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Abstract
Statistical models are an essential tool to model, forecast, and understand the hydrological processes in 
watersheds. In particular, the understanding of time lags associated with the delay between rainfall occurrence 
and subsequent changes in streamflow is of high practical importance. Since water can take a variety of flow 
paths to generate streamflow, a series of distinct runoff pulses may combine to create the observed 
streamflow time series. Current state-of-the-art models are not able to sufficiently confront the problem 
complexity with interpretable parametrization, thus preventing novel insights about the dynamics of distinct 
flow paths from being formed. The proposed Gaussian Sliding Windows Regression Model targets this 
problem by combining the concept of multiple windows sliding along the time axis with multiple linear 
regression. The window kernels, which indicate the weights applied to different time lags, are implemented 
via Gaussian-shaped kernels. As a result, straightforward process inference can be achieved since each 
window can represent one flow path. Experiments on simulated and real-world scenarios underline that the 
proposed model achieves accurate parameter estimates and competitive predictive performance, while 
fostering explainable and interpretable hydrological modelling.
Keywords: flow paths, Gaussian kernel, interpretability, sliding windows regression, streamflow prediction

1 Introduction
The hydrological processes that produce streamflow play key roles in determining the environmental 
effects of climate and land use changes. In particular, changes in climate or land use can trigger a 
complex series of nonlinear and interactive processes which can eventually impact the way in which 
watersheds partition, store, and release water, leading to potential changes in flood, landslide or 
drought risks (Dunn et al., 2010; Harman et al., 2011; Sawicz et al., 2014). Furthermore, water res
ervoirs and consistent streamflow are essential for the regulation of the water supply in both urban 
and rural areas (Janssen et al., 2021; Tang et al., 2009), as well as for sustainable energy production 
and continually healthy ecological habitats (Ahmad & Hossain, 2020; Zalewski, 2000). A deep 
understanding of how precipitated water becomes streamflow is of great importance and requires 
a sophisticated and interpretable statistical framework.

Hence we investigate the problem of inferring streamflow partitioning into different flow paths 
such as overland flow, subsurface flow, and baseflow (Cornette et al., 2022; Kannan et al., 2007; 
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McMillan, 2020; Nejadhashemi et al., 2009; Wang & Gupta, 2024). While there exist many sim
ple methods which can partition streamflow into fast surface flow versus slow baseflow 
(Nejadhashemi et al., 2009; Wang & Gupta, 2024), the processes and reasoning behind this par
titioning are usually lost. To prevent this, one could consider how input rainfall is partitioned into 
different flow paths. Hence, we consider a time series yT = (yt)t∈T of streamflow at a particular 
gauge and an input time series xT = (xt)t∈T of rainfall data on a common time domain T. Given 
such data, a common approach is a lagged regression model following the concepts of 
auto-regressive moving average with exogenous variables (ARIMAX, ARMAX) (Hyndman & 
Athanasopoulos, 2021). In contrast to these models, our problem does not involve an 
auto-regressive part, i.e. we do not use lagged observations of the target yt as predictors; instead, 
we seek to fully characterize the target time series via the lagged input time series. Further, we de
sire more interpretability and inferential power than is offered by ARIMAX models. For example, 
the maximum time interval for which the predictor has an impact on the response and the separ
ation of flow pathways is of interest for watershed modelling.

A more closely related model in time series analysis is the finite distributed lag model (DLM) 
(Baltagi, 2022). Despite its roots in econometrics, the DLM has been extensively applied in envir
onmental sciences (Chen et al., 2018; Peng et al., 2009; A. M. Rushworth et al., 2013; Warren 
et al., 2020). While ARIMAX mainly relies on the concept of ARIMA, i.e. it makes use of the 
lagged target variable yt as input, and only adds the present time point of the exogenous variable 
xt, DLM predicts the target variable purely based on a distinct lagged input time series—the same 
setup that is pursued in this work. In this sense, the presented work may be seen as a specific type of 
a DLM and thereby an extension of the work by A. M. Rushworth et al. (2013), however, with an 
improved parameterization, which allows for improved model interpretability. Basic DLM var
iants do not allow us to impose parametric assumptions on the shape of the regression parameter 
vector beyond simple singular shapes like geometrically decreasing patterns or polynomials 
(Almon, 1965; Eisner, 1960; Griliches, 1967). Such DLM extensions permit a large variety of 
lag curve shapes, but do not make the separation between flow paths explicit. To the best of 
our knowledge, none of the existing DLM variants are capable of explicitly separating distinct 
flow pulses, which is most crucial for hydrologic inference.

There are several other possible approaches. Another economic model was adapted for hydro
logical inference by Giani et al. (2021), where the authors deploy the concept of cross-correlations 
in combination with a moving average approach. Although their method has favourable proper
ties to model the response time between rainfall events and flow pulses, it again does not allow a 
direct separation of the flow paths. Furthermore, correlation-based analyses do not allow straight
forward predictions on new test datasets. Similarly, we do not pursue continuous-time models in 
hydrology based on partial differential equations (e.g. Young, 2006).

In contrast to further related works in the field of statistical modelling in hydrology, the method
ology presented here focuses exclusively on the temporal relation between rainfall and streamflow in 
a given watershed. Spatial relationships between watersheds, as investigated by Roksvåg et al. 
(2021), are beyond the scope of this article; nevertheless, the presented concept offers a foundation, 
which can be extended to include spatial information for gauged and ungauged catchments in future 
work and may complement existing large-scale analyses, such as that of Hare et al. (2021).

In this article, we present a parameterized, interpretable variant of lagged regression models 
for hydrological modelling: the Gaussian sliding windows regression (SWR) model. It builds on 
the assumption that distinct flow paths (surface flow, subsurface flow, etc.) provoke separable 
pulses of streamflow after rainfall events. These pulses are represented by multiple temporal win
dows, which weight the input xt at time points within the window via a Gaussian kernel. The 
output of each window is mapped to the target variable yt using a linear regression model. 
Compared to earlier SWR models (Davtyan et al., 2020; Janssen et al., 2021; Khan et al., 
2019), the proposed method has major structural differences, which constitute the main novel
ties of our work: 

1. We consider multiple, potentially overlapping windows representing distinct flow paths, and
2. we use a parameterized kernel as model weights to allow straightforward interpretations for 

hydrological inference of flow path importance.
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Our experimental evaluation involves both simulated and real-world data. The simulation study 
serves as a proof of concept for the model and validates the parameter estimation procedure. The 
application to two real-world datasets demonstrates that the model achieves competitive predict
ive performance and has favourable properties for interpreting underlying hydrological processes.

2 SWR model
We assume that a univariate input time series xT and a univariate target time series yT are given on 
a common, discrete time domain T = [tmax], where [n] denotes the index set {0, . . . , n}. In the mo
tivating application xT and yT represent daily rainfall and streamflow, respectively. The modelling 
goal is to represent the target value yt at time index t ∈ T based on time-lagged observations of x[t], 
i.e. up to time t.

Our proposed model pursues the idea that the effect of precipitation on streamflow follows a 
mixture of k kernels associated with temporal windows, each one characterizing a particular 
flow path (groundwater flow, subsurface flow, or overland flow). Ultimately, we aim to represent 
the distribution of response times from flow path i ∈ {1, . . . , k} by weight vector κ(i) ∈ Rt+1. Note 
that the length of κ(i) is formally time-dependent based on its dimension. Since the subvector of 
nonzero weights remains the same over time, zero padding is used at the end to comply with 
the dimensionality of x[t]. Thus, the time index is left out in a slight abuse of notation. 
Computing a weighted sum of the lagged time series x[t] with one such weight vector κ(i) models 
the contribution to streamflow yt associated with flow path i. Summing the contributions gives 
the overall flow. To facilitate explanations, we present the model for the special case of only k = 
1 window first, and extend it to multi-window scenarios afterwards.

2.1 Single-window model
If only one flow path exists, we denote the associated weight vector by κ ∈ Rt+1. By default, we 
require that all entries in κ are nonnegative, and that κ is normalized, i.e. ‖κ‖1 = 1. Then, in the 
special case of one window, our SWR model describes the gauged runoff yt by the weighted 
sum or the associated convolution

yt = β ·
􏽘t

s=0

xt−sκs

􏼠 􏼡

+ εt

= β · (x[t] ∗ κ) + εt,

(1) 

with some multiplicative constant β and an error term εt assumed as Gaussian white noise. The 
symbol * denotes the discrete convolution operator defined as

v ∗ z =
􏽘n

i=0

vn−izi 

for two vectors v, z ∈ Rn+1. Note that weight κs is applied to lag s ∈ [t], i.e. κs denotes the weight ap
plied to observation xt−s rather than xs. The model parameter β acts as a regression coefficient to adjust 
the scaling of the normalized weight vector κ. Since additional precipitation cannot lead to decreased 
streamflow, we further require β > 0. In other applications, this restriction may be modified.

Unlike typical linear regression models, the SWR model is defined without an intercept β(0). This 
is due to the assumption that runoff yt is 0 after a long period without precipitation, xs = 0 for all 
s < t. However, in other applications, the proposed SWR model may be used with an intercept.

Further, note that the model definition allows negative responses yt if all entries of β are very 
small while the error εt takes a larger negative value. However, in this rare case, point forecasts 
remain nonnegative due to nonnegative observations x[t].

The assumption of independent errors εt in model (1) (or its multi-kernel generalization) is un
realistic for most real-world datasets, where autocorrelated disturbances are common. Later, we 
describe a simple data transformation to address that complexity, however, it is sufficient to pro
ceed with the simpler model (1) for now.
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The proposed SWR model (1) is related to a DLM, which is a common approach also used in 
related work (A. M. Rushworth et al., 2013). However, the paradigm where each flow path is rep
resented by one kernel κ allows us to make further assumptions to parametrize the lag vector: We 
assume that each flow path is associated with a distinct unimodal distribution of the time lag (time 
delay) between a rainfall event and its effect on streamflow. Hence, the weight vector κ represents 
the kernel of a probability distribution. Further, we denote the time lag with the highest amount of 
runoff water, represented by the position of the peak of κ (mode), as a distribution centre param
eter δ, where 0 < δ < t.

More specifically, we parametrize κ by a Gaussian-shaped kernel centred around a lag of δ, as
suming that the time delay between the rainfall event and the resulting change in the streamflow is 
approximately Gaussian distributed. Since the time series is only measured at discrete time points, 
the Gaussian kernel is discretized by applying a step function, such that

κs =
1
C

∫
s + 1

2

s − 1
2

ϕ(τ; δ, σ2) dτ, 

where ϕ( ·, δ, σ2) denotes the probability density function of a Gaussian distribution with mean δ 
and variance σ2 > 0, the kernel indices (lags) s ∈ {0, 1, . . . , t} are relative to a current time point, 
and C denotes the normalization constant

C =
􏽘t

s=0

∫
s + 1

2

s − 1
2

ϕ(τ; δ, σ2) dτ. (2) 

Note that the first kernel element, κ0, corresponding to lag s = 0 is supported on (− 1
2 , 1

2 ), i.e. 
including half a time unit before time t, because of the discretization.

The notion of a temporal window describes an interval of time lags δ ± r with some window size 
2r centred around δ, which covers a large proportion of the probability mass. Due to the shape of 
the Gaussian probability density function and the decay when moving away from δ, we define the 
window such that it covers approximately a range of ±3 standard deviations, i.e. r = 3σ. For now, 
assume that δ − r > 0 and δ + r < tmax (the special cases where the boundaries of [t] are exceeded 
will be treated at a later point). Given such a window, the modelled response yt exclusively de
pends on x[t] falling in (⌊t − δ − r⌋, ⌈t − δ + r⌉) rather than the full index set [t]. Here, ⌊·⌋ and 
⌈·⌉ denote floor and ceiling operators to consider the weights of the two discrete time points 
just outside the kernel. Nevertheless, to keep the notation manageable, we formally retain the no
tation of κ covering the whole interval [t] in the following.

Examples for r ∈ {1, 3, 6} and σ = r/3 are depicted in Figure 1. Further, the graphical idea be
hind the SWR model for a univariate input x can be visualized in Figure 2: the target time series yt 

at time is predicted based on information originating mainly from the input time series in window 
δ ± r.

In the special case that σ is very small and r approaches 0, the window width collapses to 0, and 
the full probability mass of the kernel accumulates at the window centre δ. However, since δ may 
be located between two observations of the input time series, σ is restricted to be at least 16 to ensure 
at least one observation falls within the effective domain of the probability mass, i.e. is assigned to 
the closest measured time point in such cases, by definition.

Nonzero weights can only be assigned to lags in [t], and it follows that the Gaussian SWR model 
cannot be evaluated for arbitrary parameter combinations of δ and σ. The restriction on the upper 
(lag) limit of the window, i.e. δ + r ≤ t, is less prohibitive in practice for longer time series and 
merely leads to yt not being predictable for t < δ + r, i.e. for small t at the beginning of the time 
series. As a consequence, this restriction can be easily resolved by withholding data for calibration 
during model training. Hydrological applications typically have time lags δ in the range of a few 
days, weeks, or months, hence the impact of this restriction is negligible for a sufficiently long time 
series spanning over multiple years.

On the other hand, peaks appearing at short time lags are highly relevant in practice, leading to 
small values of δ. Under extremely wet conditions in low permeability catchments, it can be 
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assumed that water from rainfall will almost immediately lead to changes in streamflow. If the 
lower limit of the lag window, δ − r, falls below 0, we change the shape of the kernel to a truncated 
Gaussian kernel, as shown in Figure 3. Note that the kernel is, by definition in (2) always 
normalized.

Figure 1. Examples of Gaussian-shaped window kernels centred around t − δ with δ = 7.3. For different values of σ 
a window extends approximately ±r around t − δ, where r = 3σ. Each bullet denotes a discrete time point of lag s 
with weight given by the area under the kernel between t − s − 1/2 and t + s + 1/2. A lagged time point at t − s 
outside t − δ ± r, such as those at t − 6 (top), t − 4 (middle), and t − 1 (bottom), may still have a small weight as t − 
s ± 1/2 falls within the kernel. Other time points immediately outside their respective kernels, such as those at t − 9 
(top), t − 11 (middle), and t − 14 (bottom), will be considered but have essentially zero weight as t − s ± 1/2 does not 
reach nontrivial values of the Gaussian kernel.

Figure 2. Illustration of the Sliding Windows Regression model with k = 1 window, which predicts y70 based on a 
subset of x [70] values in a window. With δ = 20 and r = 10, the window [40, 60] centred around s − δ = 50 covers 
2r + 1 = 21 time points.

Figure 3. Example of a truncated Gaussian-shaped window kernel, with window parameters δ = 2.7 and r = 3σ = 6. 
The window spanning t − δ ± r shown by the dashed rectangle is truncated to the shaded region: rainfall after time t 
cannot contribute to yt . Hence, the weights for xt+1, xt+2, and xt+3 in the time interval marked τ are all zero even 
though the interval is within the rectangle. The Gaussian curve is renormalized to 1. The kernel weight applied to xt is 
the area under the curve between t − 1

2 and t + 1
2 due to discretization.
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Truncation has effects on the interpretation of the model parameters: while δ still indicates the 
time lag with peak kernel weight (mode of the probability distribution), it does not indicate the 
central lag of the window on the time axis anymore. Further, the right-truncated Gaussian distri
bution is no longer symmetric with respect to the temporal window, and hence, the distribution 
mean shifts to the left.

2.2 Multi-window model
Assuming multiple different (potentially overlapping) windows allows the model to account for 
distinct effects on the current target yt. For this purpose, we extend our method from a single- 
window model to a mixture of k kernels, which is related to the density resulting from a mixture 
of probability distributions (Everitt et al., 1981). For a given window i ∈ {1, . . . , k}, we use the 
same notation as in the single-window case for the window and kernel parameters with an added 
index i denoting the window number: δ(i), r(i), and σ(i). The Gaussian SWR model with multiple 
windows is given as a direct generalization of (1) by

yt =
􏽘k

i=1

β(i) · (x[t] ∗ κ(i)) + εt (3) 

= x[t] ∗
􏽘k

i=1

β(i)κ(i)

􏼠 􏼡

+ εt, (4) 

where the regression parameters β(1), . . . , β(k) ≥ 0 act as window weights. In summary, the 
Gaussian SWR model with k windows contains the following parameters: 

• k regression parameters β = (β(1), . . . , β(k)), β(i) ∈ R+,
• k lag parameters δ = (δ(1), . . . , δ(k)), δ(i) ∈ R+, and
• k kernel standard deviation (size) parameters σ = (σ(1), . . . , σ(k)), σ(i) ∈ R+.

The concept of a Gaussian SWR model with multiple windows is illustrated in Figure 4: a target 
value yt is predicted by multiple windows accumulating information in x[t] over different time in
tervals. As depicted in Figure 5, the combined kernel represents a linear combination of the single- 
window kernels κ(i) for i = 1, . . . , k. Under the assumption that each window has a distinct centre 
point δ(i) (otherwise, identifiability of the parameters might not be given), without loss of general
ity, we can order the location parameters such that δ(1) < δ(2) < · · · < δ(k).

Figure 4. Illustration of the Sliding Windows Regression model with k = 2 windows, which predicts y70 based on 
x[70]. The window location parameters are δ(1) = 20 and δ(2) = 40. On the time axis, the window [40, 60] is centred 
around s − δ(1) = 50 and covers r (1) = 10 time points on each side of δ(1) = 50, while window [10, 50] is centred 
around s − δ(2) = 30 and covers r (2) = 20 time points on each side.
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2.2.1 Parameter interpretation
The number of windows k models the number of underlying, separable flow paths. Since single- 
window kernels κ are normalized, regression parameters (window coefficients) β(1), . . . , β(k) act 
as weights among the kernels. For practical evaluations, they may be converted into proportions 
representing the relative impacts of the underlying flow paths.

For a window that is essentially untruncated, the location parameter δ(i) and the width σ(i) of 
kernel i are loosely related to the mean and the standard deviation, respectively, of the time lag 
between precipitation and a change in streamflow. In any case δ(i) is always the window mode 
and is thus a direct estimate of the typical time delay between rainfall events and the resulting im
pact on the gauged runoff for a flow path.

2.3 Information criteria
Based on the definition and the model assumptions of the proposed Gaussian SWR model, the 
model errors are given by

εt = yt − x[t] ∗
􏽘k

i=1

β(i)κ(i)

􏼠 􏼡

, 

and follow a Gaussian white noise process. Hence, the log-likelihood ln L(β, δ, σ; xT, yT) is tract
able and matches that of ordinary multiple linear regression models.

To choose the number of windows, we use the Bayesian Information Criterion (BIC, Schwarz, 
1978). The number of model parameters in a k-window model aggregates one regression param
eter, one window location parameter, and one window width parameter for each of the k win
dows. Hence,

BIC = −2 ln L(β, δ, σ; xT, yT) + ln (|T|) · 3k, (5) 

where |T| is the number of observed time points (number of samples).

2.4 Model training and implementation
In a training dataset, let yT denote the observed values of the target time series, and let ŷT(β, δ, σ) 
denote the vector of predictions as a function of the model parameters; the likelihood follows from 
yT and ŷT . Since established approaches to fitting lagged regression models, such as Hannan 
(1967) are not directly applicable due to our specific parametrization, Algorithm 1 outlines an it
erative procedure to train the model by minimizing the negative log-likelihood (or another loss 
function). In each iteration k = 1, . . . , kmax, one new window is added to the model and the pa
rameters for all k windows are optimized. An information criterion (BIC for all simulations and 
real-data analyses) chooses the best number of windows among 1, . . . , kmax.

We use the GENOUD algorithm (Mebane & Sekhon, 2011) in the R package rgenoud 
(Mebane et al., 2023) to train a model with a fixed number of windows. GENOUD optimizes a 
population of candidate solutions over a number of generations via operations analogous to 

Figure 5. Example mixture of window kernels (weights): kernel κ(1) represents a truncated Gaussian, while kernel 
κ(2) has a Gaussian shape. The combined window β(1)κ(1) + β(2)κ(2) is a mixture of Gaussians for the SWR model.
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genetic evolution. It also fine-tunes the best candidate found at each generation with a 
quasi-Newton method. Trial and error comparisons with a more standard-constrained optimizer 
(BOBYQA, see Powell, 2009) demonstrated a clear advantage in the optimal log-likelihood found, 
which is important if BIC is to reliably choose the number of windows. As a stopping criterion, the 
absolute tolerance is set to 10−3, which is a trivial change in the log-likelihood.

In the GENOUD algorithm, we constrain the parameters such that all δ(i) > 0 and all σ(i) > 1/6, 
which allows for truncated as well as nontruncated kernels. In the boundary case of δ = 0, a 

Algorithm 1 Train a Gaussian SWR model, choosing the number of windows

Input:

xT , yT (time series supported on a common set of times T)

kmax (maximum number of windows)

n (population size for genetic optimization)

D(0) (a vector of starting values for the δ(i))

S(0) (a vector of starting values for the σ(i))

Set window counter k← 1

Compute mx and my, the mean of xT and yT , respectively

for k = 1 to kmax do

if k = 1 do

Generate an n × 1 column vector of starting values for each parameter in window 1

B(1) ← (my/mx, . . . , my/mx)⊤ (for β(1))

D(1)← (D(0), D(0), . . . )⊤ (for δ(1))

S(1) ← (S(0), S(0), . . . )⊤ (for σ(1))

else

Generate an n × 1 vector of starting values for β(1), . . . , β(k)

for j = 1 to k do

B(j) ← (my/mx/k, . . . , my/mx/k) (for β(j))

end for

Generate an n × 1 vector of starting values for δ(k) (note D(1), . . . , D(k−1) are unchanged)

D(k) ← permute(D(1))

Generate an n × 1 vector of starting values for σ(k) (note S(1), . . . , S(k−1) are unchanged)

S(k) ← permute(S(1))

end if

Generate an n × (3k) population of starting values with columns for β(1), . . . , β(k), δ(1), . . . , δ(k), σ(1), . . . , σ(k)

P = B(1) | · · · | B(k) |D(1) | · · · | D(k) | S(1) | · · · | S(k)
( 􏼁

Minimize the negative log-likelihood for k windows via the GENOUD algorithm with starting values in P

(β̂(k), δ̂(k), σ̂(k))←
arg min
β, δ, σ

− ln L(β, δ, σ; xT , yT).

Compute BICk for k windows from (5)

end for

return k̂ and β̂(k̂), δ̂(k̂), σ̂(k̂), such that information criterion BICk is optimized

k̂ =
arg min

k ∈ {1, ..., kmax}
BICk 
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maximum level of truncation is reached for the Gaussian kernel. The constraint σ(i) > 1/6, avoids 
collapse of the window. Moreover, the minimum window width is hence 1, i.e. ±3 × 1/6, which is 
commensurate with the limitation of discrete data at unit time steps.

GENOUD requires a population of n starting values for β, δ, and σ. Experimental observations 
showed that this initial population is important. It needs to provide coverage of reasonable values 
in the parameter space but not be so overly wide as to make the optimization inefficient. Note that 
the initial ranges can be exceeded later during the GENOUD iterations. The population formed in 
Algorithm 1 has n members in the rows of a matrix (n = 100 for all results reported) and 3k col
umns for initial values of β(1), . . . , β(k), δ(1), . . . , δ(k), σ(1), . . . , σ(k), respectively. For k = 1, β(1) is 
always set to my/mx, where mx and my are the sample means of xT and yT, respectively, to respect 
the scaling of the data when a single kernel has total unit weight. The δ(1) starting values repeat a 
vector D(0); we use D(0) = (1, 2, . . . , 25)T, which will be repeated four times to fill the population 
of size n = 100. This range is reasonable for the hydrology application but would be changed in 
other contexts. Similarly, the σ(1) starting values repeat S(0) = (1, 5, 10, 20)T. When k > 1 and win
dow k is added, β(1), . . . , β(k) are all reduced in magnitude to my/mx/k to account for k kernels. 
The starting values for δ(1) and σ(1) are as for the k = 1 iteration; the δ(k) and σ(k) for the further 
windows are given by a random permutation of the elements in D(0) and S(0), respectively. This 
procedure ensures the starting values for a multi-window iteration have sufficient coverage of 
the parameter space, while having distinct initial values for each of the k windows.

If the number of windows is not known a priori, an upper bound kmax must be defined, and the 
hyperparameter k̂ will be selected by choosing the best among all kmax iterations based on BIC.

Note that the suggested model initializations are specific to the hydrological application tackled 
in this work. A different choice of hyperparameters may be required if the model was transferred 
to another domain. The Gaussian SWR model is implemented in R version 4.3.0 (R Core Team, 
2022). The implementation is publicly available on GitHub.1

2.5 Autocorrelated residuals
We expect autocorrelation to be present in the residuals of the Gaussian SWR model, since both 
input and output time series may have other effects or measurement errors correlated with time. 
This aspect violates the requirements of least squares likelihood and may distract evaluation met
rics such as mean squared error. Thus, we aim to resolve such issues by adapting the estimation 
procedure proposed by Cochrane and Orcutt (1949).

Suppose the errors εt in the model (4) follow an autoregressive process of lag 1, i.e. AR(1), so that

εt = φεt−1 + ηt, (6) 

where ηt is Gaussian white noise (instead of εt in equation (4)), and φ ∈ (−1, 1). From equation (4) 
and (6), it follows that

yt =
􏽘k

i=1

β(i) · (x[t] ∗ κ(i)) + φεt−1 + ηt, and

yt−1 =
􏽘k

i=1

β(i) · (x[t−1] ∗ κ(i)) + εt−1.

In order to convert this setup into a model with Gaussian white noise errors, we investigate the 
expression

yt − φyt−1 =
􏽘k

i=1

β(i) · (x[t] ∗ κ(i) − φx[t−1] ∗ κ(i)) + ηt

=
􏽘k

i=1

β(i) ·
􏽘t

s=1

(xs − φxs−1)κ(i)
t−s

􏼠 􏼡

+ ηt.

1 https://www.github.com/sschrunner/SlidingWindowReg.
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The term x0 · κ(i)
t originating from index s = 0 is ignored since κ(i) is padded with 0 at the end (when 

being adjusted to the length of x[t]). Hence, given φ, the model can be written as an ordinary least 
squares model with uncorrelated errors ηt:

ỹt =
􏽘k

i=1

β(i) · (x̃[t] ∗ κ(i)) + ηt, 

where the transformation z̃t = zt − φzt−1 can be applied a priori as part of the preprocessing proced
ure on both variables xt and yt.

For the Gaussian SWR model, we adapt the Cochrane–Orcutt procedure to estimate φ and the 
optimal model parameters: 

• estimate model parameters β, δ, σ from the original model using x[t] and y[t] (i.e. set φ = 0),
• estimate φ from the model residuals,
• apply the transformation z̃t = zt − φzt−1 to both xT and yT and obtain final estimates of the 

model parameters β, δ, σ.

The same concept also holds for more general AR(m)-processes with m > 1. In general, the trans
formation leads to a loss of m time points (samples) in the training dataset.

2.6 Uncertainty quantification
Minimizing the negative log-likelihood with respect to (β, δ, σ) gives maximum-likelihood esti
mates of the model parameters. The large-sample theory implies that the errors in the estimators 
have an approximate multivariate Gaussian distribution with mean 0 (asymptotically unbiased) 
and an approximate covariance matrix I−1, where

I (β, δ, σ) =
∂2

∂(β, δ, σ)2 (− ln L(β, δ, σ; xT , yT)) 

denotes the observed information, i.e. the negative second derivative of the log-likelihood eval
uated at the MLE parameter values. The Hessian can be obtained numerically via the R package 
numDeriv (Gilbert & Varadhan, 2019). The diagonal elements of I−1 lead to approximate stand
ard errors, which provide the uncertainty quantification reported below for the two watersheds 
studied. These watersheds have a very long time series to support the asymptotic argument.

3 Simulation study
In a simulation study, the proposed Gaussian SWR model will be validated in controlled scenarios 
based on real-world input data and simulated targets.

3.1 Experimental setup
Precipitation data xT is used from the Koksilah River watershed which is located in Cowichan, 
British Columbia, Canada, while an artificial target variable yT is sampled based on equation 
(4). Both time series are acquired on a daily basis. The model parameters β, δ, and σ are randomly 
generated for this purpose, along with Gaussian white noise errors εt ∼ N(0, ρ2). The distributions 
of the model parameters and level of the error variance ρ2 are described further below.

In all of the following setups, the model parameters of the Gaussian SWR model were estimated 
on a training set comprising a time series of the first 29 hydrological years, resulting in 10,593 data 
points. The test set consisted of the remaining 10 time series of hydrological years or 3,652 data 
points, which corresponds to an approximate 75%/25% split of the dataset.

The primary factors steering the difficulty associated with a setup in the simulation study are: 

1. the (ground truth) number of windows kgt—the dimensionality and complexity of parameter 
estimation increases with the number of windows,

J R Stat Soc Series C: Applied Statistics, 2025, Vol. 74, No. 4                                                               955
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/article/74/4/946/8015432 by guest on 22 August 2025



2. the pairwise overlap between (ground truth) windows on the time axis—a higher overlap 
leads to a decrease in the separability of windows, and

3. the level of measurement noise ρ2 applied, given by the noise rate (relative to the explained 
variance of the model, as highlighted below).

While kgt and ρ are systematically varied, the overlap of windows is a result from the random sam
pling of ground truth model parameters.

We employ 15 distinct setups (five 1-, 2-, and 3-window setups, respectively). A higher number 
of windows is not common for hydrological models due to the limited number of possible flow 
paths. Each setup uses a set of parameters independently sampled from δ(i) ∼ U(0, 20), and 
σ(i), βi ∼ U(1, 5) for any i ∈ {1, . . . , k}, where U(a, b) denotes a uniform distribution on the inter
val [a, b]. Each 1-, 2-, and 3-window setup is repeated at five distinct levels of measurement noise 
α ∈ {0.05, 0.25, 0.5, 0.75, 0.95} to control the error relative to the signal, for a total of 75 simu
lation experiments.

Given a noise level α, the measurement noise is added as follows. After evaluating the determin
istic terms in equation (4) with the given model parameters, denoted as ỹT , we compute the asso
ciated sample variance Var(ỹT). Gaussian white noise with standard deviation ρ = α ·

���������
Var(ỹT)

􏽰
is 

simulated and added to construct yT = ỹT + εT .
The resulting sample variance of yT can be expressed as Var(yT) = (1 + α2)Var(ỹT). Thus, α2 

represents the relative noise level with respect to the explained variance. This induces an upper 
bound on the R2 score (Kuhn & Johnson, 2019) achievable by any predictor given xT and yT: a 
perfect fit giving ŷt = ỹT would achieve an R2 score of

R2(yT, ŷT) = 1 −
‖yT − ŷT‖

2
2

‖yT − y̅1‖22

= 1 −
Var(εT)
Var(yT)

= 1 −
α2 Var(ỹT)

(1 + α2) Var(ỹT)

=
1

1 + α2 ,

(7) 

where y̅ denotes the mean of yT across T, and 1 denotes a vector of ones. All noise levels α and 
associated R2 scores are shown in Table 1.

3.2 Evaluation metrics
In order to evaluate the Gaussian SWR model, we deploy evaluation metrics to assess both the ac
curacy of parameter estimation and the predictive performance. To facilitate the assessment of the 

Table 1. Noise levels and associated maximum R2 scores (upper bound for predictive model performance)

Noise level α Maximum R2

1 0.05 0.998

2 0.25 0.941

3 0.5 0.8

4 0.75 0.64

5 0.95 0.526

956                                                                                                                                           Schrunner et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/article/74/4/946/8015432 by guest on 22 August 2025



estimated parameters, we introduce the notion of overlap between two weight vectors with equal 
dimensions, w(1), w(2) ∈ Rt as follows:

O(w(1), w(2)) =
􏽘t

s=1

min {w(1)
s , w(2)

s }.

Hence, in a functional setting, the overlap would describe the area covered by the minimum of 
both kernel functions. Since both weight vectors are positive and sum to 1 due to the normalization 
condition, the overlap will be in [0, 1] and reaches 1 only if both weight vectors are exactly equal. 
For a multiple-window setting, a combined kernel takes account of the kernel weights but is then 
normalized for ease of comparison when computing the overlap.

We group the evaluation criteria applied to our model results into two categories: 

• Kernel overlap: When combining all estimated windows to a joint weight vector

􏽘k

i=1

βiκ(i), 

i.e. the mixture of all kernels, the overlap between the full predicted and the ground truth ker
nels is assessed (including the weighting of windows by regression parameters β). In particu
lar, we compute the overlap O(θ̂, θ), where θ̂ = (β̂, δ̂, σ̂), and θ = (β, δ, σ), respectively. Thus, 
the combined kernel overlap evaluates the quality of overall parameter estimation, including 
the regression parameters β.

• Predictive performance: Conventional regression metrics are used to evaluate the predictive 
performance of the model on the test set (Kuhn & Johnson, 2019). These include the root 
mean squared error (RMSE), as well as the coefficient of determination (R2) on the test set. 
The latter is also known as Nash–Sutcliffe Efficiency (NSE) in hydrology (Nash & 
Sutcliffe, 1970) and is introduced in equation (7). In addition, the Kling–Gupta efficiency 
(KGE) is a performance metric used in hydrology which, unlike the NSE, independently en
courages predictions to match the variability of observations, thereby removing the tendency 
of NSE to underestimate high flows and overestimate low flows (Gupta et al., 2009). It uses 
the following formulation:

1 −

����������������������������������������

(r − 1)2 +
σŷT

σyT

− 1
􏼒 􏼓2

+
μŷT

μyT

− 1

􏼠 􏼡2
􏽶
􏽵
􏽵
􏽴 , 

where r denotes the Pearson correlation coefficient between yT and ŷT, μ represents the re
spective means, and σ represents the respective standard deviations. All performance metrics 
are implemented using the R package hydroGOF (Zambrano-Bigiarini, 2020).

3.3 Results for uncorrelated errors
First, we visualize the predicted kernels obtained from training the Gaussian SWR model in each 
setup specified above. In the experiment, the algorithm selects the number of windows k based on 
the best BIC, subject to a maximum of kmax = 3 windows. This upper limit originates from our 
application, where typically a maximum number of up to three distinct flow paths (overland, sub
surface, groundwater flow) is assumed.

Figure 6 compares the weights at discrete time points of the ground truth and estimated kernels 
for the middle noise level α = 0.5 in each setup. Dotted vertical lines indicate the true or estimated 
window centres δ(i) along the time axis. In all 1-, 2-, and 3-window setups, window positions and 
sizes were accurately predicted. Moreover, dominant peaks and general shapes are reconstructed 
in all scenarios. Since we allow noninteger numbers for delta, the discretized weights are not al
ways symmetric w.r.t. the measured time points. Overall, the combined kernel matches with the 
ground truth very accurately, and the general separation of the windows is acceptable.
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Beyond visual comparison, Table 2 provides a summary of window overlap accuracy based on 
predicted and true parameters. Overall, all setups achieve excellent overlaps with the ground truth 
kernels. Thus, the reconstruction of the overall weighted kernel is at a high level across all simu
lated setups.

Having observed the high accuracy of parameter identification in the simulation experiment, we 
further investigate the predictive performance of the models with respect to the target variable on 
the test set. Figure 7 illustrates the corresponding R2, KGE, and RMSE scores obtained by the es
timated Gaussian SWR models. In agreement with the observations made on the quality of param
eter estimation, the predictive performance remains at a high level and is mainly affected by the 
noise levels. For the R2 score, the upper bounds in Table 1 are indicated by a shaded region, which 
cannot be reached at the given noise level. The achieved average R2 values are close to the upper 
bounds across all model setups, and hence the estimated models obtain almost optimal prediction 
accuracy on the test set.

To guarantee interpretability of the model parameters, accurate estimation of the true number 
of windows kgt is crucial. For kgt equal to 1, 2, or 3, all 75 estimated models select the hyperpara
meter k correctly.

Figure 6. Weights at discrete time points of the ground truth versus predicted kernels (noise level α = 0.5). The 
number of windows was selected as a model hyperparameter.
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3.4 Results for autocorrelated errors
To account for a more general error structure, we repeat the above experiment but with response 
data simulated with autocorrelated AR(1) errors εt. We make use of the R function arima.sim 
from the forecast package (Hyndman & Athanasopoulos, 2021) to simulate AR(1) noise with a 
given standard deviation ρ. Analogous to the case of uncorrelated errors, ρ is based on the sample 
variance Var(ỹT) and the noise levels α from Table 1. Internally, the function constructs i.i.d. errors 
ηt with the given standard deviation ρ, which are then transformed to form an AR(1) process. The 
true autoregressive parameter φ is set to 0.5 throughout for the purpose of demonstrating the 
concept.

In practice, the autocorrelation has to be assessed, and the autoregressive parameter φ needs to 
be estimated when we extend the Gaussian SWR model. The Durbin–Watson test for autocorre
lated model errors is performed to assess the residuals before and after the Cochrane–Orcutt data 
transformation. As expected, model fits with no Cochrane–Orcutt transformation deliver p-values 
below .01 (rejecting the null hypothesis of no autocorrelation) for all 75 setups. The average ab
solute estimation error of the parameter φ is less than 0.006 across all setups, suggesting highly 
accurate estimation. After applying the Cochrane–Orcutt procedure, 74 out of the 75 setups 
lead to residuals with p-values above .05, which provides no evidence for violation of the assump
tion of uncorrelated residuals in the model fit to transformed data. The remaining setup, with 
p-value of .032, has only small residual autocorrelation of 0.02.

With autocorrelated errors, the upper bounds for the R2 scores achievable by the model must be 
modified. From (6), we have Var(εt) = Var(φεt−1 + ηt) = φ2 Var(εt−1) + Var(ηt) as ηt is uncorrelated 

Table 2. Parameter estimation accuracy for 1-, 2-, and 3-window setups across five noise levels

Setup no. Noise level α

0.05 0.25 0.5 0.75 0.95

1-Window setups

1 1.00 1.00 1.00 1.00 0.99

2 1.00 1.00 1.00 1.00 0.99

3 1.00 1.00 1.00 1.00 1.00

4 1.00 1.00 1.00 0.99 1.00

5 1.00 1.00 0.99 1.00 0.99

Mean 1.00 1.00 1.00 1.00 0.99

2-Window setups

6 1.00 1.00 0.99 0.99 0.99

7 1.00 1.00 0.99 0.99 0.99

8 1.00 1.00 0.99 0.99 0.99

9 1.00 1.00 0.99 0.99 0.98

10 1.00 1.00 1.00 0.99 0.98

Mean 1.00 1.00 0.99 0.99 0.99

3-Window setups

11 1.00 0.99 0.99 0.98 0.98

12 0.99 0.99 0.98 0.98 0.97

13 1.00 1.00 0.99 1.00 0.97

14 1.00 0.98 0.99 0.98 0.98

15 1.00 0.99 0.98 0.97 0.96

Mean 1.00 0.99 0.99 0.98 0.97

Note. An overlap of 1 indicates perfect agreement between an estimated window and the ground truth.
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with εt−1 by construction. Iterating this result, and noting that Var(ε1) = Var(η1) and 
Var(ηt) = α2Var(ỹT), gives

Var(εt) = φ2 Var(εt−1) + Var(ηt)

= φ4 Var(εt−2) + φ2 Var(ηt−1) + Var(ηt)

=
􏽘t−1

i=0

φ2i Var(ηt−i)

=
1 − φ2(t−1)

1 − φ2
􏽼�����􏽻􏽺�����􏽽

ξ

α2 Var(ỹT).

It holds that ξ ≈ 1
1−φ2 for longer time series. As a result, the maximum achievable R2 score (when 

ŷT = ỹT) under the AR(1) model errors is given by

R2(yT, ŷT) = 1 −
ξα2 Var(ỹT)

(1 + ξα2) Var(ỹT)

=
1

1 + ξα2 .

Figure 7. Predictive performance summaries for 1-, 2-, and 3-window setups by noise level α. All results are 
averaged over the five distinct simulated parameter setups.
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Similar to the simulation with uncorrelated residuals, the estimated kernels closely align with the 
ground truth, demonstrating accurate reconstruction of the overall weighted kernel across all si
mulated setups. For the given noise levels α, the maximum R2 scores for the autocorrelated sim
ulations are presented in Table 3. Results obtained for the experimental setups are shown in 
Figure 8. As with the uncorrelated model setups, the R2 scores almost reach the theoretical upper 
bound.

Table 3. Noise levels and associated maximum R2 scores (upper bound for predictive model performance) in the 
autocorrelated setups

Noise level α Maximum R2

1 0.05 0.997

2 0.25 0.923

3 0.5 0.75

4 0.75 0.571

5 0.95 0.454

Figure 8. Predictive performance summaries for 1-, 2-, and 3-window setups by noise level α in the autocorrelated 
setup.

J R Stat Soc Series C: Applied Statistics, 2025, Vol. 74, No. 4                                                               961
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/article/74/4/946/8015432 by guest on 22 August 2025



Overall, the hyperparameter k representing the number of selected windows, determined via 
BIC matches the ground truth in all 1-window setups, overestimates by 1 for 3 out of 25 of the 
2-window setups, and underestimates by 1 for one of the 25 3-window simulations.

4 Real-world data experiments
In the second part of our experiments, we evaluate the performance of the Gaussian SWR model 
on two real-world examples. Both watersheds are located on the west coast of North America, 
with the first catchment representing the Koksilah River which is located in Cowichan, British 
Columbia, Canada. The second catchment represents Big Sur River in central California, 
United States. The available dataset consists of 39 hydrological years for both watersheds. Both 
datasets are available on the aforementioned GitHub repository (entitled sampleWatershed 
and sampleWatershed2, respectively).

4.1 Experimental setup
Analogous to the simulation study, we use a training subset containing years 1–29 of the time ser
ies, followed by a test set covering 10 years. The maximum number of windows is set to kmax = 4.

After initial training, the model residuals are evaluated for autocorrelation using the 
Durbin-Watson test. If autocorrelation is detected, the Cochrane–Orcutt procedure is applied 
to correct for AR(1) errors. If the Durbin–Watson test finds no evidence of autocorrelation in 
the updated model the process stops; otherwise, AR(2) errors are considered, etc.

4.2 Results
The Durbin–Watson test on the residuals from the model with untransformed data gives a p-value 
<.01 in both cases, i.e. strong evidence against an independent-error model. In the case of water
shed 1, an AR(2) process with parameters φ1 = 0.46 and φ2 = 0.12 is indicated to model the auto
correlation, resulting in a Durbin–Watson p-value of 0.20 after applying the Cochrane–Orcutt 
procedure. For watershed 2, an AR(1) process with parameter φ = 0.84 appears to be sufficient 
to remove the autocorrelation, resulting in a p-value of .39 after data transformation.

The estimated kernels for each watershed are illustrated in Figure 9, and their parameters are 
shown along with uncertainties in Table 4. Predictive performance scores (R2, KGE, and 
RMSE) on the test set are shown in Table 5. Overall, the Gaussian SWR model achieves reasonably 
accurate predictions for both watersheds, e.g. R2 scores of approximately 0.71 and 0.6, respect
ively, on the untransformed streamflow scale.

The Gaussian SWR model selects k = 3 windows for both Koksilah and Big Sur Rivers. 
Figure 9a shows a clear dominance of the short-term history (a window close to a lag of 1 day) 
for the Koksilah River. Paired with the fact that only three highly overlapping windows were 
needed to model the catchment with high accuracy (Table 5), we can conclude that the 
Koksilah River is driven by simple hydrological processes. The third window is very wide with 
lower weight, and the first two windows have δ ≃ 1, thus the combined kernel for watershed 1 re
sembles a truncated Student-t distribution: the combined kernel remains unimodal, but the prob
ability mass is more dispersed over the long-term lags compared to a Gaussian kernel. Moreover, a 
low lag value suggests a relatively simple catchment, which aligns with the observation that the 
Koksilah River is situated in a region characterized by extremely high precipitation and minimal 
aridity (Janssen & Ameli, 2021). From previous works, we can hypothesize that wet, nonarid, 
catchments tend to be extremely simple with fast response times (Schoppa et al., 2020; Spieler 
et al., 2020), which is strengthened by our experimental results. Since the bulk of precipitation 
transitions into streamflow in about 1 day, this catchment is likely dominated by shallow subsur
face flow. Large amounts of precipitation in this catchment fully saturate and connect the shallow 
soil layers for much of the year, resulting in any excess precipitation pushing the water already in 
the soils towards the stream within one day.

As we travel south along the western coast of North America towards the Big Sur River in 
Central California, aridity increases and total precipitation decreases slightly (Janssen & Ameli, 
2021). Although the Big Sur River is still considered a ‘wet’ catchment, the Gaussian SWR model 
selects two more distinguishable peaks for watershed 2 compared to watershed 1, indicating an 
increase in catchment complexity in-part due to the increased aridity (Schoppa et al., 2020; 
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Spieler et al., 2020). The first large peak centred at δ = 0 indicates overland flow. This peak could 
be the result of the Big Sur River flowing through several developed towns where any precipitation 
falling on impermeable urban surfaces causes immediate drainage into the river. The wider second 

(a)

(b)

Figure 9. Estimated weights at discrete time points of scaled window kernels in real-world data experiments. The 
combined kernel (dashed line) for watershed 1 resembles a truncated Student-t distribution with stronger tails than 
Gaussian probability density functions. The combined kernel (dashed line) for watershed 2 is multimodal. (a) Koksilah 
River (Watershed 1). (b) Big Sur River (Watershed 2).

Table 4. Parameter estimates after Cochrane–Orcutt transformation for real-world watersheds, with approximate 
standard errors

Watershed no Window no β(i) δ(i) σ(i)

1 1 0.39 ± 0.01 1.24 ± 0.22 0.18 ± 0.12

2 0.35 ± 0.02 1.28 ± 0.46 2.34 ± 0.44

3 0.17 ± 0.02 7.31 ± 9.09 18.12 ± 0.65

2 1 0.21 ± 0.01 0.00 ± 0.33 0.56 ± 0.24

2 0.31 ± 0.02 2.00 ± 0.01 2.67 ± 0.02

3 0.40 ± 0.02 14.79 ± 0.65 10.40 ± 0.42
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Table 5. Predictive performance metrics (on test set) after parameter estimation using Cochrane–Orcutt 
transformation for real-world watersheds

Watershed k Metric

R2 KGE RMSE

Original data

1 3 0.71 0.72 3.36

2 3 0.60 0.70 2.74

Transformed data

1 2 0.59 0.64 2.67

2 3 0.47 0.58 1.50

Note. Evaluation metrics are computed on the original (untransformed) test set, as well as on the transformed test set.
KGE, Kling-Gupta efficiency; RMSE, root mean squared error.

(a)

(b)

Figure 10. Observed streamflow, predicted streamflow, and rainfall in the real-world experiments for six years of 
the test set. (a) Watershed 1. (b) Watershed 2.
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window could represent shallow subsurface flow in a similar fashion as watershed 1. The last win
dow for the Big Sur River indicates that there is substantial baseflow in the catchment. With some 
precipitation flowing deeper underground towards less porous material, this partition of water 
will respond more slowly to water input compared to shallow subsurface flow and overland flow.

Figure 10 compares the time series of predicted and observed water flows for each watershed, 
along with the respective rainfall time series (all relating to untransformed data). To save space, 
the plots restrict the time domain to the first three and last three hydrological years of the test 
set. Since the Gaussian SWR model acts as a smoothing operator on the input time series, the pre
diction time series is less spiked than the rainfall input and generally matches the shape of the 
ground truth well. Particularly for watershed 1, time intervals with flat gauge values appear 
more noisy in the predictions. This becomes visible in the dry periods at the end of each hydrologic
al year (time interval [250, 365]), where the ground truth response is almost exactly 0 throughout, 
while the predictions are modestly positive.

To investigate the effect of sample size, we repeated training for Watershed 1 but with only the 
first 6 years of data, i.e. about 20% of the previous training data comprising 29 years. The previ
ously found third, very wide window with smaller weight seen in Figure 9a was no longer detected 
by BIC using the smaller dataset, but the combined kernel from the two windows closely resembled 
that shown in Figure 9a from three windows.

4.3 Runtime analysis
All real-world experiments were performed on an Intel Core i5 3 GHz CPU with 8GB RAM run
ning macOS Sonoma 14.4, where Algorithm 1 was implemented in R. The runtimes in Table 6 are 
averages over five independent model fits to account for variations in the computation time. In 
each run, the Gaussian SWR model is trained for one real-world watershed using the same experi
mental setup as in the real-world study; time to compute predictions is excluded. The maximum 
number of windows kmax is clearly important, but all runtimes are moderate.

5 Discussion and conclusion
Our experiments validated the Gaussian SWR model in a controlled experimental environment and 
real-world scenarios. Good predictive accuracy on a test set, as measured by R2, for instance, was 
achieved throughout. The simulations demonstrated that achievable accuracy was dominated by 
the noise level, and rather independent of the number, position, size, and weighting of the ground 
truth windows. Moreover, multiple kernels were usually identifiable, with accurate parameter esti
mates. Thus, the proposed Gaussian SWR model has promising utility for hydrological inference.

Parameterizing the kernels as having Gaussian densities is easily extended to more flexible 
shapes, such as Student’s t, Gamma, or asymmetric generalized Laplace distributions. The latter 
two suggestions would enable long-tailed lag effects.

Relative to the more general DLM, the predictive performance of the Gaussian SWR model is 
comparable on the datasets used in our real-world experiments. When varying the number of 
time lags q, the DLM implementation by Demirhan (2020) achieves test-set R2 scores of 0.7 
(q = 5), 0.72 (q = 10 and q = 20) for watershed 1 and 0.51 (q = 5), 0.55 (q = 10), 0.58 (q = 20) 
for watershed 2. Thus, the parametric assumption taken by Gaussian SWR, i.e. restricting the ker
nel shape to a mixture of Gaussians, does not significantly affect the predictive performance. 
However, the favourable parametrization employed by the Gaussian SWR model allows for 
straightforward interpretations of the model parameters: the window position and shape param
eters are directly transferable to the concept of distinct flow paths in hydrology and deliver 

Table 6. Runtimes of the Gaussian SWR model with kmax ∈ {1, 2, 3}, averaged over five runs

kmax Runtime [s]

1 12.4

2 75.6

3 608.8
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information on the peak lag of the runoff and its celerity distribution, respectively. Regression pa
rameters β give indications of the relative importance of each flow path: while a dominant window 
with short lag typically models a strong short-term (overland) flow, well-distinguished windows 
with longer time lags indicate the presence of distinct long-term effects such as subsurface or 
groundwater flows. From a statistical perspective, kernels representing long-term effects may approxi
mate a constant line, thus adding an intercept could be a valid option for the proposed model—for the 
hydrological interpretation, however, a large (slow-flow) window acts as a more accurate paramet
rization than a model with intercept.

From a hydrological viewpoint, a major limitation of the Gaussian SWR model is that the ker
nels, particularly the parameters β and δ, do not change dynamically over the hydrologic year. The 
hydrologic year in many watersheds is characterized by drier and wetter periods, with distinct pat
terns in rainfall–runoff relationships. Our concurrent work on the same watershed 1 demonstrates 
that the predictive performance can be increased to approximately R2 = 0.8 using a functional 
data analysis approach with dynamic regression weights and sparsity. Potentially, the Gaussian 
SWR model setup could be extended in future work to account for such dynamic parameters at 
the cost of a higher number of model parameters and a more complex training procedure, while 
keeping its highly interpretable ability to separate flow paths.

The presence of significant precipitation falling as snow will impact runoff dynamics in colder 
regions. As a consequence, runoff lags and magnitudes of the distinct flows paths may vary signifi
cantly over the year, which is not covered by linear constant-lag models. To overcome this issue for 
watersheds with significant snow-to-rainfall ratios, an extension of the proposed Gaussian SWR 
model to account for nonlinearities would further be of interest. We consider this as another po
tential future extension of the proposed model.
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