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Abstract

Statistical models are an essential tool to model, forecast, and understand the hydrological processes in
watersheds. In particular, the understanding of time lags associated with the delay between rainfall occurrence
and subsequent changes in streamflow is of high practical importance. Since water can take a variety of flow
paths to generate streamflow, a series of distinct runoff pulses may combine to create the observed
streamflow time series. Current state-of-the-art models are not able to sufficiently confront the problem
complexity with interpretable parametrization, thus preventing novel insights about the dynamics of distinct
flow paths from being formed. The proposed Gaussian Sliding Windows Regression Model targets this
problem by combining the concept of multiple windows sliding along the time axis with multiple linear
regression. The window kernels, which indicate the weights applied to different time lags, are implemented
via Gaussian-shaped kernels. As a result, straightforward process inference can be achieved since each
window can represent one flow path. Experiments on simulated and real-world scenarios underline that the
proposed model achieves accurate parameter estimates and competitive predictive performance, while
fostering explainable and interpretable hydrological modelling.

Keywords: flow paths, Gaussian kernel, interpretability, sliding windows regression, streamflow prediction

1 Introduction

The hydrological processes that produce streamflow play key roles in determining the environmental
effects of climate and land use changes. In particular, changes in climate or land use can trigger a
complex series of nonlinear and interactive processes which can eventually impact the way in which
watersheds partition, store, and release water, leading to potential changes in flood, landslide or
drought risks (Dunn et al., 2010; Harman et al., 2011; Sawicz et al., 2014). Furthermore, water res-
ervoirs and consistent streamflow are essential for the regulation of the water supply in both urban
and rural areas (Janssen et al., 2021; Tang et al., 2009), as well as for sustainable energy production
and continually healthy ecological habitats (Ahmad & Hossain, 2020; Zalewski, 2000). A deep
understanding of how precipitated water becomes streamflow is of great importance and requires
a sophisticated and interpretable statistical framework.

Hence we investigate the problem of inferring streamflow partitioning into different flow paths
such as overland flow, subsurface flow, and baseflow (Cornette et al., 2022; Kannan et al., 2007;
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McMillan, 2020; Nejadhashemi et al., 2009; Wang & Gupta, 2024). While there exist many sim-
ple methods which can partition streamflow into fast surface flow versus slow baseflow
(Nejadhashemi et al., 2009; Wang & Gupta, 2024), the processes and reasoning behind this par-
titioning are usually lost. To prevent this, one could consider how input rainfall is partitioned into
different flow paths. Hence, we consider a time series y; = (y;),e7 of streamflow at a particular
gauge and an input time series x1 = (x;),c7 of rainfall data on a common time domain T. Given
such data, a common approach is a lagged regression model following the concepts of
auto-regressive moving average with exogenous variables (ARIMAX, ARMAX) (Hyndman &
Athanasopoulos, 2021). In contrast to these models, our problem does not involve an
auto-regressive part, i.e. we do not use lagged observations of the target y; as predictors; instead,
we seek to fully characterize the target time series via the lagged input time series. Further, we de-
sire more interpretability and inferential power than is offered by ARIMAX models. For example,
the maximum time interval for which the predictor has an impact on the response and the separ-
ation of flow pathways is of interest for watershed modelling.

A more closely related model in time series analysis is the finite distributed lag model (DLM)
(Baltagi, 2022). Despite its roots in econometrics, the DLM has been extensively applied in envir-
onmental sciences (Chen et al., 2018; Peng et al., 2009; A. M. Rushworth et al., 2013; Warren
et al., 2020). While ARIMAX mainly relies on the concept of ARIMA, i.e. it makes use of the
lagged target variable y, as input, and only adds the present time point of the exogenous variable
x:, DLM predicts the target variable purely based on a distinct lagged input time series—the same
setup that is pursued in this work. In this sense, the presented work may be seen as a specific type of
a DLM and thereby an extension of the work by A. M. Rushworth et al. (2013), however, with an
improved parameterization, which allows for improved model interpretability. Basic DLM var-
iants do not allow us to impose parametric assumptions on the shape of the regression parameter
vector beyond simple singular shapes like geometrically decreasing patterns or polynomials
(Almon, 19635; Eisner, 1960; Griliches, 1967). Such DLM extensions permit a large variety of
lag curve shapes, but do not make the separation between flow paths explicit. To the best of
our knowledge, none of the existing DLM variants are capable of explicitly separating distinct
flow pulses, which is most crucial for hydrologic inference.

There are several other possible approaches. Another economic model was adapted for hydro-
logical inference by Giani et al. (2021), where the authors deploy the concept of cross-correlations
in combination with a moving average approach. Although their method has favourable proper-
ties to model the response time between rainfall events and flow pulses, it again does not allow a
direct separation of the flow paths. Furthermore, correlation-based analyses do not allow straight-
forward predictions on new test datasets. Similarly, we do not pursue continuous-time models in
hydrology based on partial differential equations (e.g. Young, 2006).

In contrast to further related works in the field of statistical modelling in hydrology, the method-
ology presented here focuses exclusively on the temporal relation between rainfall and streamflow in
a given watershed. Spatial relationships between watersheds, as investigated by Roksvig et al.
(2021), are beyond the scope of this article; nevertheless, the presented concept offers a foundation,
which can be extended to include spatial information for gauged and ungauged catchments in future
work and may complement existing large-scale analyses, such as that of Hare et al. (2021).

In this article, we present a parameterized, interpretable variant of lagged regression models
for hydrological modelling: the Gaussian sliding windows regression (SWR) model. It builds on
the assumption that distinct flow paths (surface flow, subsurface flow, etc.) provoke separable
pulses of streamflow after rainfall events. These pulses are represented by multiple temporal win-
dows, which weight the input x; at time points within the window via a Gaussian kernel. The
output of each window is mapped to the target variable y, using a linear regression model.
Compared to earlier SWR models (Davtyan et al., 2020; Janssen et al., 2021; Khan et al.,
2019), the proposed method has major structural differences, which constitute the main novel-
ties of our work:

1. We consider multiple, potentially overlapping windows representing distinct flow paths, and
2. we use a parameterized kernel as model weights to allow straightforward interpretations for
hydrological inference of flow path importance.
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Our experimental evaluation involves both simulated and real-world data. The simulation study
serves as a proof of concept for the model and validates the parameter estimation procedure. The
application to two real-world datasets demonstrates that the model achieves competitive predict-
ive performance and has favourable properties for interpreting underlying hydrological processes.

2 SWR model
We assume that a univariate input time series x7 and a univariate target time series y, are given on
a common, discrete time domain T = [£,x ], Where [7] denotes the index set {0, ..., #}. In the mo-

tivating application x1 and y; represent daily rainfall and streamflow, respectively. The modelling
goal is to represent the target value y, at time index ¢ € T based on time-lagged observations of xy,
i.e. up to time t.

Our proposed model pursues the idea that the effect of precipitation on streamflow follows a
mixture of k kernels associated with temporal windows, each one characterizing a particular
flow path (groundwater flow, subsurface flow, or overland flow). Ultimately, we aim to represent
the distribution of response times from flow path i € {1, ..., k} by weight vector ' € R**!. Note
that the length of «() is formally time-dependent based on its dimension. Since the subvector of
nonzero weights remains the same over time, zero padding is used at the end to comply with
the dimensionality of xp;. Thus, the time index is left out in a slight abuse of notation.
Computing a weighted sum of the lagged time series x|, with one such weight vector x) models
the contribution to streamflow y; associated with flow path i. Summing the contributions gives
the overall flow. To facilitate explanations, we present the model for the special case of only k =
1 window first, and extend it to multi-window scenarios afterwards.

2.1 Single-window model

If only one flow path exists, we denote the associated weight vector by ¥ € R™*!. By default, we
require that all entries in x are nonnegative, and that x is normalized, i.e. ||¥|; = 1. Then, in the
special case of one window, our SWR model describes the gauged runoff y, by the weighted
sum or the associated convolution

t
Ve =p- Z Xt—skKs | + &
s=0 (1)

=p- (xp xK) + &,

with some multiplicative constant § and an error term &; assumed as Gaussian white noise. The
symbol * denotes the discrete convolution operator defined as

n
V*2Z = Z Un—i%i
=0

for two vectors v, z € R"!. Note that weight «; is applied to lag s € [¢], i.e. x, denotes the weight ap-
plied to observation x;_, rather than x,. The model parameter f acts as a regression coefficient to adjust
the scaling of the normalized weight vector k. Since additional precipitation cannot lead to decreased
streamflow, we further require # > 0. In other applications, this restriction may be modified.

Unlike typical linear regression models, the SWR model is defined without an intercept %, This
is due to the assumption that runoff y, is 0 after a long period without precipitation, x, = 0 for all
s < t. However, in other applications, the proposed SWR model may be used with an intercept.

Further, note that the model definition allows negative responses v, if all entries of § are very
small while the error ¢, takes a larger negative value. However, in this rare case, point forecasts
remain nonnegative due to nonnegative observations xp;.

The assumption of independent errors & in model (1) (or its multi-kernel generalization) is un-
realistic for most real-world datasets, where autocorrelated disturbances are common. Later, we
describe a simple data transformation to address that complexity, however, it is sufficient to pro-
ceed with the simpler model (1) for now.
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The proposed SWR model (1) is related to a DLM, which is a common approach also used in
related work (A. M. Rushworth et al., 2013). However, the paradigm where each flow path is rep-
resented by one kernel x allows us to make further assumptions to parametrize the lag vector: We
assume that each flow path is associated with a distinct unimodal distribution of the time lag (time
delay) between a rainfall event and its effect on streamflow. Hence, the weight vector x represents
the kernel of a probability distribution. Further, we denote the time lag with the highest amount of
runoff water, represented by the position of the peak of ¥ (mode), as a distribution centre param-
eter 8, where 0 < J < t.

More specifically, we parametrize x by a Gaussian-shaped kernel centred around a lag of 8, as-
suming that the time delay between the rainfall event and the resulting change in the streamflow is
approximately Gaussian distributed. Since the time series is only measured at discrete time points,
the Gaussian kernel is discretized by applying a step function, such that

1s+%
Ks =E / ¢(T5 5’ Uz)dT,

s—1

where ¢( -, J, 0°) denotes the probability density function of a Gaussian distribution with mean ¢
and variance ¢® > 0, the kernel indices (lags) s € {0, 1, ..., #} are relative to a current time point,
and C denotes the normalization constant

1
t os+3

C=Y" [ ¢(r6,0")dr (2)

— —1
s=0 s—5

Note that the first kernel element, xo, corresponding to lag s =0 is supported on (-3, 1), i.e.
including half a time unit before time #, because of the discretization.

The notion of a temporal window describes an interval of time lags J + r with some window size
2r centred around 8, which covers a large proportion of the probability mass. Due to the shape of
the Gaussian probability density function and the decay when moving away from J, we define the
window such that it covers approximately a range of +3 standard deviations, i.e. 7 = 3. For now,
assume that 6 — 7> 0 and J + 7 < tyax (the special cases where the boundaries of [#] are exceeded
will be treated at a later point). Given such a window, the modelled response y, exclusively de-
pends on xp falling in ([t — 6 —r], [t — 6 + 7]) rather than the full index set [¢]. Here, |-] and
[] denote floor and ceiling operators to consider the weights of the two discrete time points
just outside the kernel. Nevertheless, to keep the notation manageable, we formally retain the no-
tation of x covering the whole interval [¢] in the following.

Examples for r € {1, 3, 6} and 0 =r/3 are depicted in Figure 1. Further, the graphical idea be-
hind the SWR model for a univariate input x can be visualized in Figure 2: the target time series y,
at time is predicted based on information originating mainly from the input time series in window
oxr.

In the special case that ¢ is very small and r approaches 0, the window width collapses to 0, and
the full probability mass of the kernel accumulates at the window centre d. However, since 6 may
be located between two observations of the input time series, o is restricted to be at least { to ensure
at least one observation falls within the effective domain of the probability mass, i.e. is assigned to
the closest measured time point in such cases, by definition.

Nonzero weights can only be assigned to lags in [#], and it follows that the Gaussian SWR model
cannot be evaluated for arbitrary parameter combinations of é and o. The restriction on the upper
(lag) limit of the window, i.e. § + 7 < t, is less prohibitive in practice for longer time series and
merely leads to y; not being predictable for ¢ < Jd + 7, i.e. for small ¢ at the beginning of the time
series. As a consequence, this restriction can be easily resolved by withholding data for calibration
during model training. Hydrological applications typically have time lags J in the range of a few
days, weeks, or months, hence the impact of this restriction is negligible for a sufficiently long time
series spanning over multiple years.

On the other hand, peaks appearing at short time lags are highly relevant in practice, leading to
small values of d. Under extremely wet conditions in low permeability catchments, it can be
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Figure 1. Examples of Gaussian-shaped window kernels centred around t — é with d = 7.3. For different values of ¢
a window extends approximately +r around t — d, where r = 3. Each bullet denotes a discrete time point of lag s
with weight given by the area under the kernel between t —s—1/2 and t+ s+ 1/2. A lagged time point at t — s
outside t — d + r, such as those at t — 6 (top), t — 4 (middle), and t — 1 (bottom), may still have a small weight as t —
s+ 1/2 falls within the kernel. Other time points immediately outside their respective kernels, such as those at t — 9
(top), t — 11 (middle), and t — 14 (bottom), will be considered but have essentially zero weightas t — s + 1/2 does not
reach nontrivial values of the Gaussian kernel.
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Figure 2. lllustration of the Sliding Windows Regression model with k = 1 window, which predicts y79 based on a
subset of x(7g values in a window. With d = 20 and r = 10, the window [40, 60] centred around s — d = 50 covers
2r+1 =21 time points.

T T T T T T T T T T T T T time
t—9 t—8 t—7 t—6 t—5 t—4 t—3 t—2 t—1 t

Figure 3. Example of a truncated Gaussian-shaped window kernel, with window parameters 6 =2.7 and r =35 =6.
The window spanning t — § + r shown by the dashed rectangle is truncated to the shaded region: rainfall after time t
cannot contribute to y;. Hence, the weights for x;11, X¢12, and xq3 in the time interval marked 7 are all zero even
though the interval is within the rectangle. The Gaussian curve is renormalized to 1. The kernel weight applied to x; is
the area under the curve between t — % and t+% due to discretization.

assumed that water from rainfall will almost immediately lead to changes in streamflow. If the
lower limit of the lag window, & — 7, falls below 0, we change the shape of the kernel to a truncated
Gaussian kernel, as shown in Figure 3. Note that the kernel is, by definition in (2) always
normalized.
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Truncation has effects on the interpretation of the model parameters: while § still indicates the
time lag with peak kernel weight (mode of the probability distribution), it does not indicate the
central lag of the window on the time axis anymore. Further, the right-truncated Gaussian distri-
bution is no longer symmetric with respect to the temporal window, and hence, the distribution
mean shifts to the left.

2.2 Multi-window model

Assuming multiple different (potentially overlapping) windows allows the model to account for
distinct effects on the current target y,. For this purpose, we extend our method from a single-
window model to a mixture of k kernels, which is related to the density resulting from a mixture
of probability distributions (Everitt et al., 1981). For a given window i € {1, ..., k}, we use the
same notation as in the single-window case for the window and kernel parameters with an added
index i denotlng the window number: 5%, #7, and 6. The Gaussian SWR model with multiple
windows is given as a direct general1zat10n of (1) by

Ve = Zﬁ (xp % 67) + &, (3)

k
=X[g) * Zﬂ(l)h‘m + &, (4)
=1

where the regression parameters £, ..., % > 0 act as window weights. In summary, the
Gaussian SWR model with k£ windows contains the following parameters:

ek regression parameters f= (A1, ..., AR, B e RY,
o klag parameters 6 = (6!, ..., 6*)), 6 € R*, and
ek kernel standard deviation (size) parameters ¢ = (¢!, ..., o!¥)), 6 € R*.

The concept of a Gaussian SWR model with multiple windows is illustrated in Figure 4: a target
value y, is predicted by multiple windows accumulating information in xy, over different time in-
tervals. As depicted in Figure 5, the combined kernel represents a linear combination of the single-
window kernels ) fori =1, ..., k. Under the assumption that each window has a distinct centre
point 6% (otherwise, identifiability of the parameters might not be given), without loss of general-
ity, we can order the location parameters such that 6! < % < ... < s®

Yt

10 -
5 |
O —t——
0 20 30 40
Ty
60 |- b
()
40 - I . — 7 N
2 | :ﬁ' ,,,,,,,,,,, 1 i N
0 :
0 20 g_s@ 40 ¢_gs) 60 S 80 t

Figure 4. lllustration of the Sliding Windows Regression model with k =2 windows, which predicts y;o based on
xi701- The windovv location parameters are 6" = 20 and 62 = 40. On the time axis, the window [40, 60] is centred
around s — ¢"" =50 and covers r'" = 10 time points on each side of 8" = 50, while window [10, 50] is centred
around s — b =30 and covers r'? = 20 time points on each side.
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t—8@ t— oW

ﬁ(l)n(l) + 3(2),,{,(2)

T e - -0-- - --@---@6-- 0 —-©6—- 6 -0

t-12 t-11 t-10 t-9 t-8 t-7 t-6 t-5 t-4 t-3 t-2 t-1 t

Figure 5. Example mixture of window kernels (weights): kernel x!"' represents a truncated Gaussian, while kernel
x? has a Gaussian shape. The combined window k" + g2, is a mixture of Gaussians for the SWR model.

2.2.1 Parameter interpretation

The number of windows k& models the number of underlying, separable flow paths. Since single-
window kernels x are normalized, regression parameters (window coefficients) BV, ..., B* act
as weights among the kernels. For practical evaluations, they may be converted into proportions
representing the relative impacts of the underlying flow paths.

For a window that is essentially untruncated, the location parameter 6 and the width ¢! of
kernel i are loosely related to the mean and the standard deviation, respectively, of the time lag
between precipitation and a change in streamflow. In any case §' is always the window mode
and is thus a direct estimate of the typical time delay between rainfall events and the resulting im-
pact on the gauged runoff for a flow path.

2.3 Information criteria

Based on the definition and the model assumptions of the proposed Gaussian SWR model, the
model errors are given by

k
6= Vi = Xjp) ¥ (Zﬁ(”x“’),
=1

and follow a Gaussian white noise process. Hence, the log-likelihood In L(8, J, 65 x1, y1) is tract-
able and matches that of ordinary multiple linear regression models.

To choose the number of windows, we use the Bayesian Information Criterion (BIC, Schwarz,
1978). The number of model parameters in a k-window model aggregates one regression param-
eter, one window location parameter, and one window width parameter for each of the k& win-
dows. Hence,

BIC=-2InL(8, d, 65 x1, y7) + In(|T|) - 3k, (5)
where |T| is the number of observed time points (number of samples).

2.4 Model training and implementation
In a training dataset, let y denote the observed values of the target time series, and let y1(8, d, &)
denote the vector of predictions as a function of the model parameters; the likelihood follows from
vy and §r. Since established approaches to fitting lagged regression models, such as Hannan
(1967) are not directly applicable due to our specific parametrization, Algorithm 1 outlines an it-
erative procedure to train the model by minimizing the negative log-likelihood (or another loss
function). In each iteration k =1, ..., Rmax, one new window is added to the model and the pa-
rameters for all kK windows are optimized. An information criterion (BIC for all simulations and
real-data analyses) chooses the best number of windows among 1, ..., kyax.

We use the GENOUD algorithm (Mebane & Sekhon, 2011) in the R package rgenoud
(Mebane et al., 2023) to train a model with a fixed number of windows. GENOUD optimizes a
population of candidate solutions over a number of generations via operations analogous to
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Algorithm 1 Train a Gaussian SWR model, choosing the number of windows

Input:
xT, yr (time series supported on a common set of times T)
kmax (maximum number of windows)
n (population size for genetic optimization)
D% (a vector of starting values for the 57)
89 (a vector of starting values for the o))
Set window counter k& « 1
Compute #, and m,, the mean of x7 and yr, respectively
for k=1 to k. do
if k=1do
Generate an 7 X 1 column vector of starting values for each parameter in window 1
BY < (my[my, ..., m},/mx)T (for g1y
DY «— (DO DO )T (for sV
S (89, 8O )T (for ¢!V
else
Generate an 7 X 1 vector of starting values for gV, ..., g%
forj=1to k do
BY « (my[my [k, ..., my/m.[R) (for p)
end for
Generate an 7 X 1 vector of starting values for sk (note DY, ..., D*1 are unchanged)
DK permute(D(l))
Generate an 7 X 1 vector of starting values for o* (note s, S*1 are unchanged)
SW permute(S(”)
end if

Generate an 7 X (3k) population of starting values with columns for gV, ..., g%, sW .. W &1 4l
P:(B(U |~~~|B(k) |D(1) ""|D(k)|s(]) |,,,‘S(k))

Minimize the negative log-likelihood for £ windows via the GENOUD algorithm with starting values in P

- ) argmin

(Bh, 6%, & 550" InL(B, 3, o3 x1, y7)-

Compute BIC, for k windows from (5)

end for

return k and p*. 6% 6k such that information criterion BIC; is optimized

;o arg min
=k, o k) ™

genetic evolution. It also fine-tunes the best candidate found at each generation with a
quasi-Newton method. Trial and error comparisons with a more standard-constrained optimizer
(BOBYQA, see Powell, 2009) demonstrated a clear advantage in the optimal log-likelihood found,
which is important if BIC is to reliably choose the number of windows. As a stopping criterion, the
absolute tolerance is set to 1073, which is a trivial change in the log-likelihood.

In the GENOUD algorithm, we constrain the parameters such that all 6” > 0 and all 6 > 1/6,
which allows for truncated as well as nontruncated kernels. In the boundary case of §=0, a
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maximum level of truncation is reached for the Gaussian kernel. The constraint ¢! > 1/6, avoids
collapse of the window. Moreover, the minimum window width is hence 1, i.e. +3 x 1/6, which is
commensurate with the limitation of discrete data at unit time steps.

GENOUD requires a population of # starting values for §, J, and o. Experimental observations
showed that this initial population is important. It needs to provide coverage of reasonable values
in the parameter space but not be so overly wide as to make the optimization inefficient. Note that
the initial ranges can be exceeded later during the GENOUD iterations. The population formed in
Algorithm 1 has #» members in the rows of a matrix (z = 100 for all results reported) and 3k col-
umns for initial values of gV, ..., g%, oV , 0% ol o) respectively. For k=1, ) is
always set to m, /m,, where m, and my are the sample means of xT and y respectively, to respect
the scahng of the data when a single kernel has total unit weight. The 6'") starting values repeat a
vector DV; we use D' = (1, 2, ..., 25)T, which will be repeated four times to fill the population
of size n =100. This range is reasonable for the hydrology application but would be changed in
other contexts. Sirnilarly the 6! starting values repeat S = (1, 5, 10, 20)*. When k > 1 and win-
dow k is added, gV ,B<k) are all reduced in magnitude to m,/m./ k to account for k kernels.
The starting values for 5“ and ¢V are as for the k =1 iteration; the P and o'®) for the further
windows are given by a random permutation of the elements in D'¥ and §'%, respectively. This
procedure ensures the starting values for a multi-window iteration have sufficient coverage of
the parameter space, while having distinct initial values for each of the k windows.

If the number of windows is not known a priori, an upper bound k. must be defined, and the
hyperparameter k& will be selected by choosing the best among all k.« iterations based on BIC.

Note that the suggested model initializations are specific to the hydrological application tackled
in this work. A different choice of hyperparameters may be required if the model was transferred
to another domain. The Gaussian SWR model is implemented in R version 4.3.0 (R Core Team,
2022). The implementation is publicly available on GitHub.'

2.5 Autocorrelated residuals

We expect autocorrelation to be present in the residuals of the Gaussian SWR model, since both
input and output time series may have other effects or measurement errors correlated with time.
This aspect violates the requirements of least squares likelihood and may distract evaluation met-
rics such as mean squared error. Thus, we aim to resolve such issues by adapting the estimation
procedure proposed by Cochrane and Orcutt (1949).

Suppose the errors ¢; in the model (4) follow an autoregressive process of lag 1, i.e. AR(1), so that

& = Q&—1 + 1y (6)

where 7, is Gaussian white noise (instead of ¢; in equation (4)), and ¢ € (=1, 1). From equation (4)
and (6), it follows that

V= Zﬁ (x4 % &) + pe,_q +1,, and
ytl—Zﬁ (xp—1) * &) + &1

In order to convert this setup into a model with Gaussian white noise errors, we investigate the
expression

(0%—1—25 x[t]*’f _(/’x[z 1]*"' )+’7z

k t
3. (z (e gaxs_nx‘tﬂs) .

https://'www.github.com/sschrunner/SlidingWindowReg.
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The term x - £\ originating from index s = 0 is ignored since & is padded with 0 at the end (when

being adjusted to the length of x(). Hence, given ¢, the model can be written as an ordinary least
squares model with uncorrelated errors 7,:

k

5}t = Zﬁ(i) : (-;C[t] *km) + Nys

=1

where the transformation Z; = z; — ¢z;—1 can be applied a priori as part of the preprocessing proced-
ure on both variables x; and y;.

For the Gaussian SWR model, we adapt the Cochrane-Orcutt procedure to estimate ¢ and the
optimal model parameters:

* estimate model parameters f, 4, ¢ from the original model using x|, and y|,, (i.e. set ¢ = 0),
estimate ¢ from the model residuals,

e apply the transformation Z; = z; — ¢z;—1 to both x7 and y; and obtain final estimates of the
model parameters f, , 6.

The same concept also holds for more general AR (m)-processes with 72 > 1. In general, the trans-
formation leads to a loss of 7 time points (samples) in the training dataset.

2.6 Uncertainty quantification

Minimizing the negative log-likelihood with respect to (B, 8, &) gives maximum-likelihood esti-
mates of the model parameters. The large-sample theory implies that the errors in the estimators
have an approximate multivariate Gaussian distribution with mean 0 (asymptotically unbiased)
and an approximate covariance matrix Z~!, where

2

0
Z(B,9,0) =W(_lan’ 9, 05 X1, yT1))

denotes the observed information, i.e. the negative second derivative of the log-likelihood eval-
uated at the MLE parameter values. The Hessian can be obtained numerically via the R package
numbDeriv (Gilbert & Varadhan, 2019). The diagonal elements of Z~! lead to approximate stand-
ard errors, which provide the uncertainty quantification reported below for the two watersheds
studied. These watersheds have a very long time series to support the asymptotic argument.

3 Simulation study

In a simulation study, the proposed Gaussian SWR model will be validated in controlled scenarios
based on real-world input data and simulated targets.

3.1 Experimental setup

Precipitation data x7 is used from the Koksilah River watershed which is located in Cowichan,
British Columbia, Canada, while an artificial target variable y; is sampled based on equation
(4). Both time series are acquired on a daily basis. The model parameters g, d, and ¢ are randomly
generated for this purpose, along with Gaussian white noise errors &, ~ N(0, p?). The distributions
of the model parameters and level of the error variance p? are described further below.

In all of the following setups, the model parameters of the Gaussian SWR model were estimated
on a training set comprising a time series of the first 29 hydrological years, resulting in 10,593 data
points. The test set consisted of the remaining 10 time series of hydrological years or 3,652 data
points, which corresponds to an approximate 75%/25% split of the dataset.

The primary factors steering the difficulty associated with a setup in the simulation study are:

1. the (ground truth) number of windows k& —the dimensionality and complexity of parameter
estimation increases with the number of windows,
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2. the pairwise overlap between (ground truth) windows on the time axis—a higher overlap
leads to a decrease in the separability of windows, and

3. the level of measurement noise p? applied, given by the noise rate (relative to the explained
variance of the model, as highlighted below).

While k8" and p are systematically varied, the overlap of windows is a result from the random sam-
pling of ground truth model parameters.

We employ 15 distinct setups (five 1-, 2-, and 3-window setups, respectively). A higher number
of windows is not common for hydrological models due to the limited number of possible flow
paths. Each setup uses a set of parameters independently sampled from s ~ U(0, 20), and
o, f ~U(1, 5)foranyi e {1, ..., k}, where U(a, b) denotes a uniform distribution on the inter-
val [a, b]. Each 1-, 2-, and 3-window setup is repeated at five distinct levels of measurement noise
a € {0.05, 0.25, 0.5, 0.75, 0.95} to control the error relative to the signal, for a total of 75 simu-
lation experiments.

Given a noise level a, the measurement noise is added as follows. After evaluating the determin-
istic terms in equation (4) with the given model parameters, denoted as ¥, we compute the asso-
ciated sample variance Var(y). Gaussian white noise with standard deviation p = a - \/Var(yy) is
simulated and added to construct y; =y + ér.

The resulting sample variance of y; can be expressed as Var(yy) = (1 + ¢?)Var(97). Thus, o
represents the relative noise level with respect to the explained variance. This induces an upper
bound on the R? score (Kuhn & Johnson, 2019) achievable by any predictor given x7 and y;: a
perfect fit giving 9, = y+- would achieve an R? score of

_lyr =37l3
lyr = 31113
Var(er)

RZ(J’Ta yr)=1

Var(yT) (7)
o Var(yy)
(1+a2) Var(yy)

_ 1
T 1+’

where y denotes the mean of y; across T, and 1 denotes a vector of ones. All noise levels a and
associated R? scores are shown in Table 1.

3.2 Evaluation metrics

In order to evaluate the Gaussian SWR model, we deploy evaluation metrics to assess both the ac-
curacy of parameter estimation and the predictive performance. To facilitate the assessment of the

Table 1. Noise levels and associated maximum R? scores (upper bound for predictive model performance)

Noise level Maximum R?
1 0.05 0.998
2 0.25 0.941
3 0.5 0.8
4 0.75 0.64
S 0.95 0.526
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estimated parameters, we introduce the notion of overlap between two weight vectors with equal
dimensions, w'!), w? e R’ as follows:

t
Ofw!, ) =3 min fa!), 17}
s=1

Hence, in a functional setting, the overlap would describe the area covered by the minimum of
both kernel functions. Since both weight vectors are positive and sum to 1 due to the normalization
condition, the overlap will be in [0, 1] and reaches 1 only if both weight vectors are exactly equal.
For a multiple-window setting, a combined kernel takes account of the kernel weights but is then
normalized for ease of comparison when computing the overlap.

We group the evaluation criteria applied to our model results into two categories:

e Kernel overlap: When combining all estimated windows to a joint weight vector

i=1

i.e. the mixture of all kernels, the overlap between the full predicted and the ground truth ker-
nels is assessed (including the weighting of windows by regression parameters ). In particu-
lar, we compute the overlap O(8, ), where 8 = (B, 8, &), and 0 = (B, 8, o), respectively. Thus,
the combined kernel overlap evaluates the quality of overall parameter estimation, including
the regression parameters f.

o Predictive performance: Conventional regression metrics are used to evaluate the predictive
performance of the model on the test set (Kuhn & Johnson, 2019). These include the root
mean squared error (RMSE), as well as the coefficient of determination (R?) on the test set.
The latter is also known as Nash-Sutcliffe Efficiency (NSE) in hydrology (Nash &
Sutcliffe, 1970) and is introduced in equation (7). In addition, the Kling-Gupta efficiency
(KGE) is a performance metric used in hydrology which, unlike the NSE, independently en-
courages predictions to match the variability of observations, thereby removing the tendency
of NSE to underestimate high flows and overestimate low flows (Gupta et al., 2009). It uses
the following formulation:

2 2
1- (r—l)%(ﬁ—l) +(2r-1),
O-yT ’uyT

where 7 denotes the Pearson correlation coefficient between y; and 9, u represents the re-
spective means, and o represents the respective standard deviations. All performance metrics
are implemented using the R package hydroGOF (Zambrano-Bigiarini, 2020).

3.3 Results for uncorrelated errors

First, we visualize the predicted kernels obtained from training the Gaussian SWR model in each
setup specified above. In the experiment, the algorithm selects the number of windows k based on
the best BIC, subject to a maximum of ky,x =3 windows. This upper limit originates from our
application, where typically a maximum number of up to three distinct flow paths (overland, sub-
surface, groundwater flow) is assumed.

Figure 6 compares the weights at discrete time points of the ground truth and estimated kernels
for the middle noise level @ = 0.5 in each setup. Dotted vertical lines indicate the true or estimated
window centres 5 along the time axis. In all 1-, 2-, and 3-window setups, window positions and
sizes were accurately predicted. Moreover, dominant peaks and general shapes are reconstructed
in all scenarios. Since we allow noninteger numbers for delta, the discretized weights are not al-
ways symmetric w.r.t. the measured time points. Overall, the combined kernel matches with the
ground truth very accurately, and the general separation of the windows is acceptable.
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Figure 6. \Weights at discrete time points of the ground truth versus predicted kernels (noise level a =0.5). The
number of windows was selected as a model hyperparameter.

Beyond visual comparison, Table 2 provides a summary of window overlap accuracy based on
predicted and true parameters. Overall, all setups achieve excellent overlaps with the ground truth
kernels. Thus, the reconstruction of the overall weighted kernel is at a high level across all simu-
lated setups.

Having observed the high accuracy of parameter identification in the simulation experiment, we
further investigate the predictive performance of the models with respect to the target variable on
the test set. Figure 7 illustrates the corresponding R?, KGE, and RMSE scores obtained by the es-
timated Gaussian SWR models. In agreement with the observations made on the quality of param-
eter estimation, the predictive performance remains at a high level and is mainly affected by the
noise levels. For the R? score, the upper bounds in Table 1 are indicated by a shaded region, which
cannot be reached at the given noise level. The achieved average R? values are close to the upper
bounds across all model setups, and hence the estimated models obtain almost optimal prediction
accuracy on the test set.

To guarantee interpretability of the model parameters, accurate estimation of the true number
of windows k8" is crucial. For k8 equal to 1, 2, or 3, all 75 estimated models select the hyperpara-
meter k correctly.
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Table 2. Parameter estimation accuracy for 1-, 2-, and 3-window setups across five noise levels

Setup no. Noise level a

0.05 0.25 0.5 0.75 0.95

1-Window setups

1 1.00 1.00 1.00 1.00 0.99
2 1.00 1.00 1.00 1.00 0.99
3 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 0.99 1.00
S 1.00 1.00 0.99 1.00 0.99
Mean 1.00 1.00 1.00 1.00 0.99
2-Window setups

6 1.00 1.00 0.99 0.99 0.99
7 1.00 1.00 0.99 0.99 0.99
8 1.00 1.00 0.99 0.99 0.99
9 1.00 1.00 0.99 0.99 0.98
10 1.00 1.00 1.00 0.99 0.98
Mean 1.00 1.00 0.99 0.99 0.99
3-Window setups

11 1.00 0.99 0.99 0.98 0.98
12 0.99 0.99 0.98 0.98 0.97
13 1.00 1.00 0.99 1.00 0.97
14 1.00 0.98 0.99 0.98 0.98
15 1.00 0.99 0.98 0.97 0.96
Mean 1.00 0.99 0.99 0.98 0.97

Note. An overlap of 1 indicates perfect agreement between an estimated window and the ground truth.

3.4 Results for autocorrelated errors

To account for a more general error structure, we repeat the above experiment but with response
data simulated with autocorrelated AR(1) errors &;. We make use of the R function arima.sim
from the forecast package (Hyndman & Athanasopoulos, 2021) to simulate AR(1) noise with a
given standard deviation p. Analogous to the case of uncorrelated errors, p is based on the sample
variance Var(y;) and the noise levels o from Table 1. Internally, the function constructs i.i.d. errors
17, with the given standard deviation p, which are then transformed to form an AR(1) process. The
true autoregressive parameter ¢ is set to 0.5 throughout for the purpose of demonstrating the
concept.

In practice, the autocorrelation has to be assessed, and the autoregressive parameter ¢ needs to
be estimated when we extend the Gaussian SWR model. The Durbin—Watson test for autocorre-
lated model errors is performed to assess the residuals before and after the Cochrane—~Orcutt data
transformation. As expected, model fits with no Cochrane—Orcutt transformation deliver p-values
below .01 (rejecting the null hypothesis of no autocorrelation) for all 75 setups. The average ab-
solute estimation error of the parameter ¢ is less than 0.006 across all setups, suggesting highly
accurate estimation. After applying the Cochrane-Orcutt procedure, 74 out of the 75 setups
lead to residuals with p-values above .05, which provides no evidence for violation of the assump-
tion of uncorrelated residuals in the model fit to transformed data. The remaining setup, with
p-value of .032, has only small residual autocorrelation of 0.02.

With autocorrelated errors, the upper bounds for the R? scores achievable by the model must be
modified. From (6), we have Var(e;) = Var(pe;_1 + #,) = ¢* Var(e;_1) + Var(y,) as 5, is uncorrelated
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Figure 7. Predictive performance summaries for 1-, 2-, and 3-window setups by noise level a. All results are
averaged over the five distinct simulated parameter setups.

with &-1 by construction. Iterating this result, and noting that Var(e;)=Var(y;) and
Var(y,) = a*Var(y7), gives
Var(e;) = ¢* Var(e,_1) + Var(y,)
= ¢* Var(e,-2) + ¢* Var(y,_,) + Var(n,)

t—1 )
=> " ¢p* Var(y, ;)
=0

2(t—1
= %{;2) a? Var(yr).
¢
It holds that & ~ 1j¢2 for longer time series. As a result, the maximum achievable R? score (when
¥ = ¥7) under the AR(1) model errors is given by

R(yr, y7)=1 (1 + &o?) Var(y7)
1
T1+él
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Similar to the simulation with uncorrelated residuals, the estimated kernels closely align with the
ground truth, demonstrating accurate reconstruction of the overall weighted kernel across all si-
mulated setups. For the given noise levels a, the maximum R? scores for the autocorrelated sim-
ulations are presented in Table 3. Results obtained for the experimental setups are shown in

Figure 8. As with the uncorrelated model setups, the R? scores almost reach the theoretical upper
bound.

Table 3. Noise levels and associated maximum R? scores (upper bound for predictive model performance) in the
autocorrelated setups

Noise level a Maximum R?
1 0.05 0.997
2 0.25 0.923
3 0.5 0.75
4 0.75 0.571
N 0.95 0.454
1.0+
0.8
ny)
N
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Figure 8. Predictive performance summaries for 1-, 2-, and 3-window setups by noise level a in the autocorrelated
setup.
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Overall, the hyperparameter k representing the number of selected windows, determined via
BIC matches the ground truth in all 1-window setups, overestimates by 1 for 3 out of 25 of the
2-window setups, and underestimates by 1 for one of the 25 3-window simulations.

4 Real-world data experiments

In the second part of our experiments, we evaluate the performance of the Gaussian SWR model
on two real-world examples. Both watersheds are located on the west coast of North America,
with the first catchment representing the Koksilah River which is located in Cowichan, British
Columbia, Canada. The second catchment represents Big Sur River in central California,
United States. The available dataset consists of 39 hydrological years for both watersheds. Both
datasets are available on the aforementioned GitHub repository (entitled sampleWatershed
and sampleWatershed2, respectively).

4.1 Experimental setup

Analogous to the simulation study, we use a training subset containing years 1-29 of the time ser-
ies, followed by a test set covering 10 years. The maximum number of windows is set to kpnax = 4.

After initial training, the model residuals are evaluated for autocorrelation using the
Durbin-Watson test. If autocorrelation is detected, the Cochrane—Orcutt procedure is applied
to correct for AR(1) errors. If the Durbin—Watson test finds no evidence of autocorrelation in
the updated model the process stops; otherwise, AR(2) errors are considered, etc.

4.2 Results

The Durbin-Watson test on the residuals from the model with untransformed data gives a p-value
<.01 in both cases, i.e. strong evidence against an independent-error model. In the case of water-
shed 1, an AR(2) process with parameters ¢; = 0.46 and ¢, = 0.12 is indicated to model the auto-
correlation, resulting in a Durbin—-Watson p-value of 0.20 after applying the Cochrane-Orcutt
procedure. For watershed 2, an AR(1) process with parameter ¢ = 0.84 appears to be sufficient
to remove the autocorrelation, resulting in a p-value of .39 after data transformation.

The estimated kernels for each watershed are illustrated in Figure 9, and their parameters are
shown along with uncertainties in Table 4. Predictive performance scores (R*, KGE, and
RMSE) on the test set are shown in Table 5. Overall, the Gaussian SWR model achieves reasonably
accurate predictions for both watersheds, e.g. R? scores of approximately 0.71 and 0.6, respect-
ively, on the untransformed streamflow scale.

The Gaussian SWR model selects k=3 windows for both Koksilah and Big Sur Rivers.
Figure 9a shows a clear dominance of the short-term history (a window close to a lag of 1 day)
for the Koksilah River. Paired with the fact that only three highly overlapping windows were
needed to model the catchment with high accuracy (Table 5), we can conclude that the
Koksilah River is driven by simple hydrological processes. The third window is very wide with
lower weight, and the first two windows have 6 ~ 1, thus the combined kernel for watershed 1 re-
sembles a truncated Student-# distribution: the combined kernel remains unimodal, but the prob-
ability mass is more dispersed over the long-term lags compared to a Gaussian kernel. Moreover, a
low lag value suggests a relatively simple catchment, which aligns with the observation that the
Koksilah River is situated in a region characterized by extremely high precipitation and minimal
aridity (Janssen & Ameli, 2021). From previous works, we can hypothesize that wet, nonarid,
catchments tend to be extremely simple with fast response times (Schoppa et al., 2020; Spieler
et al., 2020), which is strengthened by our experimental results. Since the bulk of precipitation
transitions into streamflow in about 1 day, this catchment is likely dominated by shallow subsur-
face flow. Large amounts of precipitation in this catchment fully saturate and connect the shallow
soil layers for much of the year, resulting in any excess precipitation pushing the water already in
the soils towards the stream within one day.

As we travel south along the western coast of North America towards the Big Sur River in
Central California, aridity increases and total precipitation decreases slightly (Janssen & Ameli,
2021). Although the Big Sur River is still considered a ‘wet’ catchment, the Gaussian SWR model
selects two more distinguishable peaks for watershed 2 compared to watershed 1, indicating an
increase in catchment complexity in-part due to the increased aridity (Schoppa et al., 2020;
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Figure 9. Estimated weights at discrete time points of scaled window kernels in real-world data experiments. The
combined kernel (dashed line) for watershed 1 resembles a truncated Student-t distribution with stronger tails than
Gaussian probability density functions. The combined kernel (dashed line) for watershed 2 is multimodal. (a) Koksilah

River (Watershed 1). (b) Big Sur River (Watershed 2).

Table 4. Parameter estimates after Cochrane—Orcutt transformation for real-world watersheds, with approximate

standard errors

Watershed no Window no A 5 o

1 1 0.39+0.01 1.24+0.22 0.18+0.12
2 0.35+0.02 1.28 £0.46 2.34+0.44
3 0.17+0.02 7.31+£9.09 18.12 + 0.65

2 1 0.21+0.01 0.00+£0.33 0.56 £0.24
2 0.31+0.02 2.00+0.01 2.67+£0.02
3 0.40+0.02 14.79 £ 0.65 10.40 +0.42

Spieler et al., 2020). The first large peak centred at § = 0 indicates overland flow. This peak could
be the result of the Big Sur River flowing through several developed towns where any precipitation
falling on impermeable urban surfaces causes immediate drainage into the river. The wider second
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Table 5. Predictive performance metrics (on test set) after parameter estimation using Cochrane—Orcutt
transformation for real-world watersheds

Watershed k Metric
R? KGE RMSE
Original data

3 0.71 0.72 3.36

2 3 0.60 0.70 2.74
Transformed data

2 0.59 0.64 2.67

2 3 0.47 0.58 1.50

Note. Evaluation metrics are computed on the original (untransformed) test set, as well as on the transformed test set.
KGE, Kling-Gupta efficiency; RMSE, root mean squared error.
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Figure 10. Observed streamflow, predicted streamflow, and rainfall in the real-world experiments for six years of
the test set. (a) Watershed 1. (b) Watershed 2.
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Table 6. Runtimes of the Gaussian SWR model with kmax € {1, 2, 3}, averaged over five runs

kmax Runtime [s]
12.4
2 75.6
608.8

window could represent shallow subsurface flow in a similar fashion as watershed 1. The last win-
dow for the Big Sur River indicates that there is substantial baseflow in the catchment. With some
precipitation flowing deeper underground towards less porous material, this partition of water
will respond more slowly to water input compared to shallow subsurface flow and overland flow.

Figure 10 compares the time series of predicted and observed water flows for each watershed,
along with the respective rainfall time series (all relating to untransformed data). To save space,
the plots restrict the time domain to the first three and last three hydrological years of the test
set. Since the Gaussian SWR model acts as a smoothing operator on the input time series, the pre-
diction time series is less spiked than the rainfall input and generally matches the shape of the
ground truth well. Particularly for watershed 1, time intervals with flat gauge values appear
more noisy in the predictions. This becomes visible in the dry periods at the end of each hydrologic-
al year (time interval [250, 365]), where the ground truth response is almost exactly 0 throughout,
while the predictions are modestly positive.

To investigate the effect of sample size, we repeated training for Watershed 1 but with only the
first 6 years of data, i.e. about 20% of the previous training data comprising 29 years. The previ-
ously found third, very wide window with smaller weight seen in Figure 9a was no longer detected
by BIC using the smaller dataset, but the combined kernel from the two windows closely resembled
that shown in Figure 9a from three windows.

4.3 Runtime analysis

All real-world experiments were performed on an Intel Core i5 3 GHz CPU with 8GB RAM run-
ning macOS Sonoma 14.4, where Algorithm 1 was implemented in R. The runtimes in Table 6 are
averages over five independent model fits to account for variations in the computation time. In
each run, the Gaussian SWR model is trained for one real-world watershed using the same experi-
mental setup as in the real-world study; time to compute predictions is excluded. The maximum
number of windows knay is clearly important, but all runtimes are moderate.

5 Discussion and conclusion

Our experiments validated the Gaussian SWR model in a controlled experimental environment and
real-world scenarios. Good predictive accuracy on a test set, as measured by R2, for instance, was
achieved throughout. The simulations demonstrated that achievable accuracy was dominated by
the noise level, and rather independent of the number, position, size, and weighting of the ground
truth windows. Moreover, multiple kernels were usually identifiable, with accurate parameter esti-
mates. Thus, the proposed Gaussian SWR model has promising utility for hydrological inference.

Parameterizing the kernels as having Gaussian densities is easily extended to more flexible
shapes, such as Student’s ¢, Gamma, or asymmetric generalized Laplace distributions. The latter
two suggestions would enable long-tailed lag effects.

Relative to the more general DLM, the predictive performance of the Gaussian SWR model is
comparable on the datasets used in our real-world experiments. When varying the number of
time lags g, the DLM implementation by Demirhan (2020) achieves test-set R* scores of 0.7
(g=35),0.72 (g =10 and g = 20) for watershed 1 and 0.51 (g =35), 0.55 (¢ =10), 0.58 (g =20)
for watershed 2. Thus, the parametric assumption taken by Gaussian SWR, i.e. restricting the ker-
nel shape to a mixture of Gaussians, does not significantly affect the predictive performance.
However, the favourable parametrization employed by the Gaussian SWR model allows for
straightforward interpretations of the model parameters: the window position and shape param-
eters are directly transferable to the concept of distinct flow paths in hydrology and deliver
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information on the peak lag of the runoff and its celerity distribution, respectively. Regression pa-
rameters f give indications of the relative importance of each flow path: while a dominant window
with short lag typically models a strong short-term (overland) flow, well-distinguished windows
with longer time lags indicate the presence of distinct long-term effects such as subsurface or
groundwater flows. From a statistical perspective, kernels representing long-term effects may approxi-
mate a constant line, thus adding an intercept could be a valid option for the proposed model—for the
hydrological interpretation, however, a large (slow-flow) window acts as a more accurate paramet-
rization than a model with intercept.

From a hydrological viewpoint, a major limitation of the Gaussian SWR model is that the ker-
nels, particularly the parameters # and é, do not change dynamically over the hydrologic year. The
hydrologic year in many watersheds is characterized by drier and wetter periods, with distinct pat-
terns in rainfall-runoff relationships. Our concurrent work on the same watershed 1 demonstrates
that the predictive performance can be increased to approximately R? = 0.8 using a functional
data analysis approach with dynamic regression weights and sparsity. Potentially, the Gaussian
SWR model setup could be extended in future work to account for such dynamic parameters at
the cost of a higher number of model parameters and a more complex training procedure, while
keeping its highly interpretable ability to separate flow paths.

The presence of significant precipitation falling as snow will impact runoff dynamics in colder
regions. As a consequence, runoff lags and magnitudes of the distinct flows paths may vary signifi-
cantly over the year, which is not covered by linear constant-lag models. To overcome this issue for
watersheds with significant snow-to-rainfall ratios, an extension of the proposed Gaussian SWR
model to account for nonlinearities would further be of interest. We consider this as another po-
tential future extension of the proposed model.
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