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Abstract

Rapidly learning abstract rules from limited examples is a hallmark of human intelligence. This work
investigates whether gradient-based meta-learning can equip neural networks with inductive biases for
efficient few-shot acquisition of compositional Boolean concepts. We compare meta-learning strategies
against a supervised learning baseline on Boolean tasks generated by a probabilistic context-free grammar,
varying concept complexity and input dimensionality. Using a consistent multilayer perceptron (MLP)
architecture, we evaluate performance based on final validation accuracy and learning efficiency. Our
findings indicate that meta-learning, particularly when allowed more adaptation steps, offers significant
advantages in data efficiency and final performance on lower-dimensional tasks. However, all methods face
challenges as input dimensionality and concept complexity increase, highlighting the intricate interplay
between learning strategies, task structure, and data representation in high-dimensional settings.

1 Introduction

Humans excel at few-shot concept learning, inferring abstract logical rules from minimal evidence [13]. Meta-
learning algorithms, such as Model-Agnostic Meta-Learning (MAML; 5) and its derivatives, aim to instill
similar capabilities in neural networks by learning an initialization optimized for rapid adaptation. While
effective in perceptual domains, their efficacy on structured, rule-based problems, especially those involving
symbolic composition and high-dimensional inputs, remains an active research area. This study addresses
this gap by asking: How do meta-learning strategies and standard supervised learning compare in acquiring
PCFG-generated Boolean concepts as a function of concept complexity? We analyze learning dynamics
through classification performance and data efficiency, contributing to the understanding of meta-learning
dynamics in high-dimensional concept spaces.

2 Related Work

Gradient-based meta-learning. MAML [5] introduced a framework for learning model initializations
that adapt quickly via gradient descent. Meta-SGD [14] extends this by learning per-parameter step sizes,
enabling one-step adaptation. First-order approximations such as FOMAML and Reptile [15] omit Hessian
terms to reduce cost, yet their performance often matches full MAML on vision tasks. Theoretical analyses
highlight that second-order updates embed an implicit contrastive objective, which can improve generaliza-
tion on harder tasks [10]. Recent work has explored scaling meta-learning beyond classification, including
reinforcement learning [16] and program induction [4].

Compositional generalization and concept learning. Symbolic rule induction methods, such as
Bayesian Program Learning (BPL) [13] and the Rational Rules model [6], achieve human-level one-shot
learning by leveraging explicit grammars. However, they require handcrafted generative models and search.
Neural sequence-to-sequence models struggle with systematic generalization on tasks like SCAN [12], and
neural meta-learners underperform on benchmarks like CURI [21]. Meta-learning has recently been used
to improve compositional generalization in NLP [7] and neuro-symbolic reasoning systems [23], but its role
in Boolean concept induction remains unclear. A theoretical framework for compositional generalization
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in neural networks was recently proposed [1], and surveys highlight the challenges and opportunities for
compositional AI [19]. We study this in a controlled Boolean PCFG setting to isolate logical structure.

3 Experimental Setup

Our experimental setup starts with a concept-generating Probabilistic Context-Free Grammar (PCFG) from
Goodman et al. 2008 [6]. We modify the PCFG to explicitly control concept complexity via recursion
depth (D ∈ {3, 5, 7}) and feature dimensionality (the number of literals F ∈ {8, 16, 32}). The grammar
production rule is defined recursively : C → L | ¬C | (C ∧C) | (C ∨C); where L → xi, over F binary features
X = {x1, . . . , xF }. For each task C, a Kshot support set SC (Kshot = 5 positive and Kshot = 5 negative
examples (x, C(x))) and a query set QC are generated from uniformly sampled x ∈ {0, 1}F .

1. Sample Concept

C ∼ PCFG(F,D)

2. Adapt Parameters

Meta-learn θinit, α

K-step adaptation on SC

to get θadapt

3. Evaluate Model

Predict on QC

under θadapt

Compute Accuracy(QC)

sample C use θadapt

Figure 1: The three-stage meta-learning pipeline. 1. A Boolean concept C is sampled from a PCFG (features F ,
depth D). 2. Meta-learned initial parameters θinit and per-parameter learning rates α are adapted on a support set
SC for Kadapt gradient steps to yield θadapt. 3. The adapted model θadapt is evaluated on a query set QC .

All methods use a 5-layer MLP (128 hidden units/layer, ReLU, sigmoid output). We compare models
trained with four stochastic gradient descent (SGD) learning algorithms, varying the order of the gradients
and adaptation steps: 1st-Order and 2nd-Order Meta-SGD with 1 adaptation (gradient) step, 1st-Order
Meta-SGD with 10 adaptation steps, and regular SGD: training from scratch per task using Adam [11] (LR
0.001) on SC .

During adaptation for Meta-SGD variants, the parameters θ are updated for Kadapt steps. Starting with
θ(0) = θinit (the meta-learned initialization), for each step k ∈ {0, . . . ,Kadapt − 1}, the update is:

θ(k+1) = θ(k) − α⊙∇θ(k)LSC
(θ(k))

where α are the meta-learned per-parameter learning rates and LSC
is the loss (binary cross-entropy) on the

support set SC . The final adapted parameters are θadapt = θ(Kadapt). Increasing Kadapt allows the model to
perform a more extensive search in the task-specific loss landscape, potentially finding a solution that better
minimizes the empirical risk on SC . For Boolean concepts, this translates to a more refined adjustment of
the MLP’s decision boundaries to correctly classify the examples in the support set.

Meta-SGD models were meta-trained for 10,000 episodes. All evaluations were averaged over 5 random
seeds on 1,000 unseen tasks. For trajectory comparisons, SGD is trained for steps equivalent to processing
a fixed total number of samples.

Performance is assessed using: 1. Final Mean Accuracy (see Appendix A.1 for summary bar chart,
Figure 4); and 2. Data Efficiency: The number of training samples (episodes for MetaSGD, scaled
appropriately for SGD) required to reach a threshold accuracy of 60% (Figure 3).

4 Results

We present findings across varying feature dimensionalities (F ) and concept depths (D), averaged over 5
seeds. Figure 2 shows the learning trajectories. meta-SGD methods demonstrate a clear advantage over
SGD from scratch, learning faster and converging to higher accuracies, particularly for F = 8 and F = 16.
Surprisingly, increasing the adaptation steps in the first-order meta-SGD variant matches or exceeds the
performance of 2nd order variant, especially in terms of learning speed. Final noise-averaged accuracies are
summarized in Appendix A.1 (Figure 4), confirming these trends.

The benefit of meta-learning and increased adaptation steps is further highlighted by the data efficiency
plot (Figure 3). MetaSGD methods require substantially fewer samples to reach the 60% accuracy threshold
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Figure 2: Mean Validation Accuracy Trajectories. Comparison of Meta-SGD variants (K1 and K10 for 1st-Order,
K1 for 2nd-Order) and SGD across features (rows) and concept depths (columns) over normalized training episodes.
MetaSGD 1stOrd K10 often learns fastest and achieves competitive or superior accuracy to MetaSGD 2ndOrd K1.

compared to SGD. 1st order meta-SGD with increased adaption is often the most data-efficient, demonstrat-
ing that more adaptation steps enable the model to more rapidly specialize to the task at hand using the
limited support set. For instance, at F = 8, D = 3, MetaSGD 1stOrd K10 reaches the threshold with orders
of magnitude fewer samples than SGD.

As input dimensionality increases to F = 32, all methods exhibit a significant drop in performance across
all metrics. While Meta-SGD variants still maintain an edge over SGD, the absolute accuracies are much
lower, and the data efficiency gains are less pronounced relative to the sheer number of samples still required.
Notably, even in this high-dimensional regime (F = 32), the increased adaptation with first-order strategy
tends to yield the largest relative performance improvements over its 1-step counterparts (both 1st and 2nd
order Meta-SGD), suggesting that the benefit of more extensive adaptation becomes even more crucial when
the effective concept space is larger.

5 Discussion

Our experiments demonstrate that meta-learning confers both accuracy and efficiency benefits for few-shot
Boolean concept learning when feature dimensionality is moderate (F ≤ 16). Meta-learning, via Meta-SGD,
generally offers substantial advantages over standard supervised training (SGD from scratch) in both test
accuracy (Figure 2 and Appendix A.1) and data efficiency (Figure 3). This suggests that providing the meta-
learned initialization (θinit, α) with more opportunity to fine-tune to the specific task SC (via Kadapt = 10
steps) is highly effective for Boolean concept learning. In particular we hint at a tradeoff in metalearning dy-
namics between multi-step adaptation and curvature information. First-order Meta-SGD with Kadapt = 10
matches or exceeds the performance of second-order Meta-SGD with a single step, indicating that additional
adaptation iterations can often substitute for curvature corrections in navigating complex loss landscapes,
in line with [10, 15]. We observe that even with meta-learned priors, neural models struggle to general-
ize compositionally at scale. This aligns with findings in natural language SCAN [12] and visual concept
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Figure 3: Data Efficiency: Training Samples to Reach 60% Validation Accuracy (Log Scale). Lower values indicate
higher efficiency. MetaSGD methods, especially with increased adaptation steps, ie MetaSGD 1stOrd K10, are signifi-
cantly more data-efficient than SGD.

benchmarks [21]. The recent theoretical analysis suggests that achieving systematic generalization requires
aligning internal representations with the combinatorial structure of tasks [1]. Furthermore, as we scale fea-
tural complexity, performance collapses at F = 32, reflecting the curse of dimensionality under extreme data
sparsity (the search space explodes to 232 possible inputs). This echoes interesting recent results in large-
scale in-context concept learning for LLMs, where performance correlates strongly with Boolean complexity
[22].

Pronounced difficulties of bias-free neural networks such as MLPs in generalizing within high-dimensional
concept spaces underscore the imperative for additional inductive biases. While weight-space initialization
via meta-learning provides a powerful prior even for small MLPs, future work could explore relational
architectures—such as Relation Networks [18] and Graph Neural Networks that embed relational inductive
biases [2]—or attention-based models like Transformers [20] to capture feature interactions compositionally.
Likewise, contrastive learning objectives have proven effective at structuring representation spaces for fewer-
shot separability [3, 8], and energy-based or regularized losses (e.g. 9) may further scaffold abstraction.
Finally, neuro-symbolic hybrids and differentiable logic modules [4, 17] offer a route to inject explicit symbolic
priors, potentially combining the strengths of meta-learned initialization with symbolic compositionality.

6 Conclusion

Building on our empirical findings, we conclude that gradient-based meta-learning—especially when endowed
with multiple adaptation steps—dramatically accelerates and improves few-shot Boolean concept induction
in moderate-dimensional settings. Yet, the persistent collapse of performance as feature dimensionality and
combinatorial complexity grow exposes the limits of weight-initialization priors alone. To bridge this gap,
future work must weave in richer inductive biases—ranging from relational and graph-structured architec-
tures to attention mechanisms, contrastive objectives, and neurosymbolic modules—that explicitly mirror
the compositional structure of concepts. Such synergies between meta-learned initialization and structured
priors promise to push neural systems closer to the flexibility and efficiency of human concept learning in
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high-dimensional, sparse regimes.
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A Appendix

A.1 Final Mean Validation Accuracy (Bar Chart)

This plot (Figure 4) complements the trajectory data in Figure 2 by providing a direct comparison of final
performance levels across the different learning methods and task configurations.

Figure 4: Final Mean Validation Accuracy (Bar Chart). Comparison of Meta-SGD variants and supervised SGD
across different feature dimensionalities (rows/facets) and concept depths (x-axis).

A.2 Layer-wise L2 Norm Comparison of Model Weights

Figure 5 presents a visual comparison of the average L2 norms of weights for each layer in the MLP architec-
ture. The comparison is made between 1st-Order and 2nd-Order Meta-SGD methods. The plots are faceted
by the number of input features (rows: 8, 16, 32) and the concept depth used in the filename for model
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generation (columns: 3, 5, 7). This visualization allows for an examination of how weight magnitudes differ
across layers, learning methods, and task configurations (feature dimensionality and concept complexity).

Figure 5: Average L2 Norm of MLP Layer Weights. Comparison of 1st-Order Meta-SGD and 2nd-Order Meta-SGD,
faceted by input features (rows) and concept depth from filename (columns). Each bar group represents a layer
within the MLP. Norms are averaged over available seeds for each configuration. The x-axis labels indicate the layer
index.
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