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ABSTRACT

In this paper, I introduce the retrieval problem, a simple yet common reasoning
task that can be solved only by transformers with a minimum number of layers,
which grows logarithmically with the input size. I empirically show that large lan-
guage models can solve the task under different prompting formulations without
any fine-tuning. To understand how transformers solve the retrieval problem, I
train several transformers on a minimal formulation. Successful learning occurs
only under the presence of an implicit curriculum. I uncover the learned mech-
anisms by studying the attention maps in the trained transformers. I also study
the training process, uncovering that attention heads always emerge in a specific
sequence guided by the implicit curriculum.

Alice lives in Wonderland. [...]
Harry's mother is Alice. [...]
Wizards live with their mothers. [...]
Harry is a wizard. [...]
Where does Harry live?

Harry lives in Wonderland.

Large Language Model

Conditional Retrieval Question

[...] = irrelevant information to ensure full reasoning
           e.g. Mary is a pirate. Aslan lives in Narnia. etc.

A = 7 [...]
B = A [...]
C = B [...]
D = C [...]
What is the value of  D?

The value of  D is 7.

Large Language Model

Retrieval Question

[...] = irrelevant information to ensure full
           retrieval, e.g. H = 2, G = H, etc.

Figure 1: Illustrative examples of retrieval and conditional retrieval questions.

1 INTRODUCTION

How do neural networks solve the tasks that they are trained on? Is there a clear algorithm hiding
behind the millions of unintelligible weights and biases? These are the questions that the field
of mechanistic interpretability tries to answer. If successful, this line of research could lead to a
better understanding of neural networks and the development of AI systems with increased safety,
reliability, and efficiency (Doshi-Velez & Kim, 2017; Olah et al., 2020; Elhage et al., 2021).

Transformers (Vaswani, 2017) have become the dominant architecture in natural language process-
ing, achieving state-of-the-art results on a wide range of tasks (Brown, 2020; Achiam et al., 2023).
Recent interpretability research has successfully uncovered the mechanisms learned by single-layer
(Nanda et al., 2023; Quirke et al., 2023) and two-layer (Olsson et al., 2022) transformers. However,
understanding the mechanisms learned by deeper transformers remains an open problem. Auto-
matic circuit analysis of large language models provides valuable insights about isolated circuits
that span several layers, but such circuits remain not fully understood (Wang et al., 2022; Conmy
et al., 2023). Therefore, understanding the mechanisms of multi-layer transformers is a crucial step
towards understanding state-of-the-art language models.
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2 MY CONTRIBUTION

In this paper, I try to answer the following questions:

Q1. Are there tasks that can be solved only by transformers with a specific depth?
Q2. Are large language models able to solve such tasks without specific fine-tuning?
Q3. What is the mechanism that transformers use to solve the task?
Q4. How does this mechanism emerge during training?

I answer Q1 positively by introducing the retrieval problem, as well as a close variant that I term
the conditional retrieval problem (Section 3). I answer Q2 positively in Section 4 by empirically
showing that large language models can solve both problems without any specific fine-tuning under
multiple prompting formulations. In Section 5, I provide a formal proof that the retrieval problem
requires a minimum number of transformer layers that is logarithmic in the input size.

This suggests that large language models have learned a complex mechanism formed by multiple
stacked attention heads. To elucidate this mechanism (Q3), I train several transformers on a minimal
formulation of the retrieval problem (Sections 6 and 7). In Section 8, by studying the attention maps
in the trained transformers, I uncover multiple possible mechanisms that I term retrieval heads.
Regarding the training process (Q4), I find that retrieval heads emerge only under the presence of an
implicit curriculum and always in a specific sequence (Section 9).

The retrieval problem also has important implications for emergent abilities in large language mod-
els (Wei et al., 2022), which I discuss in Section 10.

3 THE RETRIEVAL PROBLEM

3.1 DEFINITION

The retrieval problem is directly inspired by the induction problem introduced by Olsson et al.
(2022). Given a sequence of tokens . . .ab. . .a, the induction problem requires the model to predict
the token b. I directly extend this formulation by increasing the number of induction steps to D.
Given an input sequence . . .xD−1xD . . . . . . . . .x1x2. . .x0x1. . .x0, the retrieval problem consists
in predicting the token xD. By setting D = 1, we recover exactly the original induction problem.
Throughout this paper, I also refer to the tokens in the retrieval chain using capital letters (i.e., A for
x0, B for x1, C for x2, and so on).

I also propose a more general variant of the retrieval problem, which I term the conditional retrieval
problem, where each retrieval step could depend on multiple previously retrieved values, not just
the last one. For example, given the input sequence . . .xyz. . .ay. . .ax. . .a, predicting the token
z would constitute a conditional retrieval problem. The retrieval steps in the retrieval problem are
perfectly linear, while in the conditional retrieval, they form a directed acyclic graph.

3.2 MOTIVATION

The retrieval problem is implicitly present as a subproblem in many common language tasks such as
working with relations between persons, tracking the evolution of a concept, solving mathematical
and reasoning problems, programming, and many more. Consider the following real-world example
from the Wikipedia article on llamas:

“Llamas are social animals and live with others as a herd. [ . . . ] A cria (from Spanish for ‘baby’) is
the name for a baby llama, alpaca, vicuña, or guanaco. Crias are typically born with all the females
of the herd gathering around.”

An autoregressive language model trying to predict the second occurrence of the word herd (rather
than flock, group, or pack) would need to first retrieve the fact that crias are llamas, and then use it to
retrieve the fact that llamas live in herds. This process is essentially a retrieval problem with D = 2.

From one point of view, the retrieval problem is essentially about working with relations between en-
tities, which is fundamental for language and reasoning. This makes it an ideal testbed for studying
the inner workings of large language models.
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4 LARGE LANGUAGE MODELS

To better illustrate the task and to enable benchmarking of large language models, I propose 5
specific formulations of the retrieval problems: 3 retrieval formulations and 2 conditional retrieval
formulations.

F1. Equations formulation: “a = 3. b = a. c = b. c = ?”
F2. Lives-with formulation: “Alice lives in Switzerland. Bob lives with Alice. Charlie lives

with Bob. David lives with Charlie. Where does David live?”
F3. Kingdoms formulation: “Alice lives in Novaria. Novarians believe in harmonianism. Har-

monianists eat lamb. Lamb contains Zephyrium. Zephyrium causes Chronogy. Who has
Chronogy?”

F4. Functions formulation (conditional retrieval): “f(2) = 3. g = f. a = 2. g(a) = ?”
F5. Relatives formulation (conditional retrieval): “Jane lives in Switzerland. Alex’s mother is

Jane. Engineers live with their mothers. Alex is an engineer. Where does Alex live?”

To ensure that the retrieval problem is not trivially solvable by just finding the noun that fits the
question, I interleave multiple retrieval chains in the same question. This ensures that the model
performs the entire reasoning chain. To facilitate benchmarking, I also ask the model to output the
answer directly without any additional words and I repeat sampling until an acceptable answer is
generated. In Appendix A, I provide examples of the full prompts, correct answers, and acceptable
answers for each formulation.

I test the large language models on 500 randomly generated questions for each formulation. The
results are presented in Figure 2. For the equations formulation, I also measure the accuracy for
different difficulty levels D (number of equations) and I find that large language models can solve
it almost perfectly for D ≤ 5. Great performance is also achieved on the lives-with and kingdoms
formulations with D = 5, as well as on the conditional retrieval formulations functions and relatives.
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Figure 2: Accuracy of large language models on the retrieval and conditional
retrieval problems. Dashed lines indicate the accuracy of random guessing. Full
prompts and benchmarking details are provided in Appendix A.

5 THEORETICAL ANALYSIS OF INFORMATION FLOW

In this section, I theoretically establish that solving the retrieval problem requires a minimum num-
ber of transformer layers that grows logarithmically with the number of retrieval steps D. I model the
information flow between different positions during self-attention under the following simplifying
assumptions:

Assumption 1. During self-attention, a position can only attend to another position if they already
share a piece of information.
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This assumption is motivated by the fact that a position can only attend to another position if their key
and query vectors align. Constructing aligned key-query pairs is only possible if the two positions
already share some information. More precisely, the shared information must be located in the row
spaces of the query and key matrices of the attending and attended positions, respectively.

Assumption 2. When a position attends to another position, it retrieves all the information contained
in the attended position.

This assumption simplifies the analysis by ignoring network capacity limitations. Solving this set-
ting will give us a lower bound on the number of layers required to solve the retrieval problem in the
case of a limited network capacity.

... ...... ... ...x2 x3x3 x1 x2x4 x5 x4 x0 x1 x0 x5

Figure 3: Positions that contain shared information before any trans-
former layers in the case of D = 5. Top edges denote shared token
embeddings. Bottom edges denote shared positional encodings.

Based on this simplified model of the attention mechanism, we can prove the following result:

Theorem 1. The last position in the sequence cannot retrieve the embedding vector xD of the target
token with t transformer layers if t < log3(2D).

This implies that at least log3(2D) transformer layers are required to solve a retrieval problem with
D retrieval steps. Note that this result is a lower bound that does not take into account the limitations
of network capacity, causal masking, or training dynamics. In practice, we can expect the number
of required layers to be even higher.

I defer the complete proof to Appendix B. The intuition behind this result comes from the fact that
the last position in the sequence cannot retrieve the target token xD without retrieving everything
in-between (i.e., x1, x2, . . ., xD−1). However, it is possible to show that the number of retrieved
tokens can grow at most by a factor of 3 after each attention layer, hence the logarithmic growth of
the number of required layers.

6 MINIMAL PROBLEM FORMULATION

In order to better study the mechanism by which transformers solve the retrieval problem, I introduce
a minimal formulation of the retrieval problem with N retrieval chains, D retrieval steps per chain,
and K embedding dimensions. I use N = 4 and K = 4 throughout. Each chain contains D + 1
unique symbols forming D pairs and one query. For every input sequence, each of the N(D + 1)
unique symbols is assigned a K-dimensional vector whose components are sampled i.i.d from a
standard normal distribution.

I create the input sequences by perfectly interleaving the pairs of symbols forming each retrieval
chain, followed by the N query symbols. I randomly shuffle the query vectors. I also shuffle the
input pairs from different chains within the same retrieval step. Finally, I concatenate each token
embedding with a K-dimensional rotary positional encoding (Su et al., 2023). Each input sequence
will contain N(2D + 1) vectors of dimension 2K. The output sequences consist of N vectors, one
for each query token.

7 IMPLICIT CURRICULUM & NUMBER OF LAYERS

I consider two possible formulations: an implicit curriculum (IC) formulation and a non-IC formu-
lation. In the IC formulation, the target vectors have DN dimensions and contain all the tokens
forming each retrieval chain concatenated (except the query token x0). In the non-IC formulation,
the target vectors are K-dimensional and contain only the last token of each retrieval chain, namely
xD.
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My initial experiments suggest that the implicit curriculum (IC) plays a crucial role in the successful
learning of the retrieval problem. To better quantify this effect, I conduct two comprehensive sets of
experiments, one for each formulation (IC and non-IC). For each formulation, I train 64 transformers
with 1 to 8 layers (8 transformers for each number of layers). I plot the final validation loss averaged
across all runs with the same number of layers in Figure 4 (left).

To better understand the connection between the number of layers and the difficulty of the retrieval
problem, I also plot the partial validation loss for each position in the retrieval chains in the IC
formulation (Figure 4, right). I use D = 5 for the IC formulation to better illustrate this connection,
but only D = 3 for the non-IC formulation to illustrate the importance of the implicit curriculum.
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Figure 4: Final validation loss by number of layers, averaged across multiple runs.
Left: IC vs. non-IC formulations. Right: Partial validation loss for each position in
the retrieval chains (IC only).

7.1 TRAINING DETAILS

For each formulation and number of layers, I train 8 transformers following the recipe of Radford
et al. (2019). Each transformer has 8 attention heads per layer and residual streams of size 128. I
train for 10k steps using the Adam optimizer (Kingma, 2014) with a learning rate of 10−3, decoupled
weight decay of 0.1 (Loshchilov, 2017), a batch size of 512, 220 randomly generated training ex-
amples, layer normalization (Ba et al., 2016), no dropout, and mean squared error loss. We measure
the final validation loss by averaging the validation loss over the last 100 training steps.

7.2 RESULTS

First, I observe that the IC formulation is essential for successful learning. In the non-IC formulation,
the transformers fail to learn the retrieval problem even for D = 3, regardless of the number of
layers. I confirm that for 100% of the non-IC runs, the final validation loss is above 0.7.

Second, I empirically confirm the connection between the number of layers and the difficulty of the
retrieval problem. For the IC formulation, the later positions in the retrieval chains (corresponding
to greater D) are more difficult to learn and require more layers.

Third, I find our first hint regarding the emergence of retrieval heads. During training with IC, the
partial losses for earlier positions in the retrieval chains always decrease faster than the partial losses
for later positions. I confirm that in 100% of the IC runs, the partial loss goes below 0.5 for x1 first,
then for x2, and so on. I will further investigate this phenomenon in section 9.

8 REVERSE-ENGINEERING THE CIRCUITS LEARNED

To understand the mechanism learned by transformers to solve the retrieval problem, I train three
transformers (denoted as A, B, and C) with 12 layers and only one attention head per layer on
the retrieval problem with D = 3. I then manually reverse-engineer the circuits learned by the
transformers by studying their attention maps. The uncovered circuits are depicted in Figure 5. I
describe my reverse-engineering process in detail in Appendix E.
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Figure 5: Reverse-engineered circuits from three 12-layer transformers
trained on the retrieval problem with D = 3 and IC.

8.1 TRAINING DETAILS

I follow a similar training recipe as in the previous section. Each transformer has 12 layers, one
attention head per layer, and residual streams of size 128. I train each transformer for 24k steps, a
batch size of 128, and 262k randomly generated training examples (IC).

8.2 RESULTS

I find that transformers A, B, and C achieve a validation mean squared error of less than 0.01. By
studying the attention maps in the trained transformers, I observe that most attention heads do not
perform any useful computation. Only a few attention heads are responsible for the information
flow. Their behavior is easily interpretable (see Appendix C).

I manually reverse-engineer the entire circuits learned by the three transformers, which are depicted
in Figure 5. I perform extensive validations of the circuits using ablations. My reverse-engineering
process is described in detail in Appendix E.

I observe two interesting facts about the reverse-engineered circuits:

i. First, in all three transformers, the first relevant attention head is connecting the first and
second tokens in each input pair, enabling the subsequent attention heads to attend to the
second token in the pair using the value of the first token. This mechanism is highly remi-
niscent of the induction head mechanism (Olsson et al., 2022; Reddy, 2023).

ii. Second, except for the first attention head, the circuits learned by the transformers are very
different. Interestingly, none of the transformers use the minimum number of attention
heads required to solve the retrieval problem for D = 3. All transformers use 4 atten-
tion heads, but it is possible to use only 3 (for example, by combining layers 7 and 11 in
transformer A).

9 EMERGENCE OF ATTENTION HEADS DURING TRAINING

To better understand how the retrieval heads emerge during training, I train a 24-layer transformer
(denoted as Transformer D) on the retrieval problem with D = 4 and IC. I manually reverse-engineer
the circuits learned by Transformer D following the same procedure described in Appendix E. Af-
terward, I measure the attention during training for each attention path in the reverse-engineered
circuit.

9.1 TRAINING DETAILS

I follow a similar training recipe as in the previous sections. Transformer D has 24 layers, one
attention head per layer, and residual streams of size 512. I train for 6400 steps (800 epochs), a
batch size of 256, and 262k randomly generated training examples (IC, D = 4). To speed up the
training and reduce the checkpoint size, I remove the MLPs and reduce the head size to 16.

6



Published as a conference paper at ICLR 2025

0 100 200 300 400 500 600 700 800
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Training and validation loss of Transformer D
Training Loss
Validation Loss

0 100 200 300 400 500 600 700 800
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Validation loss for each position in the retrieval chain
X1 (B)
X2 (C)
X3 (D)
X4 (E)

Figure 6: Loss during training of Transformer D (24 layers) with IC and D = 4.
Left: training and validation loss. Right: partial validation loss for each position
in the retrieval chain.

I save a checkpoint every 10 epochs (80 steps) that I later use to measure the average attention for
each attention path in the reverse-engineered circuit, at each epoch during training, using 32 input
sequences.
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Figure 7: Left: Reverse-engineered circuits of Transformer D.
Right: the epoch when the average attention goes above 0.5 for
each attention path.

9.2 RESULTS

Transformer D achieves a validation mean squared error of 0.031. I plot the training, validation,
and partial validation loss in Figure 6. Using the same reverse-engineering procedure, I uncover a
more complex circuit than before, with multiple paths connecting the same positions (Figure 7, left).
After ablation, the mean squared error increases to 0.045.

For every checkpoint, I measure the average attention for each attention path in the reverse-
engineered circuit. I approximate the attention between checkpoints using linear interpolation. I
display the plots for each attention path in Appendix D. Finally, I show the first epoch when the
average attention goes above 0.5 for each attention path (Figure 7, right).

By analyzing the partial loss curves and the emergence of attention paths, we can make the following
observations:

i. After 450 epochs of slow learning, an induction head that can retrieve token B emerges
abruptly on layers 14 and 21. This drives down the first partial loss.

ii. Quickly after, another attention head emerges on layer 22. This head reuses the induction
head (with slight adjustments) to retrieve token C and drive down the second partial loss.

iii. Finally, two more heads emerge on layers 23 and 24 that reuse heads 14, 21, and 22 to
retrieve tokens D and E, respectively. This drives down the last two partial losses.

iv. Head 24 emerges much later than head 23, possibly due to the greater modifications re-
quired to reuse the existing circuit.
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Together, these observations strongly suggest the following possible explanation for the importance
of the implicit curriculum: The implicit curriculum provides a sequence of increasingly complex
tasks that enables learning the entire retrieval mechanism one head at a time, starting with an
induction head.

10 DISCUSSION ON EMERGENT ABILITIES

The retrieval problem has interesting connections to the emergent abilities of large language models
(Wei et al., 2022). An ability is emergent if it is not present in smaller models but is present in larger
models. Understanding emergence is an important direction because it could potentially allow us
to predict what abilities future models may have, as well as provide new insights into how to train
more capable language models.

The existence of tasks that require a minimum number of layers, such as the retrieval problem,
provides a possible explanation for the emergence of new abilities in large language models. As the
model grows in size, it becomes possible to learn more complex circuits that would be impossible
to learn in smaller models. This unlocks new abilities that were previously unattainable.

10.1 EMERGENT ABILITIES ARE NOT A MIRAGE

Schaeffer et al. (2023) have previously suggested that the emergence of new abilities in large lan-
guage models is just a “mirage” that appears only under nonlinear or discontinuous metrics. My
work provides a very strong counterargument to this claim if we consider the ability of a model
to solve the retrieval problem. A transformer cannot solve the retrieval problem with a specific
difficulty unless it has the minimum number of necessary layers.

10.2 THE IMPLICIT CURRICULUM OF NATURAL LANGUAGE

Is it possible to understand how training on natural language data leads to reasoning abilities? Chan
et al. (2022) previously found that natural language has specific data distributional properties that
enable emergent in-context learning in transformers. Is it possible to achieve a similarly insightful
understanding of the emergence of reasoning abilities in general, not just in-context learning?

The retrieval problem provides a promising avenue for answering this question. In Sections 7 and
9, we saw that retrieval heads can only emerge gradually, one by one, under the presence of an
implicit curriculum that provides a sequence of increasingly complex tasks. This suggests that one
property of natural language data is incredibly important for the emergence of reasoning abilities:
the presence of a very diverse set of tasks with varying levels of difficulty.

11 RELATED WORK

Single-layer transformers. Perhaps the most well-studied setting for single-layer transformers is
the problem of modular addition. Nanda et al. (2023) show that transformers solve modular addition
by arranging the embedding vectors in a circular structure and leveraging the attention mechanism
to perform trigonometric operations. Zhong et al. (2024) extend this work by uncovering other al-
gorithms and embedding structures. Even the training dynamics are beginning to be understood,
with Ding et al. (2024) studying the survival of initial circular representations and my previous work
(Musat, 2024) proposing an effective theory of the training dynamics by modeling the embeddings
as a particle system. Quirke et al. (2023) train a single-layer transformer with three attention heads
on the problem of n-digit integer addition. They find that transformers break down the multi-digit
addition task into parallel, digit-specific streams, using different algorithms for various digit posi-
tions.

Two-layer transformers. By studying two-layer transformers, Olsson et al. (2022) uncover a
mechanism termed induction head that, given an input sequence ab. . . a, can predict b. One pos-
sible use of an induction head is sequence copying, but the authors argue that it can also perform
more high-level functions such as translation. The induction head is formed by two stacked atten-
tion heads. The first head copies into the residual stream of b the value of the previous token a. The
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second head is then able to attend to the token b and copy it into the residual stream of the final
token. Reddy (2023) explains the emergence of the induction head during training by the sequential
learning of three nested logits enabled by an implicit curriculum.

Large language models. Several studies on large language models use automated or semi-
automated methods to isolate circuits that solve a specific task (Conmy et al., 2023; Goldowsky-
Dill et al., 2023). Such circuits often span many layers, but their mechanisms remain not fully
understood (Wang et al., 2022). Attention heads in large language models are often strongly inter-
dependent, which makes it difficult to isolate and understand individual heads (Bricken et al., 2023).
In large language models, even the simple task of greater-than comparison, which could in princi-
ple be solved by a single-layer transformer, is solved by a complex mechanism formed by multiple
attention heads and MLPs (Hanna et al., 2024).

12 CONCLUSION

In this work, I introduced and studied the retrieval problem, a simple task that requires transformers
to retrieve information from multiple positions in the input sequence. I showed that the retrieval
problem requires a certain number of layers to be solved. By training transformers on a minimal
formulation of the task, I found that transformers solve the task using a mechanism that resembles
an induction head. I found that this mechanism emerges gradually with the help of an implicit
curriculum, starting with an induction head and then adding more heads one by one.

Limitations. My analysis of transformers trained on a minimal formulation of the retrieval prob-
lem might not generalize perfectly to large language models. I also do not provide a full explanation
of the training dynamics of transformers on the retrieval problem. Further research is needed to fully
understand the multi-layered circuits learned by large language models and the training dynamics
that enable their learning.

Acknowledgments. I would like to thank the anonymous reviewers for their valuable feedback.
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A RETRIEVAL AND CONDITIONAL RETRIEVAL PROMPTS

Below I provide one complete example for each of the retrieval and conditional retrieval formula-
tions used in the paper. The examples are generated using the same programs used for benchmarking
the large language models. Each example consists of a prompt, a correct answer, and acceptable an-
swers. Acceptable answers are used to filter out incoherent answers by repeatedly sampling from
the model until an acceptable answer is found.

A.1 EQUATIONS FORMULATION (D = 5)

b = 2
c = 3
d = 0
a = 1
e = b
g = a
h = d
f = c
k = e
i = f
l = g
j = h
n = k
p = l
o = i
m = j
q = n
s = p
r = o
t = m
What i s t h e v a l u e o f s ? Say d i r e c t l y on ly t h e numer ic va lue ,

w i t h o u t any o t h e r words .

C o r r e c t : 1
A c c e p t a b l e : 0 , 1 , 2 , 3

A.2 LIVES-WITH FORMULATION (D = 5)

C h a r l i e l i v e s i n C a i r o
David l i v e s i n D e l h i
A l i c e l i v e s i n B e r l i n
Bob l i v e s i n Amsterdam
Henry l i v e s wi th David
Eve l i v e s wi th C h a r l i e
Frank l i v e s wi th A l i c e
Grace l i v e s wi th Bob
Kate l i v e s wi th Grace
L a r r y l i v e s wi th Frank
Jack l i v e s wi th Eve
I s a b e l l e l i v e s wi th Henry
Mary l i v e s wi th Jack
O l i v i a l i v e s wi th I s a b e l l e
Nick l i v e s wi th Kate
P e t e r l i v e s wi th L a r r y
Rose l i v e s wi th P e t e r
Queen l i v e s wi th Nick
Tom l i v e s wi th O l i v i a
Sam l i v e s wi th Mary
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Where does Rose l i v e ? Say d i r e c t l y on ly t h e name of t h e c i t y ,
w i t h o u t any o t h e r words .

C o r r e c t : B e r l i n
A c c e p t a b l e : Amsterdam , B e r l i n , Cai ro , D e l h i

A.3 KINGDOMS FORMULATION

Bob l i v e s i n S i l v a n i a .
A l i c e l i v e s i n Novar i a .
C h a r l i e l i v e s i n Aurora .
David l i v e s i n F l o r i n i a .
S i l v a n i a n s b e l i e v e i n c e l e s t i a n i s m .
N o v a r i a n s b e l i e v e i n harmonian i sm .
Auro rans b e l i e v e i n e l y s i a n i s m .
F l o r i n i a n s b e l i e v e i n lumin ism .
L u m i n i s t s e a t b e e f .
E l y s i a n i s t s e a t pork .
H a r m o n i a n i s t s e a t lamb .
C e l e s t i a n i s t s e a t c h i c k e n .
Beef c o n t a i n s A s t r a l y t e .
Chicken c o n t a i n s Nephryon .
Lamb c o n t a i n s Zephyrium .
Pork c o n t a i n s V i r e l l i u m .
Zephyrium c a u s e s Chronogy .
A s t r a l y t e c a u s e s A e t h e r f l u x .
V i r e l l i u m c a u s e s Somnosis .
Nephryon c a u s e s Synthemia .
Who has Chronogy ? Say d i r e c t l y t h e name w i t h o u t o t h e r words .

C o r r e c t : A l i c e
A c c e p t a b l e : Al i ce , Bob , C h a r l i e , David

A.4 FUNCTIONS FORMULATION (CONDITIONAL RETRIEVAL)

a ( 0 ) = 3
a ( 1 ) = 2
a ( 2 ) = 0
a ( 3 ) = 1
b ( 0 ) = 1
b ( 1 ) = 3
b ( 2 ) = 2
b ( 3 ) = 0
c ( 0 ) = 1
c ( 1 ) = 0
c ( 2 ) = 3
c ( 3 ) = 2
d ( 0 ) = 1
d ( 1 ) = 0
d ( 2 ) = 2
d ( 3 ) = 3
e = b
f = a
g = c
h = d
i = 0
j = 2
k = 3
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l = 1
What i s t h e v a l u e o f f ( i ) ? Say d i r e c t l y on ly t h e numer ic va lue ,

w i t h o u t any o t h e r words .

C o r r e c t : 3
A c c e p t a b l e : 0 , 1 , 2 , 3

A.5 RELATIVES FORMULATION (CONDITIONAL RETRIEVAL)

Penny l i v e s i n Canada .
L i l y l i v e s i n B r a z i l .
I s a b e l l e l i v e s i n F ra nc e .
Cathy l i v e s i n Kenya .
George l i v e s i n I t a l y .
Adam l i v e s i n Mexico .
Kevin l i v e s i n Peru .
Ed l i v e s i n Laos .
Hank l i v e s i n Germany .
Mike l i v e s i n Japan .
J ane l i v e s i n England .
Fred l i v e s i n Hungary .
Dana l i v e s i n Norway .
O l i v i a l i v e s i n Q a t a r .
Bob l i v e s i n Denmark .
Nancy l i v e s i n A r g e n t i n a .
John ’ s mother i s J ane .
John ’ s s i s t e r i s O l i v i a .
John ’ s f a t h e r i s Ed .
John ’ s b r o t h e r i s Mike .
Chr i s ’ s mother i s Penny .
Chr i s ’ s s i s t e r i s Dana .
Chr i s ’ s f a t h e r i s Adam .
Chr i s ’ s b r o t h e r i s George .
Diana ’ s mother i s Nancy .
Diana ’ s s i s t e r i s I s a b e l l e .
Diana ’ s f a t h e r i s Hank .
Diana ’ s b r o t h e r i s Bob .
Eve ’ s mother i s L i l y .
Eve ’ s s i s t e r i s Cathy .
Eve ’ s f a t h e r i s Fred .
Eve ’ s b r o t h e r i s Kevin .
D o c t o r s l i v e wi th t h e i r b r o t h e r s .
Lawyers l i v e wi th t h e i r mo the r s .
T e a c h e r s l i v e wi th t h e i r s i s t e r s .
E n g i n e e r s l i v e wi th t h e i r f a t h e r s .
John works as a d o c t o r .
C h r i s works as an e n g i n e e r .
Diana works as a t e a c h e r .
Eve works as a l a wy e r .
Where does Eve l i v e ? Say d i r e c t l y on ly t h e name , w i t h o u t any o t h e r

words .

C o r r e c t : B r a z i l
A c c e p t a b l e : A r g e n t i n a , B r a z i l , Canada , Denmark , England , France ,

Germany , Hungary , I t a l y , Japan , Kenya , Laos , Mexico , Norway ,
Peru , Q a t a r
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B PROOF OF THEOREM 1 (MINIMUM NUMBER OF LAYERS)

In this section, I provide the complete formal proof for Theorem 1 stated in Section 5. Recall the
two assumptions underlying our simplified model of the attention mechanism:

Assumption 1. During self-attention, a position can only attend to another position if they already
share a piece of information.

Assumption 2. When a position attends to another position, it retrieves all the information contained
in the attended position.

... ...... ... ...x2 x3x3 x1 x2x4 x5 x4 x0 x1 x0 x5

Figure 8: Positions that contain shared information before any trans-
former layers in the case of D = 5. Top edges denote shared token
embeddings. Bottom edges denote shared positional encodings.

Definition 1. Let’s consider all relevant input positions ordered by their reachability from the
last token following the paths of shared information before any attention layers, exactly as de-
picted in Figure 8 (e.g., x0x0x1x1x2x2 . . . ). Let’s denote this sequence of positions as si for
i ∈ {0, 1, . . . , 2D}. In other words, s2k and s2k+1 are the positions of the second and first occur-
rences of xk, respectively. For example, s0 is the last position in the input sequence, s1 is the first
occurrence of x0, s2 is the second occurrence of x1, s2D is the position of the target token xD, and
so on.

Definition 2. Let’s denote as rt,i the residual stream at postition si after layer t. Before any trans-
former layers, the residual stream contains only the token embedding and positional enconding:

r0,i = x⌊i/2⌋ + p⌊(i+1)/2⌋ for all i ∈ {0, 1, . . . , 2D}, (1)

where ⌊·⌋ denotes the floor function, xk is the k-th token embedding, and pk is the positional
encoding of the k-th input pair.

Lemma 1. During self-attention, a position can only attend to another position if they already
contain a shared token embedding or positional encoding.

Proof. In the retrieval problem, the token values and pair positions are assigned randomly and
independently. Knowledge of a token or position does not provide any information about any other
token or position. Therefore, the only way for two positions to share information is if they already
contain a shared token embedding or positional encoding.

Note that before any attention layers, the position si will contain information shared only with
positions si−1 and si+1. This is because the token embedding xi is shared by s2i and s2i+1, while
the positional encoding pi (for i-th input pair) is shared by s2i−1 and s2i.

Definition 3. Let’s denote as ei the piece of information shared by the positions si and si+1 before
any transformer layers. Specifically, we define ei for all i ∈ {0, . . . , 2D} such that e2k = xk for
k ∈ {0, 1, . . . , D} and e2k−1 = pk for k ∈ {1, . . . , D}.

We are interested in the minimum number of layers t such that rt,0 might contain the target token
xD, also denoted as e2D.

Lemma 2. After every layer, every residual stream rt,i will contain a contiguous sequence of pieces
of information (e.g., {ea, ea+1, . . . , eb}).

Proof. We can show this using mathematical induction. The initial residual stream r0,i contains only
the token embedding and the positional encoding, which represent the consecutive pieces of infor-
mation {ei, ei+1}. During self-attention, the existing contiguous sequence of pieces of information
in rt,i will be merged with other contiguous sequences (assumption 2) that share at least one piece
of information with rt,i (lemma 1). Their union in rt+1,i remains a contiguous sequence.

Lemma 3. After every layer t, the contiguous sequence of pieces of information in rt,i will have a
length of at most 3t + 1 for all i.
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Proof. We can show this using mathematical induction once again. The initial residual streams r0,i
contain exactly two pieces of information: the token embedding and the positional encoding. During
the t-th layer of self-attention, the contiguous sequence of pieces of information in rt−1,i will grow
by at most 3t−1 pieces of information to the left and the right, resulting in a new total length of at
most 3t + 1.

Theorem 1. The embedding vector xD of the target token cannot be present in the residual stream
rt,0 after t layers if t < log3(2D).

Proof. The embedding of the target token xD corresponds to the piece of information e2D. For rt,0
to contain e2D, the length of its contiguous sequence must be at least 2D + 1. By Lemma 3, this
length will not be reached if 3t + 1 < 2D + 1, which is equivalent to t < log3(2D).
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C ATTENTION MAPS
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C.3 TRANSFORMER C
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C.4 TRANSFORMER D
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D ATTENTION EMERGENCE IN TRANSFORMER D
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E PROCEDURE FOR REVERSE-ENGINEERING CIRCUITS

As can be seen in Appendix C, the attention maps for each attention head in the transformers contain
clear patterns that can be be manually identified without the need for any additional tools. For this
reason, I decided to manually reverse-engineer the circuits, while validating them thoroughly using
ablations to ensure their correctness.

The exact procedure I follow to reverse-engineer the circuits:

1. I plot the attention maps for each transformer and each layer for different prompts.
2. By observing the attention maps, I identify several possible mechanisms that could explain

the attention patterns of each head.
3. For each head, I determine which of the hypothesized mechanisms is correct using ablations

(described below) and measuring the validation loss. I choose the simplest mechanism that
maintains a low validation loss (below 0.05) after ablation.

4. I repeat steps 1-3 until the mechanism of each head has been identified.
5. I validate the complete mechanism by performing combined ablations on all heads and

measuring the validation loss.
6. I validate that the uncovered mechanism is not excessive by attempting to further ablate all

attention paths individually and measuring the validation loss.

To validate the circuits, I measure the validation error after ablating the attention maps in the fol-
lowing manner. For the attention heads that do not perform any useful computation, I replace the
attention weights with either uniform attention or an identity matrix. For the attention heads that are
responsible for the information flow, I construct an attention map that is zero everywhere except for
the position that I expect the head to attend to, where it is set to one.

After performing the combined ablations (step 5), I find that the mean squared error increases
slightly, but remains below 0.05 for all transformers. By further ablating any apparently useful
attention path (step 6), the mean squared error increases to 0.17 − 0.89. The only exceptions are
the first useful layers of each transformer, which always attend to the previous position. After ab-
lating their attention as uniform, the error stays in the range 0.05 − 0.1, suggesting that they do
not contribute directly to the final output, but rather enable the information flow in the subsequent
layers.
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