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Abstract
Machine learning (ML) methods are having a
huge impact across all of the sciences. However,
ML has a strong ontology—in which only the
data exist—and a strong epistemology—in which
a model is considered good if it performs well on
held-out training data. These philosophies are in
strong conflict with both standard practices and
key philosophies in the natural sciences. Here we
identify some locations for ML in the natural sci-
ences at which the ontology and epistemology
are valuable. For example, when an expressive
machine learning model is used in a causal in-
ference to represent the effects of confounders,
such as foregrounds, backgrounds, or instrument
calibration parameters, the model capacity and
loose philosophy of ML can make the results
more trustworthy. We also show that there are
contexts in which the introduction of ML intro-
duces strong, unwanted statistical biases. For one,
when ML models are used to emulate physical
(or first-principles) simulations, they amplify con-
firmation biases. For another, when expressive
regressions are used to label datasets, those labels
cannot be used in downstream joint or ensemble
analyses without taking on uncontrolled biases.
The question in the title is being asked of all of
the natural sciences; that is, we are calling on the
scientific communities to take a step back and
consider the role and value of ML in their fields;
the (partial) answers we give here come from the
particular perspective of physics.
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1. Introduction
It is an understatement to say that machine learning (ML)
is having a big impact across the sciences. A significant
fraction of all scientific papers in the natural sciences now
employ ML in part (or all) of their analyses. (We will de-
fine ML below in Section 2). However, when we ask what
scientific breakthroughs have been enabled by this influx of
new tools and methods, there isn’t a long list. The success
of the AlphaFold projects in protein structure (Jumper et al.,
2021) are often raised. But these are successes in a very
specific challenge-problem setting in which performance
is valued over understanding. In the natural sciences we
almost exclusively care about understanding, in the long
run.

The natural sciences are concerned with understanding the
world, and naturally occurring mechanisms in play in that
world. We make progress by discovering new kinds of ob-
jects and phenomena, and explaining (and, even better, pre-
dicting) qualitatively new kinds of objects and phenomena.
Our most successful investigations are judged in terms of
the questions they answer, or the new questions they raise,
or both. The question here is: How will ML contribute to
this mission?

In contrast to natural science, ML research and ML methods
are concerned with making accurate predictions for, or de-
scriptions of, data. A ML method is considered successful
if it performs well on held-out training data, even if the
latent structure of the model is generic and the internals are
impossible to interpret. In ML, the considerations are almost
all at the level of the data, and we are happy to use models
in which we have little or no understanding of the meanings
or values of the latent parameters or weights.

In natural science, on the other hand, the most important
contributions and results are all at the level of the latents:
We use data to learn about the latent structure of the world or
of the system we are studying. In astrophysics, this could be
the interior structure of the Sun, or the processes that form
planets around other stars, or the map of the dark matter
surrounding the Milky Way. The things we care about are
almost never directly observable; they are parameters (or
hyper-parameters) of a physical (or chemical or biological)
model that predicts the observables. Often the thing we care
about is the model itself.
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For a concrete example, when the expansion of the Universe
was discovered (Hubble, 1929; Hubble & Humason, 1931),
the discovery was important, but not because it permitted us
to predict the values of the redshifts of new galaxies (though
it did indeed permit that). The discovery was important
because it told us previously unknown things about the age
and evolution of the Universe, and it confirmed a prediction
of general relativity, which is a theory of the latent structure
of space and time. The discovery would not have been seen
as important if Hubble and Humason had instead announced
that they had trained a deep multilayer perceptron that could
predict the Doppler shifts of held-out extragalactic nebulae.

For another example, consider the discovery that the paths
of the planets are ellipses, with the Sun at one focus (Kepler,
1609). This discovery led to extremely precise predictions
for data. It was critical to this discovery that the data be
well explained by the theory. But that was not the primary
consideration that made the nascent scientific community
prefer the Keplerian model. After all, the Ptolemaic model
preceding Kepler made equally accurate predictions of held-
out data. Kepler’s model was preferred because it fit in with
other ideas being developed at the same time, most notably
heliocentrism (Copernicus, 1543) and Newtonian gravity
(Newton, 1687).

We are both ML skeptics and ML practitioners. We are
writing this for an audience that is either developing an
ML method for science applications or else bringing ML
into a scientific domain. The main points of this Position
Paper are (1) that ML has places at which it is very
valuable in the contemporary practice of science, (2) that
ML also has places at which it will create problems for
science, and (3) currently it is not obvious what is the
epistemic role of ML within the broader goals of the
natural sciences. This paper is a call to natural-science
communities to think about it, and answer the question
in the title for themselves. From the perspective of the
physical sciences, our answer is “Both.”

Our contributions:

• We deliver a description of the fundamental ontology
and epistemology of ML, and contrast these with the
ontologies and epistemologies of the natural sciences.

• We elucidate two important and strong statistical bi-
ases that are being introduced to the natural sciences
by some uses of ML. One is a confirmation bias that
arises when simulations are replaced or augmented by
emulators. Another is a more standard estimator bias
that is (possibly enormously) amplified when elements
of datasets produced by ML regressions are used in
combination or joint or ensemble analyses. Neither of
these two biases can be easily corrected.

• We show that there are many safe places for the use
of ML methods in current natural-science practices,
and places where (in the contemporary context) the use
of ML methods is effectively required. Many of these
places are in the operational parts of scientific projects.

• We argue that in causal contexts, in which the ML
method is used to model foregrounds, backgrounds,
calibration parameters, or other confounders, using
the most expressive ML method can deliver the most
conservative approach to the scientific problem.

2. The ontology and epistemology of machine
learning

What is machine learning? For the purposes of this Posi-
tion Paper, we will employ an expansive or inclusive def-
inition of ML. For us, a method is ML if its capability
increases substantially as it sees more data (Mitchell, 1997).
In some sense this definition could be seen as true of any
measurement process, since measurements improve as the
data improve. If we are going to be more specific, we’d like
the model precision or capability to improve faster (in some
sense) than (something like) the square root of the increment
in data.

This definition is broad, perhaps controversially broad: In
addition to methods like convolutional neural networks (Le-
Cun et al., 1995), multi-layer perceptrons, and transformers
(Vaswani et al., 2017), it includes large linear regressions,
Gaussian processes (Williams & Rasmussen, 2006), support-
vector machines (Steinwart & Christmann, 2008), principal
components analysis (Greenacre et al., 2022), kernel density
estimates (Chen, 2017), and even some kinds of multilayer
or hierarchical models (Gelman & Hill, 2006); indeed al-
most any models in any current ML textbooks (eg, Alpaydin
2020; Acquaviva 2023). Feel free to personally take any
more restrictive definition. Our comments will apply to ev-
erything in the larger class.

As broad as this definition is, it does not include standard
model fitting or parameter estimation with a well-specified
(first-principles, say) model. These tasks are usually per-
formed in the context of a rigid model, with far fewer pa-
rameters than data points, in which the model does not
qualitatively change as more data arrive, and the quantita-
tive improvements to the parameter estimates only scale
as something like the square root of the size of the data
set. Standard model fitting and parameter estimation in the
enormously under-parameterized regime are not ML in our
sense.

What is natural science? For the purposes of this Posi-
tion Paper, we will employ a restrictive definition of natural
science. For us, the natural sciences are the sciences that
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study the natural world, with the primary aim of understand-
ing. Examples include physics, chemistry, biology, Earth
science, ecology, and so on. For our purposes, the natural
sciences are about understanding observed phenomena, uni-
fying knowledge, making predictions for new experiments
and observations. Natural-science questions include things
like: How did our Solar System form? Or how do cells dif-
ferentiate as the embryo grows? Or what causes variations
in the jet stream?

For the purposes of this Position Paper we will exclude
more engineering-oriented questions such as: What protein
sequences might be important for the treatment of diabetes?
Or where in Canada might there be new uranium deposits?
Or what kinds of catalytic surfaces might help turn biomass
into biofuel? This is a bit unfair! We are excluding these
kinds of questions in part because it is obvious that ML
methods can serve important purposes in such problems.

In addition, we recognize that there are quite a few different
attitudes that a scientist can take towards the concept of “un-
derstanding”. Does a program that can predict and control a
robot arm accurately “understand” the arm? Or does a sys-
tem that can predict protein foldings “understand” protein
folding? We are using a restricted definition of “understand-
ing” that excludes these operational successes; mostly in
the natural sciences we are looking for semantic rather than
operational understandings of systems. But of course ML
often can provide extremely operationally capable systems.

Ontologies: The ontology of a domain is (for our purposes)
the set of things that exist within that domain. What is the
ontology of ML?

Unsupervised and self-supervised ML methods deliver rep-
resentations, descriptions, or compressions of data. Super-
vised ML methods find relationships between data (features)
and data (labels). In both cases, the methods are judged on
their capability to accurately describe the data. They are
(often) not judged on the details of their latent structure. In a
very important sense, the ML ontology is that only the data
exist.

In support of this point of view, here are some comments:
Deep-learning models have enormously large internal de-
generacies (combinatorial degeneracies even). These degen-
eracies are not seen as a problem, since all they do is make
the latent weights less interpretable without hurting perfor-
mance (Belkin et al., 2019; Bartlett et al., 2020). Contem-
porary optimization schemes are stochastic (Bottou, 2012;
Kingma & Ba, 2014) and most models are non-convex.
The fact that it is impossible to find the global optimum—
and the fact that in most contemporary models that isn’t
even the goal—shows that the latent parameters are not
important. The regularization of trained models with early
stopping (Prechelt, 2002) and dropouts (Srivastava et al.,

2014) demonstrate that there isn’t even a goal of getting
precisely to any optimum. Any practitioner using a 23-layer
network can trivially (and without analysis) switch to a
42-layer, despite the fact that (from a functional point of
view), this might substantially change the model capacity
or expressivity.

In ML, models are deemed stably optimized and useful not
if the latent space—the joint values of all the weights and
biases—is stable, but rather if the predictions for held-out
data are stable. This is used as an indicator that the learned
function (at least in the training, validation, and test set) is
stable, even though there can be large subspaces of very
different, unidentifiable latent parameters. Since the learned
function is a model for the data, or something that predicts
the data, it is the data that exist in ML contexts, not the
latent parameters.

In ML there is sometimes additionally a notion of “ground
truth”; does this concept extend the ontology of ML? Some
ML methods assume that the training (and validation) data
constitute ground truth (the labels are correct and have
knowledge of the world, say). In this case, “ground truth”
is just another name for the training data. Other methods
assume that the labels might be noisy or adversarial, and
that the method discovers true or more true labels. This does
perhaps extend the ontology, but only slightly, since the
ground truth is in the same space as the data (and nearby
to it, presumably). Another notion that sometimes arises in
ML is the “data-generating process”, especially in contexts
of emulation. We don’t see this as different from the data
themselves, but technically this does extend the ontology
marginally.

In contrast to ML, the ontologies of the natural sciences
contain far more things than just the data. In physics, for
example, not only do the data exist, but so do forces, ener-
gies, momenta, charges, spacetime, wave functions, virtual
particles, and much more. These entities are judged to ex-
ist in part because they are involved in the latent structure
of the successful theories; almost none of them are direct
observables. The most important discoveries in the natural
sciences are discoveries of latent structure: Natural selection
as an explanation for the differentiated properties of species
(Darwin, 1859), for example, or the elemental composition
of the Sun (see Thomas 1991), or the quarks and gluons that
make up the proton (Kendall, 1991).

The mismatch of ontology (and epistemology, below) be-
tween ML and natural sciences is not unique to ML; many
tools used in the natural sciences have limited ontologies.
Perhaps the most extreme case is that of mathematical tools,
which are based (in some sense) only on a limited set of
axioms; mathematics has a very limited ontology. ML is
useful in science in a way that is analogous to other method-
ological tools; the point made here is that the particular and
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specific use of each tool ought to be matched to its ontology
and epistemology.

Epistemologies: The epistemology of a domain is (for our
purposes) the method or standard by which something is
judged to be true or correct or known. What is the episte-
mology of ML?

A trained ML model is deemed successful or correct if it
performs well on held-out training data. This epistemologi-
cal position is related strongly to the ontological position:
If only the data exist, then the success of a model is judged
only in terms of the data it describes.

In support of this position we could point to the literature
on adversarial attacks (eg, Goodfellow et al. 2014). This
literature shows us, in dramatic ways, that ML methods are
not doing what we (naı̈vely) believe that humans or scientists
or scientific theories do in comparable circumstances. And
yet, these attacks do not suggest (to most practitioners of
ML) that the methods are wrong or require revision. Even
the responses to attacks have responded in ways that involve
augmentation of data (Tramèr et al., 2017), such that the
vulnerability to attack is lessened without compromising
the fundamental epistemological point that performance on
data is the primary standard of truth.

A critic of our ML epistemology claim could point to the
large literature on out-of-sample generalization, transfer
learning (Weiss et al., 2016), or the more grand contempo-
rary idea of foundation models (Bommasani et al., 2021).
But even in these contexts, models are deemed successful
when they explain new or held-out data; the latent struc-
ture of the models is not a primary consideration when the
validity of the model is in question.

Another critic might point to the literatures on interpretable
ML (Molnar, 2020) and explainable ML (Roscher et al.,
2020). In these ML subfields, in some cases, attempts are
made to understand the internal structure or the behavior
of the ML model. There is not consensus here, but if there
were, it might create subfields in which the epistemology
of ML gets more complex; maybe in the future some ML
models will have to perform well on data and be explainable
in some important sense. That would have implications for
the epistemology, and probably also the ontology of ML.

In the natural sciences, in contrast, the epistemologies are
much more restrictive and much more demanding than they
are in ML. The detailed epistemological framework depends
on the natural-science field, and even on the practitioner
within the field. However, in all cases, it is more demand-
ing: A theory or explanation has to do much more than just
explain the data in order to be widely accepted as true. In
physics for example, a model—which, as we note, is almost
always a model of latent structure—is judged to be good

or strongly confirmed not only if it explains observed data.
It ought to explain data in multiple domains, and it must
connect in natural ways to other theories or principles (such
as conservation laws and invariances) that are strongly con-
firmed themselves. (It is worthy of note here that a success-
ful theory in the natural sciences is usually a combination
of a more fundamental theory of the latents, and a less fun-
damental or auxiliary observation model, which explains
how the latents appear in or affect the observable data.) Gen-
eral relativity (Einstein, 1915) was widely accepted by the
community (and very quickly; Peebles 2024) not primarily
because it explained anomalous data (although it did explain
some); it was adopted because, in addition to explaining (a
tiny bit of new) data, it also had good structure, it resolved
conceptual paradoxes in the pre-existing theory of gravity,
and it was consistent with emerging ideas of field theory
and geometry.

A recent position piece (Donoho, 2024) points out that an
important aspect of ML’s epistemology might be its (aspira-
tional) reproducibility. Namely, many contributions to the
field permit anyone to reproduce the results and build on top
of them; the idea is that this aspect of ML is part of the rea-
son that the field moves so fast. In contrast, it is often argued
that the sciences face a reproducibility crisis (Baker, 2016);
the (only) positive spin to put on that is that reproducibil-
ity in the natural sciences is not nearly as straightforward
as it is in ML. This reproducibility discussion is slightly
out-of-scope here; we refer the reader to Donoho’s piece
and the follow-up commentaries (for example, Freire 2024,
Milanfar 2024).

3. Why do we need machine learning in the
natural sciences?

In this Section we give some idea of how and why ML
has had such a big impact in the natural sciences, and how
and why many scientific projects require ML technologies.
In most cases, the ML is required on the engineering or
execution side of projects that are large-scale in some sense.
The descriptions here are non-exhaustive, they have a strong
physics bias to them, and they do not address the many
technical nuisances that make this discussion approximate
and less specific than we would like. Our hope is that this
Position Paper is seen as a conversation starter and not as
providing a complete answer to any of the posed questions.

Label transfer: Sometimes a project has informative data
on a very large number of objects, but precise labels for
only a few, maybe obtained through very careful analysis
or external data. In this case, if it is extremely expensive
to label more objects, a regression can be trained on the
few labeled data points and then the trained regression used
to label all the rest. Below in Section 4 we argue that this
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is not an advisable use of ML in the natural sciences if
the expectation is that the regression-generated labels are
going to be used certain straightforward ways in downstream
scientific projects.

Classification: This is the same use case as label transfer,
but in the specific case in which the labels are drawn from a
finite (small, actually) set of discrete values. It is subject to
the same kinds of issues as label transfer.

Speeding up decisions: Many scientific projects must make
decisions very fast in real time. The most extreme examples
of this are in particle physics, where detectors (such as the
Atlas Experiment (Aad et al., 2008) at the Large Hadron
Collider) must decide whether to trigger a data-saving event
in a tiny fraction of second. It is often the case that trained
ML classifiers can reproduce the selection boundaries as
well—or nearly as well—as first-principles models, but with
far less computation. It is critical, if ML methods are used
for real-time operations, that the methods and all their latent
parameters (weights) be preserved for analysis, operations
simulations, and conterfactual exercises, often performed
long after the data are taken.

Speeding up simulations: In much of the natural sciences,
the theory in play is a computation or simulation or digital
twin. These simulations tend to be very computationally ex-
pensive, since they often span large ranges of spatial or time
scales. ML regressions can be trained to emulate the sim-
ulations, or patch up low-resolution simulations to higher
resolutions. Below in Section 4 we argue that the introduc-
tion of ML emulators can introduce an unwanted, strong
confirmation bias.

Modeling nuisances: In most natural-science domains, the
quantities of interest are not directly observable, but rather
the model or prediction for the data is a combination of the
theory of relevance plus auxilliary theories of foregrounds,
backgrounds, instrumentation, and noise sources. When the
goal is for these nuisances to be effectively modeled but
not necessarily understood in detail, ML approaches can be
effective and, as we argue in Section 5, even conservative.

Propose objects, materials, or interactions for follow-up:
In most scientific settings, discoveries are valid if they can
be experimentally verified, regardless of the process used to
produce the scientific hypothesis. That is, hypotheses can
be generated by creative processes that don’t need to be
understood, provided that the hypotheses so generated can
be tested by experimental methods that are well understood.
ML-based generative models can be used to conjecture the
existence of objects or materials with certain properties, that
can be later verified in lab assays. One example of this is
ML-based drug discovery (Kang & Cho, 2018).

Outlier detection: In many of the sciences, discovery of
new or previously unknown phenomena or objects can be
of great importance. A recent example in astronomy is the
discovery of fast radio bursts (Petroff et al., 2019), which
started as outliers in the data taken for imaging projects
and have turned out to be interesting astrophysical objects.
Since expressive unsupervised ML methods can (with some
caveats) describe accurately a complex distribution of data,
they can also be used to identify (some) rare data points that
are unlike any other elements of the training data.

Information questions: If a ML method is correctly trained
to predict labels y from data x, and it succeeds (better than
random, say), then it shows that data x contain information
within it about labels y. Regressions thus can be used to
make one-sided measurements of quantities of information-
theoretic interest.

Making discoveries? There is a new hope in the sciences
that sufficiently trained or constrained models might lead to
new insights about scientific theories or might effectively
make fundamental discoveries. There are approaches along
the direction of symbolic regression (Udrescu & Tegmark,
2020; Cranmer et al., 2020b), and there are approaches along
the lines of foundation models (Yuan, 2023). So far this hope
has borne no important new discoveries, but discoveries are
not inconceivable. Indeed, there is a very real sense in which
the motivations underlying foundation models—finding gen-
erally useful latent representations for qualitatively diverse
data—are similar to the motivations underlying theoretical
physics.

This list isn’t exhaustive! For example, it doesn’t mention
the use of ML to find summary statistics for the comparison
of simulations and data in (say) simulation-based inferences
(Cranmer et al., 2020a; Hahn et al., 2022). It also doesn’t
mention using ML to emulate likelihoods or likelihood ra-
tios (Dai & Seljak, 2022; Cranmer et al., 2015). The uses
of ML in the natural sciences are legion (Wang et al., 2023;
Zhang et al., 2023).

The short summary of all this is that we need ML in the
natural sciences; we can’t live without it. The question here
is—given the restrictive ontology and loose epistemology—
how we will use it safely?

4. When is machine learning bad for natural
science?

In this Section we elucidate two statistical biases that can be
introduced into a natural-sciences project when ML meth-
ods are introduced. Neither of these biases can be easily
corrected or removed, to our knowledge.

5



Hogg & Villar: Is machine learning good or bad for the natural sciences?

Amplifications of training-set biases: The outcomes of
ML regressions are label estimates that are conditioned on
the input features and also on the totality of the training set
used to train the regression. This is good; the individual-data-
point label estimates from the regression are the lowest “risk”
(in the statistical sense) when they use non-zero bias in the
bias–variance trade-off. However, the biases that are weak
or manageable on an individual data-point basis become
strong or unacceptable biases when outputs of regressions
are used jointly or in combination to measure a population
or sub-population or ensemble property.

This problem is demonstrated with a toy example in Ap-
pendix A. It is worst when the regression is used to label
a large data set or catalog or sample of data, and when el-
ements of that data set are used in populations or joint or
ensemble analyses. In general, when multiple data point
estimates are used jointly, the variance-induced offsets of
the estimators average out but the bias-induced offsets re-
main fixed. This is a straightforward point of statistics—this
is not news—but it isn’t currently informing most of the
practice of ML in the natural sciences, where many catalogs
and public data products are being produced with ML re-
gressions (Hogg et al., 2019; Leung et al., 2023; Li et al.,
2024), sometimes even by us.

In principle, there might be fixes for this problem that in-
volve de-biasing the estimates. This is not possible in gen-
eral, because there is not usually enough validation data to
accurately assess the bias.

In Bayesian language, this problem is closely related to the
point that when data are to be combined, they should be com-
bined at the likelihood level, not the posterior level. Like-
lihoods are not affected by population-level biases. Like-
lihoods can produce unbiased point estimates. Likelihood-
based estimators are not usually the lowest-risk estimators,
but they can be low- or zero-bias estimators. The outputs of
regressions, on the other hand, are more like posterior-based
estimators, affected by the implicit prior set by the training
set. When they are combined, the implicit prior gets ampli-
fied. Most ML regressions are not capable of generating or
emulating likelihoods. There are interesting approaches in
development to replace standard regressions with generative
models that can produce likelihoods (Ness et al., 2015; Cran-
mer et al., 2015; Papamakarios et al., 2019; Dai & Seljak,
2022).

Finally we note—and demonstrate in Appendix A—that
none of these problems of bias arise from out-of-sample
generalization or distribution-shift problems, or even model
mis-specification. Distribution shifts (where the test data are
drawn from a different distribution than the training data)
and model mis-specification (where the model doesn’t have
the expressivity to explain the data) just tend to make these
biases even worse.

Emulator-induced confirmation bias: In many fields in the
natural sciences, the fundamental theoretical model is com-
putational, meaning that theoretical predictions are made
with large computer simulations. These simulations are usu-
ally being asked to handle large ranges of length scales and
time scales, so they are generally getting larger and more
computationally demanding each year. Quantitative com-
parison of data with simulations usually involves running
enormous numbers of simulations (Csilléry et al., 2010),
because simulations have to span ranges of fundamental
parameters and initial conditions and so on. Thus these sim-
ulation requirements are getting very large for contemporary
research projects. For example, in cosmology, contempo-
rary experiments could easily consume the total scientific
computing capacity of the United States. Hence we turn to
emulators—trained ML regressions that have learned the
input-output relationship of a simulation, or the relationship
between an inexpensive low-resolution simulation and an
expensive high-resolution experiment. Emulators can make
computationally impossible projects possible.

Recall that because these emulators are ML methods, they
generally have uninterpretable internal parameters and
weights, and they generally have been validated by com-
parison with held-out training data. Like all high-capacity
ML methods, they generally are vulnerable to adversarial
attacks (Goodfellow et al., 2014).

Now imagine that two cosmology experiments proceed to
do enormous inferences on large data sets, each of which
requires a very large number of simulations—so many that
a fast, trained ML emulator has to be used. Imagine that
both of these inferences would have been exceedingly ex-
pensive to have been done with the original first-principles
simulations instead of the emulators. Experiment A finds
cosmological parameters very much in line with our expec-
tations going in. Experiment B finds something extremely
surprising about the mass matrix for the neutrinos, in con-
flict with other measurements and our expectations. Is it
possible that the anomaly discovered by Experiment B isn’t
real; it just comes from something very slightly wrong or
off in the trained ML emulator?

By construction, both experiments are extremely expen-
sive to re-analyze with first-principles simulations. Which
one would we fund for reproduction? The motivation to re-
analyze Experiment B is far, far higher than the motivation
to re-analyze Experiment A. That is a classic example of
confirmation bias.

Since the resources required are substantial (or even enor-
mous), there is no simple fix for this unless we plan to
re-analyze all experiments using first-principles simulations,
no matter what they find. If that is what’s required to avoid
the bias, then we should just analyze everything with the full
simulations in the first place, and never use the emulators at
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any stage.

It is worthy of note that this problem could be solved, or
greatly alleviated, if the inferences were performed with
fully explainable methods, from beginning to end. Right now
there are no hopes for this, although as emulation methods
are made to look more and more like physical models (see,
eg, Villar et al. 2021; 2023b) in their internal structure,
maybe explainability will become possible. This problem
cannot be solved in general by making finitely many tests of
the emulators. First of all, such tests are expensive. Second
of all, in many cases (and in cosmology especially), the
phase space of random initial conditions is so large that it
is impossible to span or cover it in any finite set of tests.
Testing is good! But complete testing is impossible.

Finally, we note that one objection to this confirmation-
bias point is that perhaps it exists just as strongly for any
simulation-based inference (such as approximate bayesian
computation; Csilléry et al. 2010)? After all, simulations
are expensive, so the full suite of them probably can’t be
affordably repeated. There are two responses to this ob-
jection. The first is that if the emulators work—that is, if
they greatly reduce the cost of the inference—then the em-
ulators have enormously increased the cost difference (or
cost factor) between the inference and any re-analysis using
physics-based simulations. The second is that emulators are
not doing precisely what the simulations did. One way to see
this is that they are subject to adversarial attacks (Horowitz
& Melchior, 2022). Therefore we know that the emulator
is not doing precisely what the physics-based simulation is
doing. That is, verification is not just more expensive, but
also more important, when an emulator has been introduced.

5. When is machine learning good for natural
science?

Where, in the natural sciences, can you use models in which
you don’t fully understand the latent parameters and struc-
tures? The answer is: You can use them for the parts of
your scientific project or experiment or analysis that you
don’t need to understand. We have colleagues who believe
that there is no such part; some scientists believe that you
must understand deeply every part of your scientific toolkit.
We disagree: For an example in physics, we use infrared
HgCdTe detectors (Gravrand et al., 2016) to make extremely
precise measurements of intensity fields, without under-
standing in detail the solid-state physics that makes these
devices efficient, linear detectors of photons. There are many
parts of a scientific project that must work well, but which
do not need to be carefully controlled or understood. They
have to be testable and tested, but they don’t have to be fully
understood.

Here we give a few examples. These are not intended to

be exhaustive; they are just examples of places within a
scientific project at which ML can be used to the benefit—
and not detriment—of the natural-science goals.

Real-time execution and operations: In many scientific
projects, experiments are adaptive to real-time outcomes, or
data are taken selectively, or limited resources are assigned
to particular targets. When bandwidths are high, or exper-
imental timescales are short, sometimes the decisions that
need to be made in real time cannot be made with the first-
principles decision-making that the investigator would like.
An example mentioned above is the selection of events for
storage at the LHC Atlas Experiment (Aad et al., 2008). An
example from astronomy is the upcoming Rubin Observa-
tory LSST project (Ivezić et al., 2019), which will generate
some 105 events of possible interest for follow-up observing
every night (Narayan et al., 2018b). These decisions can
be made with very fast classifiers, trained on well-studied
training data or simulations (eg, Narayan et al. 2018a).

Is it unsafe to operate a project using ML decision-making
systems? Even if these systems do not have to be extremely
well understood in real time, they do need to be versioned
and preserved for study later. Statistical projects making use
of the data from systems like this will need to understand
the statistical biases created by the ML selection procedures.
This can be done after the fact, provided that the decision-
making system is preserved in a precisely reproducible state,
such that it can be run offline on counterfactual, simulated,
and subsequent data.

Discoveries of outliers and rare objects: As mentioned
in Section 3, ML is well suited to outlier detection. Since
ML methods are expressive, and trained to fit the data, new
data that aren’t well described by a trained ML model are
possibly interesting. Outlier-detection systems can be used
to identify time intervals in which the equipment is mal-
functioning. They can also be used to identify objects that
are rare or unusual. Many discoveries in astrophysics are
discoveries of new kinds of objects, originally found as data
outliers (Schmidt, 1963; Lintott et al., 2009). So far, ML
has not been involved in any big discoveries in astronomy,
but we expect this to be a productive avenue for ML in the
natural sciences (but see Contardo & Hogg 2024).

Foreground, background, and confounder models: We
mentioned in Section 2 that a natural-science theory is a
combination of a fundamental, latent theory with a (usu-
ally complicated) auxiliary observation model that explains
the details of the observations. The simplest part of this
observation model is the model of the backgrounds, fore-
grounds, and confounders. For example, any maps of the cos-
mic microwave background (by the ESA Planck spacecraft
(Aghanim et al., 2020b), for example) will have emission
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from the intervening Milky Way and from radio galaxies,
which both add to and distort the maps. When the goal
is to understand the cosmic microwave background, the
investigator often doesn’t need to understand these fore-
grounds physically; an effective model is sufficient. And
indeed, all the bleeding-edge methods for this problem cur-
rently are ML methods (Akrami et al., 2020). It doesn’t
matter to the questions of physical cosmology what those
foregrounds mean; and indeed with ML-based foreground
removal, cosmic microwave background experiments have
delivered measurements of the parameters of the cosmo-
logical model with sub-percent precision (Aghanim et al.,
2020a). For foregrounds and backgrounds, understanding is
not always necessary.

An even stronger statement can be made here, however, in
the realm of causal inference: Sometimes the goal is to argue
that an effect is being caused by some particular cause, and
there are confounding causal inputs that might be distorting
or influencing the data. The more expressive the model used
to model the confounders, the stronger the conclusions that
can be made about the causation (Pearl, 2009). That is, the
huge capacity of ML methods can make a causal claim
very conservative, and hence very robust. One way to see
this is that if the confounder model has been given every
chance it possibly can have to model the effect of interest,
and it cannot, then it is a stronger conclusion that the effect
is caused by the cause of interest. This is the strategy in
contemporary causal-inference projects, which make use of
ML methods for these reasons (Dorie et al., 2022).

A key place for this kind of causal inference in astrophysics
has been in instrument calibration. Data taken by an instru-
ment have signals imprinted from the physical (or biological
or chemical) processes of interest, and also from the details
of the measurement hardware, such as sensitivity and bias
variations, and time-dependent distortions of internal map-
pings. In the end, if the results of the investigation are to
have the instrument calibrated out, it makes sense to give
the instrument model a lot of expressive power, and judge
that model in terms of its ability to explain the data. Hence,
instrument models and calibration are important places for
ML methods, places where the ontology and epistemology
of ML are well matched to the objectives, and places where
the introduction of ML can made scientific projects more
conservative and more accurate. One very early example of
this in astronomy was the calibration of the Sloan Digital
Sky Survey imaging data (Padmanabhan et al., 2008).

6. Discussion
We hope we have clearly answered the question in the title
with the response “Both!” Our more detailed answers come
from a perspective of physics, but we expect the answers to
be similar in many of the natural sciences. Machine learning

(ML) is a reality for science: We need it for speed and scale
in many contexts in many contemporary scientific projects,
where instrument bandwidths, data volumes, assay paral-
lelization, experimental automation, and scientific ambitions
are all growing. It is also the case that PhD students and
practitioners in the natural sciences want to—or even need
to—learn ML practices to have useful and transferable skills.
ML is here, and it is here to stay.

Of course there is a certain amount of hype in this area, and
we are seeing scientists “move fast and break things” all
over the place. If anything, this Position Paper represents a
call to slow down and think more. ML tools are incredibly
powerful, if we put them to use in the right places in the
natural sciences. In particular, the biases we highlight in
Section 4 do not have fixes; in our view ML simply cannot
be used in those contexts without leading to substantial
scientific mistakes.

There is a famous article by Wigner about “the unreason-
able effectiveness of mathematics in the natural sciences”
(Wigner, 1960). Mathematics has been pursued (in many
cases) for abstract reasons of beauty and technical challenge,
but it has ended up creating a language for many of the nat-
ural sciences. Similarly, we could coin a phrase about the
unreasonable effectiveness of machine learning in the natu-
ral sciences. It’s unreasonable because current ML methods
are typically engineered and optimized to solve problems in
commercial applications. The most remarkable ML systems
have been driven by critical industrial questions such as:
Which advertisement should I display on this web search
result? What direction should I steer this automobile? How
could I make a chair that looks like an avocado? And which
online videos contain kittens? In some sense it is remarkable
that there is any overlap between the technologies that solve
these problems and the technologies we need in scientific
domains.

But that said, the industrial successes of ML can also be
misleading. The fact that big ML models can solve countless
problems in business does not mean that all areas of the
natural sciences will be helped by the introduction of ML.
You do not have to understand your customers (nor their
videos) in order to make plenty of revenue off of them; in
the natural sciences, it is understanding, not revenue, that
we seek.

One scientific-practice comment to make is that the ML
literature is very different from the natural-science litera-
tures. In ML, the publishability of a result is decided—or
very strongly influenced—by its demonstrated performance
on held-out data. It is almost impossible in ML to publish
contributions that do not lead to the immediate improvement
of some prediction. This has a positive side: There are stan-
dards! But it has many negative sides. For example, the path
from one good method to another good method might nec-
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essarily pass through a valley of less-good methods. These
non-local-optimization paths aren’t available to the ML lit-
erature at present. Whether good or bad, it is interesting to
us that publishing in ML is very different from publishing
in the sciences.

Given everything we have said here, what are the ways
forward for the natural sciences? ML is critical in many
projects; how do we make sure it is doing what we want
it to do? Our view is that the promising directions include
imposing physically motivated mathematical structure into
the design or regularization of the ML models. This includes
symmetries, conservation laws, and constraints (Bronstein
et al., 2021; Villar et al., 2023a), but also ODE and PDE
solvers (Karniadakis et al., 2021), dynamic programming
modules (Xu et al., 2020), and other established mathemati-
cal tools. The research direction that looks towards explain-
ability, interpretability (Molnar, 2020), and trustworthiness
(Kearns & Roth, 2019) is also fundamental to the devel-
opment of ML methods for the physical sciences. These
approaches can increase natural scientists’ confidence in
ML tools, and also perhaps expand their ontologies and
epistemologies.

Finally, we make a philosophical comment: In the natural
sciences, the same phenomena can usually be explained with
many qualitatively different theories; theories are not usually
unique (eg, Hogg 2009; Peebles 2024). In the same way (as
we noted above), ML models contain massive degeneracies,
and even different architectures can lead to near-identical
predictions after training on the same training data. Does
this lead to a philosophical connection between ML and the
natural sciences? We have argued previously (Hogg, 2009)
that the degeneracies in the natural sciences undermine re-
alism or the belief in the literal truth of the latent theories
or objects of physics. There is an argument to be made that
maybe the natural sciences could be better off if they moved
at least slightly closer to the ML points of view on ontology
and epistemology. In the long run, the data are more stable
than the fundamental theories of physics: Newtonian gravity
was replaced with general relativity, and we expect general
relativity to be replaced by some kind of quantum gravita-
tional theory. At each change, the ontology changes, while
the data are stable. We are not recommending anything (yet),
we are merely noting that a robust philosophy of natural
science might be more positively oriented towards the data
than current standard practice.
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P. Geometric deep learning: Grids, groups, graphs,
geodesics, and gauges. arXiv preprint arXiv:2104.13478,
2021.

Chen, Y.-C. A tutorial on kernel density estimation and
recent advances. Biostatistics & Epidemiology, 1(1):161–
187, 2017.

Contardo, G. and Hogg, D. W. A data-driven search for
mid-infrared excesses among five million main-sequence
FGK stars. arXiv preprint arXiv:2403.18941, 2024.

Copernicus, N. De revolutionibus orbium coelestium. 1543.

Cranmer, K., Pavez, J., and Louppe, G. Approximating
likelihood ratios with calibrated discriminative classifiers.
arXiv preprint arXiv:1506.02169, 2015.

Cranmer, K., Brehmer, J., and Louppe, G. The frontier of
simulation-based inference. Proceedings of the National
Academy of Sciences, 117(48):30055–30062, 2020a.

Cranmer, M., Sanchez Gonzalez, A., Battaglia, P., Xu, R.,
Cranmer, K., Spergel, D., and Ho, S. Discovering sym-
bolic models from deep learning with inductive biases.
Advances in Neural Information Processing Systems, 33:
17429–17442, 2020b.
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A. Population-level biases in regression
outputs

A standard machine-learning (ML) regression learns a func-
tion f(x; θ) that takes as input a feature list or vector x
and outputs a label estimate y. In detail, the method learns
the value of a list or vector θ̂ of parameters (weights and
thresholds, for example) of the function that leads to the best
predictions of the labels in some training set; the training set
is a set of labeled data, or a set of (x, y) pairs. The learned
function f(x; θ̂) delivers a predicted or estimated label ŷ
for any data point with a complete set of features x. Thus a
particular estimated label ŷ∗ for a particular data point with
features x∗ obtains information both from the features x∗
and also from the features and labels of all the data points in
the training set used to set the parameters θ̂. In applications
in which regression-estimated labels are used, it matters how
much information is coming from the individual data-point’s
features and how much from the original training set.

To illustrate these ideas, we construct a toy data analysis.
This toy will make a general point, but it has a decidedly
astronomical feel to it. The complete toy data set is gener-
ated by a process with the algorithm below. This algorithm
makes references to objects ξη and ξζ which are generated
prior to the start.

1. A floating-point value of a known parameter called
“guiding radius” r is generated in the range 0 < r < 14.

2. A floating-point value of a latent parameter called “age”
η is generated from a Gaussian with mean 14− r and
variance 4.

3. The point is discarded if the age is outside the range
0 < η < 14. If the point is not discarded:

4. A K-dimensional latent vector ζ with K = 14 is gen-
erated from a Gaussian with zero mean and variance
1.

5. A M -dimensional latent vector ξ with M = 110 is
created by ξ = ξη η + ξζ · ζ, where ξη is a M -vector
and ξζ is a M ×K matrix. The elements of ξη and ξζ
were drawn (before the start) from Gaussians with zero
mean and variances 0.01/K and 1/K respectively.

6. A rectified latent vector ξ̃ is created by taking 1 + ξ
and rectifying all pixels to lie in the range [0, 1].

7. A M -dimensional feature vector x called “the data” is
generated from a Gaussian with mean ξ̃ and variance
0.0025. (These feature vectors have been designed to
look a little like stellar spectra.)

8. A label y called “measured age” is generated from a
Gaussian with mean η and variance 1.

The data generated this way are shown in the top panels
of Figure 1. The data contain a non-trivial relationship be-
tween label y (measured age) and known parameter r (guid-
ing radius). This relationship is shown in Figure 1. It isn’t

precisely linear because of the removal of data points with
latent ages η outside the range 0 < η < 14.

We construct a three-layer multilayer perceptron (MLP)
(using the scikit-learn implementation) with layer sizes of
64, 32, and 16 neurons. The model is trained on a training set
of 4096 data points with features x and labels y. The trained
model takes as input features x and outputs estimated labels
ŷ. The model is validated on a validation set of 2048 data
points with features x and labels y. The test set is a much
larger set of 105 data points with features x and no labels.
The model is used to make estimated labels ŷ in the full test
set. The validation and test labels are shown in the bottom
panels of Figure 1. Importantly, the training, validation, and
test samples are drawn from exactly the same process, with
the same distribution in all properties.

The regression-estimated labels ŷ are related to the mea-
sured labels y in the held-out validation set with a linear
relationship with unit slope and zero intercept. The compar-
ison to the validation data (bottom-left panel of Figure 1)
shows that they are not precisely estimated, but there is no
evidence for strong bias at the individual-object level.

The true relationship between label y (measured age) and
known parameter r (guiding radius) is estimated in a large
generated data set by taking means of y in bins of r. This
relationship is shown in Figure 1 with solid red circles. The
empirical relationship between label y and known parameter
r in the training-set data is shown in Figure 1 with open
black squares. These two relationships are statistically con-
sistent, as expected. The empirical relationship in the test-set
data between the estimated label ŷ and the known parameter
r in the test-set data is shown in Figure 1 with black X-
shaped symbols. The test-set relationship is strongly biased,
deviating from the true relationship at the edges of the r
range.

In this example, not only is the test set providing a biased
answer (to the question of interest), while the training set is
not, it is also the case that the test-set answer is delivered
with very high confidence. Because of the number of objects
involved in the test set, the mean-age values are computed
at very high precision (the square root of N is large). Thus
it is not just the case that the test-set answer is biased, it
is biased at the 30-sigma level away from the truth. The
training set gives less precise answers (it is smaller), but the
answers are consistent with the truth.

One objection to this example is that the information content
in the features about the label is low. Indeed! This situation
is common in stellar spectroscopy, where we care about
subtle abundance and age effects. The bias does indeed go
down as the information content in the features goes up.

Another objection is that maybe this all depends on model
capacity or expressivity. The data in this case are made so
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Figure 1. Visualization of the toy regression. Top-left: Random examples of the data vectors x, which are one-dimensional images
generated from a linear model plus a nonlinearity created by two rectifications. Details of the data generation are given in the text. Each
example x is labeled on the right side by the value of its label y. Top-right: The training-set labels y, plotted against the known parameter
r, which is not used in the regression (only the vectors x are used). Also shown are solid red circles showing the true mean relationship
between y and r in the toy data. Open black squares show the empirical mean relationship measured in bins in the training-set data.
Bottom-left: Validation of the trained regression in the validation set, showing that the label estimates ŷ are noisy (as expected given the
problem set-up) but not strongly biased. Bottom-right: The regression estimates ŷ in the very large test set, plotted against the known
parameter r. Also shown are the same solid red circles and open black squares as in the top-right plot. Black X-shaped symbols show the
mean relationship between ŷ and r. The relationship shown by the Xs is very precise (error bars are much smaller than the symbols; see
the text) but biased far away from the true relationship, unlike the relationship shown by the open squares (measured in the training set
alone).
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simply that the regression being used contains sufficient
expressivity to model the data, so that issue isn’t dominating
this problem. However, in detail, the variance and bias of
the ML regression estimator does depend on the effective
model space, and sometimes in problems like this, simpler
(less expressive) models can be less biased (see, eg, the
Gauss-Markov theorem). Full tests of this are out of scope
here.

In this case, what should the investigator do—the investi-
gator who wants to know the relationship between y (age)
and r (guiding radius)? The investigator should just use the
training set. Transferring labels to the test set did not help—
indeed it actually hurt—even though the test set is far larger
than the training set, and drawn from the same distribution.
The test-set results are very precise (error bars on the X-
shaped symbols cannot be visibly shown in Figure 1), but
they are very wrong. The training-set results are less precise
but unbiased; they are much closer to the truth.

Indeed, none of the issues here come from out-of-
distribution problems or distribution shifts. All three data
sets (train, validate, and test) are drawn from an identical
parent population. When distribution shifts are involved
(usually the labeled data are the best data, or the earliest,
or the easiest to obtain), these kinds of problems only get
worse.

Related to that: The most interesting aspect of this problem
is that there is no wrong bias: The bias introduced from the
training set is a correct bias; the training set represents a
prior that accords with our beliefs about the test set. And
yet the population-level inference is biased. The averaging
of points shown by the X-shaped symbols in Figure 1 is a
simple misuse of the regression outputs: The averaging of
biased estimates amplifies the statistical significance of the
estimator’s biases. However, it is a misuse that is occurring
repeatedly in astrophysics with catalogs generated by ML
regressions.

Another way to say it is: If you expect your downstream
users to perform populations inferences with your outputs,
you want your outputs to be unbiased. The methods you
choose must be informed by the subjective needs and expec-
tations of your users. ML regressions aren’t appropriate to
the use cases of many downstream users.

All code (including the data-generating code) used in this
toy are available under an open-source license at https:
//github.com/davidwhogg/BadForScience.

15

https://github.com/davidwhogg/BadForScience
https://github.com/davidwhogg/BadForScience

