Z from the enriched
dataset D and the solution set Sz. Finally, the predictor py is trained by minimizing the cross-entropy
loss (Han et al., [2023)

LO) == Y szlogpe (@i =1[2)+ (1 —pi)log(l —po(w; =1|1))). (4

(z Sr)eD i=1

4.2 CORRECTION STEP

The correction step aims to improve the partial solutions by identifying and discarding the inaccurate
predicted variable values that were inappropriately fixed. Specifically, we (1) leverage a trust-region
search on the partial solution for a refined solution as a reference for subsequent operations, (2)
introduce a novel uncertainty-based metric to determine which subset of variables to fix, and (3)
enforce the selected variables to fixed values for dimension reduction.

To begin with, we establish the following notations. Given a MILP instance Z, let ¢(x | Z) represent
the distribution of the optimal solution, and g(« | &,Z) denote the distribution of the reference so-
lution given instance Z and predicted solution &. The notation [P] implies that the partial solution
@[P] has the same variable values as in the index set P.

Trust-Region Search We leverage the solver as a corrector to improve the predicted solutions
via trust-region search. Formally, given the predicted marginal probabilities pg(x | Z), we solve
the MILP problem [2| with predefined hyperparameters (ko, k1, A\), which is similar to the search
process in PS. In this process, the partial solution to be fixed during the search is &[P]. The best
primal solution & ~ g(x | &,7) found by the solver has values Z[P] for the variable index set P.

Correction Criterion The solution obtained through the trust-region search serves as a refer-
ence to improve the solution quality, called the reference solution. Then, we need to determine
which variables to fix and the values they should be assigned. To evaluate the reliability of the pre-
dictions for each variable, a natural approach is to compute the distributional discrepancy between
the optimal and predicted solutions, specifically Dy (po(x; | Z)||q(x; | 7)), where we have as-

sumed the independence between different variables. Here the (conditional) Kullback—Leibler (KL)

divergence is defined to be D1 (p||q) = >, p(yr)log pgy"; for distributions p, ¢ and variable y

Under review as a conference paper at ICLR 2025

taking values in {y1,y2, - , Yk, - }. However, during testing, the optimal solution is not avail-
able, rendering the computation of the KL divergence intractable. Fortunately, we propose an upper
bound to estimate the KL divergence that utilizes the available reference solutions.

Proposition 1 (Uncertainty-Based Error Upper Bound). We derive the following upper bound for
the KL divergence between the predicted marginal probability pg(x; |) and optimal solution
distribution q(x; |), utilizing pe(x; | Z) and the reference solution distribution q(x; | &;,T),

Dir (po(i | I)||q(wi | 1)) < H(po(xi | T)) +d(pe(wi | 1), q(z: | T:,1)), Q)

Target Distance Prediction Uncertainty Prediction-Correction Discrepancy
where H(-) denotes the entropy with H(p) = — >, p(yr)log(p(yx)) for variable y taking values
in {y1,y2, Yk, -}, and d(-,-) represents the (conditional) cross-entropy loss of distributions

with d(p,q) = — >, a(yx) log(p(yr))-

We define the upper bound in Equation (5) as the Uncertainty-based Error upper BOund (UEBO),
represented as UEBO(p, q) := H(p) +d(p, ¢) for distributions p and g. The first term H(pg(z; | Z))
on the right-hand side of Equation (), referred to as prediction uncertainty, reflects the confidence
of the predictor in its predictions. A lower negative entropy value indicates lower uncertainty and
greater confidence in the predictor pg. The second term d(pg(x; | Z),q(x; | &;,Z)), called the
prediction-correction discrepancy, quantifies the divergence between the predicted and reference
solutions. A larger discrepancy suggests that further scrutiny of the predicted results is necessary.
We will now discuss why UEBO has the potential to be an effective metric for selecting which
variables to fix.

1. Providing an upper bound of the intractable KL divergence Dxy, (pe(x; | Z)||q(z; | T)).
During testing, the distribution of the optimal solution g(x; | Z) is generally unknown,
making the computation of this KL divergence intractable. Instead, UEBO offers a practical
estimation by utilizing the available distributions pg(x; | Z), q(x; | &;, 7).

2. Estimating the discrepancy between the solutions. UEBO aims to penalize variables
that exhibit substantial prediction uncertainty or significant disagreement, indicating the
reliability of the predicted values.

Problem Reduction. We begin by selecting variables with low UEBO according to the correc-
tion rule, as low UEBO indicates higher reliability and greater potential for high-quality solutions.
Consequently, we can be more confident in fixing these variables to construct a partial solution
xCo[P'] = F(z[P], &[P]), referred to as the corrected partial solution. Specifically, the correc-
tion operator F takes in the predicted and reference partial solutions #[P] and &[P] and identifies a
new index set P’ C P of variables to fix, along with their corresponding fixed values. Finally, we
arrive at the following reduced problem for the next iteration.

min c¢'z, st Ax<bl<z<u,
mekt (©)
x[P] = z%""[P'], x € ZP x R"P.

)

Furthermore, to accelerate the convergence, we can introduce a cut c"x < €' into the reduced
problem to ensure monotonic improvement.

4.3 ANALYSIS OF THE FIXING STRATEGY

This part is organized as follows. (1) We begin by introducing the concept of prediction-correction
consistency for a variable and illustrating its close relationship with UEBO. (2) We propose a
straightforward strategy F for approximating UEBO and fixing variables. (3) We analyze the ad-
vancement properties of Apollo-MILP incorporated with the proposed fixing strategy.

(1) UEBO and Prediction-Correction Consistency To provide deeper insight into UEBO, we
first introduce the concept of prediction-correction consistency as follows.
Definition 1. We call a variable x; prediction-correction consistent if the predicted and reference

partial solutions yield the same variable value, i.e., £; = &;. Furthermore, we define the prediction-
correction consistency of a variable as the negative of the prediction-correction discrepancy, given

by —d(pe(x; |), q(z; | £, 1))

Under review as a conference paper at ICLR 2025

We investigate the relation between UEBO and prediction-correction consistency. Our findings in-
dicate that prediction-correction consistency serves as a useful estimator of UEBO, as demonstrated
in Theorem 2] with the proof available in Appendix [C.2]

Theorem 2 (UEBO and Consistency). Given a variable x;, UEBO is monotonically increasing
with respect to the prediction-correction discrepancy. Therefore, UEBO decreases as the prediction-
correction consistency increases.

Theorem [2] illustrates that to compare the UEBOs of two variables, it suffices to compare their
prediction-correction consistencies.

(2) Variable Fixing Strategy We define the following consistency-based variable fixing strategy
given the predicted and reference partial solutions, &[P] and Z[P]. Specifically, we let

P ={icP|& =}, 2x°[P):=2[P]=aP]. (7)

The fixing strategy outlined in Equation fixes the variables that are prediction-correction con-
sistent. We will demonstrate the significant advantages of this proposed variable fixing strategy
compared to those based solely on predicted or reference solutions, emphasizing its ability to fur-
ther enhance precision. We present the pseudo-code of Apollo-MILP in Algorithm [T}

(3) Advancement of the Fixing Strategy Let q(x; | &;,&;,Z) be the marginal distribution of
the optimal solution for variable x;, given the predicted value &; and reference values ;. We
outline the following consistency conditions. The condition is motivated by a classical probabilistic
problem: two students provide the same answer to a multiple-choice question respectively, then the
answer is more likely to be correct (see Appendix [B.T|for more details). Analogous to the problem,
the condition is intuitive and straightforward: we have greater confidence in the precision of the
prediction ¢(x; = 1| &; = 1,&; = 1,7) for the optimal variable value x} when the predicted and
reference values, &; and x;, yield the same result.

Assumption 1 (Consistency Conditions). Consistency between the predicted and reference values
for variable x; enhances the likelihood of precisely predicting the optimal solution, i.e.,

q(.’EZ: 1 | cI:Z:l,cizz:LI) Zq(mzzl | ii 207.’%1' = 1,1)7 and

Based on the above conditions, we analyze the effects of fixing the prediction-correction consistent
variables. The proposed strategy ensures greater precision in identifying the optimal variable value.

Theorem 3 (Precision Improvement Guarantee). Suppose the consistency conditions (8) hold. Then,
the prediction precision for variables with consistent results q(x; = 1 | &; = 1,&; = 1,7) is higher
than that of variables based solely on the predicted or reference solutions, i.e.,

gzi=1&;=1,2,=17)>qlx;=1| % =1,1), and

Please refer to Appendix [C.3|for the proof. Finally, we examine the feasibility guarantee of Apollo-
MILP. As the feasibility of PS is closely related to Problem 2] we show that our method allows for
better feasibility than Problem 2] and hence the PS method.

Corollary 4. Suppose we select variables to fix based on the strategy in Equation ([7). If the trust-
region searching problem[2](the PS method) is feasible, then the corresponding reduced problem 6]
provided by Apollo-MILP will also be feasible.

5 EXPERIMENTS

In this part, we conduct extensive studies to demonstrate the effectiveness of our framework. Our
method achieves significant improvements in solving performance (Section[5.2)), generalization abil-
ity (Appendix [H.3)), and real-world applicability (Appendix [H.T). Please refer to Appendix [D]for a
detailed implementation of the methods.

B W N =

wn

10
11

12
13
14
15

16
17

Under review as a conference paper at ICLR 2025

Algorithm 1: Alternating Prediction-Correction Neural Solving Framework

Input: MILP Instance Z to solve, the predictor py, iteration number K, hyperparameters
{(k(()l) ’ kgl) ’ A(l))}q‘,Kzl

Initialize: the reduced problem Z(?) « 7.

for kin {0,--- ,K} do

Prediction Step

Obtain a predicted solution & ~ pg(x | Z(*)) from the predictor py

Determine the partial solution &[P] € & to fix according to (k(()k), k%k))

Correction Step

Construct the trust-region searching Problemover Z(*) using (kék), kgk), AKR)

if k=K then

| Leveraging a solver to solve the Problem for the best solution £*

end

else
Leveraging a solver to solve the Problemfor a reference solution & ~ ¢(x | @, Z())
Obtain £¢°""[P’] using Criterion
Fix 2¢°7[P’] in (%) to obtain the new reduced problem Z(*+1)

end

end
return the best solution *

5.1 EXPERIMENT SETTINGS

Benchmarks We conduct experiments on four popular MILP benchmarks utilized in the ML4CO
field: combinatorial auctions (CA) (Leyton-Brown et al., [2000), set covering (SC) (Balas & Ho),
1980), item placement (IP) (Gasse et al., |2022)) and workload appointment (WA) (Gasse et al.,
2022). The first two benchmarks are standard benchmarks proposed in (Gasse et al.,|2019) and are
commonly used to evaluate the performance of ML solvers (Gasse et al., [2019; [Han et al., 2023;
Huang et al.| |2024). The last two benchmarks, IP and WA, come from two challenging real-world
problem families used in NeurIPS ML4CO 2021 competition (Gasse et al, [2022). We use 240
training, 60 validation, and 100 testing instances, following the settings in|Han et al.[(2023). Please
refer to Appendix [F for more details on the benchmarks.

Baselines We consider the following baselines in our experiments. We compare the proposed
method with Neural Diving (ND) (Nair et al.||2020) and Predict-and-Search (PS) (Han et al.|[2023),
which we have introduced in the previous sections. Contrastive Predict-and-Search (ConPS) (Huang
et al.l 2024) is a strong baseline, leveraging contrastive learning to enhance the performance of PS.
For ConPS, we set the ratio of positive to negative samples at ten, using low-quality solutions as
negative samples. These baselines operate independently of the backbone solvers and can be inte-
grated with traditional solvers such as SCIP (Achterbergl |2009) and Gurobi (Gurobi Optimization),
2021). Therefore, we also include SCIP and Gurobi as baselines for a comprehensive comparison.
Following |Han et al.| (2023)), Gurobi and SCIP are set to focus on finding better primal solutions.

Metrics We evaluate the methods on each test instance and record the best objective value OBJ
within 1,000 seconds. Following the setting in|Han et al.| (2023)), we also run a single-thread Gurobi
for 3,600 seconds and denote the best objective value as the best-known solution (BKS) to approxi-
mate the optimal value. However, we find that our method, when built on Gurobi, can identify better
solutions within 1,000 seconds than Gurobi achieves in 3,600 seconds for the IP and WA bench-
marks. As a result, we use the best objectives obtained by our approach as the BKS for these two
benchmarks. We define the absolute primal gap as the difference between the best objective found
by the solvers and the BKS, expressed as gap,,, := |OBJ — BKS|. Within the same solving time, a
lower absolute primal gap indicates stronger performance.

Implementations In our experiments, we conduct four rounds of iterations. The time allocated
for each iteration is 100, 100, 200, and 600 seconds, respectively. We denote the size of the partial

solution in the i*" iteration by k(*) = k(()i) + kgi) with k(()i) variables fixed to 0 and kgi) to 1, and allow

Under review as a conference paper at ICLR 2025

Table 1: Comparison of solving performance between our approach and baseline methods, under a
1,000s time limit. We build the ML approaches on Gurobi and SCIP, respectively. As we choose
the challenging benchmarks with large-size instances, the solvers reach the time limit in all the
experiments. We thus report the average best objective values and the absolute primal gap. ‘1’
indicates that higher is better, and ‘|’ indicates that lower is better. We mark the best values in bold.
We also report the improvement of our method over the traditional solvers in terms of gap,, .. We
find our method with a 1,000s runtime can outperform Gurobi with 3,600s runtime in IP and WA.

CA (BKS 97616.59) SC (BKS 122.95) IP (BKS 8.90) WA (BKS 704.88)
Obj T gapysd Objl gapy,d Objl gapy,,) Objl gapy, |
Gurobi 97297.52 319.07 123.40 0.45 9.38 0.48 705.49 0.61

ND+Gurobi 96002.99 1613.59 12325 0.29 9.33 0.43 705.70 0.82
PS+Gurobi 9735823 25836 12330 0.35 9.17 0.27 705.45 0.57
ConPS+Gurobi 97464.10 15249 12320 0.25 9.09 0.19 705.37 0.49

Ours+Gurobi ~ 97487.18 12941 123.05 0.10 8.90 0.00 704.88 0.00
Improvement 52.2% 77.8% 100.0% 100.0%

SCIP 96544.10 1072.48 124.80 1.85 14.50 5.60 709.62 4.74
ND+SCIP 95909.50 1707.09 12390 0.95 13.61 4.71 709.55 4.67
PS+SCIP 96783.62 83297 124.35 1.40 14.25 5.35 709.39 4.51

ConPS+SCIP 96824.26 792.33 12390 0.95 13.74 4.84 709.33 4.45

Ours+SCIP 96839.34 777.25 12350 0.55 12.86 3.96 709.29 4.41

Improvement 27.5% 70.2% 29.2% 6.9%
CA SC IP WA
a 107! 10-1
©
[©)
©
g 5 1072 4
a 107° — 10-3 4
& 1071 4 ——
g 1073 4
0 500 1000 0 500 1000 0 500 1000 0 500 1000
Time (s) Time (s) Time (s) Time (s)
—— Gurobi ND+Gurobi —— PS+Gurobi —— ConPS+Gurobi —— Ours+Gurobi

Figure 3: The primal gap of the approaches as the solving process proceeds. Our methods are
implemented using Gurobi, with a time limit set to 1,000s, and we average the results across 100
testing instances. A lower primal gap for our method indicates stronger convergence performance.

AW of the fixed variables to be flipped during the trust-region search. The total size of the partial

solutions is given by kgx = Z?:l k), which sums the partial solution sizes across all iterations.
More details on hyperparameters are in Appendix [G|

5.2 MAIN EVALUATION

Solving Performance To evaluate the effectiveness of the proposed method, we compare the solv-
ing performance between our framework and the baselines, under a time limit of 1,000 seconds. Ta-
ble[T|presents the average best objectives found by the solvers alongside the average absolute primal
gap. The instances in the [P and WA datasets possess more complex structures and larger sizes,
making them more challenging for the solvers. While ND demonstrates strong performance in the
CA and SC datasets, it falls short in the real-world datasets, IP and WA. ConPS serves as a robust
baseline across all benchmarks, indicating that contrastive learning effectively enhances the predic-
tor, leading to higher-quality predicted solutions. The results reveal that our proposed Apollo-MILP
consistently outperforms the baselines, achieving the best objectives and the lowest gaps across the
benchmarks. Specifically, Apollo-MILP reduces the absolute primal gap by over 80% compared to
Gurobi and by 30% compared to SCIP. Furthermore, in the IP and WA benchmarks, our approach
identifies better solutions within 1,000s than those obtained by running Gurobi for 3,600s.

Primal Gap as a Function of Runtime Figure [3]illustrates the curves of the average primal gap,
defined as gap,, := |OBJ — BKS|/|BKS]|, throughout the solving process. Similar to the absolute

Under review as a conference paper at ICLR 2025

primal gap, the primal gap reflects the convergence properties of the solvers; a rapid decrease in the
curves indicates superior solving performance. As shown in Figure [3] the primal gap of Apollo-
MILP exhibits a gradual decrease in the early stages as it focuses on correction steps to improve the
quality of partial solutions. Subsequently, the primal gap demonstrates a rapid decline, ultimately
achieving the lowest gap, which highlights Appolo-MILP’s strong convergence performance.

5.3 ABLATION STUDY
Table 2: Comparison of solving performance between our

Fixing Strategies To better under- approach and different fixing strategies, under a 1, 000s
stand Apollo-MILP, we conduct ab- time limit. We report the average best objective values and
lation studies on the variable fixing absolute primal gap. ‘|’ indicates that lower is better. We
strategies. Specifically, we imple- mark the best values in bold.

ment two baselines for variable fixing

strategies: Direct Fixing (four rounds IP @xs .90) WA @RS 70438
of direct fixing) and Multi-stage PS Obj | gap,,,+ Objl gap,, |
(four rounds of PS). We utilize the Gurobi 938 048 70549 061
same set of hyperparameters as our PS+Gurobi ~ 9.17 027 70545 0.57
method. The Multi-stage PS strategy Direct Fixing 922 032 70540 0.52
directly fixes the variables in the pre- Multi-stage PS~ 9.18 028 705.33 0.45

dicted partial solutions &[P]. The Di-
rect Fixing strategy directly fixes the
variables in the reference partial solu-
tions &[P]. The results on the IP and WA benchmarks are presented in Table [2l The results in
Table [2] show that our proposed consistency-based fixing strategy outperforms the other baselines,
highlighting our method’s effectiveness. Please see Appendix for more experiment results.

Ours+Gurobi 8.90 0.00 704.88 0.00

Comparison with Warm-Starting

Gurobi Warm-starting is an alterna- Taple 3: Comparison of solving performance between our
tive to the trust-region search in PS method and the warm-starting methods, under a 1,000s
and our method, in which we provide (ime limit. We report the average best objective values and
an initial feasible solution to Gurobi apsolute primal gap. ‘|’ indicates that lower is better. We

to guide the solving process. Gurobi mark the best values in bold.
can search around these start solutions

or partial solutions. Warm-starting is

. R IP (BKS 8.90) WA (BKS 704.88)
a crucial baseline to help us under-
stand the trust-region search. Specif- Obj | gap,, | Objl gapy, |
ically, we implement two methods, Gurobi 938 048 70549 0.6l
warm-starting PS (WS-PS) and warm- PS+Gurobi 9.17 027 70545 0.57
starting our method (WS-Ours). WS- WS-PS+Gurobi 920 030 70545 0.57

PS passes the initial GNN prediction
to Gurobi as a start solution, with hy-
perparameters such as kg and k1 same
as those we conduct in our main ex-
periments. We also implement WS-Ours, which employs the same prediction model but replaces
the trust-region search with warm-starting at each step. The results are presented in Table [I9} in
which we set the solving time limit as 1,000s. The results show that WS Gurobi performs com-
parably to PS, while WS Ours combined with Gurobi outperforms WS Gurobi, demonstrating the
effectiveness of our proposed variable fixing strategy. Finally, our proposed method performs the
best. The trust-region search is a more effective search method that aligns well with our framework.
Please see Appendix [H.3]for more experiment results.

WS-Ours+Gurobi ~ 9.13 023 70540 0.52
Ours+Gurobi 890 0.00 704.88 0.00

6 CONCLUSION AND FUTURE WORKS

In this paper, we propose a novel ML-based solving framework (Apollo-MILP) to identify high-
quality solutions for MILP problems. Apollo-MILP leverages the strengths of both Neural Diving
and Predict-and-Search, alternating between prediction and correction steps to iteratively refine the
predicted solutions and reduce the complexity of MILP problems. Experiments show that Apollo-
MILP significantly outperforms other ML-based approaches in terms of solution quality, demon-
strating strong generalization ability and promising real-world applicability.

10

Under review as a conference paper at ICLR 2025

ETHIC STATEMENT

This paper aims to explore the potential of an efficient MILP solving framework and obey the ICLR
code of ethics. We do not foresee any direct, immediate, or negative societal impacts stemming from
the outcomes of our research.

REPRODUCIBILITY STATEMENT

We provide the following information for the reproducibility of our proposed Apollo-MILP.

1. Method. We provide the pseudo-code of our method in Section Moreover, we will
make our source code publicly available once the paper is accepted for publication.

2. Theoretical Proof. We provide the proof of our theoretical results in Appendix [C]

3. Implementations. We discuss the hyperparameters in Table [10jof Appendix |G| The infor-
mation on the implementation details can be found in Appendix [D]

REFERENCES

Tobias Achterberg. Scip: solving constraint integer programs. Mathematical Programming Compu-
tation, 1:1-41, 2009.

Egon Balas and Andrew Ho. Set covering algorithms using cutting planes, heuristics, and subgra-
dient optimization: a computational study. Springer, 1980.

Maria-Florina F Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Structural
analysis of branch-and-cut and the learnability of gomory mixed integer cuts. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems, volume 35, pp. 33890-33903. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/db2cbf43a349bc866111e791b58c7bf4-Paper—-Conference.pdf.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405-421, 2021.

Robert E Bixby, Mary Fenelon, Zonghao Gu, Ed Rothberg, and Roland Wunderling. Mixed-integer
programming: A progress report. In The sharpest cut: the impact of Manfred Padberg and his
work, pp. 309-325. SIAM, 2004.

Junyang Cai, Taoan Huang, and Bistra Dilkina. Learning backdoors for mixed integer programs
with contrastive learning. In The 27th European Conference on Artificial Intelligence, 2024.

Ziang Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. On representing linear programs by graph
neural networks. In The Eleventh International Conference on Learning Representations, 2023a.

Ziang Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. On representing mixed-integer linear
programs by graph neural networks. In The Eleventh International Conference on Learning Rep-
resentations, 2023b.

Antonia Chmiela, Elias Khalil, Ambros Gleixner, Andrea Lodi, and Sebastian Pokutta.
Learning to schedule heuristics in branch and bound. @ In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, volume 34, pp. 24235-24246. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/cb7c403aa312160380010ee3dd4bfc53-Paper.pdfl

Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song. Ac-

celerating primal solution findings for mixed integer programs based on solution prediction. In
The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second

11

https://proceedings.neurips.cc/paper_files/paper/2022/file/db2cbf43a349bc866111e791b58c7bf4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/db2cbf43a349bc866111e791b58c7bf4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/cb7c403aa312160380010ee3dd4bfc53-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/cb7c403aa312160380010ee3dd4bfc53-Paper.pdf

Under review as a conference paper at ICLR 2025

Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Sympo-
sium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, Febru-
ary 7-12, 2020, pp. 1452-1459. AAAI Press, 2020. doi: 10.1609/AAAI.V34102.5503. URL
https://doi.org/10.1609/aaai.v34102.5503.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat,
Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M. Kazachkov, Elias Khalil,
Pawel Lichocki, Andrea Lodi, Miles Lubin, Chris J. Maddison, Morris Christopher, Dimitri J.
Papageorgiou, Augustin Parjadis, Sebastian Pokutta, Antoine Prouvost, Lara Scavuzzo, Giulia
Zarpellon, Linxin Yang, Sha Lai, Akang Wang, Xiaodong Luo, Xiang Zhou, Haohan Huang,
Shengcheng Shao, Yuanming Zhu, Dong Zhang, Tao Quan, Zixuan Cao, Yang Xu, Zhewei
Huang, Shuchang Zhou, Chen Binbin, He Minggui, Hao Hao, Zhang Zhiyu, An Zhiwu, and
Mao Kun. The machine learning for combinatorial optimization competition (ml4co): Re-
sults and insights. In Douwe Kiela, Marco Ciccone, and Barbara Caputo (eds.), Proceed-
ings of the NeurIPS 2021 Competitions and Demonstrations Track, volume 176 of Proceed-
ings of Machine Learning Research, pp. 220-231. PMLR, 06-14 Dec 2022. URL |https:
//proceedings.mlr.press/v176/gasse22a.html.

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. Miplib 2017: data-
driven compilation of the 6th mixed-integer programming library. Mathematical Programming
Computation, 13(3):443-490, 2021.

Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua Bengio.
Hybrid models for learning to branch. Advances in neural information processing systems, 33:
18087-18097, 2020.

Prateek Gupta, Elias B Khalil, Didier Chetélat, Maxime Gasse, Yoshua Bengio, Andrea Lodi, and
M Pawan Kumar. Lookback for learning to branch. arXiv preprint arXiv:2206.14987, 2022.

LLC Gurobi Optimization. Gurobi optimizer. URL hitp://www. gurobi. com, 2021.

Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and Xi-
aodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear programming.
In The Eleventh International Conference on Learning Representations, 2023.

He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms.
Advances in neural information processing systems, 27, 2014.

Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra N. Dilkina, and Benoit Steiner. Searching large
neighborhoods for integer linear programs with contrastive learning. In International Conference
on Machine Learning, 2023. URL https://api.semanticscholar.org/CorpusID:
256598329.

Taoan Huang, Aaron M Ferber, Arman Zharmagambetov, Yuandong Tian, and Bistra Dilkina. Con-
trastive predict-and-search for mixed integer linear programs. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 19757-19771. PMLR, 21-27 Jul 2024. URL
https://proceedings.mlr.press/v235/huang24f.html.

Zeren Huang, Kerong Wang, Furui Liu, Hui-Ling Zhen, Weinan Zhang, Mingxuan Yuan, Jianye
Hao, Yong Yu, and Jun Wang. Learning to select cuts for efficient mixed-integer programming.
Pattern Recognition, 123:108353, 2022. ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.
2021.108353. URL https://www.sciencedirect.com/science/article/pii/
S0031320321005331.

12

https://doi.org/10.1609/aaai.v34i02.5503
https://proceedings.mlr.press/v176/gasse22a.html
https://proceedings.mlr.press/v176/gasse22a.html
https://api.semanticscholar.org/CorpusID:256598329
https://api.semanticscholar.org/CorpusID:256598329
https://proceedings.mlr.press/v235/huang24f.html
https://www.sciencedirect.com/science/article/pii/S0031320321005331
https://www.sciencedirect.com/science/article/pii/S0031320321005331

Under review as a conference paper at ICLR 2025

Elias B. Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to
branch in mixed integer programming. In Dale Schuurmans and Michael Wellman (eds.),
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 724-731, United
States of America, 2016. Association for the Advancement of Artificial Intelligence (AAAI).
URL http://www.aaai.org/Conferences/AAATI/aaail6.php. AAAI Conference
on Artificial Intelligence 2016, AAAI 2016 ; Conference date: 12-02-2016 Through 17-02-2016.

Elias B. Khalil, Bistra Dilkina, George L. Nemhauser, Shabbir Ahmed, and Yufen Shao. Learning to
run heuristics in tree search. In Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI-17, pp. 659-666, 2017. doi: 10.24963/ijcai.2017/92. URL https:
//doi.org/10.24963/1i9cai.2017/92.

Elias B. Khalil, Christopher Morris, and Andrea Lodi. MIP-GNN: A data-driven framework for
guiding combinatorial solvers. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI
2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022,
The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual
Event, February 22 - March 1, 2022, pp. 10219-10227. AAAI Press, 2022. doi: 10.1609/AAAL
V3619.21262. URL https://doi.org/10.1609/aaai.v36i9.21262.

Abdel Ghani Labassi, Didier Chetelat, and Andrea Lodi. Learning to compare nodes
in branch and bound with graph neural networks. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Infor-
mation Processing Systems, volume 35, pp. 32000-32010. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/cf5bbl8807a3e9cfaaable667e18f807-Paper—Conference.pdf.

Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test suite for combina-
torial auction algorithms. In Proceedings of the 2nd ACM Conference on Electronic Commerce,
pp- 6676, 2000.

Sirui Li, Wenbin Ouyang, Max B Paulus, and Cathy Wu. Learning to configure separators in branch-
and-cut. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Jiacheng Lin, Meng XU, Zhihua Xiong, and Huangang Wang. CAMBranch: Contrastive learning
with augmented MILPs for branching. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=K6kt50zA1G.

Chang Liu, Zhichen Dong, Haobo Ma, Weilin Luo, Xijun Li, Bowen Pang, Jia Zeng, and Junchi
Yan. L2p-MIP: Learning to presolve for mixed integer programming. In The Twelfth International
Conference on Learning Representations,2024. URLhttps://openreview.net/forum?
1id=McfYbKnpT8!.

Kefan Ma, Liquan Xiao, Jianmin Zhang, and Tiejun Li. Accelerating an fpga-based sat solver by
software and hardware co-design. Chinese Journal of Electronics, 28(5):953-961, 2019.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Max Paulus and Andreas Krause. Learning to dive in branch and bound. 1In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 34260-34277. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/6bbda0824bcc20749£f21510fd8b28de5-Paper—Conference.pdfl

Max B. Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris J. Maddison. Learning
to cut by looking ahead: Cutting plane selection via imitation learning. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), International
Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA,
volume 162 of Proceedings of Machine Learning Research, pp. 17584-17600. PMLR, 2022.
URL https://proceedings.mlr.press/v162/paulus22a.htmll

13

http://www.aaai.org/Conferences/AAAI/aaai16.php
https://doi.org/10.24963/ijcai.2017/92
https://doi.org/10.24963/ijcai.2017/92
https://doi.org/10.1609/aaai.v36i9.21262
https://proceedings.neurips.cc/paper_files/paper/2022/file/cf5bb18807a3e9cfaaa51e667e18f807-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/cf5bb18807a3e9cfaaa51e667e18f807-Paper-Conference.pdf
https://openreview.net/forum?id=K6kt50zAiG
https://openreview.net/forum?id=McfYbKnpT8
https://openreview.net/forum?id=McfYbKnpT8
https://proceedings.neurips.cc/paper_files/paper/2023/file/6bbda0824bcc20749f21510fd8b28de5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6bbda0824bcc20749f21510fd8b28de5-Paper-Conference.pdf
https://proceedings.mlr.press/v162/paulus22a.html

Under review as a conference paper at ICLR 2025

Yves Pochet and Laurence A Wolsey. Production planning by mixed integer programming, volume
149. Springer, 2006.

Pol Puigdemont, Stratis Skoulakis, Grigorios Chrysos, and Volkan Cevher. Learning to remove cuts
in integer linear programming. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian
Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 41235-41255. PMLR, 21-27 Jul 2024. URL https://proceedings.mlr.
press/v235/puigdemont24a.html.

Lara Scavuzzo, Feng Chen, Didier Chetelat, Maxime Gasse, Andrea Lodi, Neil Yorke-
Smith, and Karen Aardal. Learning to branch with tree mdps. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 18514-18526. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/756d74cd58592849c904421e3b2ec/ad—Paper—Conference.pdf.

Lara Scavuzzo, Karen Aardal, Andrea Lodi, and Neil Yorke-Smith. Machine learning augmented
branch and bound for mixed integer linear programming. Mathematical Programming, Aug 2024.
ISSN 1436-4646. doi: 10.1007/s10107-024-02130-y. URL |https://doi.org/10.1007/
s10107-024-02130-vyl

Jialin Song, ravi lanka, Yisong Yue, and Bistra Dilkina. A general large neigh-
borhood search framework for solving integer linear programs. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 20012-20023. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/e769e03a9d329b2e864bdbf4ff54ff39-Paper.pdfl

Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
neighborhood search algorithm for mixed integer programs. ArXiv, abs/2107.10201, 2021. URL
https://api.semanticscholar.org/CorpusID:236154746.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming;:
Learning to cut. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
9367-9376. PMLR, 13-18 Jul 2020. URL https://proceedings.mlr.press/v119/
tang20a.html.

Haoyu Peter Wang, Jialin Liu, Xiaohan Chen, Xinshang Wang, Pan Li, and Wotao Yin. DIG-
MILP: a deep instance generator for mixed-integer linear programming with feasibility guar-
antee. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL https:
//openreview.net/forum?id=MywlrEaFgR.

Zhihai Wang, Xijun Li, Jie Wang, Yufei Kuang, Mingxuan Yuan, Jia Zeng, Yongdong Zhang, and
Feng Wu. Learning cut selection for mixed-integer linear programming via hierarchical sequence
model. In The Eleventh International Conference on Learning Representations, 2023.

Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighbor-
hood search policy for integer programming. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, volume 34, pp. 30075-30087. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/fc9e62695def29ccdb9eb3fedbb4c8c8-Paper.pdfl

Huigen Ye, Hua Xu, Hongyan Wang, Chengming Wang, and Yu Jiang. GNN&GBDT-guided
fast optimizing framework for large-scale integer programming. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
Proceedings of the 40th International Conference on Machine Learning, volume 202 of Pro-
ceedings of Machine Learning Research, pp. 39864-39878. PMLR, 23-29 Jul 2023. URL
https://proceedings.mlr.press/v202/ye23e.htmll

14

https://proceedings.mlr.press/v235/puigdemont24a.html
https://proceedings.mlr.press/v235/puigdemont24a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/756d74cd58592849c904421e3b2ec7a4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/756d74cd58592849c904421e3b2ec7a4-Paper-Conference.pdf
https://doi.org/10.1007/s10107-024-02130-y
https://doi.org/10.1007/s10107-024-02130-y
https://proceedings.neurips.cc/paper_files/paper/2020/file/e769e03a9d329b2e864b4bf4ff54ff39-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e769e03a9d329b2e864b4bf4ff54ff39-Paper.pdf
https://api.semanticscholar.org/CorpusID:236154746
https://proceedings.mlr.press/v119/tang20a.html
https://proceedings.mlr.press/v119/tang20a.html
https://openreview.net/forum?id=MywlrEaFqR
https://openreview.net/forum?id=MywlrEaFqR
https://proceedings.neurips.cc/paper_files/paper/2021/file/fc9e62695def29ccdb9eb3fed5b4c8c8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/fc9e62695def29ccdb9eb3fed5b4c8c8-Paper.pdf
https://proceedings.mlr.press/v202/ye23e.html

Under review as a conference paper at ICLR 2025

Huigen Ye, Hua Xu, and Hongyan Wang. Light-MILPopt: Solving large-scale mixed integer linear
programs with lightweight optimizer and small-scale training dataset. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
1id=20WRumm67/L.

Taehyun Yoon. Confidence threshold neural diving. In Advances in Neural Information Processing
Systems, Competition Workshop on Machine Learning for Combinatorial Optimization, 2021.

Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing branch-and-bound
search trees to learn branching policies. In Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI
2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021,
Virtual Event, February 2-9, 2021, pp. 3931-3939. AAAI Press, 2021. doi: 10.1609/AAAI
V3515.16512. URL https://doi.org/10.1609/aaai.v3515.16512.

Hao Zeng, Jiaqi Wang, Avirup Das, Junying He, Kunpeng Han, Haoyuan Hu, and Mingfei Sun.
Effective generation of feasible solutions for integer programming via guided diffusion. In Pro-
ceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
24, pp. 41074118, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
9798400704901. doi: 10.1145/3637528.3671783. URL https://doi.org/10.1145/
3637528.3671783.

Changwen Zhang, Wenli Ouyang, Hao Yuan, Liming Gong, Yong Sun, Ziao Guo, Zhichen Dong,
and Junchi Yan. Towards imitation learning to branch for MIP: A hybrid reinforcement learn-
ing based sample augmentation approach. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=NdcQQ82mfy.

Arman Zharmagambetov, Brandon Amos, Aaron Ferber, Taoan Huang, Bistra Dilkina,
and Yuandong Tian. Landscape surrogate: Learning decision losses for mathemat-
ical optimization under partial information. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 27332-27350. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
574f145eac328ccd4aaf9358e27120eb5-Paper-Conference.pdf.

15

https://openreview.net/forum?id=2oWRumm67L
https://openreview.net/forum?id=2oWRumm67L
https://doi.org/10.1609/aaai.v35i5.16512
https://doi.org/10.1145/3637528.3671783
https://doi.org/10.1145/3637528.3671783
https://openreview.net/forum?id=NdcQQ82mfy
https://proceedings.neurips.cc/paper_files/paper/2023/file/574f145eac328cc4aaf9358e27120eb5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/574f145eac328cc4aaf9358e27120eb5-Paper-Conference.pdf

Under review as a conference paper at ICLR 2025

A NOTATIONS

For a better understanding, we summarize and provide some key notations used in this paper in
Table @l

Table 4: Notations used in our paper.

Notations ‘ Descriptions

T A MILP instance.

T The decision variables in the MILP.

x; The *" component of the solution decision variable.

T The predicted solution for the MILP.

T The reference solution for the MILP.

z[P) The partial solution the same variable values as x in the index set P.
xCorr[P The corrected partial solution given the index set P.

q(x | 7) The distribution of the optimal solution given a MILP instance Z.

po(x | T) The predicted marginal probabilities for the solution, given an instance Z.
q(x | ®,Z) | The distribution of the reference solution given instance Z and predicted solution &.
Dgr(-]|) | The KL divergence of two distributions.

H()() The entropy of a distribution.

d(-,-) The cross-entropy of two distributions.

B THE SKETCH OF DERIVATION OF THE VARIABLE FIXING STRATEGY

B.1 THE MOTIVATION OF ASSUMPTION[I} FROM A CLASSICAL PROBLEM

In this part, We will provide some evidence to support Assumption|[I]from both an intuitive perspec-
tive for better understanding.

Example 1. Consider two students, A and B, participating in a math competition with a multiple-
choice question offering two options. Let the probability that student A answers correctly be p, and
the probability for student B be g. Since both have prepared for the exam, we assume p, g > 0.5.
If they provide the same answer, what is the probability that their answer is correct? Conversely, if
they provide different answers, what is the probability that student A is correct?

Answer. When both students provide the same answer, the probability that both are correct is given

by:
P(A,B are correct | A,B provide the same answers)
_ P(A,B are correct and provide the same answers) Pq (10)
P(A,B provide the same answers) S opg+ (1—p)(1—q)

Given that their answers are different, the probability that A is correct is

P(A is correct | A,B provide different answers)
IP(A is correct, and A,B provide different answers) p(1—q) (11)
P(A,B provide different answers) Cp(1—q)+ (1-p)g

A simple calculation reveals that

P(A,B are correct | A,B provide the same answers) > IP(A is correct | A,B provide different answers),
(12)
suggesting that if both students provide the same answer, it is more likely to be correct.

Returning to Assumption [T} we can draw an analogy: the predicted solution and the reference so-
lution correspond to the answers given by the two students, while the optimal solution represents
the correct answer. For simplicity, we treat these as independent. As shown in the example, ifs

16

Under review as a conference paper at ICLR 2025

p,q > 0.5, then a consistent answer yields higher precision than differing answers. Given that the
predictor is well-trained, we believe that the precision will exceed 0.5. Similarly, the precision of
the traditional solver is also expected to be greater than 0.5.

1

B.2 THE SKETCH OF DERIVATION

In this paper, we propose the UEBO metric to determine the variables to fix. In practice, we do not
calculate UEBO directly. Instead, we propose to approximate UEBO in Section[4.3]

» First, we introduce a concept called prediction-correction consistency (Definition [I] in

Section [4.3).
—d(po(xi | 1), q(x; | £:,T)) = q(x; = 0| &;,Z)log(1 — po(x; = 1| 1))
+q(x; =1 | &;,T)log(pe(xs = 1| 1)),

which is the negative of cross entropy loss using reference solutions as ‘labels’.

(14)

» Second, we also show that UEBO decreases as the prediction-correction consistency
increases (Theorem [2]in Section [4.3). Using this property, to compare the UEBO of two
variables, we just need to compare their prediction-correction consistency, with higher
prediction-correction consistency indicating a lower UEBO. Here we provide a simple nu-
merical example to explain this process.

Example 2. We suppose ky = 0, k&; = 3 and A = 1 for simplicity. GNN prediction for
an instance with five binary variables @; (i = 1,...,5) is [0.9,0.8,0.7,0.6, 0.5]. First, we
add the following constraints to the instance,

r—1<a,l—x <a,

T2 — 1< g, 1—x <,

15
r3—1<asl—x; <as, (1)
a +as +ag < 1.
Suppose that the reference solution is [Z1, &2, T3, &4, 5] = [1,0, 1,1, 1]. Thus, we have

the prediction-correction consistency
—d(po(x1 | Z),q(x1 | 1,7)) = 1 x 10g(0.9) + 0 x log(0.1) = log(0.9),
—d(pg(x2 | I),q(x2 | £2,Z)) = 0 x 1og(0.8) + 1 x log(0.2) = log(0.2), (16)
—d(po(s | Z),q(ws | ©3,7)) = 1 x log(0.7) + 0 x log(0.3) = log(0.7).

Thus, the variables 1 and @3 have higher prediction-correction consistencies and thus
lower UEBO. We have more confidence to fix x1 and x3.

* Third, we step further to simplify the fixing rule. Intuitively, a well-trained model should
satisfy the property that if the predicted partial solution &; = 1, then py(x; | Z) should be
larger than 0.5; if the predicted partial solution &; = 0, then py(; | Z) should be smaller
than 0.5. Using this observation, we find the inequality

—d(po(xi | I),q(®: | #:,7)) = —d(po(x; | I),q(Z; | #;, 1)) (17
always hold given &; = @;, &; # &; with ; = &;. To see this, assume that ; = &, =1,
we have pg(x; | Z) > 0.5 and pg(x; | Z) > 0.5. Then, we have

—d(po(xi | 1),q(2: | Z;, 1)) = log(pe (i |)) > log(0.5)
> log(1 —po(a; | 7)) = —d(po(z; | 1), q(z; | &5, T)).
Thus, we propose the fixing strategy in Equation (7). The proposed fixing strategy fixes

variables satisfying &; = a;, which are indeed the variables with high prediction-
correction consistency and thus low UEBO.

(18)

Example 3. In Example T, =X = 1, &y # &g, 3 = T3 = 1. Thus, we fix x; and
x3 to value 1. This result coincides with that given in Example 2}

17

Under review as a conference paper at ICLR 2025

C PROOF OF PROPOSITIONS AND THEOREMS.

C.1 PROOF OF PrRoPOSITION(T]

We show the results by direct calculations,

po(x; | T)
q(zi | I)

_ / / po(; | T)p(T) log(pe(w: | T))da:dT — / / po(a: | T)p(T) log(q(e; | T))dw:dT
T Jx; ZJx;

Dre. (votas | Dilate: 17) = [[potes | (1o) dwiaz

~—Hipola | 2) - [[Dol | Z)p(I)log (/ e | &0 T)polas| z)d:ei) da,dT

< — H(po(z: | T)) /I / | / pole: | Tp(D)po(@: | T)logla(a; | &1, T))didadT
=—H(po(z; | I)) + d(pe(x; | I), q(x; | 2:,1)).
(19)

C.2 PROOF OF THEOREM[Z]

We analyze the monotony property of UEBO as follows. First, we suppose that the variable &; takes
value 1 in the reference solution, i.e., &; = 1. Thus, UEBO is in the form of

UEBO(py(&i | Z),q(@i | #:,T))| L= H(pe(zi | I)) + d(pe(Zi | T),q(Z: | 24,7))

=

— — po(di | T)logpe(@; | T) — (1 — pe(d: | T))log(1 — pa(@, | 7)) —logpe(@; |) Y
— — (1+po(@: | 7)) logpe(d: | T) — (1 — pa(@: | T)) log(1 — pe(@: | T)).

Differentiating UEBO with respect to the predicted logit pp(&; | Z), we have
dUEBO z; | T
(pG(A 1D, _ log (1 B 1) 1 @1)
dpe(Z; | I) po(Zi |) po(®i | Z) —
where pp(&; | Z) takes values between [0, 1]. Therefore, UEBO decreases as pg(&; | Z) becomes

larger in [0,1]. As pg(@; | Z) grows, the cross-entropy term d(pg(&; | Z),q(&; | @i,7)) =
—log pe(&; | Z) decreases and the prediction-correction consistency becomes higher.

Similarly, the proof of case that the variable ; takes value O in the reference solution follows the
same step, and we thus show that UEBO has a negative correlation with the prediction-correction
consistency.

C.3 PROOF OF THEOREM[3]

We first expand the right-hand side of the inequalities.

glz; =1]2; =1,1)
=q(z; =12, =12, =1,T)q(&; =1| 2, = 1,1)
+q(xz; =12, =1,2,=0,L)q(2; =0 | 2, = 1,7) (22)
j (@i =12z =1,1)

ii‘i = 1712'1‘ = 1,I)q(a§i =0 | SEl = 1,1),
where the inequality holds by the consistency conditions (8). Thus we have

<qz; =1]lzi=1,2,=1T)(¢@;=1]|2; =1,T)+q(@;i=0]x; =1,7)) (23)
o1 |d =14 =1,1).

18

Under review as a conference paper at ICLR 2025

C.4 PROOF OF FEASIBILITY GUARANTEE

Since the trust-region searching problem[2)is feasible, we can obtain a feasible solution as a reference
solution, denoted by @. Thus, & satisfies the constraint in Problem@ i.e.,

Ai<b, 1<&<u, &P|eBp@P),A), &ecZPxR"P.

According to the consistency-based variable fixing strategy, we fix the variable [P’] in the instance
7 to values &[P’], where P’ is a subset of P satisfying &[P’] = &[P’]. Therefore, we have

Ai<b, 1<&<u, &P|=a"[P], &ecZl xR"7P

This implies that & is also a feasible solution of Problem [6]

D IMPLEMENTATION OF OUR METHODS AND THE BASELINES

The PS models used in this paper align with those outlined in the original papers [Han et al.
(2023)). We use the code in https://github.com/sribdcn/Predict—-and-Search
MILP method to implement PS. For the PS predictor, we leverage a graph neural network com-
prising four half-convolution layers. The codes of the original work of ND (Nair et al., 2020) and
ConPS (Huang et al.,[2024) are not publicly available. We try our best to reproduce these baselines
and tune the hyperparameters for testing. We conducted all the experiments on a single machine
with NVidia GeForce GTX 3090 GPUs and Intel(R) Xeon(R) E5-2667 V4CPUs 3.20GHz.

In the training process of the predictors, we set the initial learning rate to be 0.001 and the training
epoch to be 10,000 with early stopping. To collect the training data, we run a single thread Gurobi
on each training and validation instance to for 3,600 seconds and record the best 50 solutions.

The partial solution size parameter (ko, k1) and neighborhood parameter A are two important pa-
rameters in PS. The partial solution size parameter (ko, k1, A) represents the numbers of variables
fixed with values 0 and 1 in a partial solution. The neighborhood parameter A defines the radius of
the searching neighborhood. We list these two parameters used in our experiments in Table [5]

Table 5: The partial solution size parameter (kg, k1) and neighborhood parameter A.

Benchmark CA SC 1P WA

PS+Gurobi (600,0,1) (2000,0,100) (400,5,10) (0,500,10)
ConPS+Gurobi (900,0,50) (1000,0,200) (400,5,3) (0,500,10)
PS+SCIP (400,0,10) (2000,0,100) (400,5,1) (0,600,5)
ConPS+SCIP (900,0,50) (1000,0,200) (400,5,3) (0,600,5)

For our Apollo-MILP, the training process follows a similar approach, but we incorporate data aug-
mentation to align with the testing distributions. For each original training instance with n variables,
we select the best solution * from the solution pool S. Then, we randomly sample a fixing ratio
a € [0.3,0.7] and an index set P, of variables, where the index set contains an elements. Finally, we
enforce the variables in the set V,, to the corresponding values in &*, resulting in x[P,] = x*[P,].
By varying the ratio o, we generate five reduced augmented instances from each training instance.

E DETAILS ON BIPARTITE GRAPH REPRESENTATIONS

The bipartite instance graph representation utilized in this paper closely aligns with that presented
in the PS paper Han et al.| (2023). We list the graph features in Table[6]

19

https://github.com/sribdcn/Predict-and-Search

Under review as a conference paper at ICLR 2025

Table 6: The variable features, constraint features, and edge features used for the predictor.

Index Variable Feature Name Description

0 Objective Normalized objective coefficient

1 Variable coefficient Average variable coefficient in all constraints

2 Variable degree Degree of the variable node in the bipartite graph

representation

3 Maximum variable coefficient Maximum variable coefficient in all constraints

4 Minimum variable coefficient ~Minimum variable coefficient in all constraints

5 Variable type Whether the variable is an integer variable or not)
6-17 Position embedding Binary encoding of the order of appearance for

each variable among all variables.

Index Constraint Feature Name Description
0 Constraint coefficient Average of all coefficients in the constraint
1 Constraint degree Degree of constraint nodes
2 Bias Normalized right-hand-side of the constraint
3 Sense The sense of the constraint
Index Constraint Feature Name Description
0 Coefficient Constraint coefficient

F DETAILS ON THE BENCHMARKS

F.1 BENCHMARKS IN MAIN EVALUATION

The CA and SC benchmark instances are generated following the process described in |Gasse et al.
(2019). Specifically, the CA instances were generated using the algorithm from |Leyton-Brown et al.
(2000), and the SC instances were generated using the algorithm presented in Balas & Ho| (1980).
The IP and WA instances are obtained from the NeurIPS ML4CO 2021 competition (Gasse et al.,
2022). The statistical information for all the instances is provided in Table

Table 7: Statistical information of the benchmarks we used in this paper.

CA SC 1P WA

Constraint Number 2593 3000 195 64306
Variable Number 1500 5000 1083 61000
Number of Binary Variables 1500 5000 1050 1000
Number of Continuous Variables 0 0 33 60000
Number of Integer Variables 0 0 0 0

F.2 BENCHMARKS IN USED FOR GENERALIZATION

We generate larger CA and SC instances to evaluate the generalization ability of the approaches. We
use the code in|Gasse et al.|(2019)) for data generation. Specifically, the generated CA instances have
an average of 2,596 constraints and 4,000 variables, and the SC instances have 6,000 constraints and
10,000 variables. These instances are considerably larger than the training instances.

F.3 SUBSET orF MIPLIB

We construct a subset of MIPLIB (Gleixner et al., [2021) to evaluate the solvers’ ability to handle
challenging real-world instances. Specifically, we select instances based on their similarity, which is
measured by 100 human-designed features (Gleixner et al., 2021)). Instances with presolving times
exceeding 300 seconds or those that exceed GPU memory limits during the inference process are
discarded. Inspired by the IIS dataset used in Wang et al.| (2024), we develop a refined IIS dataset

20

Under review as a conference paper at ICLR 2025

containing eleven instances. We divide this dataset into training and testing sets, comprising eight
training instances and three testing instances (ramos3, scpj4scip, and scpl4). Detailed information
on the IIS dataset can be found in Table 8]

Table 8: Statistical information of the instances in the constructed IIS dataset.

Instance Name Constraint Number Variable Number Nonzero Coefficient Number
ex1010-pi 1468 25200 102114
fast0507 507 63009 409349
glass-sc 6119 214 63918
iis-glass-cov 5375 214 56133
iis-hc-cov 9727 297 142971
ramos3 2187 2187 32805
scpjdscip 1000 99947 999893
scpk4 2000 100000 1000000
scpl4 2000 200000 2000000
seymour 4944 1372 33549
v150d30-2hopcds 7822 150 103991

F.4 MORE BENCHMARKS

To demonstrate the effectiveness of our method, we include three more benchmarks. The statistical
information is in Table[0

SCUC dataset This dataset comes from the Energy Electronics Industry Innovation Competition.
The benchmark contains large-scale instances from real-world power systems.

Smaller-size CA dataset This dataset is the CA dataset with the same sizes as the ‘Hard CA’ in
Gasse et al.[(2019). This dataset has a lower instance size and computational hardness than the CA
dataset used in our paper. All the methods can solve the problems within the time limit, and we thus
report the solving time.

APS dataset This dataset is from an anonymous commercial enterprise containing real-world pro-
duction scheduling problems in the factory. The instances in APS are general integer programming
problems, containing binary, continuous, and general integer variables.

Table 9: Statistical information of the benchmarks.

SCUC Small-size CA APS

Constraint Number 27835 576 31296
Variable Number 19807 1500 31344
Number of Binary Variables 9295 1500 1500
Number of Continuous Variables 10512 0 15984
Number of Integer Variables 0 0 9600

G HYPERPARAMETERS

We report the hyperparameters (k;(()i), k;i), A®) of Apollo-MILP used in Table

21

Under review as a conference paper at ICLR 2025

Table 10: Hyperparameters (k:éi), /#), A®) for Apollo-MILP.

CA SC 1P WA

Iteration 1 (400,0,60) (1000,0,200) (100,20,50) (20,200,100)
Tteration 2 (200,0,30) (500,0,100) (40,15,20) (10,100,50)
Iteration 3 (100,0,15) (250,0,50) (20,15,10) (10,5,5)
Iteration 4 (50,0,10) (10,0,5) (5,50,30) (1,10,5)

H ADDITIONAL EXPERIMENT RESULTS

H.1 REAL-WORLD DATASET

To further demonstrate the applicability of Apollo-MILP, we conduct experiments on instances from
MIPLIB (Gleixner et al.| [2021), a challenging real-world dataset. Due to the heterogeneous nature
of the instances in MIPLIB, applying ML-based solvers directly to the entire dataset can be difficult.
However, we can focus on a subset of MIPLIB that contains similar instances (Wang et al., 2023
2024). For more information on the selected MILP subset, referred to as IIS, please see Appendix
This subset consists of eleven challenging real-world instances. Notice that we need to care-
fully tune the hyperparameters (ko, k1, A\) for the ML baselines, as improper hyperparameters can
easily lead to infeasibility. While Appolo-MILP exhibits a strong adaptation across different hy-
perparameters. We report the solving performance of the solvers in Table [[1] where Apollo-MILP
significantly outperforms other baselines, showcasing its promising potential for real-world applica-
tions. We also report the detailed results of the real-world challenging MIPLIB dataset mentioned.
We set the time limit to 3,600 seconds and ran two iterations with 1,000 and 2,600 seconds. Given
the variation in instance sizes within the dataset, we set A = 1000 and the proportion of fixed vari-
ables to (g, 1) = (0.8,0), which means that we fix 0.8 of the binary variables to O in the first
round.

Table 11: The results in the IIS dataset, which is used in |Wang et al.| (2024) and is a subset of
MIPLIB. We build the ML approaches on Gurobi and set the solving time limit to 3,600s.

Obj | gapy, |

Gurobi 214.00 23.00
ND 213.00 22.00
PS 211.00 20.00

ConPS 211.00 20.00

Ours 209.33 18.33

Table 12: The best objectives found by the approaches on each test instance in IIS. BKS represents
the best objectives from the website of MIPLIB https://miplib.zib.de/index.html.

BKS Gurobi ND PS ConPS Ours

ramos3 186.00 233.00 233.00 225.00 225.00 224.00
scpj4scip 128.00 132.00 131.00 133.00 133.00 131.00
scpl4 259.00 277.00 275.00 275.00 275.00 273.00

H.2 HYPERPARAMETER ANALYSIS

We investigate the impact of hyperparameters in our proposed framework. In this part, we conduct
extensive experiments to analyze the impact of hyperparameters, including the partial solution size,
neighborhood parameter, iteration time, iteration round number, and the use of data augmentation.
For all experiments, we implement the method using Gurobi and set a time limit of 1,000 seconds.

Partial Solution Size Parameters We examine the effects of the partial solution size parameter
kix in the CA benchmark. As noted in [Huang et al. (2024), fixing k‘gl) = 0 always yields better

22

https://miplib.zib.de/index.html

Under review as a conference paper at ICLR 2025

solutions. Therefore, we focus on the effects of k:él) while keeping kgl) =0and A = (60, 30,15,0)
for four rounds of iterations. Our findings, presented in Table [I3] indicate that a fixing coverage
of 50% of variables yields the best performance. This optimal coverage balances the risk of the
solution prediction methods becoming trapped in low-quality neighborhoods——common with high
coverage of fixed variables while avoiding ineffective problem reduction associated with low
coverage.

Table 13: The solving performance with different partial solution size parameters kg on the CA
benchmark, under the time limit of 1,000 seconds. The coverage rate implies the approximate
proportion of fixing variables.

Obj 1t gapy,s 4

Coverage 85% 96950.55 666.04
Coverage 70% 96929.98 686.61
Coverage 50% 97487.18 129.41
Coverage 30% 97359.09 257.50

Neighborhood Parameter We examine how the choice of neighborhood parameters affects solv-
ing performance. From Table[I4] we can see that when A is small, increasing its value can enhance
performance since searching within a larger area may yield higher-quality solutions. However, when
A is too large, performance decreases, as the expanded trust region results in a larger search space,
leading to inefficiencies in the search process.

Table 14: The effects of neighborhood parameters on the solving performance.

Obj T gapy, |
60% of Fixing Numbers 97297.52 319.07
50% of Fixing Numbers = 97343.47 273.12
20% of Fixing Numbers 97487.18 129.41
10% of Fixing Numbers 97019.17 597.12

Iteration Time We investigate the relationship between iteration time and performance in Table
[T3] setting a time limit of 1,000 seconds. The early iterations focus on identifying a high-quality
feasible solution to reduce the search space, while the final iteration aims to exploit the optimal
solution within this reduced space. Through four iterations, we find that the last iteration, allocated
600 seconds, yields the best performance. As the exploitation time increases, the algorithm is more
likely to search the reduced space thoroughly. However, extending the exploitation time reduces the
available time to enhance the predicted solution during the early stages, which can lead to a decline
in the quality of the predicted solutions.

Table 15: The effects of iteration time on the solving performance.

Obj T gapy, |

(25,25,50,900) 96741.04 875.55
(50,50,100,800) 96889.70 726.89
(100,100,200,600) 97487.18 129.41
(150,150,300,400) 97353.35 263.24

The Rounds of Iterations We conduct experiments on the rounds of iterations. We fix the solving
time limit to 1,000s and compare different rounds of iterations in the CA dataset. Given an iteration
round, we set the same search time across the iterations. The results are presented in Table[T6 which
indicates the four rounds of iterations have the best performance.

Data Augmentation The distribution of the reduced problems in each iteration may differ from
that of the original problems. As pointed out in Sectiond.I] we employ data augmentation to align
the distributional shifts. We conduct experiments to evaluate the effect of data augmentation in

23

Under review as a conference paper at ICLR 2025

Table 16: The effects of rounds of the iterations on solving performance.

Ob.] T £aP,ps \L

(500,500) 97132.39 484.20
(333.3,333.3,333.3) 97349.74 266.85
(250,250,250,250) 97388.21 228.38
(200,200,200,200,200) 96889.70 726.89

Tableﬂll We use the CA dataset and set the solving time limit to 1,000s. The results show that data
augmentation can improve the performance.

Table 17: The effects of data augmentation on solving performance.

Obj T gap,, |

w/o data augmentation 97393.65 222.94
Ours 97487.18 12941

H.3 COMPARISON WITH MORE BASELINES

Comparison with Different Fixing Strategies We provide more results on the comparison of
different fixing strategies on more benchmarks. We set the searching time in each iteration consistent
across these methods. Direct Fixing relies totally on the GNN predictor for variable fixing, and
Multi-stage PS relies on the reference solution provided by the traditional solver. Different from
these two baselines, our proposed method introduces the correction mechanism and combines the
predicted and reference solutions, determining the most confident variables to fix. The results are
presented in Table[T8] The results in Table[I8]show that our proposed prediction-correction method
outperforms the other baselines.

Table 18: Comparison of solving performance between our approach and different fixing strategies,
under a 1, 000s time limit. We report the average best objective values and absolute primal gap.

CA (BKS 97616.59) SC (BKS 122.95) IP (BKS 8.90) WA (BKS 704.88)

Ob.] T gapabs \L Ob.] \L gapabs J, Ob.] \L gapabs \L Ob.] J, gapabs ‘l/
Gurobi 97297.52 319.07 123.40 0.45 9.38 0.48 705.49 0.61
PS+Gurobi 97358.23 258.36 123.30 0.34 9.17 0.27 705.45 0.57

Direct Fixing+Gurobi ~ 96939.19 6774 12330 0.35 9.22 0.32 70540 0.52
Multi-stage PS+Gurobi 97016.47 600.12 123.20 0.25 9.18 028 70533 0.45

Ours+Gurobi 97487.18 129.41 123.05 0.10 890 0.00 704.88 0.00

Comparison with a Warm-starting Gurobi We provide more results in the comparison of the
warm-starting methods on more benchmarks. The results are presented in Table[T9] in which we set
the solving time limit as 1,000s.

H.4 EVALUATION ON MORE BENCHMARKS

We evaluate our method in more benchmarks, including the small-scale CA dataset, the large-scale
and real-world dataset SCUC, and real-world general integer programming problems APS. We re-
port the experiment results in Table 20} The experiment results demonstrate the strong performance
of our proposed method across various benchmarks. Notice that our method still outperforms the
baselines in the general integer programming problems (APS) in Table 20}

24

Under review as a conference paper at ICLR 2025

Table 19: Comparison of solving performance between our approach and the warm-starting meth-
ods, under a 1, 000s time limit. We report the average best objective values and absolute primal gap.

CA (BKS 97616.59) SC (BKS 122.95) IP (BKS 8.90) WA (BKS 704.88)
Ob] T gapabs ‘J/ Ob] \L gapabs ‘L Ob] \L gapabs \L Ob.] \Ir gapabs \L
Gurobi 97297.52 319.07 123.40 0.45 9.38 0.48 705.49 0.61

PS+Gurobi 97358.23 25836 12330 0.35 9.17 0.27 705.45 0.57
WS-PS+Gurobi 97016.34 600.25 123.30 0.35 9.20 0.30 705.45 0.57

WS-Ours+Gurobi 97359.19 257.40 12320 0.25 9.13 0.23 705.40 0.52
Ours+Gurobi 97487.18 129.41 123.05 0.10 8.90 0.00 704.88 0.00

Table 20: Comparison of solving performance on more benchmarks, under a 1, 000s time limit. We
report the average best objective values and absolute primal gap.

SCUC (BKS 1254399.66) Smaller-Size CA APS (BKS 558917.52)

Obj | gap,, L Time | gap, | Obj | gap,,, +

Gurobi 1269353.86 14954.20 105.61 0.00 6066583.20 107665.68
ND+Gurobi 1266355.77 11956.11 102.34 0.00 646908.07 87990.55
PS+Gurobi 1265332.21 1093255 104.68 0.00 635087.43 76169.91

ConPS+Gurobi 1264173.98 9774.32 98.63 0.00 626713.56 67796.04

Ours+Gurobi 1261684.89 7285.23 94.04 0.00 603443.23 44525.71

H.5 GENERALIZATION

We evaluate the generalization performance of our method. Specifically, we generate larger in-
stances of the CA and SC problems (please refer to Appendix for more details). We utilize the
model trained on the instances described in Section [5.1] and evaluate the models on these larger in-
stances. The experiment results in Table 21| demonstrate the strong generalization ability of Apollo-
MILP, as it outperforms other baselines on these larger instances.

Table 21: We evaluate the generalization performance on 100 larger instances. The ML approaches
are implemented using Gurobi, with a time limit set to 1,000s. ‘1’ indicates that higher is better, and
‘|’ indicates that lower is better. We mark the best values in bold.

CA (BKS 115746.88) SC (BKS 101.45)
Obj T gap,s 4 Objl gapy, |
Gurobi 114960.25 786.63 102.29 0.84

ND-+Gurobi 115035.44 711.44 102.51 1.06
PS+Gurobi 11522820 518.68 102.27 0.82
ConPS+Gurobi 115343.23 403.65 102.18 0.73
Ours+Gurobi ~ 115413.86 333.02 102.16 0.71

25

Under review as a conference paper at ICLR 2025

I REPRODUCTION OF THE BASELINES

Since ND and ConPS are not open-source, we must reproduce the results from the original papers to
validate our models. In this section, we reproduce the experiments conducted in the original studies

(Nair et al} 2020) and (Huang et all,[2024) to ensure the performance of our reproduced models.
Following the validation approach and settings outlined in [Nair et al.| (2020) and [Han et al.| (2023),

we conduct experiments on the Neural Network Verification (NNV) d

ataset. We implemented the

Neural Diving method within SCIP and compared its performance against the default SCIP. As noted

by (2023)), tuning the presolve option in SCIP can lead to fal

se assertions of feasibility in

the NNV dataset; therefore, we disabled this option for both SCIP and our reproduced ND+SCIP.
The results are presented in Figure] where ND significantly outperforms SCIP, confirming the

performance of our reproduced model.

To reproduce ConPS, we utilized the IP dataset built on SCIP and replicated the experiments de-

scribed in the original paper (Huang et al.}[2024)). The results are summ

arized in Figure[5] where the

performance of ConPS aligns with the results in the original study (Huang et al., [2024).

NNV
—— scIp

g ND+SCIP
o
T
£
a
(]
g
g0.10
z

0.01

10! 102 10°
Time (s)
Figure 4: The reproduced results of SCIP and ND+SCIP on
IP
10° — scip
Q
& —— PS+SCIP
= —— ConPS+SCIP
£
o
[}
g 1071
2
=
0 500 1000

Time (s)

Figure 5: The reproduced results of SCIP and ConPS+SCIP

26

the NNV dataset.

on the IP dataset.

	Introduction
	Related Works
	Preliminaries
	Mixed Integer Linear Programming
	Bipartite Graph Representation for MILPs
	Predict-and-Search

	The Proposed Alternating Prediction-Correction Framework
	Prediction Step
	Correction Step
	Analysis of the Fixing Strategy

	Experiments
	Experiment Settings
	Main Evaluation
	Ablation Study

	Conclusion and Future Works
	Notations
	The Sketch of Derivation of the Variable Fixing Strategy
	The Motivation of Assumption 1: From a Classical Problem
	The Sketch of Derivation

	Proof of Propositions and Theorems.
	Proof of Proposition 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Feasibility Guarantee

	Implementation of Our Methods and the Baselines
	Details on Bipartite Graph Representations
	Details on the Benchmarks
	Benchmarks in Main Evaluation
	Benchmarks in Used for Generalization
	Subset of MIPLIB
	More Benchmarks

	Hyperparameters
	Additional Experiment Results
	Real-World Dataset
	Hyperparameter Analysis
	Comparison with More Baselines
	Evaluation on More Benchmarks
	Generalization

	Reproduction of the Baselines

