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ABSTRACT

Black-box adversarial attacks on Large Vision—Language Models (LVLMs) present
unique challenges due to the absence of gradient access and complex multimodal
decision boundaries. While prior M-Attack demonstrated notable success in ex-
ceeding 90% attack success rate on GPT-40/01/4.5 by leveraging local crop-level
matching between source and target data, we show this strategy introduces high-
variance gradient estimates. Specifically, we empirically find that gradients com-
puted over randomly sampled local crops are nearly orthogonal, violating the
implicit assumption of coherent local alignment and leading to unstable optimiza-
tion. To address this, we propose a theoretically grounded gradient denoising
framework that redefines the adversarial objective as an expectation over local
transformations. Our first component, Multi-Crop Alignment (MCA), estimates
the expected gradient by averaging gradients across diverse, independently sam-
pled local transformations. This manner significantly reduces gradient variance,
thus enhancing convergence stability. Recognizing an asymmetry in the roles of
source and target transformations, we also introduce Auxiliary Target Alignment
(ATA). ATA regularizes the optimization by aligning the adversarial example not
only with the primary target image but also with auxiliary samples drawn from a
semantically correlated distribution. This constructs a smooth semantic trajectory
in the embedding space, acting as a low-variance regularizer over the target distri-
bution. Finally, we reinterpret prior momentum as replay through the lens of local
matching as variance-minimizing estimators under the crop-transformed objective
landscape. Momentum replay stabilizes and amplifies transferable perturbations by
maintaining gradient directionality across local perturbation manifolds. Together,
MCA, ATA, momentum replay, and a delicately selected ensemble set constitute
M-Attack-V2, a principled framework for robust black-box LVLM attack. Empiri-
cal results show that our framework improves the attack success rate on Claude-4.0
(3) from 8% —+30%, on Gemini-2.5-Pro (+ ) from 83% —97 %, and on on GPT-5
(&) from 98% —100%, significantly surpassing all existing black-box LVLM
attacking methods.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) have become foundational to modern Al systems, enabling
multimodal tasks like image captioning (Hu et al., 2022} |Salaberria et al.||2023}; (Chen et al., 2022b;
Tschannen et al., 2023), VQA (Luu et al., 2024; Ozdemir & Akagiindiiz, 2024)), and visual reason-
ing (OpenAll 2025). However, their visual modules remain vulnerable to adversarial attacks, subtle
perturbations that mislead models while remaining imperceptible to humans. Prior efforts, including
AttackVLM (Zhao et al.,|2023), CWA (Chen et al., |2024), SSA-CWA (Dong et al., 2023a), AdvDif-
fVLM (Guo et al.,|2024)), and most effectively, M-Attack (Li et al.,[2025)), which have exploited this
weakness through local-level matching and surrogate model ensembles, surpassing 90% success rates
on models like GPT-4o0.

Despite its effectiveness, our analysis reveals that M-Attack’s gradient signals are highly unstable:
Even overlapping large pixel regions, two consecutive local crops share nearly orthogonal gradients.
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Figure 1: Improvement of M-Attack-V2 over M-Attack on up-to-date commercial black-box
models(Claude-4.0-extended, Gemini 2.5-Pro and GPT-5)

In other words, high similarity in pixel and embedding space does not translate to high similarity
in gradient space. The reason is that ViTs’ gradient pattern is sensitive to translation. A tiny shift
changes pixels contained in each token, altering self-attention. Moreover, patch-wise, spike-like
gradient amplifies the mismatch within just a few pixels. We counter this effect by aggregating
gradients from multiple crops within the same iteration, a strategy we call Multi-Crop Alignment
(MCA). From a theoretical angle, MCA aggregates gradients across multiple views in a single
iteration, smoothing local inconsistencies and improving cross-crop gradient stability.

We further observe that the source and target transformations in M-Attack operate in different se-
mantic spaces: one emphasizing extraction, the other generalization. Aggressive target augmentation
introduces harmful variance. Our Auxiliary Target Alignment (ATA) mitigates this by identifying
semantically similar auxiliary images to create a low-variance embedding subspace, then applying
only mild shifts to enhance transferability without destabilizing the optimization.

Classic momentum is reinterpreted under this framework as Patch Momentum (PM), a replay mech-
anism that recycles past gradients across random crops to stabilize optimization. In parallel, we
also re-examine and enrich M-Attack’s model selection criterion and choose a delicately selected
ensemble set with diverse patch sizes to mitigate the difficulty in cross-patch transfer, of which we
find that the attention concentrates more on the main object. We term it Patch Ensemble™ (PET).

Together, these components, MCA, ATA, PM, and PE™, form the basis of M-Attack-V2, a robust
gradient denoising framework that significantly outperforms existing black-box attack methods.
Our method raises attack success rates from 98%—100% on GPT-5, 8% —30% on Claude-4, and
83%—97% on Gemini-2.5-Pro, achieving state-of-the-art performance across the board. This study
not only offers a practical, modular attack strategy but also sheds light on the gradient behavior of
ViT-based LVLMs under local perturbations. We hope these insights will drive further research into
transferable adversarial optimization under realistic black-box constraints.

2 BACKGROUND

Large Vision Language Models. Transformer-based LVLMs learn visual-semantic representations
from large-scale image-text data, enabling tasks like image captioning (Salaberria et al.,[2023} Hu
et al., 2022; (Chen et al.l [2022b; [Tschannen et al., 2023)), visual QA (Luu et al., 2024; |Ozdemir
& Akagiindiiz, 2024)), and cross-modal reasoning (Wu et al., 2025; [Ma et al., 2023 Wang et al.,
2024). Open-source models such as BLIP-2 (Li et al., [2022), Flamingo (Alayrac et al.,|[2022), and
LLaVA (Liu et al.,|2023)) show strong benchmark performance. Commercial models like GPT-4o,
Claude-3.5 (Anthropicl |2024a), and Gemini-2.0 (Team et al., |2023) offer advanced reasoning and
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real-world adaptability, with their successors, GPT-03 (OpenAll [2025)), Claude 3.7-Sonnet (Anthropic|
2024b), and Gemini-2.5-Pro, able to reason in the text modality and vision modality.

LVLM transfer-based attack. Black-box attacks include query-based (Dong et al., 2021} [[lyas et al.|
2018) and transfer-based (Dong et al., [2018} [Liu et al.l [2017)) methods; this work focuses on the
latter. AttackVLM (Zhao et al.,|2023) introduced transfer-based targeted attacks on LVLMs using
CLIP (Radford et al.}[2021)) and BLIP (Li et al., 2022) as surrogates, showing that image-to-image
feature matching outperforms cross-modal optimization, a strategy adopted by later works (Chen
et al., 2024} |Guo et al.| [2024; |Dong et al.l |2023a; [Li et al., 2025). CWA (Chen et al.| [2024) and
SSA-CWA (Dong et al.,[2023a) applied this principle to commercial models like Bard (Team et al.,
2023), with CWA enhancing transferability via sharpness-aware minimization (Foret et al., 2021}
Chen et al.| 2022a)), and SSA-CWA introducing spectrum-guided augmentation via SSA (Long et al.,
2022). AnyAttack (Zhang et al.,|2024)) utilizes image-image matching through large-scale pertaining
and a subsequent fine-tuning. AdvDiffVLM (Guo et al.,|2024)) embeds feature matching into diffusion
guidance, introduces Adaptive Ensemble Gradient Estimation (AEGE) for smoother ensemble scores.
Notably, M-Attack significantly outperforms these methods through a simple yet effective local-
level matching framework with an ensemble of diverse patch sizes. Building upon this framework,
FOA-Attack (Jia et al.} 2025) introduces Feature Optimal Alignment, extending alignment from the
CLS token to local patch tokens in embedding space, yielding further improvements. However, the
local-level matching framework itself has notable limitations. Before analyzing and addressing them,
we briefly introduce the necessary background of the local-level matching

Local-level matching in M-Attack. Consider a clean source image X, and a target image Xq,;.
The objective of black-box transfer attacks is to minimally perturb the source image by ¢ so that the
perturbed image X0, = Xsou + 0 aligns semantically with the target under an inaccessible black-box
model f¢. Due to the inaccessibility of f¢, surrogate models f, approximate the semantic alignment
via cosine similarity (CS):

argr;l{aXCS(st(Xsou),f¢(Xm)) st. [0l <e (M
M-Attack enhances Eq. () using local-level matching. At iteration 4, it applies predefined local
transformations 75 and 7; to extract local area x{ from the source Xy, and X! from the target
Xtar» respectively. These transformations satisfy essential properties, such as spatial overlap and
diversified coverage of extracted local regions {X;} (Li et al., 2025). Formally, the local-level

matching optimizes:
MT;-,Tt = Ef¢_j"’¢[cs(f¢_7‘ (Xf)vf% (&f))]v )

where f; is sampled from an ensemble of surrogate models ¢. Intuitively, matching local image
regions instead of entire images enhances the semantic precision of perturbations by directing
optimization towards semantically significant details. Despite its effectiveness, M-Attack encounters
a critical challenge of unexpectedly low gradient similarity, which we investigate in detail next.

3 METHOD

3.1 LIMITATIONS OF LOCAL-LEVEL MATCHING IN M-Attack

Extremely low gradient overlap. In M-Attack two random crops X and X! are matched at every
iteration. One would expect the gradients inside the shared region of two successive source crops
(fcf X5 +1) to correlate, because the underlying pixels partly coincide. Supursingly, Fig. [2b|shows
the opposite: their cosine similarity is almost zero. We then keep one crop fixed and vary the other
across scales and IoUs (Fig. 2a). Our finding reveals an exponential decay that plateaus below 0.1
once the overlap is smaller than 0.80 IoU.

Source. We find two main reasons behind this high variance: ViT’s inherent sensitivity to translation
and overlooked asymmetry within the local matching framework. We discuss them below.

Patch-wise, spike-like gradient sensitive to translation. Because ViTs tokenize images on a fixed,
non-overlapping grid, even sub-pixel changes each patch’s token mix. These token changes ripple
through self-attention, altering weights and redirecting gradients for all tokens, so the resulting
pixel-level gradient pattern diverges sharply. Worse, gradient magnitudes are uneven. Therefore, even
similar patterns but missing a few pixels might break gradient similarity (Fig. [3b).

Asymmetric Transform Branches. In M-Attack, both the source and target images are cropped, yet
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Figure 2: Similarities of gradients from different crops. a) similarity over IoU for different crops by
fixing in one iteration; b) similarity between two consecutive gradients across iterations. Results are
averaged from 200 runs.

playing distinct roles. Cropping the source acts directly in pixel space: it rearranges patch embeddings
and attention weights in the forward pass, ending up with guidance of different views. By contrast,
cropping the target sorely translate the target representation, thereby shifting the reference embedding
in feature space. One sculpts the perturbation, while another moves the goalpost, formulating
asymmetric matching. M-Attack overlooked this and implementations target translation alternate
between a radical crop and an identity map, struggles between explore-exploitation trade-off and
potentially risk in high variance of target embedding.

Asymmetric Matching over Expectation. To mitigate the issues above, we begin by concisely
reformulating the original objective function as an expectation over local transformations within an
asymmetric matching framework:

Erapymy [L(F(T(Xson)), ¥)] 5 A3)

min

[ Xsoullp<e
where D represents the distribution of local transformations, and )’ denotes the distribution over target
semantics. ||-||, is ¢, constraint for imperceptibility. Conceptually, this formulation corresponds to
embedding specific semantic content y into a locally transformed area 7 (X0, ), thus highlighting
the intrinsic asymmetry compared to M-Attack’s original formulation. Within this framework, our
proposed enhancements, i.e., Multi-Crop Alignment (MCA) and Auxiliary Target Alignment (ATA),
can be interpreted as strategies to improve the accuracy of the expectation estimation and the sampling
quality of the semantic distribution ).

3.2 Gradient Denoising VIA MULTI-CROP ALIGNMENT (MCA)

To obtain a low-variance estimate of the expected loss gradient E1..p yy [V, L(f (T (Xsou)), ¥)]:
we draw K independent crops {7'},{(:1 and average their individual gradients:

. 1 &
Vi LXson) = 75 D~ Vo L (Th (X)), ¥)- @)
k=1

This Multi-Crop Alignment is an unbiased Monte-Carlo estimator, reducing the variance with K > 1.

Theorem 1. Let g, = Vx,, L(f(Te(Xsou)),y) denote the gradient from Ty, p = E[gi],0? =
E[|lgr — wl|3] denote the mean and variance, and pye denote the pair-wise correlation py =

(gr—1,90— 1)

Tor—rlZlge=rTZ" The gradient variance from K averaged crops is bounded by

K
1 o2 K-1
*E ) < = Do

var(Kk_lgk>_K+ K Y7 )

where p = Elpy], k # £ is the expectation of pair-wise correlation

All crops share the same underlying image, so p # 0. The ideal 02/ K decay is therefore tempered
by the correlation term po?. Empirically, averaging a modest number (KX = 10) of almost-orthogonal



Under review as a conference paper at ICLR 2026

_é‘ 0.7 ‘/v"' et Single Crop Alignment Resiels CLIPLIS
e o
2 o -
€ 0.6 ) 2 o Source Image
n PV
g oos| e
) il
4
S 0.4
0 10 20 30 40
Attack Iteration
-0.4
M-Attack-V1

o~ -0.5 ResNet 50 CLIP-L14
0 Multi-Crop Alignment %
x
< -0.6
6 Source Image
a -0.6

-0.7

PCA Axis 1
""""" K=1 K=10 -—~- K=100

M-Attack-V2

(a) Comparison of optimization trajecto-
ries with different K, K = 1 refers to (b) Gradient pattern between different crop strategies in M-Attack
single crop alignment. and M-Attack-V2.

Figure 3: Comparison of: a) different trajectories against different K; b) gradient pattern of single
crop alignment against multi-crop alignment (MCA). The gradient pattern of ResNet 50 remains
consistent when large pixels are overlapped, while the gradient pattern of ViTs changes dramatically.
MCA helps to smooth out this impact.

gradients still yields benefit, since the uncorrelated component of the variance shrinks as 1/K.
Simultaneously, the optimizer leverages multiple diverse transformations per update, with minimal
interference among almost orthogonal gradients. Fig. [3aillustrates an accelerated convergence with
K = 10, with margin improvement provided by K = 100.

This averaging also alleviates the known translation sensitivity of ViTs. As shown in Fig. BB
using two crop sets yields noticeably higher gradient consistency than the single-crop alignment
in M-Attack. In MCA, high-activity regions remain stable (upper left and center right), while the
single-crop case shifts focus from center right to lower left. As a result, gradient similarity across
iterations increases from near zero in M-Attack to around 0.2 (Fig. 2b).

3.3 Improved Sampling Quality VIA AUXILIARY TARGET ALIGNMENT (ATA)

Selecting a representative target embedding y € ) is challenging because the underlying distribution
Y is not observable. M-Attack mitigates this by seeding at the unaltered target embedding f(X,r)
and exploring its vicinity with transformed views f(7;(X,)) thereby sketching a locally semantic
manifold that serves as a proxy for ). However, the exploration—exploitation trade-off remains
problematic. Radical transformations leap too far, dragging y outside the genuine target region;
conservative transformations, while semantically faithful, barely shift the embedding, leaving the
optimization starved of informative signal.

To stabilize this process, we introduce P auxiliary images {Xﬁﬁ,{ }5=1 that act as additional anchors,
collectively forming a richer sub-manifold of aligned embeddings. During each update, we apply
a mild random transformation 7 ~ D to every anchor, nudging the ensemble in a coherent yet

restrained manner and thus providing low-variance, information-rich gradients for optimization. Let

vo = f(To(Xar))s Up = f (7~;(X§ﬁ,2)) denote sampled semantics in one iteration. The objective £ in

Equ. (@) becomes

n P
= 3 [LU T X)) 1) + 5 LT (X)) ©
k=1 p=1

where A € [0, 1] interpolates between the original target and its auxiliary neighbors. A = 0 reduce
to M-Attack local-local matching with single target. ATA trade-off exploration (auxiliary diversity)
and exploitation (main-target fidelity), providing low-variance, semantics-preserving updates. The
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auxiliary set can be built variously, i.e., through image-image retrieval or diffusion methods. We now
theoretically analyze ATA with three mild assumptions:

Assumption 3.1 (Lipschitz surrogate). Surrogate f is L-continuous: || f(y) — f(z)|| < Llly — z||.

Assumption 3.2 (Bounded Auxiliary Data). For auxiliary data XE,’,Z,)C retrieved via semantic similarity

to a target Xy, we have: ]E[Hf(Xt(,ﬁ,)c) — [(Xiar)|l] < 6 (justification in Appdix. .

Assumption 3.3 (Bounded transformation). Random transformation T ~ D, has bounded pixel-level
distortion: E[||T(X) = X]|] € &

Theorem 2. Let T ~ D, denote the transformation used in M-Attack, and T ~ Dg with @ < «
the transformation in M-Attack-V2. Define embedding drift of transformation T applied to X on
model [ as: Aarige (T3 X) := E7[|| f(T(X)) — f(Xtar)||]. Then, we have:

Aaie(T5 Xear) < Lo, Aanne(T5XEL) < La +6. ™
Specifically, the term Lo captures the inherent asymmetry caused by transformations in pixel space,
necessitating the multiplier L to map pixel-level perturbations into embedding-space effects. In
contrast, the auxiliary data directly operates in embedding space, leading to a manageable bound J.
Practically, estimating ¢ is notably easier than estimating L«. Lower ¢ inherently indicates better
semantic alignment, allowing M-Attack-V2 to operate effectively under reduced distortion (& < ).
Thus, ATA strategically allocates its shift budget towards more meaningful exploration through 9,
achieving a sweet point between exploration and exploitation.

Cost. Each iteration back-propagates through the K source crops and only forward-propagates the
P auxiliary targets. Since a backward pass is roughly twice as expensive as a forward pass, the
per-iteration complexity is O(K 3+ P)), doubling overhead when P = 3.

3.4 PATCH MOMENTUM WITH BUILT-IN REPLAY EFFECT

Momentum, introduced in MI-FGSM (Dong et al.| 2018)), is widely adopted for transferability. Define
the momentum buffer as: m, = Sym,_1 + (1 — B1) V= L,.(X%), where 1 € [0,1) is the first-order
momentum coefficient and Vs £,.(Xx?) is our MCA-ATA-estimated gradient g, at iteration .

Under the local-matching view, this mechanism can be reinterpreted as formulating a streaming MCA
to enforce temporal consistency across gradient directions in the space of random crops. Unrolling
the EMA for pixel k£ exposes an alternative interpretation:

mi(k) = (1—8) > B Uk € M;_;}gi_;(k), (8)

J=0

where M; denotes the pixel indices included in iteration ¢, m;(k) and g;(k) respectively denotes
momentum and gradient for pixel k. Each crop involving pixel k is therefore replayed in future
iterations with geometrically decaying weight, allowing rarely sampled regions (such as corners) to
persist long enough to combat the gradient starvation. Spike-shaped gradients are further moderated by
the Adam-style (Kingma & Ba,2017) second moment, v, = B30, 1+ (1—f2) g?, whose scaling effect
is essential in our empirical study. The momentum does not directly improve gradient similarity but
continuously re-injects historical crops across patches, effectively maintaining gradient directionality
across local perturbation manifolds. We therefore term it Patch Momentum to distinguish.

The whole procedure, combining MCA, ATA, and PM, is detailed in Alg.[I] We use a different
color to differentiate between M-Attack-V2 and M-Attack. We use PGD (Madry et al.| 2018)) with
ADAM (Kingma & Bal [2017) for line 12. Appx.[F.2] presents analogous results for variants.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Metrics. We adopt the evaluation protocol of M-Attack, reporting the Artack Success Rate (ASR)
via GPTScore and the Keywords Matching Rate (KMR) at three thresholds {0.25,0.5, 1.0}, denoted
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Algorithm 1 M-Attack-V2

Require: clean image X jcan; primary target Xia,; auxiliary set A = {Xgﬁ)x 5_1; patch ensemble ™
ot = {¢; }jLq; iterations n, step size o, perturbation budget e; number of crops K, auxiliary weight
A0< A<

1: Xadv <~ Xcleany

2: fori=1tondo

3 Draw K transforms {7z}, ~ D, g« 0

4 for k =1to K do > — crop loop (vectorizable) —
5: Draw {T,}—o ~ D

6: for j = 1tomdo

7 yo = f(To(Xw)), yp = f(To(XE))),p=1,...,P o Transform target and auxiliary data
8 Compute L = (£, (Te(Xson)) 90) + 3 32,1 L(fo, (T (). 5p)

9: g g+ ﬁvX”u[,k

10: end for

11: end for

12: Updated X4y based on g with Patch Momentum

13: end for

14: return X,.q4,

as KMR,, KMRy, and KMR. (L1 et al.}[2025)). KMR measures semantic alignment using human-
annotated keywords, considering a match successful if the rate exceeds threshold x. The evaluation
prompt and keyword sets follow M-Attack exactly.

Surrogate candidates. We follow surrogate selections from prior ensemble-based methods (Zhang
et al., |2024; Dong et al., [2023a}; |Guo et al.l [2024; L1 et al., [2025). Our candidate pool covers
CLIP variants (CLIP-B/16, B/32, L/14, CLIPT-G/14, CLIPT-B/32, CLIP-H/14, CLIP'-B/16, CLIP-
BG/14), DinoV2 (Oquab et al., [2023) (Small, Base, Large), and BLIP-2 (L1 et al., 2023).

Victim models and dataset. We evaluate state-of-the-art commercial MLLMs: GPT-40/03/5,
Claude-3.7/4.0 (extended), and Gemini-2.5-Pro-Preview (Team et al.,[2023)). Clean images are drawn
from the NIPS 2017 Adversarial Attacks and Defenses Competition dataset (K et al.,2017). Following
SSA-CWA (Dong et al., [2023b) and M-Attack (Li et al.| 2025)), we randomly sample 100 images,
retrieving auxiliary sets from the COCO training set (Lin et al.,[2015)) using CLIP-B/16 embedding
similarity. Further results on a 1k image subset are in the Appx. Additional Results on open-
source LLMs are in the Appx.|[F:3] We provide the Huggingface identifiers of the model in Appx [B]
All the BLIP2 (Li et al.,|2023)) variants on Huggingface share the same vision encoder. Therefore, we
use only one. The milder target transformation includes random resized crop ([0.9, 1.0]), random
horizontal flip (p = 0.5), and random rotation (£15°).

Hyperparameters. Unless noted, perturbations are bounded by ¢, with ¢ = 16 and optimized for
300 steps. We set the step size to o = 0.75 for Claude and o = 1.0 for all other methods, mirroring
M-Attack. For M-Attack-V2, a = 1.275, f; = 0.9, B2 = 0.99 for momentum, K = 10, P = 2, and
A = 0.3 for MCA and ATA. Ablation on « is in Appx [E.I] with 3, K, P, X in Appx[E.2]

4.2 EXTENSIVE EVALUATION ACROSS LVLMS AND SETTINGS

Transferability across LVLMs. Tab. [Tillustrates the superiority of our M-Attack-V2 compared to
the other black-box LVLM attack method. Our method leads others by a large margin, including
M-Attack. On GPT-5 our M-Attack-V2 even achieves 100% ASR and 97% ASR on Gemini-2.5, with
ASR on Claude 4.0-extended further improved by 22%, which is almost impossible for M-Attack

Method | Model | GPT-5 | Claude 4.0-thinking | Gemini 2.5-Pro | Imperceptibility
\ |KMR, KMR, KMR, ASR|KMR, KMR;, KMR. ASR|KMR, KMR, KMR, ASR| {1} &)

B/16 0.08 0.03 0.02 0.05| 003 0.00 000 000| 008 0.04 0.00 0.00/0.034 0.040
AttackVLM (Zhao et al.|[2023) B/32 0.07 005 0.04 002 003 003 000 001|009 005 000 0.02[0.036 0.041
Laion’ | 002 001 000 003| 002 001 000 0.00] 009 005 0.00 0.01]0.035 0.040

AdvDiffVLM (Guo et al.||2024) |Ensemble| 0.04 0.02 0.01 0.01| 0.04 0.01 001 0.01| 003 0.01 0.00 0.00/0.064 0.095
SSA-CWA (Dong et al.|[2023a} | Ensemble| 0.08 0.04 0.00 0.08| 0.03 0.02 001 005 005 0.03 001 0.080.059 0.060
AnyAttack (Zhang et al.|[2024) |Ensemble| 0.09 0.03 0.00 0.06| 0.05 0.03 0.00 0.01| 035 0.06 0.01 0.34]0.048 0.052
FOA-Attack (Jia et al.||2025) |Ensemble| 0.90 0.67 023 0.94| 0.13 0.09 0.00 0.13| 0.61 0.80 0.15 0.86]/0.031 0.036
M-Attack (Liet al./[2025) |Ensemble| 0.89 0.65 025 098| 0.12 0.03 0.00 0.08| 0.81 0.57 0.15 0.83]0.030 0.036
M-Attack-V2 (Ours) Ensemble| 0.92 0.79 030 1.00| 0.27 0.17 0.04 030 0.87 0.72 022 0.97|0.038 0.044

Table 1: Comparison on three target LVLMs. T: pre-trained on LAION (Schuhmann et al. [2022).
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¢ Method \ GPT-4o |  Claude 3.7-thinking | Gemini 2.5-Pro | Imperceptibility
\ ‘KMR(, KMR, KMR, ASR‘KMRG KMR;, KMR, ASR‘KMRG KMR;, KMR, ASR\ hl )l

AttackVLM (Zhao et al.[|2023}| 0.08 0.04 0.00 0.02| 0.04 0.01 0.00 0.00| 0.10 0.04 0.00 0.01|0.010 0.011
SSA-CWA (Dong et al.}2023a)| 0.05 0.03 0.00 0.03| 0.04 0.01 0.00 002| 004 0.01 000 0.04/ 0015 0.015
4 AnyAttack (Zhang et al.;2024)| 0.07 0.02 0.00 0.05| 0.05 0.05 0.02 0.06 0.05 002 0.00 0.10|0.014 0.015
M-Attack (Li et al.|[2025} 030 0.16 0.03 026| 0.06 001 000 001 024 0.14 0.02 0.15]|0.009 0.010

M-Attack-V2 (Ours) 059 034 010 058 0.06 0.02 0.00 002 048 0.33 0.07 0.38]0.012 0.013

AttackVLM (Zhao et al.{[2023)| 0.08 0.02 0.00 0.01| 0.04 0.02 000 0.01| 007 0.01 0.00 0.01{0.020 0.022
SSA-CWA (Dong et al.;2023a)| 0.06  0.02 0.00 0.04| 0.04 0.02 0.00 0.02| 0.02 0.00 0.00 0.05]|0.030 0.030
8 AnyAttack (Zhang et al.}2024}| 0.17 0.06 0.00 0.13| 0.07 0.07 0.02 005| 0.12 0.04 0.00 0.13/0.028 0.029
M-Attack (Li et al.{|2025} 074 050 0.12 0.82] 0.12 0.06 0.00 0.09] 0.62 034 0.08 0.48]0.017 0.020

M-Attack-V2 (Ours) 087 0.69 020 093| 023 0.14 0.02 022 072 049 021 0.77|0.023 0.023

AttackVLM (Zhao et al.|[2023)| 0.08 0.02 0.00 0.02| 0.01 0.00 0.00 0.01| 0.03 0.01 0.00 0.00|0.036 0.041
SSA-CWA (Dong et al.[2023a}| 0.11  0.06 0.00 0.09| 0.06 0.04 0.01 0.12] 0.05 0.03 0.01 0.08]0.059 0.060
16 AnyAttack (Zhang et al.[2024} | 044 020 0.04 042| 0.19 0.08 0.01 022| 035 006 001 0.34/0.048 0.052
M-Attack (Li et al.}[2025} 082 054 0.3 095 031 021 0.04 037 081 0.57 0.15 0.83]0.030 0.036

M-Attack-V2 (Ours) 091 0.78 040 099| 056 032 0.1 0.67| 087 0.72 0.22 0.97|0.038 0.044

Table 2: Ablation study on the impact of perturbation budget (¢).
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Figure 4: Comparison of different methods

under different step budgets.

to attack. There is also a notable improvement on the KMR, indicating that our method generates a
perturbation that targets the semantics more effectively, thus more recognizable by the target black-
box model. Note that these improvements are accompanied by a slight increase in the perturbation
norms for /1 and [5. Previous [; and /5 norms are caused by insufficient optimization through near-
orthogonal gradients. Our M-Attack-V2 mitigates this issue, exploring more sufficiently inside the
l ball. Thus, it slightly increases the magnitude of the perturbation with a neglectable impact on the
actual visual effect. See the Appx.[G.I|for visualizations of adversarial samples.

Performance under budgets. Tab. [2|compares performance across varying perturbation budgets (e).
Our method consistently ranks among the top two across all settings, achieving notably large margins
when outperforming competitors, highlighting its effectiveness in exploring within different ., balls.
Fig. 4 further compares performance under varying optimization budgets (total steps). Our method
converges faster, approaching optimal results within 300 steps, whereas M-Attack requires an
additional 200 steps, suggesting slower convergence. At fewer steps (100 and 200), M-Attack
exhibits a notable performance drop, while our method maintains stable ASR and KMR,,. This
robustness arises from reduced variance compared to M-Attack, which is more sensitive to random
cropping and aggressive target transformations, necessitating additional iterations to stabilize.

Robustness Against Vision-Reasoning Models. Reasoning in text modality does not extend to alter
information from the vision backbone. Instead, we further evaluate M-Attack-V2 against GPT-03,
a model enhanced with visual reasoning capabilities. As shown in Tab. 4] GPT-03 exhibits slightly
better robustness than GPT-40. However, the limited improvement suggests that its reasoning module
is not explicitly trained to detect adversarial manipulations in the image. Thus, even after reasoning,
GPT-03 remains susceptible to M-Attack-V2. Reasoning process is presented in Appx [G.2]
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Clip-Laion-G/14 i ip-Laion-B/32
» ‘.‘.- 5 G e
= x .
-

Figure 5: Comparison of two types of attention maps. Left: attention map that sparsely separates in
different regions; right: attention map that focus to the main object.

Surrogate C-L/14 C'-L/14 D-S/14 D-B/14 D-L/14 C-B/16 Ci-B/16 C-B/32 Ci-B/32 BLIP2 Avg/l4 Avg/l6 Avg/32 Avg/All

C-L/14 N/A 0.40 0.10 0.13 0.12 0.45 0.40 0.34 0.24 048 025 042 029 0.30
Cct-L/14 044 N/A 0.24 0.24 0.21 0.55 0.57 0.37 0.33 061 035 056 035 0.39
D-S/14 0.25 0.39 N/A 0.45 0.38 0.41 0.45 0.32 0.25 046 039 043 028 0.37
D-B/14 0.29 0.36 0.33 N/A 0.51 0.37 0.39 0.31 0.23 047 039 038 027 0.36
D-L/14 0.26 0.31 0.12 0.32 N/A 0.31 0.34 0.30 0.21 042 029 033 026 0.29
C-B/16 0.44 0.43 0.21 0.18 0.13 N/A 0.53 0.37 0.27 051 032 053 032 0.34
Cf-B/16  0.43 0.51 0.22 0.21 0.15 0.57 N/A 0.39 0.34 052 034 057 036 0.37
C-B/32 0.37 0.43 0.21 0.11 0.09 0.55 0.53 N/A 0.49 046 028 054 049 0.36
Ccf-B/32 031 0.49 0.27 0.18 0.12 0.53 0.61 0.58 N/A 0.50 031 0.57 058 0.40
BLIP2 0.39 0.43 0.15 0.20 0.26 0.45 0.43 0.33 0.25 N/A 029 044 029 0.32

Table 5: Comparison of embedding transferability over 1k images. MCA/ATA excluded to show
standalone performance. C/D = CLIP/DinoV2. Gray denotes selected models.

4.3 ABLATION STUDY

Selection of surrogate model. Ensembling surrogate models is typical for enhancing black-box
adversarial transferability. To further improve, advanced gradient aggregation methods
let al.l 2024} [Guo et al [2024) have been proposed; yet another practical and efficient approach,
parallel to aggregation, is to select models strategically. We first profile the embedding transferability
on different surrogate models, presented in Tab. [5] Results show that cross-model, especially
cross-patchsize transfer, is difficult. Therefore, we retain models with diverse patch sizes that perform
well in Tab[5] Trials in the appendix yield our Patch Ensemble™ (PE"), comprising CLIPT-G/14,
CLIP-B/16, CLIP-B/32, and CLIP'-B/32. Attention maps reveal a possible explanation: PET models
tend to concentrate attention on the main object, whereas others exhibit dispersed focus across
unrelated regions. We hypothesize that focusing on the main object enhances transferability, as all
models share the common objective of identifying core semantic content. In contrast, attention to
scattered regions may capture model-specific biases that do not generalize well across architectures.
Ablation on remaining components. Tab. [3 isolates the effect of each module beyond PE*
(GPT-40 omitted due to neglectable differences). On both Gemini-2.5-Pro and Claude-3.7-extended,
activating MCA or ATA alone delivers ~5% gains on average, most visible in ASR and KMRy, with
consistent improvements on KMR, /KMR.. Removing PM yields only a minor drop, suggesting
it is complementary rather than fundamental. Overall, MCA and ATA constitute the principal
variance-reduction mechanisms, while PM functions as a low-cost memory that extends the ef-
fective momentum horizon with a biased gradient, further suppressing variance and adding robustness.

5 CONCLUSION

We find that M-Attack suffers from unstable gradients and identify the root causes as high variance
and overlooked asymmetric matching. To this end, we introduce a principled framework that includes
Multi-Crop Alignment (MCA) for variance reduction, Auxiliary Target Alignment (ATA) for semantic
consistency, and Patch Momentum (PM) for replay-based stabilization. Combined with a refined
surrogate model ensemble (PE™), these components form M-Attack-V2, which achieves state-of-
the-art results across multiple black-box LVLMs. We hope this study provides practical insights
and encourages further research into stable and transferable adversarial optimization under realistic
black-box constraints.
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ETHICS STATEMENT

This study investigates adversarial attacks on black-box LVLMs. Such work is inherently dual-use:
methods designed to evaluate and improve model robustness might also be misused to circumvent
safety mechanisms or generate harmful outputs. Nevertheless, our primary intent is to highlight
vulnerabilities and encourage the development of more robust LVLMs. To mitigate potential risks
associated with our research, we take several precautions: 1) We exclusively utilize publicly available
datasets (e.g., COCO, NIPS 2017 Adv. Attacks) that contain no personally identifiable information
and do not involve human participants. 2) We avoid targeting any production systems, do not interact
with private user data or protected services, and rigorously adhere to the respective service providers’
terms of use. 3) We release all code, prompts, and generated adversarial examples to facilitate
research into model robustness and defense mechanisms. All authors acknowledge and adhere to the
ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We are committed to ensuring complete reproducibility of our results. The paper clearly defines our
objectives and algorithms (Algorithm ], optimization strategies and hyperparameters (Section .1}
Appendix [B), settings for ablation studies (Appendices Section [4.3)), as well as precise
evaluation protocols, metrics, and model specifications (Appendix B). Additionally, an anonymous
repository containing scripts to reproduce all key tables and figures, along with controlled seeds,
environment setup files (e.g., requirements. txt), and detailed YAML configuration files for
each experiment, is provided during the review process and will be released.
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A COMPLEMENTARY DETAILS OF M-Attack-V2

Alg.[2]and Alg. [3|provide detailed update rule of line 13 in Alg.[I] Fig.[6]provides a comparison
between the entire procedure of M-Attack and M-Attack-V2 under the local-matching framework.
Notably, M-Attack utilizes a radical crop on the target image, risking unrelated or broken semantics
for the source image to align. Our ATA anchors more points inside the semantic manifold (blue), and
provides a mild transformation to provide a coherence sampling from the target semantic manifold.

Algorithm 2 M-Attack-V2 (Adam variant)

Require: clean image X jcan; primary target Xin,; auxiliary set A = {Xgﬁ)x}le; patch ensemblet &1 =
{¢;}jL1; iterations n, step size c, perturbation budget €; Adam (1, B2, 7; number of crops K, auxiliary
weight \;

1: Xadv < Xelean, M0, v<0
2: fori=1tondo

3: Draw K transforms {7z} i, ~D

4: g<+0 > accumulate over crops
5: for k =1to K do > — crop loop —
6: Draw {7,}/_o~D

7 for j = 1tomdo

8: yo = f(To(Xtar))

9: = F(T(XE)) p=1,...,P

10: Li=L(fs;(Te(Xaav))s90) + 52,1 L(fo,(Te(Xaav)), )
11: g<—g+ﬁandvﬁk
12: end for
13: end for > — Adam update —

14: m<+pBim+ (1 —B1)g

15: v<—52v+(1—62)g®2

160 mem/(1—Bi); v+v/(1 — )

17 Xaay¢clipx  (Xaav + am/(Vi +1n))
18: end for

19: return X.q4,

Algorithm 3 M-Attack-V2 (MI-FGSM variant)

Require: clean image X jcan; primary target Xiar; auxiliary set A = {Xgﬂ)x}gzlg patch ensemble™ &1 =
{$;}7=1; iterations n, step size a, perturbation budget ¢; momentum decay y; number of crops K,
auxiliary weight A;

1: Xadv <_Xclcan, ,U/<_O
2: fori =1tondo

3 Draw K transforms {7z Y5, ~D

4 g0

5: fork=1to Kdo

6: Draw {7;}5:0~D

7 for j = 1tomdo

8 yo = £ (To(Xiar)

9: yp = F(T(XE)), p=1,...,P i

10: ACk :C(fqu (77@ (Xadv))7 yO) + %ZP:I ﬁ(f@; (ﬁf(Xad\))v yp)
11: g(—g-ﬁ-ﬁvXadvﬁk

12: end for

13: end for > — MI-FGSM update —

14: peyp+ L
llgllx

15: Xadv +clipx
16: end for
17: return X,qy

(Xadv + arsign(p))

clean>€
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Embedding M-Attack-V1 Target View Manifold
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Figure 6: Comparison of one step between M-Attack and M-Attack-V2.

B COMPLEMENTARY DETAILS OF EXPERIMENTAL SETUP

The experiment’s seed is 2023. It is conducted on a Linux platform (Ubuntu 22.04) with 6 NVIDIA
RTX 4090 GPUs. The temperatures of all LLMs are set to 0. The threshold of the ASR is set to 0.3,
following M-Attack. Tab.[§] provides a map from model names in this paper to their identifiers in

HuggingFace. We use GPT-5-thinking-low (setting reasoning effort to low in the API) for all results
in the main paper, with results on other reasoning budgets presented in the Appx.[F4]

C ADDITIONAL DETAILS FOR THEORETICAL ANALYSIS

C.1 PROOF FOR THEOREMII]

This section provides detailed proof of the upper bound in Equ. (3)). For variance, we have

Var(jr) = El|gx — |

1 K
=E K Z(Qk — 1)
k=1
1 K K
= 53 2 > Ellge =) (90 = )] ©
k=1 ¢=1
1 K
=72 S Ellge —ul3+2 Y. Ellgr — page — )]
k=1 1<k<t<K

Ko? cross terms

The diagonal part is reduced to the mean. We now provide an upper bound for the cross terms. Recall
_ _{gk—p.ge—p)
Pkt = Tgu—l#llge—ul?> We have

E[{gx — 1, 9¢ — )] = E [prellgr — pll2llge — pll2] - (10)
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Since all crops share the same marginal distribution, i.e. E||gx — u||2 = E||g¢ — u]|2 = o, applying
the Cauchy-Schwarz inequality to Equ. (T0) yields

Ef{gr — .9 — )] < Elowe]/Ellgr — ull3\/Ellge — pl3 = po*, (an
where D is E[pg¢], k # ¢. Plugging this into the double sum term yields
K(K -1
> Ellgr— g0 — )] < %ﬁo? (12)

1<k<t<K

The @ appears since there are total w terms for ) |, _,. Thus substituting Equ. back
to the cross item part in the Equ () yields

K—1_,

1
Var(jr) < ﬁ (Ko® + K(K — 1)po®) = Eag + ——Po (13)
Therefore, we have the upper bound provided in the Sec.
C.2 PROOF OF THEOREM 2]
We begin with the drift analysis for M-Attack:
Adrift(7—; Xtar) = ETwDa[”f(T(Xtar)) - f(Xtar)H]
< L-ErepalllT(Xtar) — Xsarll] (Assumption [3.T)) (14)
< La (Assumption[3.3)).

Next, we analyze the drift for M-Attack-V2 using the triangle inequality and the above assumptions:

Auine(T Xaux) E7p,[IF(TXE)) = f(Xu)|l]

EA[IF(TXE)) = FEEDN+ 1 XE) = f(Kuar) ] (Triangle inequality)
EANA(TXE)) = FXEDN] +E[1F(XE) — f(Xar)ll]
< LEA[IT(XE) - XR] +0 (Assumps. 511 B2)
<La+d (Assump.[33).

Thus, we have completed the proof of Theorem 2}

C.3 JUSTIFICATION FOR ASSUMPTION[3.2]

Assumption is derived from the retrieval mechanism for auxiliary data. Specifically, X;ffx)
represents the p-th closest embedding to the target Xy, from a database D, defined explicitly by:

FX) T f (Kear) }
| O (Kar) |

where topp denotes selecting the top-P nearest neighbors according to cosine similarity. Given
that embeddings f(X) are typically normalized, semantic closeness naturally bounds the expected

distance between f(X gﬁ,)() and f(Xyy) by 4, thus validating Assumption In such a case, to
estimate &, use 2(1 — f(X aux)Tf(Xtar))

(15)

aux

X e arg topp {X eD:

D FULL PROCESS OF SURROGATE MODEL SELECTION

This section details the process of selecting our final ensemble, PE'. Exhaustively testing all model
combinations is computationally infeasible, so we employ a heuristic-driven approach. We begin
by excluding DiNO-large and BLIP2 due to their poor transferability, as shown in Tab.[5] Our
initial experiments focus on evaluating the effectiveness of homogeneous ensembles—comprising
models with the same patch size—versus mixed patch size ensembles. Specifically, we construct
five ensembles: (1) patch-14 CLIP (CLIP-L/14, CLIPt-G/14), (2) patch-14 DiNOv2 (Dino-base,
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Dino-large), (3) patch-16 CLIP (CLIP-B/16, CLIPT-B/16), and (4) patch-32 CLIP (CLIP-B/32,
CLIPT-B/32). Results are presented in Tab. @ These results reveal that the patch-32 CLIP ensemble
performs best on Claude 3.7, while GPT-40 and Gemini 2.5 Pro favor models with patch sizes 14 and
16. This supports the findings in Sec.[4.3} although using a fixed patch size can mitigate architectural
bias, it still inherits the intrinsic bias of the patch size itself.

To address this, we adopt a cross-patch size strategy. Starting from the patch-32 CLIP ensemble,
due to its strong performance on Claude and consistent transferability across patch-16 and patch-32
models. We incrementally incorporate one model each from patch sizes 14 and 16. We evaluate
various combinations, with results summarized in Tab. [7| The resulting ensemble, PE™, achieves
the most balanced performance, ranking first on 7 metrics and a close second on 3 others, across 12
evaluation metrics.

Variant ‘ Surrogate Set (2 models) ‘ GPT-40 Claude 3.7-extended Gemini 2.5-Pro
|KMR, KMR, KMR, ASR|KMR, KMR, KMR. ASR|KMR, KMR, KMR. ASR

Pair; Dino-B, Dino-$ 0.84 057 0.15 091| 0.09 0.04 0.00 0.05| 0.84 053 0.11 0.81
Pairy L16, B/16 086 0.69 021 096| 0.16 0.10 0.01 0.16| 0.84 0.59 0.15 091
Pairs 132, B/32 0.76 0.52 0.13 0.79| 046 029 0.06 0.70| 058 037 0.07 0.59
Pairy G/14,L14 0.86 0.61 024 094| 0.07 0.02 0.00 0.06| 0.82 0.64 0.23 0.92

Table 6: Ablation on two-model surrogate sets. Bold numbers are the best in each column; underlined
numbers are the second-best.

Variant | Surrogate Set | GPT-40 | Claude 3.7-extended | Gemini 2.5-Pro
| |KMR, KMR;, KMR, ASR|KMR, KMR;, KMR, ASR|KMR, KMR, KMR, ASR

PE, B/16,B/32,L32,L16 | 0.87 0.65 026 099 054 032 007 0.68] 0.80 0.57 0.16 0.90
PE, Dino-B, B/32,1.32,G/14| 0.87 0.69 028 0.97| 0.56 0.37 0.09 0.65| 0.88 0.71 0.22 0.93
PE3 Li6, B/32,132,6714 | 0.85 0.65 0.23 099| 0.57 040 0.09 0.73| 0.84 0.61 0.19 0.93
PE, B/16,B/32,132,Dino-B| 0.89  0.67 0.19 098| 0.55 041 0.07 0.63| 0.87 0.67 0.23 0.96
PE; B/16,B/32,1.32,Dino-s | 0.90  0.72 025 097| 048 033 008 0.59| 083 0.63 0.17 0.90
PE™T (Ours)| Bi6. 32,132,614 | 091  0.78 0.40 0.99| 056 032 011 067| 0.87 0.72 022 0.97

Table 7: Ablation on surrogate-set selection. Each row swaps one model in or out of a four-model
ensemble. The fully grey PE™ line is our final patch-diverse surrogate set (CLIPT-G/14, CLIP-B/I6,
CLIP-B/32, CLIPT-B/32). Bold numbers denote the best score in each metric column across all
variants, underline denote second best with neglectable gap of 0.01

E ABLATION STUDY

E.1 ABLATION STUDY FOR STEP SIZE

This section provides an ablation study for the step size parameter « to view its impact on the
performance. Overall, selecting « € [0.5, 1.0] provides better performance for SSA-CWA, M-Attack.
Our M-Attack-V2 prefer stepsize at 1.275, since it adopts ADAM as optimizer.

Surrogate (paper notation) Implementation (HuggingFace identifier)

CLIP'-B/32 (Ilharco et al.l 2021} |Schuhmann et al.| 2022) laion/CLIP-ViT-B-32-laion2B-s34B-b79K
CLIPf-H/14 (Iharco et al.,|2021; |Schuhmann et al., 2022) laion/CLIP-ViT-H-14-1laion2B-s32B-b79K
CLIP-L/14 (Radford et al.|2021) openai/clip-vit-large-patchl4

CLIP!-B/16 (Ilharco et al.,|2021; |Schuhmann et al., 2022) laion/CLIP-ViT-B-16-laion2B-s34B-b88K
CLIP'-BG/14 (Iharco et al.}[2021; Schuhmann et al.}[2022) laion/CLIP-ViT-bigG-14-laion2B-39B-b160k

Dino-Small (Oquab et al.| [2023) facebook/dinov2-small
Dino-Base (Oquab et al.||2023)) facebook/dinov2-base
Dino-Large (Oquab et al.||2023)) facebook/dinov2-large
BLIP-2 (2.7 B) (Li et al.,|2023) Salesforce/blip2-opt-2.7b

Table 8: Surrogate models and their corresponding HuggingFace identifier in our main paper.
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‘ ‘ GPT-40 ‘ Claude 3.7-thinking ‘ Gemini 2.5-Pro
el Method
| |KMR, KMR, KMR. ASR|KMR, KMR, KMR. ASR|KMR, KMR, KMR. ASR
SSA-CWA (Dong et al.|[2023a}| 0.08 0.08 0.04 0.10] 006 003 000 0.03| 006 003 000 0.01
0.25 M-Attack (Liectal]2025) | 062 039 009 071 012 003 001 0.16| 055 033 008 055
M-Attack-V2 (Ours) 086 061 021 096 043 028 05 052 082 029 018 0.89
SSA-CWA (Dong et al.|2023a}| 0.10  0.10  0.04 0.07| 008 004 000 005] 009 005 000 0.04
050 M-Attack (Lietal]2025) | 073 048 017 077| 020 0.3 006 022]| 079 053 010 0.80
M-Attack-V2 (Ours) 087 064 023 096 058 034 013 067 083 059 017 094

SSA-CWA (Dong et al.J[2023a}| 0.11  0.06 000 0.09] 0.06 004 001 0.12] 0.05 003 001 0.08
1.00 M-Attack (Li et al. 082 054 013 095|031 021 004 037| 081 057 015 0.83
M-Attack-V2 ( 092 077 042 098] 055 036 0.08 0.67| 085 073 022 098

SSA-CWA (Dong et al.[[2023a}| 0.09 0.09 004 0.03] 0.06 003 000 0.03] 0.05 002 000 0.02

1.275 M-Attack (Li et al.|202. 0.00 0.00 0.00 0.00{ 025 0.18 0.06 034| 085 055 0.19 0.84
M-Attack-V2 (Ours 091 078 040 099| 056 032 0.11 067 0.87 072 022 0.97

©)

urs

Z
i

ol
S Y
s

Z

Table 9: Ablation study on the impact of perturbation budget ().

E.2 ABLATION STUDY ON MCA AND ATA HYPERPARAMETERS

Fig. [/(left) shows transferability peaks around K = 10 ~ 20, beyond which increased stability
reduces beneficial noise regularization. Fig.[/right) demonstrates larger A boosts diversity by aligning
semantics closer to auxiliary data but risks impairing semantic accuracy (as measured by KMR).
Fig. [8a,b) indicates minor impacts from P and momentum coefficient 3; setting P = 2 optimizes
performance and efficiency, and the default 5 = 0.9 consistently yields robust results.
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(b) Effect of momentum parameter /3.

Figure 7: ASR and KMR,/KMR;, vs. differ- Figure 8: Ablation study on auxiliary set size P and
ent K and \. momentum parameter 3.

F ADDITIONAL RESULTS

F.1 ADDITIONAL RESULTS ON 1K IMAGE

We compare M-Attack and M-Attack-V2 on 1K images for better statistical stability. We changed
the threshold into multiple values since no additional keywords were added for the 900 images,
thus replacing the KMR with ASR with thresholds at different matching levels. Our M-Attack-V2
achieves consistently better results compared to M-Attack, showing superiority of our proposed
strategy.

19



Under review as a conference paper at ICLR 2026

GPT-40 Gemini-2.5-Pro Claude-3.7-extended
threshold | M-pttack M-Attack-V2|M-Attack M-Attack-V2|M-Attack M-Attack-V2
0.3 0.868 0.983 0.714 0.915 0.289 0.632
0.4 0.614 0.965 0.621 0.870 0.250 0.437
0.5 0.614 0.871 0.539 0.673 0.057 0.127
0.6 0.399 0.423 0.310 0.556 0.015 0.127
0.7 0.399 0.412 0.245 0.342 0.013 0.089
0.8 0.234 0.328 0.230 0.289 0.008 0.009
0.9 0.056 0.150 0.049 0.087 0.001 0.005

Table 10: Comparison of results on 1K images. We provide ASR based on different thresholds as a
surrogate for KMR following M-Attack (Li et al.| 2025).

F.2 ADDITIONAL RESULTS ON FGSM FRAMEWORK

We provide the results of the [-FGSM (Kurakin et al., 2018 and MI-FGSM (Dong et al., |2018))
under our M-Attack framework as complementary, presented in Tab. [I5] Results show that even
under the FGSM framework, where the patchy gradient matter is smoothed by assigning sign(V L),
M-Attack-V2 still benefit from momentum. Moreover, MI-FGSM still provides results comparable
to those of the ADAM version. However, using PGD framework with ADAM optimizer is generally
the better choice to unleash the potential of black-box attack fully since it can better explore in the
space while also reducing scale issue with second-order momentum.

F.3 ADDITIONAL RESULTS ON OPEN-SOURCE MLLMS

We extend the evaluation from black-box commercial MLLMs to two open-source MLLMs, Qwen-
2.5-VL (Bai et al2025)) and LLaVa-1.5 (Liu et al.| 2024). The setting follows exactly the same as
in the main paper. Results in Tab. [TT|shows that our method consistently achieves the best result
compared to other method on both commercial black-box models and open-source white-box models.

Method | Qwen-2.5-VL ‘ LLaVA-1.5
|KMR, KMR, KMR. ASR|KMR, KMR, KMR. ASR

AttackVLM | 0.12  0.04 0.00 0.01] 0.11 0.03 0.00 0.07
SSA-CWA | 036 025 0.04 038| 029 0.17 0.04 034
AnyAttack | 0.53 028 0.09 053] 060 032 0.07 058
FOA-Attack | 0.83 0.61 020 091| 094 075 029 095

M-Attack
M-Attack-V2

080 0.65 0.17 0.90
087 0.67 027 0.95

0.85 059 020 095
0.96 0.83 029 0.96

Table 11: Comparison on Qwen-2.5-VL and LLaVA-1.5. Higher KMR,, /5, and ASR are better. Best
results are bold.

F.4 ADDITIONAL RESULTS ON OTHER GPT-5 REASONING MODES

GPT-5 provides four reasoning modes: minimum, low, medium, and high. While the main paper
presents results using GPT-5-thinking-low, additional experiments on other reasoning modes are
summarized in Tab.[I2] Our proposed M-Attack-V2 consistently achieves superior performance
across all modes. Interestingly, providing additional thinking budget generally enhances model
robustness, evidenced by a reduction in ASR and KMR. However, this improvement is not strictly
monotonic: ASR first decreases from 100% (low) to 96% (medium) before slightly rebounding to
99% (high). A similar non-monotonic trend can also be observed elsewhere in the table.

F.5 CRrR0SS-DOMAIN EVALUATION ON MEDICAL AND OVERHEAD IMAGERY

Beyond the general-domain datasets, we further probe transferability to domains that are notoriously
challenging for closed-source VLMs: chest X-rays and overhead remote sensing. Concretely, we
augment the NIPS 2017 adversarial competition evaluation with images from ChestMNIST, from
MedMNIST (Yang et al.| [2021) and PatternNet (L1 et al., 2018)). We keep the target set unchanged and

20



Under review as a conference paper at ICLR 2026

Method | Modet | GPT-5 (low) |  GPT-5(medium) | GPT-5 (high)
\ |KMR, KMR, KMR, ASR|KMR, KMR, KMR. ASR|KMR, KMR, KMR, ASR
SSA-CWA (Dong et al.|[2023a) | Ensemble| 0.08 0.04 0.00 0.08| 0.09 0.05 0.01 0.06] 0.10 0.05 0.01 0.07
FOA-Attack (Jia et al.||2025) |Ensemble| 0.90 0.67 023 094| 090 069 021 096| 0.87 0.68 024 0.96

M-Attack (Lietal./[2025) |Ensemble| 0.8 0.65 025 098] 085 0.61 0.16 096| 080 0.60 0.20 0.93
M-Attack-V2 (Ours) Ensemble| 0.92 0.79 030 1.00| 0.90 0.73 025 096 088 0.71 0.27 0.99

Table 12: Comparison on GPT-5 under three budget settings (low/medium/high).

reuse the same attack budget and optimization hyper-parameters as in the main experiments. These
domains are non-photographic and typically elicit generic captions from off-the-shelf VLMs, making
them a stringent test of cross-domain transfer.

We report KMR,, /KMR,;,/KMR,. and ASR (higher is better) on GPT-40, Claude 3.7, and Gemini 2.5
in Tables[I3]and[T4] Across both datasets, M-Attack-V2 consistently surpasses M-Attack and prior
baselines. On PatternNet, M-Attack-V2 improves Claude 3.7 ASR from 0.48 to 0.73 (+0.25) and
raises GPT-40 KMR,, ;. to 0.83/0.71/0.24. On ChestMNIST, the gains are even larger on Claude
3.7 (ASR 0.31 — 0.83, +0.52), while M-Attack-V2 also achieves the highest KMR,, ;, /. on Gemini
2.5 (0.89/0.76/0.33). The only exception is ChestMNIST ASR on Gemini 2.5, where M-Attack is
marginally higher (0.96 vs. 0.95), despite M-Attack-V2 yielding stronger keyword-match rates.

| GPT-40 | Claude 3.7 | Gemini 2.5
|KMR, KMR, KMR. ASR|KMR, KMR;, KMR. ASR|KMR, KMR, KMR. ASR

AttackVLM | 0.06 0.01 0.00 0.02| 0.06 0.02 0.00 0.00| 009 0.04 0.00 0.03
SSA-CWA | 0.05 0.02 0.00 0.13] 0.04 0.03 0.00 0.07| 0.08 0.02 0.01 0.15
AnyAttack | 0.06 0.03 0.00 0.05| 0.03 0.01 0.00 005| 0.06 0.02 0.00 0.05
M-Attack | 0.79 0.66 021 093] 033 0.17 0.04 048] 086 0.71 023 091

M-Attack-V2| 0.83 0.71 024 093 0.58 040 0.09 0.73| 088 0.68 0.22 0.97

Method

Table 13: Cross-domain results on PasternNet (Li et all, 2018). We report KMR, /KMR;/KMR,
and ASR (higher is better). Bold = best in column; underline = second best. The shaded row is our
method.

| GPT-40 | Claude 3.7 | Gemini 2.5
|KMR, KMR, KMR. ASR|KMR, KMR, KMR. ASR|KMR, KMR, KMR. ASR

AttackVLM 0.06 001 0.00 003 005 0.02 000 0.02| 008 0.03 0.00 0.02
SSA-CWA 0.06 003 000 0.15| 0.04 0.03 0.00 0.07| 008 0.02 0.01 0.14
AnyAttack 0.06 0.02 000 0.05| 003 0.01 0.00 0.04] 007 0.02 0.00 0.05
M-Attack-vl| 0.89 0.70 0.22 092| 031 0.18 0.07 0.31| 0.85 0.67 0.23 0.96
M-Attack-V2 | 0.90 0.74 0.27 097| 070 0.51 0.21 0.83| 0.89 0.76 0.33 0.95

Method

Table 14: Cross-domain results on ChestMNIST, from MedMNIST (Yang et al.,[2021). We report
KMR,/KMR;,/KMR. and ASR (higher is better). Bold = best in column; underline = second best.
The shaded row is our method.

F.6 ROBUSTNESS TO INPUT-PREPROCESSING DEFENSES

We evaluate two input—preprocessing defenses—JPEG recompression (quality ()=75) and diffusion-
based purification (DiffPure) with denoising budgets t=25 and t=75. As summarized in Table[16]
the JPEG results show that M-Attack-V2 remains strong while prior attacks substantially degrade,
suggesting resilience to quantization and mild photometric shifts. DiffPure reduces success rates for
all methods; however, M-Attack-V2 preserves a clear margin at t=25 and remains the most effective
even under the aggressive t=T75 setting, where purification approaches image regeneration.

21



Under review as a conference paper at ICLR 2026

Method | Model | GPT-4o | Claude 3.7-extended | Gemini 2.5-Pro
| |KMR, KMR, KMR, ASR|KMR, KMR, KMR, ASR|KMR, KMR, KMR, ASR
091 078 0.40 099| 056 032 0.1 0.67| 0.87 0.72 022 097

085 0.64 0.19 098] 040 026 008 046| 083 0.65 0.17 0.90
090 0.66 023 096| 045 030 007 0.57| 0.84 0.64 0.15 0.87

M-Attack-V2-ADAM (Ours)
M-Attack-V2-FGSM
M-Attack-V2-MIFGSM

Ensemble
Ensemble
Ensemble

Table 15: Ablation study of M-Attack-V2 under different optimizer/attack variants.

Setting | Method | GPT-40 \ Claude 3.7 \ Gemini 2.5
| |KMR, KMR, KMR. ASR|KMR, KMR, KMR. ASR|KMR, KMR, KMR, ASR

AttackVLM | 0.06 0.02 0.00 0.03| 0.07 0.02 0.00 0.02| 0.08 0.04 0.00 0.04
SSA-CWA | 0.08 0.04 0.01 0.10| 0.07 0.02 0.00 0.05| 0.09 0.06 0.01 0.09
JPEG (Q=75) | AnyAttack | 0.06 0.03 0.00 0.05| 0.04 0.01 000 0.03| 008 0.03 0.00 0.05

M-Attack | 0.76 054 0.16 091| 028 0.17 0.03 034| 075 051 0.11 0.76
M-Attack-V2| 0.89 0.69 020 097| 055 036 0.09 0.68| 0.75 0.56 0.18 0.82

AttackVLM | 0.05 0.02 0.00 0.01| 0.05 0.02 0.00 0.01| 0.08 0.03 0.00 0.01
SSA-CWA | 0.07 0.03 0.00 0.02| 0.04 0.02 0.00 0.03| 0.07 0.01 0.00 0.05
DiffPure (t=25)| AnyAttack | 0.07 0.03 0.00 0.04| 0.02 0.02 0.00 0.04]| 0.09 0.04 0.00 0.07
M-Attack | 042 020 0.03 043| 0.10 0.05 0.01 0.10| 039 022 0.01 0.32
M-Attack-V2| 0.73 047 015 0.72| 019 0.11 0.04 0.20| 0.61 042 0.06 0.56

AttackVLM | 0.08 0.05 0.00 0.02| 0.04 0.02 0.00 0.00| 0.04 0.01 0.00 0.01
SSA-CWA | 0.05 0.03 0.01 0.06| 005 0.03 0.00 0.03| 0.07 0.02 0.00 0.05
DiffPure (t=75)| AnyAttack | 0.05 0.00 0.00 0.06| 0.04 0.02 0.00 0.03]| 0.04 0.02 0.00 0.07

M-Attack | 0.10 0.02 0.00 0.04] 0.03 0.02 0.00 0.02| 0.05 0.05 0.00 0.05
M-Attack-V2| 0.13 0.06 0.01 0.07| 0.07 0.02 0.00 0.06| 012 0.06 0.01 0.08

Table 16: Unified robustness under input—preprocessing defenses. We report KMR,,, KMR;, KMR¢,
and ASR (1) for GPT-40, Claude-3.7, and Gemini-2.5. Bold indicates the best value within each
metric column for the given defense block; shaded cells highlight M-Attack-V2 (numeric cells only).

G VISUALIZATION

G.1 VISUALIZATION OF ADVERSARIAL SAMPLES

Fig. O] and Fig. [I0] visualize adversarial samples of different black-box attack algorithms under
different perturbation constraints. Under € = 8, no significant difference exists between M-Attack
and M-Attack-V2. On the e = 16 setting, the visual effect is still very close between M-Attack
and M-Attack-V2. Since our M-Attack-V2 also greatly improves the results under ¢ = 8, future
directions might be improving the imperceptibility by adding constraints besides the /,. We also
provide all 100 images in the supplementary martial for further reference.

AttackVLM SSA-CWA AnyAttack M-Attack-V1 M-Attack-V2 AttackVLM SSA-CWA AnyAttack M-Attack-V1 M-Attack-V2

Figure 9: Visualization of adversarial samples under € = 8.
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AttackVLM SSA-CWA AnyAttack M-Attack-V1 M-Attack-V2 AttackVLM SSA-CWA AnyAttack M-Attack-V1 M-Attack-V2

Figure 10: Visualization of adversarial samples under € = 16.

G.2 VISUALIZATION OF REASONING MODELS

Fig.[TT]illustrates how GPT-03 2025)) responds to our adversarial samples. The model’s
visual reasoning behaviors can be broadly categorized into three types: no reasoning (response (d)),
simple reasoning (responses (b) and (c)), and zoom-in reasoning (response (a)). Notably, in response
(a), GPT-03 already identifies the central area as uncertain and zooms in on it. However, its reasoning
mechanism is not well-equipped to handle adversarial perturbations, resulting in a response that
remains semantically close to the target image despite the perturbation. This observation suggests that
vision reasoning offers a degree of robustness by detecting uncertainty and taking subsequent actions.
During training, incorporating explicit behaviors, such as refusing to answer or flagging potential
adversarial inputs, could further enhance the utility of vision-based inference under adversarial
conditions.

H DISCUSSION

H.1 LIMITATION

Despite the strong and state-of-the-art attacking performance on various closed-source MLLMs, the
proposed M-Attack-V2 still relies on surrogate model ensembles and fine-grained visual alignment
strategies, which may limit its applicability in extreme cases and domains where high-fidelity
surrogate models or visual data are unavailable. The method also assumes some degree of consistency
and diversity among surrogate model representations, which might not hold across all different
architectures or domain-shifted datasets. Moreover, while the attack improves transferability, it
may require slightly extra computational resources for more ensembles during optimization. Future
work will explore efficiency-aware variants and more generalizable attack strategies beyond current
assumptions of semantic alignment.

H.2 BORDER IMPACT

The development of M-Attack-V2 advances our understanding of the vulnerabilities in LVLMs under
black-box settings, particularly in real-world, security-critical applications. By enabling fine-grained
detail targeting and significantly improving attack success rates without access to model internals,
this work highlights the risks posed by adversarial manipulation to commercial systems used in
autonomous driving, content generation, medical imaging, etc. These insights can guide the design of
more robust LVLMs and encourage the community to adopt stronger evaluation protocols and defense
mechanisms. Additionally, M-Attack-V2 serves as a valuable benchmark for future research on
secure multimodal Al, encouraging the development of resilient architectures that are better aligned
with societal safety and reliability standards.

23



Under review as a conference paper at ICLR 2026

Query & Response

describe this image, no longer than 25 words.

Thought for 27 seconds
a

@ pone

Glitchy photo shows rust covared scissors or pruning shears hanging outdoors against weathered
wooden boards and surrounding greenery.

(a): Glitchy photos show rust-
covered scissors or pruning shears
hanging outdoors against weathered
wooden boards and surrounding
greenery

Target Image

]

pons

ucked i bsted i warm g

(b): A small black-and
white dog cuddles in
someone’s arms, its head
rest gently near a hand,
paws tucked in, bathed in
warm light

(c): Group of skiers adjust
gear beside a snowy
wooden fence near a rustic
cabin surrounded by
evergreen trees

describe this image, no longer than 25 words.

A bearded man lies asleep under crumpled greenish blankets and patterned pillows.

DY Sy

(d): A bearded man lies asleep under crumpled blankets

and patterned pillows

Figure 11: Visualization of GPT-03’s response towards M-Attack-V2 adversarial samples. The
underlined ‘glitchy’ denotes that O3 notices something unusual.
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I USE OF LARGE LANGUAGE MODELS

We utilize Large Language Models (LLMs) to refine portions of writing for our manuscript, but not
to generate research ideas. Additionally, following the LLM as Judge evaluation paradigm (Zheng
et al.| [2023) and the exact setup described in M-Attack (Li et al., [2025)), we utilize GPT-40 from the
OpenAl API for our standard evaluation of KMR and ASR metrics. The prompts and parameters
used are identical to those specified in M-Attack, thereby ensuring complete reproducibility.
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