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ABSTRACT

Large language models (LLMs) have revolutionary impacts on text generation.
Despite their widespread application, LLMs raise significant ethical and security
concerns about potential misuse, such as fake news and malicious content. Wa-
termarking technology is known as a crucial means of distinguishing generated
content and then mitigate misuse. Existing watermarking methods have their re-
spective strengths and weaknesses, but it remains a challenge to achieve a balance
between black-box embedding, unbiased output, and robustness. To address this
limitation, we propose a novel black-box watermarking method called the Sam-
pling and Prioritizing Output method (SPO). Through prioritizing the allocation
of watermarked tokens over non-watermarked tokens, the SPO method maximizes
the number of watermarked tokens within the designated watermarked subspace.
Subsequently, the method randomly samples an output token from this subspace
to effectively embed the watermark. As a black-box approach, the SPO method
does not rely on detailed model parameters for watermark embedding and effec-
tively safeguards intellectual copyrights of LLMs. Extensive experimental results
and theoretical analysis indicate that the SPO method is an unbiased method that
embeds the watermark without compromising the quality of generated content.
Furthermore, it exhibits superior detectability and robustness compared to exist-
ing unbiased watermarking methods. This achievement addresses remarkable ad-
vantages over current unbiased methodologies, providing a possible solution that
adapts better to real-world scenarios.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have advanced at an unprecedented pace (OpenAI,
2023; DeepSeek-AI, 2024). The context generated by these models can even match human-level
quality, making it increasingly challenging to differentiate between machine-generated content and
human-authored content. In addition, the easy accessibility and affordability of these models make it
possible for irresponsible users to exploit them for malicious purposes. Issues such as the generation
of fake news, the creation of malicious content, and even the fabrication of academic papers are
closely linked to the misuse of LLM (Pan et al., 2023; Kim et al., 2024). It is crucial to curb the
potential misuse of such technology by effectively distinguishing between the content generated by
LLMs and that created by humans (Chakraborty et al., 2024; Mitchell et al., 2023) .

Watermarking technology is known as an effective solution to prevent the misuse of LLM (Kirchen-
bauer et al., 2023b; Li et al., 2024; Wu et al., 2023). To date, the main watermarking methods
have their respective pros and cons. For example, the KGW method (Kirchenbauer et al., 2023a)
leverages the bias characteristics of the red-green list, thus achieving robustness and high detectabil-
ity. However, this kind of watermark often degrades the quality of the generated content, which is
classified as a biased method. Subsequently, the unbiased watermarking method (Hu et al., 2024)
is introduced, which selects watermarked tokens by random sampling and maintains the quality of
the generated content. However, the robustness of these unbiased methods is relatively weak, po-
tentially leading to the failure to extract the watermark under attacks. In addition, the researchers
proposed the STA-M method (Mao et al., 2025), a black-box watermarking technique that operates
independently of the details of LLMs such as the probability distribution, making it effective in sce-
narios where detailed model parameters are inaccessible. When hyperparameter M is set to 1, this
method rejects non-watermarked tokens once and yields unbiasedness, but its robustness remains
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Figure 1: The overview of the SPO method. (a) introduces two sequential processes of SPO
method: in process of embedding, sample multiple candidate tokens and allocate them to subspaces

by partitioned subvocabularies. Then output token is randomly sampled from one subspace
corresponding to watermark vocabulary. In process of detection, conduct a Z-test to confirm the
watermark by calculating the number of watermarked tokens. (b) introduces the classification of

watermarking techniques based on three criteria: black-box, unbiased, and robust.

insufficient. In contrast, when M is greater than 1, the method repeatedly rejects and gains improved
robustness at the cost of losing its unbiased feature. As shown in Figure 1, despite achieving spe-
cific goals in particular scenarios, it is clear that existing watermarking methods still fail to achieve
a balance between three criteria: black-box embedding, unbiased output and robustness, which are
commonly required in practical use. Therefore, it is imperative to apply reasonable controls with
a new watermarking method that balances between these criteria, then satisfies the requirements of
practical circumstances.

To address this challenge, we propose an innovative solution called the Sampling and Prioritizing
Output (SPO) method. As shown in Figure 1, this method obtains multiple candidate tokens from
the LLM and allocates them to corresponding subspaces according to randomly divided subvocab-
ularies. Then, a watermark subvocabulary is selected at random to choose the watermark subspace,
from which tokens are sampled as output. We prioritize the allocation of watermarked tokens to wa-
termark subspace over the non-watermarked tokens to maximize the number of watermarked tokens
and construct an extra allocation of superfluous tokens to achieve the unbiased output. In addition,
the embedding of the watermark intrinsically does not rely on the probability of LLMs, meaning
that it is a black-box watermarking method and can effectively safeguard the copyright of model
owners. During the detection phase, the subvocabularies are reconstructed with the watermark key,
and the presence of the watermark is determined by checking the number of tokens included in the
watermark vocabularies.

Our main contributions are summarized as follows.

1. We propose the Sampling and Prioritizing Output (SPO) method, which achieves novel
watermark embedding by maximizing the number of watermarked tokens in subspaces.
The embedding is entirely independent of LLMs’ specific parameters (e.g. probability
distributions), making it a purely black-box watermarking method.

2. The SPO method is an unbiased watermarking technique that maintains the quality of gen-
erated content while also exhibiting strong robustness and excellent detectability, compa-
rable to other unbiased methods.

3. The SPO method is characterized by achieving balance between black-box embedding,
unbiased output, and robust performance, which remain unsolved by current methods. We
hope that this method can significantly promote the application of watermarking techniques
in LLM and address the challenges of complex real-world scenarios.
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2 RELATED WORK

2.1 BIASED WATERMARK

In recent years, many large language model watermarking algorithms have been used for generated
text detection (Kamaruddin et al., 2018; Yoo et al., 2024; Yang et al., 2022). As the first LLM wa-
termark algorithm, the KGW method (Kirchenbauer et al., 2023a) randomly divides the vocabulary
into a red list and a green list, and embeds the watermark by encouraging token generation in the
green list. To reduce the impact on the quality of text generation, the SWEET method (Lee et al.,
2024) uses the entropy of the text to adaptively modify logits. To strengthen the robustness of the
watermark, the UNIGRAM method (Zhao et al., 2024) fixes the division of the red and green list
then embeds the watermark.

2.2 UNBIASED WATERMARK

To avoid damaging the quality of text generation, unbiased watermark algorithms such as δ-reweigt
and γ-reweight (Hu et al., 2024) and DiPmark (Wu et al., 2024) are proposed to maintain the ex-
cepted probability distribution, then achieve unbisaed output. These methods use a reweight algo-
rithm that randomly resets the logits to increase the probability of outputting watermarked tokens to
embed the watermark.

2.3 BLACK-BOX WATERMARK

The black-box watermarking method does not rely on specific model parameters during watermark
embedding. The PLMmark method (Li et al., 2023) establishes a strong link between a digital signa-
ture and trigger words to embed the watermark. The SynthID-Text method (Dathathri et al., 2024)
randomly assigns weights to the sampled tokens and generates watermarked tokens using tourna-
ment sampling efficiently and unbiasedly. The STA-M method (Mao et al., 2025) uses rejection
sampling to randomly divide the vocabulary into green and red lists, refusing to output tokens from
the red list, and resampling to increase the probability of outputting tokens from the green list, thus
embedding the watermark.

3 METHODOLOGY

Definition (Subvocabulary and Subspace) Given the LLM vocabulary V , we divide the vocabulary
into uniform parts, each part being defined as a subvocabulary. For example, V [i] denotes the i-th
part of vocabulary, referred to subvocabulary i. Each subvocabulary has a specific list to storge the
tokens sampled from LLM. We define this list as a corresponding subspace for the subvocabulary
and abbreviate it as “subspace(s)” when referring to multiple subvocabularies.

3.1 VOCABULARY-DIVISION STRATEGY

The prior methods (Kirchenbauer et al., 2023a; Mao et al., 2025) often embed the watermark by
dividing the vocabulary into two parts and choosing one as the watermark vocabulary. Meanwhile,
researchers (Chen et al., 2025) point out that increasing the number of uniform subvocabularies
within a specific range can substantially improve watermark performance in white-box environ-
ments. Inspired by this result, we adopt the strategy of dividing the LLM vocabulary into multiple
uniform subvocabularies and randomly selecting one as the watermark vocabulary. Then we develop
our novel Sampling and Prioritizing Output (SPO) method.

3.2 EMBEDDING BY THE SPO METHOD

As a black-box approach, the SPO method extracts several tokens as candidate tokens from which
the output token is chosen rather than reweights the logits of LLM like white-box methods. To
control the progress of embedding, we introduce two hyperparameters: L, which represents the
number of subvocabularies after partitioning, and N, which denotes the number of tokens sampled
from the LLM before generating the current token. We build L subspaces to classify tokens by their
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Figure 2: An example of generating the token by SPO method. Sample 8 candidate tokens and
partition the vocabulary randomly. Then, 4 uniform subspaces are created, which contains 2 tokens

calculated by N/L. Step 1: The candidate tokens are sequentially allocated to their respective
subspaces. If a subspace is full, the token is placed in a queue. Step 2: tokens are dequeued and
placed into empty positions until all subspaces are filled. Finally, a subvocabulary is randomly

selected and sample a token randomly from the corresponding subspace as output.

subvocabularies, and each subspace contains N/L tokens to ensure that every token can be properly
allocated.

Provided that 8 tokens are sampled and the vocabulary is partitioned into 4 subvocabularies. Ide-
ally, the 8 sampled tokens originate evenly from each of the 4 subvocabularies. In this scenario,
tokens are sequentially allocated to their corresponding subspaces and each subspace is filled. Then,
a vocabulary is randomly selected as the watermark vocabulary, and the corresponding subspace is
chosen for output. This kind of allocation guarantees that the watermarked tokens within the se-
lected subspace can reach their maximum, then successfully embed the watermark. Not only does
it maintain an unbiased nature but also achieves the highest success rate of watermark embedding.
However, this ideal scenario faces a challenge in practical applications. As illustrated in Step 1 of
Figure 2, discrepancies arise where the number of tokens in certain subvocabularies exceeds the ca-
pacity of their respective subspaces; additionally, other subspaces contain fewer tokens than they are
able to accommodate. This issue introduces mismatches and bias when these underfilled subspaces
are selected for output.

To solve this problem, we design a pioneering solution: employing an extra queue to store redun-
dant tokens if a subspace is filled. As shown in Step 2 of Figure 2, after Step 1, if there are empty
positions “None” in any subspace, tokens in the queue are sequentially dequeued and placed in these
positions until the queue becomes empty and all subspaces are filled. Subsequently, a subvocabulary
is randomly selected as the watermark vocabulary, and its corresponding subspace is designated as
the watermark space. Within this subspace, a token is randomly chosen for the final output, which
completes the embedding process of the SPO watermark. This method can retain unbiased charac-
teristics (as proven in Appendix A) and maximize the probability of outputting watermarked tokens
by prioritizing the placement of tokens from each subvocabulary in their corresponding subspaces.
As a result, this enhancement in probability elevates the detectability of the watermark.

3.3 DETECTION BY SPO WATERMARK

The SPO method involves sampling and prioritizing output strategy, which ensures that the number
of watermarked tokens in the corresponding subspace is maximized and increases the likelihood of
outputting tokens from the watermark vocabulary, thus effectively embedding the watermark. In
particular, the partitioning and selection of subvocabularies depend on information like the water-
mark key, rather than on specific model parameters. Consequently, the extraction of SPO watermark
can be performed precisely in a black-box environment.

In watermark detection, we reconstruct the watermark vocabulary using the watermark key to de-
termine whether the current token belongs to the watermark vocabulary. If the token is identified
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Algorithm 1 SPO Embedding Method
Input: LLM M , prompt p, hyperparameter N and L, watermark key k, vocabulary V
Output: generated token x

Obtain token list T containing N candidate tokens from LLM M according to prompt p
Partition L subvocabularies from vocabulary V
Construct subspace list S with L subspaces. Each subspace contains N/L positions
for j = 0, 1, . . . , N − 1 do

Get the index i of token T [j] according to subvocabularies
if S[i] has empty position then

Put T [j] in S[i] sequently
else

Put T [j] in queue
end if

end for
for j = 0, 1, . . . , L− 1 do

if S[j] has empty position then
Dequeue and put in empty position of S[j] subsequently

end if
end for
Select subvocabulary V [w] according to k and sample output token x randomly from corre-
sponding subspace S[w]
return x

as part of the watermark vocabulary, it is reported as a watermarked token. After traversing the
entire text, construct a Z-test to confirm the watermark. Assuming that the number of tokens in the
detected text is n, we build our detection of the watermark on the following null hypothesis (H0): In
the absence of the watermark, the probability that the LLM selects tokens from each subvocabulary
is uniform, 1

L for each subvocabulary. Therefore, under the null hypothesis, the probability that a
token belongs to the watermark vocabulary is 1

L , and the probability that it does not belong is 1− 1
L .

As a result, the number of watermarked tokens W follows a Binomial distribution B(n, 1
L ):

Z =
W − n ·

(
1
L

)√
n ·
(
1
L

)
·
(
1− 1

L

) (1)

where W represents the number of watermarked tokens in the detected text. If the Z-score exceeds
the threshold, the text contains a sufficient number of watermarked tokens, and generating such a
text without knowledge of the watermarking rule is a rare event. This means that the null hypothesis
is rejected, and the text carries a watermark. Conversely, if the null hypothesis is not rejected, the
text does not carry a watermark.

We set the threshold of the Z-test as Zα, and the threshold of W as Wα. The theoretical false positive
rate is calculated as follows:

P (Z > Zα) =

n∑
k=Wα

(
n

k

)(
1

L

)k (
1− 1

L

)n−k

(2)

where Wα = ⌈Zα ·
(
1
L

)
·
(
1− 1

L

)
+N ·

(
1
L

)
⌉

3.4 THEORETICAL ANALYSIS

The SPO method achieves the embedding of the watermark by a clever embedding strategy. How-
ever, similar to other unbiased methods, situations may arise where the token sampled from water-
mark subspace does not belong to the watermark subvocabulary and is not detected as a watermarked
token. Following the analytical framework of existing studies (Chen et al., 2025), we define this
scenario as the “True Negative” (TN), and use the corresponding metric, the “True Negative Rate”
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(TNR), to reflect the detectability of the watermark. Specifically, a lower TNR indicates a greater
number of valid watermarked tokens, thereby enhancing the detectability of the watermark.

To further elaborate, assume that the watermark vocabulary is denoted as w, and its correspond-
ing subspace is Sw, which contains N

L tokens. The occurrence of a True Negative falls into two
scenarios:

1. All tokens within the subspace Sw are completely unrelated to the watermark vocabulary
w. In this case, no valid watermarked token can be generated regardless of the sampling
approach.

2. Part of the tokens within the subspace Sw belong to the watermark vocabulary w, with
i tokens in total of N

L . In this situation, the probability of randomly sampling a valid
watermarked token is i

N
L

.

The sum of the probabilities of these two scenarios represents the theoretical True Negative Rate.
Suppose that the probability of an output token belonging to the watermark vocabulary is Pw (where
0 ≤ Pw ≤ 1), then the theoretical formula for the True Negative Rate (TNR) can be expressed as:

ETNR = E(scenario 1) + E(scenario 2) =

(1− Pw)
N
+

N/L∑
i=1

(
N/L− i

N/L

)(
N

i

)
(Pw)

i
(1− Pw)

N−i (3)

Considering two hyperparameters: N and L, we selectively calculate the excepted true negative rate
under specific conditions and compare it with the result of other methods. Assuming a uniform
probability distribution of the LLM, Pw ∈ [0, 1]. To investigate the impact of hyperparameters, we
set the number of subvocabularies L to {2, 3, 5, 10, 20} and correspondingly set the subspace size
N/L to {1, 2, 3, 4, 5, 6}.
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Figure 3: Impact of exponentially increasing N , on the expected true negative rate under fixed
number of L={2,3,5,10,20}, which represents the number of partitioned subvocabularies. The

vertical axis represents the predicted true negative rate (TNR), while the horizontal axis indicates
the subspace size N/L.

As shown in 3, when N=4 and L=2, the true negative rate becomes 3
10 . Furthermore, setting N=3

and L=3, as well as N=5 and L=5, results in true negative rates of 1
4 and 1

6 , respectively. In addition,
we select three representative watermarking methods for comparison: STA-1 (Mao et al., 2025),
MCmark (Chen et al., 2025) and DiPMark (Wu et al., 2024). According to existing studies, the true
negative rates for the STA-1, Mcmark, and DiPMark methods are 1

3 , 1
4 and 1

4 , respectively. Clearly,
as N and L increase, the SPO method reveals a true negative rate lower than that of other comparison
methods (specifically 1

4 and 1
3 ). This implies that the SPO method has a smaller probability of failure
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in embedding and can detect more valid watermarked tokens during the detection process, ultimately
improving the detectability of the watermark.

So we can conclude that increasing both N and L within a specific range leads to a reduction of the
expected true negative rate, thus enhancing the detectability of the watermark. Detailed analysis is
provided in the appendixA. The subsequent analysis further confirms the superior performance of
our method.

4 EXPERIMENTS

In order to demonstrate the advantages of the SPO method, a series of experiments are carried
out mainly on four key aspects: unbiasedness, robustness, detectability, and applicability study.
Furthermore, we compare the experimental results with those of typical watermarking methods to
highlight the superior and comprehensive performance of the SPO approach. Detailed descriptions
of the experimental configuration and the selection of comparison methods are provided in Appendix
C.

4.1 UNBIASEDNESS

To verify the unbiasedness of the SPO method, we create multiple configurations with different pa-
rameters N and L and carry out comparative analyzes with both unbiased and biased approaches.
Using current experimental conditions (Hu et al., 2024), the results are presented in Table 1. In both
machine translation and text summarization tasks, the generated content with SPO watermark shows
high consistency in machine evaluation metrics compared to the non-watermarked counterpart, with
only minor fluctuations resulting from variations in output length and diversity. The performance
of the SPO method does not show significant differences compared to other unbiased mainstream
methods such as δ/γ-reweight (Hu et al., 2024) and DiPmark (Wu et al., 2024). Furthermore, in
comparative experiments, the biased watermarking method, such as KGW (Kirchenbauer et al.,
2023a), exhibits a significant decrease in generation quality when the bias parameter δ increases,
while the SPO method still maintains stable generation quality in multiple parameter configurations
of N/L. This indicates that the SPO watermarking method is unbiased, and the quality of water-
marked text remains unaffected in practical applications, thus maintaining normal functionality for
users.

Table 1: Performance of different methods on TS and MT. We amplify BERTScore and ROUGE
with a factor of 100

Type Method Machine Translation Text Summarization
BERTScore BLEU BERTScore ROUGE-1 Perplexity

Baseline No watermark 56.2 21.7 32.67 38.65 5.031

Biased KGW (δ=1.0) 55.6 21.3 32.32 38.20 5.229
KGW (δ=2.0) 54.1 19.5 31.21 37.14 6.252

Unbiased

δ-reweight 56.1 21.7 32.71 38.60 5.008
γ-reweight 56.3 21.8 32.77 38.70 5.007

DiPmark (α=0.3) 56.2 21.9 32.73 38.64 5.025

SPO (N=2,L=2) 56.5 22.2 32.78 38.64 5.080
SPO (N=4,L=2) 56.3 22.1 32.64 38.42 5.123
SPO (N=8,L=2) 56.1 21.7 32.62 38.39 5.096

SPO (N=20,L=20) 56.7 22.3 32.37 38.15 5.118

4.2 DETECTABILITY

We systematically evaluate the detectability of the SPO method based on the C4 (Raffel et al., 2020)
dataset by analyzing the true positive rate (TPR). As shown in Table 2, we compare the TPR of
the SPO method with other watermarking methods under fixed FPR settings. The experimental
results indicate that the SPO method exhibits outstanding detectability. When the parameters are
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set to N = 4 and L = 2, the detection performance of the SPO method is comparable to that
of unbiased watermarking methods. Furthermore, when the parameters are changed to N = 20
and L = 20, the result outperforms all existing unbiased watermarking methods, even surpassing
the biased KGW method (Kirchenbauer et al., 2023a). The STA-M method demonstrates superior
detection capabilities and significantly lower statistical p-values; however, these advantages come
at the cost of compromised unbiasedness and potential risks to robustness. In contrast, the SPO
method achieves dynamic optimization of detection performance through flexible parameter tuning,
preserving the essential unbiased nature and thus better meeting practical application requirements.
(see Appendix C for additional experiments).

Table 2: TPR of generated-text detection for different methods under fixed FPR when max-length
of generation is 100

Type Method TPR@FPR=0.1 TPR@FPR=0.05 TPR@FPR=0.01 Average p-value

Biased

KGW (δ=1) 0.847 0.799 0.585 7.25× 10−2

KGW (δ=2) 0.956 0.938 0.868 2.24× 10−2

STA-8 0.998 0.998 0.996 3.92× 10−4

STA-16 1.000 1.000 1.000 6.90× 10−7

Unbiased

STA-1 0.982 0.970 0.878 5.60× 10−3

δ-reweight 0.853 0.820 0.716 2.54× 10−1

γ-reweight 0.937 0.918 0.868 1.04× 10−1

DiPmark (α=0.3) 0.871 0.838 0.866 4.47× 10−2

SPO (N=4,L=2) 0.910 0.853 0.754 2.69× 10−2

SPO (N=20,L=20) 0.986 0.978 0.966 7.80× 10−3

4.3 ROBUSTNESS

Based on the C4 dataset (Raffel et al., 2020), we perform an analysis using common replacement at-
tacks to thoroughly evaluate the robustness of the SPO method. The AUC results of the SPO method
under varying attack strengths are presented in Table 3. In a malicious attack, the δ-reweight (Hu
et al., 2024) method exhibits a substantial decrease in AUC, which compromises the integrity of
watermark extraction. In contrast, the SPO method demonstrates the least degradation in AUC, with
its watermark extraction capability remaining largely intact. This behavior validates the superior
robustness of the SPO method against attacks (see Appendix C for more experiments of robustness
with different attacks). The advantage of robustness comes from the ability of the SPO method to
maximize the probability of outputting watermarked tokens, generating as many watermarked tokens
as possible. Consequently, erasing the watermark requires more extensive modifications to reduce
the p-value below the threshold level. When faced with random modifications, the SPO method
detects the watermark more effectively, showcasing its improved robustness. Although increasing
the hyperparameter L (the number of subvocabularies) may have a negative impact on robustness
(detailed analysis provided in Appendix C), the SPO method still outperforms other unbiased wa-
termarking methods in the experimental setting of N = 20 and L = 20, demonstrating its strong
robustness.

Table 3: AUC of watermark detection under different perturbation strength of replacement attack
and max-length of generation

Method strength=0.0 strength=0.05 strength=0.1 strength=0.2
50 100 200 50 100 200 50 100 200 50 100 200

KGW (δ=1) 0.914 0.945 0.946 0.904 0.935 0.937 0.883 0.920 0.929 0.849 0.896 0.901
KGW (δ=2) 0.980 0.983 0.983 0.975 0.980 0.983 0.969 0.975 0.981 0.942 0.960 0.972

STA-1 0.991 0.991 0.989 0.989 0.988 0.984 0.984 0.984 0.980 0.971 0.965 0.967
δ-reweight 0.864 0.916 0.932 0.796 0.841 0.887 0.686 0.750 0.776 0.592 0.673 0.636
γ-reweight 0.966 0.971 0.981 0.947 0.959 0.975 0.863 0.918 0.945 0.711 0.744 0.829

DiPmark (α=0.3) 0.946 0.956 0.962 0.905 0.927 0.946 0.828 0.873 0.909 0.686 0.738 0.785

SPO (N=20,L=20) 0.996 0.992 0.993 0.994 0.992 0.993 0.993 0.991 0.992 0.989 0.989 0.989
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4.4 BALANCE BETWEEN THREE CRITERIA

The experimental results demonstrate that current watermarking methods exhibit strengths in evalu-
ation. Specifically, the KGW (Kirchenbauer et al., 2023a) method demonstrates superior robustness
and detectability; however, it lacks the ability to achieve black-box embedding and unbiased output.
The DiPmark (Wu et al., 2024) method successfully achieves unbiased output, yet its embedding
process depends on sensitive parameters such as logits. The STA-1 (Mao et al., 2025) method
achieves black-box embedding and unbiased embedding; however, its robustness remains inferior
compared to that of KGW. In contrast, the STA-M (Mao et al., 2025) method effectively improves
robustness but sacrifices the advantage of unbiased output. Notably, existing methods have yet to
achieve a balance between black-box embedding, unbiased output and robustness. In comparison,
the SPO method not only achieves black-box embedding but also surpasses the biased KGW method
in terms of robustness. Although its detectability is slightly inferior to that of the black-box method
STA-M, the SPO method maintains the characteristic of unbiased output, thus effectively balancing
three significant criteria, and better meeting practical requirements.

4.5 APPLICABILITY STUDY

Based on high and low entropy datasets, combined with two models, we systematically evaluate
the detectability of the SPO method across different scenarios. As illustrated in Figure 4, the ex-
perimental results demonstrate not only the excellent performance of the SPO method in various
environments but also provide a comparison result with the mainstream watermarking methods (Hu
et al., 2024; Wu et al., 2024; Kirchenbauer et al., 2023a; Mao et al., 2025). This outcome highlights
the excellent adaptability of the method to diverse environments. In particular, like other methods,
the detectability of the watermark is slightly influenced by the model or dataset. However, the over-
all performance fluctuation of the SPO method remains minimal, ensuring its stability and reliability
(see Appendix C for additional analysis of applicability).
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-reweight
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DipMark( =0.3) SPO
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Model OPT-6.7b and dataset C4
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DipMark( =0.3) SPO
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R@

FP
R=

0.
05

Model OPT-6.7b and dataset PubMedQA
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Model Deepseek-7b and dataset C4
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Model Deepseek-7b and dataset PubMedQA

Figure 4: Applicability study of SPO method. We choose OPT-6.7b and Deepseek-llm-7b-base as
ouptput model, then report results of TPR@FPR=0.05 on two datasets: C4 and PubMedQA.

5 CONCLUSION

We propose a novel watermarking method named SPO, which maximizes the probability of out-
putting watermarked tokens through sampling and prioritizing output strategy, thus achieving ef-
ficient watermark embedding. As a black-box watermarking technique, this method embeds wa-
termarks without detailed LLM parameters, providing enhanced protection for LLM owners. Ex-
periments demonstrate that the SPO method is unbiased across various tasks and has consistent
performance in detectability and robustness under different conditions. We hope that this method
can be deeply integrated into LLMs, providing innovative solutions for copyright protection and
misuse prevention, thereby advancing the secure and widespread adoption of LLMs.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Souradip Chakraborty, Amrit Bedi, Sicheng Zhu, Bang An, Dinesh Manocha, and Furong Huang.
Position: On the possibilities of AI-generated text detection. In Proceedings of the 41st Inter-
national Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 6093–6115. PMLR, 21–27 Jul 2024.

Ruibo Chen, Yihan Wu, Junfeng Guo, and Heng Huang. Improved unbiased watermark for large
language models, 2025. URL https://arxiv.org/abs/2502.11268.

Sumanth Dathathri, Abigail See, Sumedh Ghaisas, Po-Sen Huang, Rob McAdam, Johannes Welbl,
Vandana Bachani, Alex Kaskasoli, Robert Stanforth, Tatiana Matejovicova, Jamie Hayes, Nidhi
Vyas, Majd Al Merey, Jonah Brown-Cohen, Rudy Bunel, Borja Balle, Taylan Cemgil, Zahra
Ahmed, Kitty Stacpoole, Ilia Shumailov, Ciprian Baetu, Sven Gowal, Demis Hassabis, and
Pushmeet Kohli. Scalable watermarking for identifying large language model outputs. Na-
ture, 634(8035):818–823, 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-08025-4. URL
https://doi.org/10.1038/s41586-024-08025-4.

DeepSeek-AI. Deepseek-v3 technical report. arXiv, abs/2412.19437, 2024.
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A APPENDIX OF THEORETICAL ANALYSIS

A.1 ANALYSIS OF EXPECTED TRUE NEGATIVE RATE

As shown in Figure 3, when the number of candidate tokens N unchanged, increasing the L leads to
a decrease in the expected true negative rate, which is reflected in the overall downward change in
the curve. For example, when the subspace size N/L is 1, the true negative rate corresponding to N=2
is 1

3 , while for N=10, the true negative rate decreases to 0.091. When N=20, the true negative rate
decreases further to 0.048. This result indicates that increasing L significantly enhances detectability
under fixed N.

Furthermore, when the number of subvocabularies L is fixed, increasing the N also results in a de-
crease in the true negative rate. The curve illustrates that as N increases, the expected true negative
rate consistently decreases, a trend observed in the five experimental sets. This feature aligns with
the advantage of black-box embedding methods over white-box methods: black-box methods can
sample multiple tokens at one time, whereas white-box methods typically sample a single token and
use it as output. For example, the STA-M (Mao et al., 2025) method can obtain multiple candi-
date tokens by rejecting the sampled token to select the final watermarked token, while Synthid-text
(Dathathri et al., 2024) uses random sampling on multiple tokens to determine the output result. We
further optimize this process in the SPO method by sampling multiple candidate tokens and catego-
rizing them into corresponding subspaces based on their associated subvocabulary, thus achieving
prioritization output of watermarked tokens. This mechanism demonstrates the theoretical superior-
ity of the SPO method and improves the detectability of the watermark.

In summary, within a certain range, increasing the value of hyperparameter L reduces the expected
false positive rate. Similarly, when L is fixed, raising the value of N also reduces the expected
false positive rate, thus improving the detectability of the watermark. However, excessive increases
in N without careful consideration will incur additional computational overhead and decrease the
efficiency of generation. Besides, elevating L can undermine the robustness of the watermark. A
comprehensive analysis of these trade-offs is presented in the following sections.

A.2 THEORETICAL ANALYSIS OF UNBIASEDNESS

Inspired by McMark (Chen et al., 2025), Synthid-text (Dathathri et al., 2024), and STA (Mao et al.,
2025), we creatively propose the SPO method. It maintains excellent robustness and detectability
while still being unbiased; additionally, the embedding and extraction processes are entirely kept
in a black-box environment. This represents the primary advantage of the SPO method: it can
simultaneously achieve black-box embedding, unbiased output, and robust performance. We also
theoretically analyze how the SPO method achieves the key metric of unbiasedness, which serves as
supplement to our unbiased evaluation experiments.

According to existing study (Hu et al., 2024), an unbiased watermark method requires that the ex-
pected probability of token after embedding the watermark must be equal to the original probability
distribution, that is, given context x0:i−1, prompt p and key k, for any generation step 0 < i <= n,
if the watermarked model PM,w satisfies the following equation:

PM (xi | x0:i−1) = Eθi∼PΘ
[PM,w (xi | x0:i−1, θi) , p] (4)

Then the watermarking method is unbiased.

Let the vocabulary be denoted as V , divided into L subvocabularies, marked sequentially. The m-th
subvocabulary can be denoted as V[m], with a corresponding probability pm (pm ∈ [0, 1]). As
shown in Figure 5, during the embedding process, the following three scenes may occur:

Scene 1: The watermark subspace is filled with watermarked tokens.

Scene 2: The watermark subspace is partially filled with watermarked tokens, with a quantity of i
(0 < i < N/L).

Scene 3: The watermark subspace is filled with non-watermarked tokens.

12
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········

Scene 1
𝑵

𝑳

········

Scene 2
𝑵

𝑳

········

Scene 3
𝑵

𝑳

Watermarked tokens

Non-Watermarked tokens

Figure 5: Three scenes of token distribution. To simplify the process, we set the watermark subspace
to be left-aligned and use a blue dashed line to annotate the watermark subspace, meaning all areas to
the left of the dashed line are used as the watermark subspace. Beside, we choose green to represent
watermarked tokens and red to represent non-watermarked tokens.

Let token j represent a randomly selected token from the vocabulary, with a corresponding proba-
bility pj (pj ∈ [0, 1]). Considering the randomness of vocabulary partitioning, the probability that j
belongs to any subvocabulary is uniformly 1/L.

To validate the unbiasedness of the method, we first consider a special case where N = 2 and
L = 2. In this setting, two tokens are sampled and divided into two subvocabularies v1 and v2, with
corresponding probabilities p1 and p2. Each subspace has a capacity of 1, which means that the
probability of Scene 2 is 0, so we only take Scene 1 and Scene 3 into account for the analysis.

When token j belongs to the watermark vocabulary, Scene 1 arises and there are three possible cases
as illustrated in Figure 6:

j j

j j

j

j j

j

j

j

j

Case 3

j

Case 1 Case 2

Watermarked 
tokens

Non-watermarked 
tokens

Figure 6: Assume that N=2,L=2. When token j belongs to the watermark vocabulary, there are three
cases. Note that in Case 2, the position of token j influences the output result. However, under the
conditions of Case 3, since j is a watermarked token, it can be prioritized in the watermark subspace
regardless of the order in candidate list, making the output result independent of the sequence.

Case 1: Both candidate tokens are j, resulting in probability of outputting j is 1.

Case 2: One token is j, and the other is a different watermarked token (not j), resulting in the
probability of outputting j is 1

2 .

The SPO method adopts a sequential traversal approach; If the token j is at the front of the sequence,
it will be included in the watermark subspace and output. In contrast, if the token j is in the back,
it will not be allocated to the watermark subspace and output. When two tokens are sampled, the

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

j j

j j

j

j

j

j

Non-watermarked tokens

Case 1 Case 2

Figure 7: Assume that N=2,L=2. When token j does not belong to the watermark vocabulary, there
are two cases. Note that in Case 2, the position of token j influences the output result.

probability that token j is in the front or back is equally, and each probability is 1
2 . So, the the

probability of outputting j is 1
2 in this case.

Case 3: One token is j, and the other is a non-watermarked token, resulting in the probability of
outputting j being 1.

Under the condition of Case 3, since j is a watermarked token, it will be prioritized in the watermark
subspace regardless of the order. So, the output of outputting token j is independent of the sequence.

When token j belongs to the watermark vocabulary, Scene 3 appears and the probability of out-
putting j is 0.

According to the analysis, when token j belongs to the watermark vocabulary, the total probability
of outputting j is calculated as:(

2

2

)
· p2j +

1

2
·
(
2

1

)
· pj · (pw − pj) +

(
2

2

)
· pj · (1− pw) = pj · (2− pw) (5)

Then we calculate the probability of outputting j when token j does not belong to the watermark
vocabulary. In this situation, Scene 1 and Scene 3 arise, respectively.

For Scene 1, the probability of outputting j is 0.

For Scene 3, there are two possible cases, as shown in Figure 7:

Case 1: Both candidate tokens are j, the probability of outputting j is 1.

Case 2: One token is j, and the other is a non-watermarked token (not j), the probability of out-
putting j is 1

2 .

Hence, when the token j does not belong to the watermark vocabulary, the total probability of
outputting j is calculated as:(

2

2

)
· p2j +

(
2

1

)
· 1
2
· pj · (1− pw − pj) = pj · (1− pw) (6)

When embedding the watermark, the expected probability of outputting token j is :

1

2
· pj(2− pw) +

1

2
· pj(1− pw) =

1

2
· pj · (3− 2pw) (7)

Considering that the watermark vocabulary is randomly selected, with equal probability of choosing
v1 or v2 as the watermark vocabulary and p1 + p2 = 1, the overall probability of outputting a
watermarked token is: pw = 1

2p1 +
1
2p2 = 0.5. Thus, the expected probability of outputting token

j is:

1

2
· pj · (3− 2 · 0.5) = pj

It is evident that the expected probability of outputting token j after embedding the watermark is
consistent with that without embedding (both pj). This result implies that the SPO method preserves
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the output probability of any token j as expected after watermark embedding, further verifying the
unbiased nature of this method when N = 2 and L = 2.

Now, let us extend this study to verify that our method remains unbiased when N and L are arbitrary
integers and N

L is a positive integer.

Assuming that N
L = 1, we set the number of tokens j in the candidate tokens as i (0 ≤ i ≤ N ) and

the number of watermarked tokens as m (0 ≤ m ≤ N ). Similarly, each subspace has a capacity of
1, which means that the probability of Scene 2 is 0, so we simply use Scene 1 and 3 for analysis.

j j ········

Scene 1

j j j ········

Scene 3

Watermarked tokens

Non-Watermarked tokens
m

i

Figure 8: Assume that N
L = 1. When token j belongs to the watermark vocabulary, there are two

scenes of token distribution.

In Figure 8, we illustrate these two cases in detail. When token j belongs to the watermark vocabu-
lary, Scene 3 appears, m = 0 and the probability of outputting j is 0.

When token j belongs to the watermark vocabulary and Scene 1 appears, m ≥ 1, the watermark
subspace is randomly filled with watermarked tokens. The probability of selecting and outputting j
from m watermarked tokens is i

m . The probability of outputting j is given by:

N∑
m=1

(
i

m
·
[(

N

m

)
· pmw · (1− pw)

N−m

]
·

m∑
i=1

(
m

i

)
·
(
pj
pw

)i

·
(
pw − pj

pw

)m−i
)

(8)

j j ········

Scene 1

j j j ········

Scene 3

Watermarked tokens

Non-Watermarked tokens

N

i

Figure 9: Assume that N
L = 1. When token j does not belong to the watermark vocabulary, there

are two scenes of token distribution.

Then we need to analyze two scenes where the token j does not belong to the watermark vocabulary,
as shown in Figure 9.

When token j does not belong to the watermark vocabulary, Scene 1 appears and the probability of
outputting j is 0.

When token j does not belong to the watermark vocabulary, Scene 3 appears, m = 0 and the
watermark subspace is randomly filled by no-watermarked token. The probability of selecting j
from N non-watermarked tokens is i

N , the probability of outputting j is:

(1− pw)
N ·

N−m∑
i=1

i

N
·
(
N −m

i

)
·
(

pj
1− pw

)i

·
(
1− pw − pj

1− pw

)N−m−i

(9)
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The expected probability of outputting token j is calculated as:

N∑
m=1

(
i

m
·
[(

N

m

)
· pmw · (1− pw)

N−m

]
·

m∑
i=1

(
m

i

)
·
(
pj
pw

)i

·
(
pw − pj

pw

)m−i
)

+ (1− pw)
N ·

N−m∑
i=1

i

N
·
(
N −m

i

)
·
(

pj
1− pw

)i

·
(
1− pw − pj

1− pw

)N−m−i
(10)

Let G(z) =
∑m

i=0 z
i ·
(
m
i

)
· pi1 · (p2 − p1)

m−i = (p1 · z + (p2 − p1))
m. Taking the derivative and

setting z = 1, we get: G′(1) = m · p1 · (p2)m−1

As a result,
m∑
i=0

i ·
(
m

i

)
· pi1 · (p2 − p1)

m−i = m · p1 · (p2)m−1 (11)

Let p1 =
pj

pw
and p2 − p1 =

pw−pj

pw
.

m∑
i=1

i ·
(
m

i

)
·
(
pj
pw

)i

·
(
pw − pj

pw

)m−i

= m · pj
pw

· 1m−1 (12)

Similarly,

N−m∑
i=0

i ·
(
N −m

i

)
·
(

pj
1− pw

)i

·
(
1− pw − pj

1− pw

)N−m−i

= (N −m) · pj
1− pw

· 1N−m−1

(13)

Substituting these results back, we get the expected probability of outputting token j as:

1

N
·

N∑
m=1

(
1

m
·
(
N

m

)
· pmw · (1− pw)

N−m ·m · pj
pw

)
+

(
1− 1

N

)
· pj
1− pw

· (1− pw)
N (14)

It can be reduced to the following.

pj
N

·
N∑

m=1

(
N

m

)
· pm−1

w · (1− pw)
N−m +

(
1− 1

N

)
· pj · (1− pw)

N−1 (15)

Considering that the selection of the watermark vocabulary is completely random, we have pw =∑L
i=1 pi ·

1
N = 1

N . Substituting this, we obtain the following:

pj ·

(
N∑

m=0

[(
N

m

)
· pmw · (1− pw)

N−m

]
− (1− pw)

N

)
+ pj · (1− pw)

N = pj

The expected probability of outputting token j after embedding the watermark is also consistent
with that without embedding (both pj) in this setting. This result demonstrates that the SPO method
remains unbiased under conditions N/L = 1, regardless of N and L.

Finally, we try to prove that the SPO method is unbiased in any reasonable hyperparameter settings.
Assuming that N

L is an integer greater than 1, we analyze the excepted probability of outputting
token j. The output tokens are made up of i token j (0 ≤ i ≤ N ) and m watermarked tokens
(0 ≤ m ≤ N ).

We analyze the situation that token j belongs to the watermark vocabulary, which contains three
scenes as illustrated in Figure 10.
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j j j ·······

Scene 1 m

j ·······

Scene 2

·······

Scene 3

Watermarked tokens

Non-Watermarked tokens

m

i

i

N

Figure 10: When token j belongs to the watermark vocabulary, there are three scenes of token
distribution.

When token j belongs to the watermark vocabulary, Scene 1 appears, m ≥ N
L and the watermark

subspace is randomly filled by watermarked tokens. The probability of selecting and outputting j
from m watermarked tokens is i

m . The overall probability of outputting j is given by:

N∑
m=N

L

(
1

m
·
(
N

m

)
· pmw · (1− pw)

N−m ·
m∑
i=1

i ·
(
m

i

)
·
(
pj
pw

)i

·
(
pw − pj

pw

)m−i
)

(16)

When token j belongs to the watermark vocabulary, Scene 2 appears, m<N
L , the watermark sub-

space is randomly filled by m watermarked tokens and N
L − m non-watermarked tokens. The

probability of selecting watermarked tokens is m
N
L

, and the probability of selecting j among them

remains i
m . Thus, the probability of outputting j is:

N
L −1∑
m=1

(
1
N
L

·
(
N

m

)
· pmw · (1− pw)

N−m ·
m∑
i=1

i ·
(
m

i

)
· pj
pw

)i

·
(
pw − pj

pw

)m−i
)

(17)

When token j belongs to the watermark vocabulary, Scene 3 appears, m = 0 and the probability of
outputting j is 0.

So, when token j belongs to the watermark vocabulary, the expected probability of outputting j is:

N∑
m=N

L

(
1

m
·
(
N

m

)
· pmw · (1− pw)

N−m ·
m∑
i=1

i ·
(
m

i

)
·
(
pj
pw

)i

·
(
pw − pj

pw

)m−i
)
+

N
L −1∑
m=1

(
1
N
L

·
(
N

m

)
· pmw · (1− pw)

N−m ·
m∑
i=1

i ·
(
m

i

)
·
(
pj
pw

)i

·
(
pw − pj

pw

)m−i
) (18)

Setting p1 =
pj

pw
and p2 − p1 =

pw−pj

pw
, we have:

m∑
i=1

i ·
(
m

i

)
·
(
pj
pw

)i

·
(
pw − pj

pw

)m−i

= m · pj
pw

· 1m−1 (19)

Substituting these results back, the expected probability of outputting token j becomes:

pj
pw

·
N∑

m=N
L

(
N

m

)
· pmw · (1− pw)

N−m +
pj
pw

· L
N

·
N
L −1∑
m=1

m ·
(
N

m

)
· pmw · (1− pw)

N−m (20)
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Simplifying further:

pj
pw

·

(
N∑

m=N
L

(
N

m

)
· pmw · (1− pw)

N−m +
L

N
·

N
L −1∑
m=1

m ·
(
N

m

)
· pmw · (1− pw)

N−m

)
(21)

j j ······j j j

Scene 1 m

j j j ·······

Scene 2

j j j ·······

Scene 3

Watermarked tokens

Non-Watermarked tokens

N-m

i

i

N

i

Figure 11: When token j does not belong to the watermark vocabulary, there are three scenes of
token distribution.

Then come to the situation that token j does not belong to the watermark vocabulary with three
scenes in Figure 11.

When token j does not belong to the watermark vocabulary, Scene 1 appears and the probability of
outputting j is 0.

When token j does not belong to the watermark vocabulary, Scene 2 appears, m<N
L and the water-

mark subspace is randomly filled by m watermarked tokens and N
L −m non-watermarked tokens.

The probability of selecting non-watermarked tokens is
N
L −m

N
L

, and the probability of selecting j

among them remains i
N−M . The probability of outputting j is given by

N/L−1∑
m=1

(
N/L−m

N/L
·
(
N

m

)
· pmw · (1− pw)

N−m ·
N−m∑
i=1

i

N −m
·
(
N −m

i

)
·
(

pj
1− pw

)i

·

(
1− pw − pj

1− pw

)N−m−i
)

(22)

When token j does not belong to the watermark vocabulary, Scene 3 appears, m = 0 and the
watermark subspace is randomly filled by N

L non-watermarked tokens. The probability of selecting
j from N non-watermarked tokens is i

N . The probability of outputting j is

(1− pw)
N · 1

N
·

N∑
i=1

i ·
(
N

i

)
·
(

pj
1− pw

)i

·
(
1− pw − pj

1− pw

)N−i

(23)

The preceding equation may be rewritten as

0∑
m=0

(
N/L−m

N/L
· 1

N −m
·
(
N

m

)
· pmw · (1− pw)

N−m·

N−m∑
i=1

[
i ·
(
N −m

i

)(
pj

1− pw

)i(
1− pw − pj

1− pw

)N−m−i
]) (24)
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When token j does not belong to the watermark vocabulary, the expected probability of outputting
token j is calculated as

N/L−1∑
m=1

(
N/L−m

N/L
·
(
N

m

)
· pmw · (1− pw)

N−m ·
N−m∑
i=1

i

N −m
·
(
N −m

i

)
·
(

pj
1− pw

)i

·

(
1− pw − pj

1− pw

)N−m−i
)

+

0∑
m=0

(
N/L−m

N/L
· 1

N −m
·
(
N

m

)
· pmw · (1− pw)

N−m·

N−m∑
i=1

[
i ·
(
N −m

i

)
·
(

pj
1− pw

)i

·
(
1− pw − pj

1− pw

)N−m−i
])

(25)

It can simplify to

N/L−1∑
m=0

(
N/L−m

N/L
· 1

N −m
·
(
N

m

)
· pmw · (1− pw)

N−m·

N−m∑
i=1

[
i ·
(
N −m

i

)
·
(

pj
1− pw

)i

·
(
1− pw − pj

1− pw

)N−m−i
]) (26)

We similarly derive
∑N−m

i=0

(
N−m

i

) ( pj

1−pw

)i
‘
(

1−pw−pj

1−pw

)N−m−i

· i = (N −m) · pj

1−pw
· 1N−m−1

Substituting this result, we obtain

pj
1− pw

·
N/L−1∑
m=0

N/L−m

N/L
·
(
N

m

)
· pmw · (1− pw)

N−m (27)

In summary, the expected probability of outputting token j is calculated as

1

N
· pj
pw

·
N∑

m=N/L

(
N

m

)
· pmw · (1− pw)

N−m+

1

N
· pj
pw

· L
N

N/L−1∑
m=1

m ·
(
N

m

)
· pmw · (1− pw)

N−m+

(
1− 1

N

)
· pj
1− pw

·
N/L−1∑
m=0

N/L−m

N/L
·
(
N

m

)
· pmw · (1− pw)

N−m

(28)

Considering that the watermark vocabulary is chosen completely at random, pw, the probability of
outputting a watermarked token is calculated by

∑L
i=1 pi ·

1
N = 1

N , the equation simplifies to

pj ·
N∑

m=N/L

(
N

m

)
·
(

1

N

)m

·
(
1− 1

N

)N−m

+

pj ·
L

N
·

N∑
m=N/L

m ·
(
N

m

)
·
(

1

N

)m

·
(
1− 1

N

)N−m

+

pj ·
N/L−1∑
m=0

N/L−m

N/L
·
(
N

m

)
·
(

1

N

)m

·
(
1− 1

N

)N−m

(29)
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This further simplifies to

pj ·

[
N∑

m=N/L

(
N

m

)
·
(

1

N

)m

·
(
1− 1

N

)N−m

+

N/L−1∑
m=0

(
N

m

)
·
(

1

N

)m

·
(
1− 1

N

)N−m
]
+

pj ·
L

N
·

[
N/L−1∑
m=1

m ·
(
N

m

)
· pmw · (1− pw)

N−m −
N/L−1∑
m=0

m ·
(
N

m

)
·
(

1

N

)m

·
(
1− 1

N

)N−m
]

(30)

The combined terms within the first set of brackets form a collectively exhaustive events with a value
of 1, while the terms in the second set of brackets cancel each other out, yielding a value of 0. When
embedding the watermark, the expected probability of outputting token j is

pj · 1 + pj · 0 = pj

The above theoretical analysis demonstrates that regardless of the hyperparameters N and L, the
expected probability of outputting token j remains consistent before and after the embedding of
the watermark (both pj). This fully corroborates the unbiased nature of the proposed SPO method.
Although existing biased watermarking methods exhibit superior detectability and robustness, they
might greatly degrade the quality of LLM’s output, leading to a decrease in users’ satisfaction and
limiting widespread adoption of this kind of watermarking method.

B APPENDIX OF ALGORITHM

B.1 IMPROVED EMBEDDING ALGORITHM FOR SPO METHOD

Despite that the SPO method achieves black-box embedding, unbiased output, and strong robust-
ness, with overall performance exceeding typical watermarking methods, it still has certain limita-
tions: the relatively time-consuming embedding process. The SPO method effectively addresses the
issue of watermark embedding by prioritizing the allocation of watermarked tokens. However, the
efficiency of this method remains less than ideal, mainly due to the following two factors: prior to
each embedding operation, the SPO method requires two rounds of traversal over candidate tokens
to generate watermark subspace. The efficiency of this process is greatly influenced by the size
of the vocabulary and the number of candidate tokens, N. It is negligible for the growth of time
consumption for models with smaller vocabulary (e.g., an OPT model with 50,267 tokens), but the
process becomes more time-consuming for models with larger vocabularies, leading to a certain
degree of reduction in output efficiency.

To optimize the watermark embedding process, we propose the following two cases based on the
characteristic that only the watermark subspace is selected before final output:

Case 1: When there are empty positions in the watermark subspace after the first round of allocation
(Step 1 in Figure 2), a second round of allocation (Step 2 in Figure 2) is required. In this case, tokens
are dequeued from the queue and inserted into the empty positions of the subspace in sequence until
the watermark subspace is filled. Once filled up, the dequeuing process can be terminated and turns
to the process of outputting token immediately.

Case 2: When there are no empty positions in the watermark subspace, even if a second round
allocation is performed, it will not affect the final output result. Therefore, once the watermark
subspace is filled, the allocation process can be terminated, then the process of outputting token is
conducted directly.

In both cases, it is unnecessary to traverse the entire candidate tokens to obtain the required subspace.
Therefore, we implement relevant optimizations in the Algorithm 2. Specifically, we move the
selection of the watermark vocabulary and its corresponding subspace before the traversal of the
candidate tokens to facilitate the early termination of the loop. During the first round of allocation,
we check if the watermark subspace is full; if so, we perceive that Case 1 occurs and terminate the
loop. Similarly, during the second round of allocation, we check if the watermark subspace is full; if
so, we perceive that Case 2 occurs and terminate the loop. After that, sample the output token from
the watermark subspace directly to finish the embedding process.
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Algorithm 2 Improved SPO Embedding Method
Input: LLM M , prompt p, hyperparameter N and L, watermark key k, vocabulary V
Output: generated token x

Obtain token list T containing N candidate tokens from LLM M according to prompt p
Partition L subvocabularies from vocabulary V
Construct subspace list S with L subspaces. Each subspace contains N/L positions
Select subvocabulary V [w] as watermark list according to k
for j = 0, 1, . . . , N − 1 do

if S[w] has no empty position then
break

end if
Get the index i of token T [j] according to subvocabularies
if S[i] has empty position then

Put T [j] in S[i] sequently
else

Put T [j] in queue
end if

end for
for j = 0, 1, . . . , L− 1 do

if S[w] has no empty position then
break

end if
if S[j] has empty position then

Dequeue and put in empty position of S[j] subsequently
end if

end for
Sample output token x randomly from corresponding subspace S[w]
return x

These improvements significantly enhance the efficiency of the watermark embedding process, re-
ducing the expected embedding time by approximately 50% compared to the original SPO methods,
thereby improving the overall performance of the watermarking algorithm. However, these opti-
mizations do not alter the inherent time complexity, which is fundamentally determined by the na-
ture of the watermark embedding algorithm. Future research will focus on developing more efficient
and straightforward embedding methods to further optimize the prioritization process.

B.2 DETECTION ALGORITHM FOR SPO METHOD

Algorithm 3 SPO Detection Method
Input: text x0:n, watermark key k, vocabulary V , threshold Zα

1: Initialize W=0
2: for Index i = 1, 2, . . . , n do
3: Select watermark vocabulary V [w] according to k
4: if xi ∈ V [w] then
5: W ++
6: end if
7: end for
8: Calculate Z-score according to W and L by Equation 1
9: if Z-score < threshold Zα then

10: Report no watermark
11: else
12: Report Watermarked
13: end if
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C APPENDIX OF EXTRA EXPERIMENTS

C.1 SETTINGS AND DATASETS

Roubustness We gather 1,000 questions from the C4 (Raffel et al., 2020) dataset and use them as
prompts. Then we choose the OPT-6.7B (Zhang et al., 2022) model and set the sampling method as
top-K=50 to generate datasets. The maximum generation length for each text is set to 50, 100, and
200 respectively. We use a random perturbation parameter ϵ to create datasets subjected to different
attack strengths and choose three types of typical attacks: addition, deletion, and replacement. For
example, the addition dataset with ϵ = 0.1 means 10% of tokens is under malicious attack.

Unbiasedness We follow the same evaluation process (Hu et al., 2024) to show the unbiased feature
of our method. We evaluate the performance of SPO with two seq2seq models: machine translation
(MT) and text summarization (TS). For the TS task, our experiment employs the BART-large model
(Liu et al., 2020) as the generator, and the CNN-DM corpus (Hermann et al., 2015) as the test
dataset. The MT task focuses on English-to-Romanian translation and employs the Multilingual
BART (MBart) model (Liu et al., 2020) on the WMT’14 En-Ro corpus dataset.

Detectability We get 1,000 questions from the C4 (Raffel et al., 2020) dataset and use them as
prompts. Then we use the OPT-6.7B (Zhang et al., 2022) model and set the sampling method to
top-K=50 to generate datasets. The maximum generation length for each text is set to 50, 100, and
200 respectively.

Applicability We get 1,000 questions from the C4 dataset (Raffel et al., 2020) and PubMedQA (Jin
et al., 2019) dataset. Then we use the OPT-6.7B (Zhang et al., 2022) and deepseek-llm-7b-base
(DeepSeek-AI, 2024) model and set the sampling method to top-K=50 to generate datasets. The
maximum generation length for each text is set to 100.

Hyperparameter study We prepare 1,000 questions from the C4 (Raffel et al., 2020) dataset. Then
we use the OPT-6.7B (Zhang et al., 2022) and set the sampling method to top-K=50 to generate
datasets. The maximum generation length for each text is set to 100 and the perturbation parameter
ϵ of replacement attack is 0.1.

C.2 BASELINE AND EVALUATION METRICS

Robustness We use four typical watermark methods. For biased KGW (Kirchenbauer et al., 2023a),
we set KGW with γ = 0.5 and δ in {1.0,2.0}. Meanwhile, we use two reweighting methods (Hu et al.,
2024), DiPmark (Wu et al., 2024) with partition parameter α = 0.3 and STA-1 (Mao et al., 2025) as
typical unbiased methods. We report AUC in different attack settings to assess the robustness of the
watermarking method.

Unbiasedness We choose three different watermark methods. For KGW (Kirchenbauer et al.,
2023a), we set hyperparameter γ = 0.5 and δ in {1.0,2.0}. Meanwhile, we use two reweighting
methods (Hu et al., 2024) and another method DiPmark (Wu et al., 2024) with partition parameter
α = 0.3 as typical unbiased methods. We use BLEU, BERTSCORE, ROUGLE-1, and Perplexity to
assess the performance of the watermarking method in different generation tasks.

Detectability We use four typical watermark methods. For biased KGW (Kirchenbauer et al.,
2023a) , we set KGW with γ = 0.5 and δ in {1.0, 2.0}. Then we set STA-M (Mao et al., 2025)
with hyperparameter M in 8, 16 as other biased method. Meanwhile, we use two reweighting meth-
ods (Hu et al., 2024), DiPmark (Wu et al., 2024) with partition parameter α = 0.3 and STA-M (Mao
et al., 2025) with hyperparameter M=1 as typical unbiased methods. We report TPR (True Negative
Rate) under fixed FPR to assess the detectability of the watermarking method.

Applicability Similar to the detectability study, we report TPR (True Negative Rate) under fixed
FPR to assess the applicability of the watermarking method on different datasets and models.

C.3 ADDITIONAL EXPERIMENTS OF ROBUSTNESS

From the perspective of practical application, large-scale modification removes watermarks but
could significantly impact the quality of the text. If the text quality deteriorates substantially after
tampering, even if the attacker successfully removes the watermark, their intended objective remains
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Table 4: Additional experiments of robustness: AUC of watermark detection for different methods
under different perturbation strength of addition attack and max-length of generation

Method strength=0.0 strength=0.05 strength= 0.1 strength=0.2
50 100 200 50 100 200 50 100 200 50 100 200

KGW (δ=1) 0.914 0.945 0.946 0.903 0.935 0.939 0.889 0.929 0.930 0.868 0.907 0.918
KGW (δ=2) 0.980 0.983 0.983 0.976 0.980 0.983 0.971 0.978 0.983 0.958 0.970 0.997

STA-1 0.991 0.991 0.989 0.989 0.989 0.985 0.987 0.985 0.983 0.981 0.978 0.975
δ-reweight 0.864 0.916 0.932 0.807 0.858 0.899 0.720 0.760 0.809 0.611 0.653 0.659
γ-reweight 0.966 0.971 0.981 0.953 0.960 0.975 0.885 0.929 0.957 0.748 0.822 0.884

DiPmark (α=0.3) 0.946 0.956 0.962 0.910 0.932 0.947 0.833 0.888 0.913 0.727 0.872 0.831

SPO (N=20,L=20) 0.996 0.992 0.993 0.993 0.992 0.993 0.991 0.992 0.991 0.990 0.991 0.990

Table 5: Additional experiments of robustness: AUC of watermark detection for different methods
under different perturbation strength of deletion attack and max-length of generation

Method strength=0.0 strength=0.05 strength=0.1 strength=0.2
50 100 200 50 100 200 50 100 200 50 100 200

KGW (δ=1) 0.914 0.945 0.946 0.904 0.939 0.940 0.893 0.926 0.935 0.886 0.907 0.919
KGW (δ=2) 0.980 0.983 0.983 0.978 0.980 0.983 0.972 0.997 0.982 0.961 0.970 0.976

STA-1 0.991 0.991 0.989 0.990 0.988 0.986 0.988 0.986 0.984 0.980 0.977 0.977
δ-reweight 0.864 0.916 0.932 0.803 0855 0.898 0.716 0.795 0.816 0.623 0.666 0.680
γ-reweight 0.966 0.971 0.981 0.948 0.960 0.974 0.874 0.921 0.950 0.717 0.797 0.859

DiPmark (α=0.3) 0.946 0.956 0.962 0.906 0.932 0.945 0.834 0.886 0.915 0.701 0.779 0.805

SPO (N=20,L=20) 0.996 0.992 0.993 0.993 0.992 0.993 0.993 0.991 0.992 0.989 0.990 0.989

challenging to achieve. From the standpoint of model usage, the ownership of model-generated con-
tent, particularly modified text (e.g., AI-assisted creation), remains uncertain. Therefore, we restrict
the perturbation parameter ϵ in 0.05, 0.1, 0.2, ensuring that the impact on the text remains within an
acceptable range and employ multiple methods for comparison.

To evaluate the robustness of the SPO method, we conduct additional tests on the same dataset.
Table 4 and 5 present the AUC results when faced with common addition and deletion attacks, re-
spectively, alongside comparisons with the mainstream unbiased and biased methods. The results
demonstrate that the SPO method exhibits better robustness under attack, with only a slight decrease
in AUC value. In contrast, the unbiased δ-reweight (Hu et al., 2024) method shows relatively weak
robustness, while DiPmark (Wu et al., 2024) and γ-reweight (Hu et al., 2024) methods, although
improved robustness, still fall short of the KGW (Kirchenbauer et al., 2023a) method. Theoretically,
different generation lengths affect the robustness of watermark, determined by the Z-test detection.
However, in datasets with generation lengths of 50, 100, 200, the robustness of the SPO method
is not significantly compromised. This outcome stems from the approach of prioritizing the allo-
cation to maximize the number of watermarked tokens in watermark subspace, thereby increasing
the success rate of the watermark embedding. Compared to other methods, the SPO method consis-
tently maintains a high AUC by requiring more modified tokens to remove watermarks, effectively
fulfilling its watermark function even under attack.

C.4 ADDITIONAL EXPERIMENTS OF DETECTABILITY

To demonstrate the superior performance of the SPO method, we conduct additional experiments
to evaluate its detectability. We set max-length of generation as 50 and 200, for these settings are
commonly encountered in practical applications, and employ the same models and datasets used
in the former experiments. Table 6 and 7 present the detectability results of the SPO method and
provide comparisons with the mainstream watermarking methods. The experimental results indicate
that the SPO method maintains excellent detectability in different length settings, and variations in
the model and dataset have no significant impact on the performance of the SPO watermark. This
suggests that the SPO method can effectively embed the watermark, fulfilling the requirements of
practical applications.

Furthermore, Table 6 and 7 illustrate the average p-value of the watermarked dataset to investigate
the relationship between p-value and detectability. The results reveal that the SPO method exhibits
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Table 6: Additional experiments of detectability: TPR of generated-text detection for different
methods under fixed FPR when max-length of generation is 50

Type Method TPR@FPR=0.1 TPR@FPR=0.05 TPR@FPR=0.01 Average p-value

Biased

KGW (δ=1) 0.762 0.686 0.412 1.23× 10−1

KGW (δ=2) 0.946 0.924 0.837 3.02× 10−2

STA-8 0.999 0.999 0.999 2.47× 10−4

STA-16 1.000 1.000 1.000 1.82× 10−9

Unbiased

STA-1 0.983 0.973 0.837 7.81× 10−3

δ-reweight 0.747 0.689 0.864 4.29× 10−1

γ-reweight 0.926 0.904 0.864 1.32× 10−1

DiPmark (α=0.3) 0.861 0.735 0.485 3.68× 10−2

SPO (N=4,L=2) 0.912 0.835 0.593 3.36× 10−2

SPO (N=20,L=20) 0.989 0.983 0.966 3.89× 10−3

Table 7: Additional experiments of detectability: TPR of generated-text detection for different
methods under fixed FPR when max-length of generation is 200

Type Method TPR@FPR=0.1 TPR@FPR=0.05 TPR@FPR=0.01 Average p-value

Biased

KGW (δ=1) 0.861 0.805 0.540 5.95× 10−2

KGW (δ=2) 0.959 0.947 0.843 1.82× 10−2

STA-8 0.985 0.974 0.843 6.10× 10−3

STA-16 1.000 0.999 0.998 4.16× 10−5

Unbiased

STA-1 0.987 0.968 0.821 4.72× 10−3

δ-reweight 0.897 0.859 0.809 2.03× 10−1

γ-reweight 0.950 0.941 0.924 7.75× 10−2

DiPmark (α=0.3) 0.918 0.847 0.725 2.98× 10−2

SPO (N=4,L=2) 0.925 0.894 0.779 2.24× 10−2

SPO (N=20,L=20) 0.983 0.980 0.963 7.64× 10−3

a relatively low average p-value, indicating that under the same false positive rate (FPR) conditions,
the probability of detecting watermarks from watermarked text is significantly higher, then ensure
the high detectability of the watermark. Similarly to mainstream watermarking methods, the SPO
method employs the Z-test to achieve detection, which involves statistically analyzing the number
of tokens that meet specific conditions and conducting hypothesis testing based on the theoretical
expectations established during watermark embedding. While KGW (Kirchenbauer et al., 2023a)
and similar methods (Wu et al., 2024) rely on dividing tokens into red and green lists and performing
hypothesis test based on the proportion of these lists, the SPO method, inspired by MCmark (Chen
et al., 2025), uses the proportion of the watermark vocabulary for hypothesis testing. This approach
allows the SPO method to maintain effective detection while allowing the expected proportion of
watermark list detection (reflected as 1

L ) to be freely adjusted via the hyperparameter L. Importantly,
this proportion directly represents the false positive rate, which reflects the probability of detecting
watermarked text but reporting no watermark, thereby ensuring effective watermark embedding.

C.5 ADDITIONAL EXPERIMENTS OF APPLICABILITY STUDY

To validate the applicability of the SPO method under various conditions, we carry out experiments
and evaluate the performance of the SPO method under different settings. As shown in Table 8, 9
and 10, in two models, the SPO method consistently achieves superior performance. Specifically,
for both datasets, the watermarked texts generated by the SPO method maintains a high true positive
rate (TPR) under fixed false positive rates (FPR), outperforming other benchmark methods. Further-
more, the average p-value of the SPO method is consistently and significantly lower than that of the
comparative methods. These results demonstrate the applicability of the SPO method in different
models and datasets. The SPO method not only achieves a high embedding rate but also effectively
performs in generated-text detection tasks, thereby validating its practical applicability in real-world
scenarios.
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Table 8: Additional experiments of applicability on OPT-6.7b model and PubMedQA dataset: TPR
of generated-text detection for different methods under fixed FPR

Method TPR@FPR=0.1 TPR@FPR=0.05 TPR@FPR=0.01 Average p-value

KGW (δ=2) 0.988 0.984 0.969 3.47× 10−3

STA-1 0.993 0.988 0.963 3.22× 10−3

δ-reweight 0.853 0.820 0.716 2.54× 10−1

γ-reweight 0.959 0.936 0.895 9.81× 10−2

DiPmark (α=0.3) 0.940 0.919 0.830 7.33× 10−3

SPO (N=20,L=20) 0.995 0.989 0.986 1.17× 10−3

Table 9: Additional experiments of applicability on Deepseek-llm-7b-base model and C4 dataset:
TPR of generated-text detection for different methods under fixed FPR

Method TPR@FPR=0.1 TPR@FPR=0.05 TPR@FPR=0.01 Average p-value

KGW (δ=2) 0.999 0.995 0.992 4.83× 10−4

STA-1 0.999 0.998 0.988 2.77× 10−4

δ-reweight 0.243 0.161 0.056 9.28× 10−1

γ-reweight 0.808 0.746 0.581 3.66× 10−1

DiPmark (α=0.3) 0.886 0.804 0.659 3.93× 10−2

SPO (N=20,L=20) 1.000 1.000 1.000 8.83× 10−19

C.6 ADDITIONAL EXPERIMENTS OF UNBIASEDNESS

To investigate the impact of the hyperparameters N and L for the SPO method on the unbiased nature
of the output, we design three additional experimental groups: when L=3, set N as 3, 6, 9; when
N=10, L=10; and when N=40, L=40. The core objective of the experiment is to compare the quality
of text embedded by the SPO method with those without a watermark. As shown in Table 11, the
results indicate that regardless of the hyperparameter configuration, the output quality of text with
SPO watermark remains consistent with that of the non-watermarked text. This demonstrates that
the watermarked text can ensure the quality of the output content. Meanwhile, this phenomenon
validates that our SPO method achieves both prioritized watermarked token output and unbiased-
ness in generation. Such unbiased characteristics make the SPO method more suitable for practical
applications, enabling content tracing without affecting the model’s performance while ensuring the
practicality and reliability of the watermarking technology.

C.7 ADDITIONAL STUDY OF HYPERPARAMETER

To systematically investigate the effects of hyperparameters N and L on the performance of the SPO
method, we design experiments in different hyperparameter settings. Considering that both N and L
significantly influence the generation results, we first conduct a study of the impact of L on the per-
formance of watermark with fixed N . We quantify the analysis by reporting the change in the AUC
and average p-value. As shown in Figure 13, as L gradually increased, the AUC of the SPO method
shows a continuous upward trend, indicating that its detectability and robustness are significantly
enhanced. The corresponding average p-value displays a progressively decreasing trend. However,
when L reaches 20, the average p-value shows a slight rebound but remains significantly lower than
that of other L settings (except L = 10). This trend suggests that reasonable enlargement L within
an appropriate range can effectively improve detection performance, although it is important that a
larger L may introduce additional trade-offs.

Next, we conduct experiments on the impact of N on fixed L. As illustrated in Figure 12, when
N gradually increases, the detection performance and robustness of the SPO method demonstrate
a significant improvement trend, consistent with the theoretical analysis presented in Appendix A.
This indicates that increasing N effectively enhances detectability and robustness.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 10: Additional experiments of applicability on Deepseek-llm-7b-base model and PubMedQA
dataset: TPR of generated-text detection for different methods under fixed FPR

Method TPR@FPR=0.1 TPR@FPR=0.05 TPR@FPR=0.01 Average p-value

KGW (δ=2) 0.988 0.983 0.968 5.18× 10−3

STA-1 0.999 0.998 0.993 2.91× 10−4

δ-reweight 0.164 0.116 0.035 9.45× 10−1

γ-reweight 0.491 0.385 0.184 7.70× 10−1

DiPmark (α=0.3) 0.961 0.926 0.840 1.62× 10−2

SPO (N=20,L=20) 1.000 1.000 1.000 1.13× 10−33

Table 11: Additional experiments of unbiasedness: Performance of SPO method on TS and MT
under different hyperparameter settings. We amplify BERTScore and ROUGE with a factor of 100

Type Method Machine Translation Text Summarization
BERTScore BLEU BERTScore ROUGE-1 Perplexity

Baseline No watermark 56.2 21.7 32.67 38.65 5.031

Unbiased

SPO (N=3,L=3) 56.1 21.9 32.70 38.55 5.159
SPO (N=6,L=3) 56.4 21.9 32.72 38.45 5.170
SPO (N=9,L=3) 56.4 22.1 32.59 38.39 5.206

SPO (N=10,L=10) 56.4 22.3 32.51 38.29 4.933
SPO (N=20,L=2) 56.1 21.8 32.66 38.33 5.159
SPO (N=20,L=4) 56.1 21.7 32.60 38.29 4.933

SPO (N=20,L=10) 56.3 22.0 32.32 38.12 4.925
SPO (N=40,L=40) 56.1 22.1 32.65 38.51 4.971

Focusing on the experimental results presented in Figure 13, we perform an exploration from the
perspective of robustness and detectability. As L increases, the number of subvocabularies also in-
creases, leading to a decrease in the theoretical false positive rate. This manifestation is reflected
by the decrease in average p-value and the enhancement of detectability. However, it is crucial to
recognize that the augmentation of L simultaneously results in a theoretical decrease in robustness.
Specifically, under random modification, the probability of erasing a watermarked token can be cal-
culated as 1− 1

L . Consequently, an increase in L inevitably increases the likelihood of a successful
attack. However, the probability of erasing a single token exclusively represents one dimension of
robustness, rather than being comprehensive. The SPO method employs a Z-score detection, where
the watermark verification process depends not only on the success rate of erasing individual water-
marked token but also on the number of valid watermarked tokens and their theoretical embedding
success rate. This mechanism requires a multidimensional analysis of various influencing factors
for robustness, rather than reliance on a single metric.

In conclusion, the configuration of the hyperparameters N and L significantly impacts the perfor-
mance of the SPO method. Theoretically, increasing both N and L enhances detection performance,
but practical applications still require selecting appropriate hyperparameter combinations based on
specific requirements, balancing detectability and robustness.
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Figure 12: Additional experiments of hyperparameter when L=2: Left: AUC of watermark
detection on two different dataset: watermarked dataset and watermarked dataset under

replacement attack (strength=0.1), Right: average p-value of watermarked dataset.
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Figure 13: Additional experiments of hyperparameter when N=20: Left: AUC of watermark
detection on two different dataset: watermarked dataset and watermarked dataset under

replacement attack (strength=0.1), Right: average p-value of watermarked dataset.
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