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Abstract
Rapidly learning abstract concepts from limited examples is a hallmark of human intelligence. This work
investigates whether gradient-based meta-learning can equip neural networks with inductive biases for ef-
ficient few-shot acquisition of discrete concepts. We compare meta-learning with meta-SGD against a su-
pervised learning baseline on Boolean tasks generated by a probabilistic context-free grammar (PCFG). By
systematically varying concept dimensionality (number of features) and compositionality (depth of grammar
recursion), we identify regimes in which meta-learning robustly improves few-shot concept learning. We
find improved performance and sample efficiency by training a multilayer perceptron (MLP) across concept
spaces increasing in dimensional and compositional complexity. We are able to show that meta-learners
are much better able to handle compositional complexity than featural complexity and establish an empiri-
cal analysis demonstrating how featural complexity shapes ’concept basins’ of the loss landscape, allowing
curvature-aware optimization to be more effective than first order methods. We see that we can robustly
increase generalization on complex concepts by increasing the number of adaptation steps in meta-SGD,
encouraging exploration of rougher loss basins. Overall, this work highlights the intricacies of learning
compositional versus featural complexity in high dimensional concept spaces and provides a road to under-
standing the role of curvature and extended gradient adaptation in meta-concept-learning.

1. Introduction

Humans can rapidly infer abstract rules from few examples, an ability that still separates us from standard
neural networks [8]. Meta-learning, aka learning to learn, aims to endow models with similar adaptive ca-
pabilities by optimizing for fast generalization across a distribution of different but related tasks. Prominent
gradient-based methods like Model-Agnostic Meta-Learning (MAML; 2) and Meta-SGD [9] learn initial-
izations that can be quickly adapted with only a few gradient steps, enabling data-efficient learning in novel
settings.

While meta-learning has achieved impressive results across domains including perception, control, and
reasoning, open questions remain about its underlying mechanisms and limitations—particularly in domains
that require abstract, symbolic generalization. Existing evaluations often focus on performance within fixed
datasets, leaving underexplored how meta-learning behaves as task complexity systematically increases.

In this work, we study meta-learning for acquiring Boolean concepts, a domain that allows us rigorous
control over compositional and featural complexity via a probabilistic context free grammar (PCFG). Using
a PCFG-based concept generator developed initially in Goodman2008lot, we independently vary featural
dimensionality (number of binary input features) and compositional depth (logical recursion) to create a cur-
riculum of tasks with increasing structural complexity. This setting enables us to ask how the effectiveness
of meta-learning scales with the complexity of the underlying concept space.

We compare gradient-based meta-learning (Meta-SGD) against standard supervised learning (SGD) on
few-shot Boolean classification tasks. Our results show that meta-learning is incredibly robust at handling
increased compositional depth, suffering degradation only with increased featural dimensionality. To explain
this, we show how increasing dimensionality results in an increase in the roughness of the loss landscape of
the ’concept basin’, and empiricially prove that increasing the number of adaptation steps can reliably help
a meta-learner navigate these rougher loss landscapes, to find generalization-friendly weight initializations.
We also present early evidence of how curvature awareness (the second-order gradient term) helps meta-
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learning effectively navigate different concept complexities by analyzing the Hessian trace of increasingly
difficult concept datasets. A novel analysis of loss landscape roughness reveals a strong correlation between
landscape curvature and relative gains from meta-learning, proposing a mechanistic account of when and
why meta-learning is effective.

2. Related Work

Gradient-based meta-learning. MAML [2] introduced a framework for learning model initializations that
adapt quickly via gradient descent. Meta-SGD [9] extends this by learning per-parameter step sizes, enabling
one-step adaptation. First-order approximations such as FOMAML and Reptile [10] omit Hessian terms to
reduce cost, yet their performance often matches full MAML on vision tasks. Theoretical analyses highlight
that second-order updates embed an implicit contrastive objective, which can improve generalization on
harder tasks [5].

Compositional generalization and concept learning. Symbolic rule induction methods, such as Bayesian
Program Learning (BPL) [8] and the Rational Rules model [3], achieve human-level one-shot learning by
leveraging explicit grammars. However, they require handcrafted generative models and search. Neural
sequence-to-sequence models struggle with systematic generalization on tasks like SCAN [7], and neural
meta-learners underperform on benchmarks like CURI [12]. Meta-learning has recently been used to im-
prove compositional generalization in NLP [4] and neuro-symbolic reasoning systems [13], but its role in
Boolean concept induction remains underexplored. A theoretical framework for compositional generaliza-
tion in neural networks was recently proposed [1], and surveys highlight the challenges and opportunities for
compositional AI [11]. We study this in a controlled discrete (Boolean) setting to isolate logical structure.

3. Experimental Setup

Our experimental setup starts by modifying the concept-generating PCFG from Goodman et al. 2008 [3] to
explicitly control compositionality (recursion depth D ∈ {3, 5, 7}) and feature dimensionality (the number
of literals F ∈ {8, 16, 32}). The grammar’s production rules and their sampling probabilities are given by :

C → L p = 0.30
C → ¬C p = 0.20
C → (C ∧ C) p = 0.25
C → (C ∨ C) p = 0.25

L → xi, where xi ∈ X = {x1, . . . , xF }

For each concept C, we generate a Kshot-sized support set SC (with Kshot = 5 positive and 5 negative
labeled examples (x, C(x))), and a query set QC , both sampled from the Boolean input space {0, 1}F .

Each meta-learning episode samples a concept C ∼ PCFG(F,D) and creates support/query sets SC , QC

from {0, 1}F (Kshot = 10, Kqry = 20). Inner-loop adaptation performs Kadapt gradient updates: θ(k+1) =
θ(k) − α ⊙ ∇θ(k)LSC

(θ(k)), yielding θadapt. The outer-loop updates Lmeta(C) = LQC
(θadapt) and back-

propagates through the inner loop to update (θinit, α) with the Adam optimizer [6].
Episodes contain both K-shot training examples (SC) and held-out evaluation examples (QC), ensuring

meta-learners are rewarded only for configurations that generalize within tasks. This systematic complexity
manipulation enables controlled study of how logical structure affects meta-learning performance.

All methods use a 5-layer MLP (128 hidden units/layer, ReLU, sigmoid output). We compare models
trained with four stochastic gradient descent (SGD) learning algorithms, varying the order of the gradients
and adaptation steps: 1st-Order and 2nd-Order Meta-SGD with 1 adaptation (gradient) step, 1st-Order Meta-
SGD with 10 adaptation steps, and regular SGD: training from scratch per task using Adam (learning rate
0.001) on SC .
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Figure 1: The PCFG parse trees of concepts with increasing complexity. Here compositional depth is visualized as
the depth of the parse tree on the vertical axis, feature dimensionality is visualized as the width of the parse tree on
the horizontal axis. Examples show how PCFG-generated concepts scale from simple to complex logical structures.
Left: Simple concept with 2 features and depth 3. Center: Medium complexity with 3 features and depth 4. Right:
Complex concept with 5 features and depth 5. Neural networks see only the bit-string input of features and ideally
learn to infer the logical structure of the underlying concept over successive trials.

Increasing Kadapt allows more extensive search in the task-specific loss landscape, incrementally ad-
justing the MLP’s decision boundaries to correctly classify support set examples.

Meta-SGD models were meta-trained for 10,000 episodes. All evaluations were averaged over 5 random
seeds on 1,000 unseen tasks (like those shown in Figure 1). For trajectory comparisons, SGD is trained for
steps equivalent to processing a fixed total number of samples.

Performance is assessed using final mean accuracy (Appendix A.3) and data efficiency (samples required
to reach 60% accuracy, Appendix A.1).

4. Results

Figure 2 shows learning trajectories across a sweep of feature dimensionalities (F ) and concept depths (D),
averaged for noise over 5 seeds. Meta-SGD methods demonstrate clear advantages over SGD, learning
faster and converging to higher accuracies, particularly for F = 8 and F = 16. First-order meta-SGD with
increased adaptation steps (K=10) matches or exceeds second-order performance.

Meta-learning demonstrates substantial data efficiency advantages (Appendix A.1), with 1st-order Meta-
SGD using K=10 adaptation steps requiring orders of magnitude fewer samples than SGD to reach 60%
accuracy, particularly at F = 8, D = 3.

At F = 32, all methods show significant performance drops, yet meta-SGD handles compositional
complexity better than featural complexity. Even in high-dimensional regimes, increased adaptation (K=10)
yields the largest relative improvements, suggesting extensive adaptation becomes crucial when concept
spaces expand. Loss landscape analysis in the next section explains these patterns.
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Figure 2: Mean Validation Accuracy Trajectories. Comparison of Meta-SGD variants (K1 and K10 for 1st-
Order, K1 for 2nd-Order) and SGD across features (rows) and concept depths (columns) over normalized train-
ing episodes. MetaSGD 1stOrd K10 often learns fastest and achieves competitive or superior accuracy to
MetaSGD 2ndOrd K1.

5. Loss Landscape Analysis

To explain meta-learning’s effectiveness, we analyzed loss landscape topology across concept complexities,
revealing causal connections between landscape properties and meta-learning performance.

5.1. Methodology

We define roughness as optimization instability: trajectory variation during training. Our metric extracts loss
sequences L = [l1, l2, . . . , lT ], normalizes to 200 episodes, applies Gaussian smoothing (σ = 1), computes
discrete second derivatives ∇2Li = li+1 − 2li + li−1, and calculates:

Roughness =
std(∇2L)

mean(|∇2L|) + ϵ
(1)

where ϵ = 10−8 prevents division by zero. This normalized measure captures optimization instability,
with higher values indicating more erratic training behavior characteristic of rugged loss landscapes, and
lower values representing smoother convergence on more navigable terrain.

This enables quantitative relationships between Boolean concept complexity, landscape roughness, and
meta-learning effectiveness.

5.2. Complexity-Dependent Landscape Topology

We analyzed loss landscapes by sampling random directions in parameter space. Boolean concept complex-
ity fundamentally determines landscape topology, creating predictable optimization challenges (Figure 3).
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Figure 3: Meta-learning and SGD operate on the same concept loss landscapes (determined by task structure and ar-
chitecture), but meta-learning learns more efficient navigation strategies (shorter paths to solution point). Top row: 2D
loss landscapes for simple, medium, and complex Boolean concepts show identical topology regardless of optimization
method. Middle row: 3D visualizations reveal the terrain both algorithms must navigate, with complexity-dependent
ruggedness. Bottom row: Training trajectories demonstrate that while SGD gets trapped in local minima or exhibits
erratic behavior, meta-learning achieves smoother, more direct paths to better solutions through learned initialization
and adaptive step sizes.

Our quantitative analysis reveals systematic patterns: simple concepts (2-3 literals) exhibit smooth,
quasi-convex landscapes with few local minima (0.3±0.1, roughness = 0.0002); medium concepts (4-6 lit-
erals) show moderately rugged topology (1.2±0.4 minima, 4x roughness increase); complex concepts (7+
literals) display highly rugged landscapes with multiple local minima (2.8±0.6, 12x roughness increase).

Thus, Boolean concept discreteness creates characteristic landscape patterns, where PCFG com-
plexity directly maps to optimization difficulty through the number and distribution of local minima.

5.3. Meta-SGD vs SGD: Learning Shorter Paths

Our analysis reveals that meta-learning learns efficient navigation strategies for rugged landscapes compara-
red to vanilla SGD.

As documented in Appendix A, Meta-SGD achieves a 90-99% reduction in trajectory length (the geodesic
length) compared to SGD baseline across all concept complexities. This dramatic improvement in naviga-
tion efficiency directly translates to performance improvements: +15.5% for simple concepts, +34.1% for
medium concepts, and +11.1% for complex concepts.
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The largest improvement occurs at medium complexity, where Meta-SGD balances exploration and con-
vergence. Meta-SGD consistently produces trajectories with lower variance in second derivatives, indicating
more stable convergence that translates to better performance. Detailed curvature and Hessian trace analysis
(see Appendix A.5) confirms that meta-learning learns more efficient pathways through identical loss sur-
faces, establishing a quantitative framework for predicting meta-learning utility from landscape properties.

Relative use of additional adaptation steps (K=10 vs K=1) scales with concept complexity (see Ap-
pendix A.2). Simple concepts show modest 5-8% improvement from K=10 steps, while complex concepts
demonstrate 15-20% gains, supporting the intuitive argument that rugged landscapes require multiple steps
to escape local minima.

6. Discussion

Our systematic manipulation of two orthogonal complexity dimensions—featural dimensionality (F ∈
{8, 16, 32}) and compositional depth (D ∈ {3, 5, 7})—reveals fundamentally different challenges for meta-
learning in Boolean concept acquisition. This controlled experimental design illuminates how different
aspects of problem structure interact with optimization landscapes and meta-learning effectiveness.

Compositional Complexity: Meta-Learning’s Strength. Across all experiments, meta-learning demon-
strates remarkable robustness to increasing compositional depth. Moving from D = 3 to D = 7 (simple to
deeply nested logical structures) shows minimal performance degradation for Meta-SGD, while SGD suf-
fers substantially. Our loss landscape analysis reveals why: compositional complexity primarily affects the
logical structure within concept space but preserves relatively navigable optimization surfaces. The PCFG’s
recursive depth creates more intricate Boolean relationships without fundamentally altering the smoothness
of parameter space traversal. Meta-learning’s learned initialization and adaptive step sizes prove particularly
effective at discovering these hierarchical patterns within reasonable adaptation budgets.

Featural Complexity: The Fundamental Challenge. In stark contrast, increasing featural dimension-
ality poses severe challenges for all methods, with performance collapsing dramatically at F = 32. This
reveals a deeper truth about the nature of concept learning: while logical complexity (compositionality) can
be handled through better optimization strategies, dimensional complexity fundamentally alters the search
space structure. The explosion from 28 to 232 possible input configurations under high data sparsity cre-
ates loss landscapes so rugged and high-dimensional that meta-learning alone cannot overcome the curse of
dimensionality. Our roughness analysis confirms that featural complexity creates exponentially more chal-
lenging optimization terrain than compositional complexity and provides insight for future concept learning
work.

Landscape Implications. This dual-axis analysis reveals that not all forms of ”complexity” are equiv-
alent from an optimization perspective. Compositional depth affects the logical relationships that must be
learned but preserves loss surface properties. The extent to which this is true in higher dimensional setting
and with more complex models deserves further investigation. Featural dimensionality, however, fundamen-
tally transforms the geometry of the optimization problem itself.

These findings suggest that meta-learning is particularly well-suited for domains where complexity
arises from structural relationships rather than raw dimensionality, explaining its success in few-shot learn-
ing across compositionally rich but feature-moderate domains [5, 10].

7. Conclusion

Our investigation across featural dimensionality and compositional depth reveals when and why meta-
learning succeeds in concept acquisition, demonstrating that different complexity types pose different opti-
mization challenges.
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Meta-learning exhibits asymmetric robustness across complexity dimensions. While compositional
complexity (increasing logical depth from D = 3 to D = 7) poses minimal challenges for Meta-SGD,
featural complexity (expanding from F = 8 to F = 32 features) creates optimization difficulties. Our
loss landscape analysis highlights a potential explanation: compositional depth affects logical structure
while preserving navigable parameter spaces, whereas featural dimensionality fundamentally transforms
optimization geometry.

This dual-axis framework provides both theoretical insight and practical guidance. Meta-learning’s
strength lies in discovering structural patterns within reasonable dimensional constraints—similar to the
regime where human-like few-shot learning excels. These findings suggest that the path toward human-level
concept learning requires a hybrid approach: leveraging meta-learning’s proven effectiveness for composi-
tional reasoning while developing specialized architectures for high-dimensional feature processing, which
could be met with added model complexity not evaluated in this work.
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Appendix A. Appendix

A.1. Data Efficiency Analysis

This analysis quantifies the number of training samples required for each method to reach 60% validation
accuracy across Boolean concept complexities. Meta-learning methods achieve substantially better sample
efficiency than SGD baselines, with 1st-order Meta-SGD with increased adaptation (K=10) consistently
demonstrating the highest efficiency, requiring orders of magnitude fewer samples than SGD from scratch.

Figure 4: Training samples to reach 60% validation accuracy (log scale). Meta-SGD methods demonstrate substantial
sample efficiency advantages over SGD, with 1st-order Meta-SGD with K=10 adaptation steps showing the largest
efficiency gains across most concept complexity settings.

The efficiency gains are most pronounced for simpler concept configurations where optimization land-
scapes remain navigable. For complex concepts (F = 32), while absolute performance degrades for all
methods, the relative advantage of meta-learning persists, suggesting that superior navigation strategies pro-
vide benefits even in challenging high-dimensional regimes.
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A.2. K=1 vs K=10: Adaptation Steps Scale with Landscape Complexity

A critical question in meta-learning is how many adaptation steps to use during adaptation. Our analysis
reveals that the benefit of additional gradient steps (K=10 vs K=1) scales directly with concept complexity.
Figure 5 demonstrates this relationship across the spectrum of concept categories we tested above.

Figure 5: K=1 vs K=10 Adaptation Steps Scale with Landscape Complexity. Top panels: Loss landscape complexity
increases systematically from simple to complex Boolean concepts. Middle panels: Accuracy improvements from
K=1 to K=10 scale predictably with landscape complexity, showing modest gains for smooth landscapes but substantial
improvements for rugged terrain. Bottom panels: Sample efficiency analysis reveals that additional adaptation steps
provide increasingly large benefits as optimization landscape becomes more challenging.

The quantitative results demonstrate a clear scaling pattern: simple concepts show modest 5-8% accu-
racy improvement from K=10 over K=1 (efficiency ratio 1.4×), medium concepts show substantial 10-12%
improvement (efficiency ratio 1.8×), and complex concepts show large 15-20% improvement (efficiency
ratio 2.5×). This scaling relationship provides strong evidence for our core theoretical argument that sim-
ple concepts have smooth landscapes navigable with single adaptation steps, while complex concepts have
rugged landscapes requiring multiple steps to escape local minima and find better solutions.

A.3. Final Mean Validation Accuracies

This plot (Figure 6) complements the trajectory data in Figure 2 by providing a direct comparison of final
performance levels across the different learning methods and task configurations.
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Figure 6: Final Mean Validation Accuracy (Bar Chart). Comparison of Meta-SGD variants and supervised SGD across
different feature dimensionalities (rows/facets) and concept depths (x-axis).

A.4. Layer-wise L2 Norm Comparison of Model Weights

Figure 7 presents a visual comparison of the average L2 norms of weights for each layer in the MLP ar-
chitecture. The comparison is made between 1st-Order and 2nd-Order Meta-SGD methods. The plots are
faceted by the number of input features (rows: 8, 16, 32) and the concept depth used in the filename for
model generation (columns: 3, 5, 7). This visualization allows for an examination of how weight magni-
tudes differ across layers, learning methods, and task configurations (feature dimensionality and concept
complexity).
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Figure 7: Average L2 Norm of MLP Layer Weights. Comparison of 1st-Order Meta-SGD and 2nd-Order Meta-SGD,
faceted by input features (rows) and concept depth from filename (columns). Each bar group represents a layer within
the MLP. Norms are averaged over available seeds for each configuration. The x-axis labels indicate the layer index.

A.5. Loss Landscape Curvature Analysis

This section presents detailed analysis of loss landscape curvature properties and their relationship to meta-
learning effectiveness. Our analysis employs differential geometry measures to characterize the local and
global structure of loss surfaces across Boolean concept complexities.

A.5.1. CURVATURE METRICS AND HESSIAN ANALYSIS

We compute four curvature-related metrics to characterize landscape geometry: roughness (variance of
loss gradients along random directions), Hessian trace (tr(H) =

∑
i λi indicating local curvature), spectral

norm (∥H∥2 = maxi |λi| measuring maximum curvature), and condition number (κ(H) = λmax/λmin

quantifying eigenvalue ratios).
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Figure 8: Parameter Curvature vs Meta-Learning Gain. Analysis of how local curvature properties relate to meta-
learning effectiveness across different concept complexities. The figure shows the relationship between parameter
space curvature and the performance improvements achieved by meta-learning approaches.

A.5.2. QUANTITATIVE CURVATURE RESULTS

Our analysis reveals systematic curvature patterns across concept complexities. For simple concepts (F8D3),
Meta-SGD reduces Hessian trace by 92.6% compared to SGD (∆tr(H) = −0.926). Medium concepts
(F8D5) show 95.8% trace reduction with 50.9% roughness improvement (∆tr(H) = −0.958, ∆σ2

∇ =
−0.509). Complex concepts (F32D3) maintain 88.5% trace reduction despite landscape complexity (∆tr(H) =
−0.885).

The curvature analysis provides additional evidence that Meta-SGD finds better solutions by smoothen-
ing the optimization trajectory across the loss landscape, enabling more efficient few-shot learning.

A.5.3. THEORETICAL IMPLICATIONS

The curvature analysis connects to recent theoretical work on meta-learning optimization landscapes [5, 10].
Our findings suggest that meta-learning’s effectiveness stems from its ability to reduce local curvature (cre-
ating smoother gradient flows), improve conditioning (reducing eigenvalue ratios κ(H) for better conver-
gence), and minimize roughness (eliminating sharp local minima that trap gradient descent).

This geometric perspective offers a new lens for understanding meta-learning: rather than simply pro-
viding better initializations, meta-learning algorithms actively reshape the optimization trajectory to enable
efficient navigation and adaptation.

A.5.4. RELATIONSHIP TO BOOLEAN CONCEPT STRUCTURE

The discrete nature of Boolean concepts creates characteristic patterns in loss landscape topology. Our
analysis reveals that logical complexity directly correlates with landscape roughness, PCFG depth influences
the number and distribution of local minima, and feature dimensionality affects the overall scale of curvature
variations.

These findings establish a bridge between symbolic concept structure and continuous optimization ge-
ometry, providing theoretical foundation for understanding why meta-learning excels at Boolean concept
learning tasks.
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