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Abstract
One of the core pillars of efficient deep learn-
ing methods are architectural improvements, such
as residual/skip connections, which have led to
significantly better model convergence and qual-
ity. Since their introduction, residual connections
have become ubiquitous not only in convolutional
neural networks but also in transformer-based ar-
chitectures, the backbone of LLMs.

In this paper, we introduce the Learned Aug-
mented Residual Layer (LAUREL)—a novel gen-
eralization of the canonical residual connection—
designed to serve as an in-situ replacement while
outperforming it in both model quality and foot-
print metrics. Our experiments show that LAU-
REL can enhance quality for both vision and lan-
guage models while adding fewer parameters and
incurring less latency and memory overhead than
naively increasing parameter count.

For example, on the ImageNet-1K task, LAU-
REL achieves the same model quality improve-
ments as naively adding an extra layer while us-
ing 2.6× fewer parameters. Similarly, when pre-
training 1B and 4B parameter LLMs, LAUREL
improves performance on a variety of challenging
downstream evaluation tasks by 2.54% to 20.05%,
while adding only 0.012% and 0.1% additional
parameters, respectively.

1. Introduction
Model efficiency is of critical importance in the age of
extremely large language and vision models. Even if a given
model has impressive quality, its footprint metrics such
as train-time compute, inference latency, resident memory

1Google Research, Mountain View, CA.
gmenghani@google.com, ravi.k53@gmail.com
2Google Research, New York, NY. sanjivk@google.com.
Correspondence to: Gaurav Menghani
<gmenghani@google.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

size, peak memory consumption, etc. dictate if it can be
experimented with and/or deployed in real-world settings.
A large and slow model can be impractical to train and
use, making it unsuitable for applications that require fast
responses, no matter how well it performs on benchmarks.

LLMs such as Gemini 1.5 Flash (Gemini-Team et al., 2024),
DeepSeek V3 (DeepSeek-A.I. et al., 2024) have been explic-
itly designed with these efficiencies in mind and consistently
outperform much larger models that preceded them. Conse-
quently, improving the Pareto-frontier of model quality and
model footprint, via efficient learning methods has been an
area of active research in the past few years. Areas of in-
terests span from algorithmic techniques (Menghani, 2023)
and efficient hardware (Sze et al., 2017) to best practices
around model efficiency (Dehghani et al., 2022).

One of the core pillars of efficient deep learning methods
are architectural improvements such as the residual/skip
connection, which had led to significantly better model con-
vergence and quality (He et al.). The residual connection
has become ubiquitous not only in convolutional neural net-
works but also in transformer-based architectures (Vaswani
et al., 2017), which are the backbone of today’s LLMs.

In this paper we introduce learned augmented residual layer,
LAUREL, which generalizes the canonical residual connec-
tion. Recall that deep-learning models with residual con-
nections have a ‘block’ structure, with many blocks chained
together between the input and final output; these could be
convolution/identity blocks within a ResNet, a transformer
block in a transformer encoder/decoder, etc. Within a block,
a typical residual connection is given by:

xi+1 = f(xi) + xi. (1)

Here, f(·) can be any non-linear function such as attention,
MLP, multiple non-linear layers, etc., xi is the input to the
said non-linear function, and xi+1 is the combined output
of the non-linear function and the residual component (Fig-
ure 1). For simplicity, we ignore pre-processing functions
such as layer norm, which can be folded into f(·).

2. Learned Augmented Residual Layer
In this section we describe the main idea behind LAUREL.
In its most general form, we reformulate the residual con-
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Figure 1. A standard residual connection. We assume the model
to be divided into logical ‘blocks’, which is true for most modern
architectures including transformers. The residual connection
combines the output of a non-linear function f and the input to the
said non-linear function. Here, f can be attention, MLP, or any
other combination of non-linear layers.

nection to be the following:

xi+1 = α · f(xi) + g(xi, xi−1, . . . , x0). (2)

Here, α is a learned scalar parameter, and g(·) is a learned
linear function with xi, xi−1, . . . , x0 as inputs, where xj is
the output of the j-th residual connection.

The main intuition is that one can learn a richer set of (linear)
functions than just using xi as the residual component. One
motivation behind seeking these richer linear functions is the
concept of a “residual stream” (Elhage et al., 2021), where
the residual connection is considered to be part of a stream
of information that passes through each layer without being
exposed to any non-linearities. This allows the learning
process to focus on the non-linear components better.

Each layer/operation can read from, and subsequently write
to this residual stream. Since the residual connection has
been shown to be important for model quality and conver-
gence, we designed LAUREL to operate on this residual
stream in a learned fashion, while being light-weight in
terms of the model size and latency changes.

In this paper we study three specific versions of the LAU-
REL framework; although as described in (2), the frame-
work can be generalized beyond these versions.

2.1. Residual Weights Version (LAUREL-RW)

In this version, we keep α learnable and set g(xi, . . . , x0) =
βxi. Therefore, (2) can be rewritten as:

xi+1 = αf(xi) + βxi.

Figure 2. An illustration of the LAUREL framework; see (2).
LAUREL can be used to replace the regular residual connection in
Figure 1. Again, f can be any non-linear function such as attention,
MLPs, and groups of multiple non-linear layers.

Notice that this version assigns learnable weights to the
f(xi) and xi from (1). In practice, we found that we cannot
let α and β grow unbounded, and using a normalization
function such as softmax or sigmoid helps. Clearly,
this version will add only two new parameters per LAUREL
layer. If necessary, we can replace these two parameters
by a single learnable parameter and use a function such as
sigmoid to define α, β in terms of this single parameter.

This variant can be useful for learning the relative impor-
tance of the non-linear component (f(xi)) and the residual
input (xi). In the earlier layers the former might be more
important, while in the later layers, the latter could be useful
for mitigating problems such as vanishing gradients. This
variant can help by adaptively learning these weights.

2.2. Low-Rank Version (LAUREL-LR)

Here, we fix α = 1, and g(xi) = Wxi in (2) to obtain:

xi+1 = f(xi) +Wxi.

As written, W is a learnable D ×D matrix, where D is the
model dimension for transformer-based models, or more
generally it is the last dimension of xi. Hence, the W matrix
will add D2 new parameters (per LAUREL layer).

In practice, to reduce the number of new parameters added
to the model and to help with convergence, we consider a
low rank version of W . In particular, let W = A×B + I ,
where A and BT are D × r matrices and r ≪ D. Thus, we
can rewrite (2) as:

xi+1 = f(xi) +BAxi + xi. (3)
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Here, both A and B matrices are learnable. The number of
new parameters is 2rD, per LAUREL layer.

This variant helps with allocating learning capacity for the
linear part of the network (the residual input, i.e., xi in
Figure 2), such that the main network can use its capacity
towards learning better nonlinear functions (f(xi)), while
LAUREL contributes the linear components (xi +BAxi)
to the residual stream.

2.3. Previous Activations Version (LAUREL-PA)

This is similar to LAUREL-LR, except that we use k activa-
tions from the previous blocks. In particular, we set

g(xi, . . . , x0) = xi +

k−1∑
j=0

γi,j · hi(xi−j),

where γi,0, . . . , γi,k−1 are learned scalar parameters and hi

is another linear function.1 This allows us to rewrite (2) as:

xi+1 = f(xi) + xi +

k−1∑
j=0

γi,j · hi(xi−j). (4)

In practice, we replace hi by a low-rank product similar to
the LAUREL-LR version, but using the identity function
is also an option. When using a rank r product for hi, the
number of new parameters per LAUREL layer is 2rD + k,
where k is the number of previous activations used.

We can consider this variant to be a hybrid of the LAUREL-
RW and LAUREL-LR variants, where multiple previous
activations are used in a weighted manner that is learned.
This allows layers accelerated access to previous activations,
along with learning their relative importance.

2.4. Other Derived Variants

All three proposed LAUREL versions are a combination of
scalar and/or low-rank products on top of the vanilla residual
connection in (1). This makes it especially light-weight in
terms of its impact on model size and latency. We discuss
the efficiency of the variants in more detail in Section 4.

That being said, LAUREL is generic enough to allow com-
binations of the above variants, as well as new variants.
For instance, one straight-forward combination is LAU-
REL-RW+LR, where the residual weights from LAUREL-
RW can be applied along with the LAUREL-LR variant to
rewrite (3) as follows:

xi+1 = αf(xi) + β(BAxi + xi). (5)

Similarly, LAUREL-PA as defined in (4) can be combined

1For simplicity, we fix α = 1.

with LAUREL-RW as follows:

xi+1 = αf(xi) + β

xi +

k−1∑
j=0

γi,j · hi(xi−j)

 .

When using a low-rank product for hi, we can create the
LAUREL-RW+LR+PA variant as follows:

xi+1 = αf(xi) + β

xi +

k−1∑
j=0

γi,j ·Ai,jBi,j(xi−j)

 .

(6)
Yet another variant while slightly relaxing our above formu-
lations would be to treat α and β as vectors of length D.
Here, we would learn fine-grained per-dimension weights
when mixing xi and f(xi) at the cost of 2D parameters per
LAUREL-LR layer, instead of two per parameters per layer.

To summarize, LAUREL is inherently flexible and provides
many possible cheap learnable augmentations on top of
the vanilla residual connection. In the following section
we demonstrate that these combinations are efficient and
effective at improving the model quality of common vision
and language models, while having a minimal impact on the
number of parameters and latency.

3. Experiments
We experiment with LAUREL in two domains, namely,
vision and language. For the first case, our goal is to improve
the image classification accuracy of the ResNet-50 model
on the ImageNet-1K dataset (Deng et al., 2009). For the
second case our goal is to improve the performance of two
different large language models (LLMs) of size 1B and
4B parameters respectively, evaluated after the pre-training
stage, on common benchmarks.

The underlying motivation behind these experiments is not
necessarily to improve on the SOTA results, but to show
how LAUREL can be easily integrated on top of common
model architectures with residual/skip connections in order
to achieve a better model quality and footprint trade off.

3.1. ResNet-50 on ImageNet-1K

In this setup we train a standard ResNet-50 model on
the ImageNet 1K dataset (Deng et al., 2009) using 16
Google Cloud TPUv5e chips over one epoch with data-
augmentation turned on. In order to obtain a strong baseline,
we fine-tuned the model learning rate schedule and picked a
schedule that maximized the average of the best accuracy@1
values over 5 trials (which we simply refer to as accuracy
in this subsection). The baseline model that we obtained
achieves an accuracy of 74.95± 0.016%.

In addition, we also find that if we simply add another
layer to the ResNet-50 model (i.e., naive scaling), we can
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Table 1. Applying LAUREL on a ResNet-50 trained on the Ima-
geNet 1K classification dataset. LAUREL-RW provides a signifi-
cant boost with negligible extra parameters. LAUREL-RW+LR
and LAUREL-RW+LR+PA meet and beat the naive scaling base-
line while using 2.6× and 1.82× fewer parameters. Results that
provide statistically significant boost over the baseline are high-
lighted in green and bold.

MODEL AVG. BEST PARAMS ADDED
ACCURACY@1 VS BASELINE
(%), 5 TRIALS (%)

BASELINE 74.95± 0.01 0.00
BASELINE + 1 LAYER 75.20± 0.12 4.37
(NAIVE SCALING)

LAUREL-RW 75.10± 0.10 0.003
LAUREL-RW+LR 75.20± 0.07 1.68
LAUREL-RW+LR+PA 75.25± 0.09 2.40

increase the model’s accuracy by 0.25% to reach 75.20%,
while adding 4.37% new parameters. With that in context,
applying LAUREL on the model improves it (Table 1).

If we only use the LAUREL-RW version, we get an im-
provement of 0.15% on average with only 0.003% extra
parameters, which is essentially negligible. When we try
the LAUREL-RW+LR version from (5) with r = 16, we
achieve 75.20% accuracy while adding only 1.68% new
parameters; this matches the performance of the baseline
with an extra layer, while using 2.6× fewer extra parame-
ters. Additionally, when we use the combined LAUREL-
RW+LR+PA version from (6), we improve the accuracy
to 75.25% while still using 1.82× fewer extra parameters
than the baseline with one extra layer, demonstrating that
LAUREL is superior to naively scaling the model. Notably,
despite substantial changes to the residual connection, we
did not find any training instabilities with LAUREL.

3.2. Large-Scale LLM Pre-training

In this setup, our goal was to test the performance of LAU-
REL when applied on top of strong LLMs. During the
course of our work we evaluated LAUREL on two separate
LLMs, which we pre-trained from scratch. The first LLM
(LLM-1B) is a 1B parameter model pre-trained with a data-
mixture consisting of only text tokenss. The second LLM
(LLM-4B) is a 4B parameter model that was pre-trained
with a multi-modal and multi-lingual data mixture. Both
LLMs were trained with ∼ 0.5T tokens.

What we varied across the two LLMs was to allow for
different budgets for increasing model footprint (parameters,
latency, memory, etc.) when applying LAUREL. For LLM-
1B we allow a very small increase in these metrics (∼ 0.01%
extra parameters, and nearly no latency increase). For LLM-

4B we allow a lenient, yet modest increase in parameters
(∼ 0.1% extra parameters), and latency (1% increase).

Given the scale of LLMs today, both the budgets would
be considered negligible. For instance, a 0.1% increase in
parameters for a 4B model will only correspond to 4M more
parameters. As demonstrated in the ResNet-50/ImageNet
experiments (Section 3.1), LAUREL outperforms naive scal-
ing; see Section 4.5 for a more detailed comparison.

Our objective behind testing LAUREL in these conditions
was to demonstrate its efficacy and ensure that it scales well
across different LLM setups in the wild.

3.2.1. LLM-1B: VERY LOW ADDITIONAL FOOTPRINT

For our first baseline, we chose a 1B parameter decoder-only
transformer-based model. We pre-trained both the baseline,
and our experiment with LAUREL, from scratch; we use
the LAUREL-RW and LAUREL-LR versions (with r = 4).
Both the models were trained using 256 Google Cloud TPU
v5e chips for approximately two weeks each, using a pre-
training mixture consisting of only text data that included
webpages, books, code, and translations.

It is worth noting that the combined LAUREL-RW+LR
variant adds only 0.012% more parameters as compared to
the baseline model. Since we chose r = 4, the number of
parameters added by LAUREL-LR is 8ND and the number
of parameters added by LAUREL-RW is 2N , for a total of
2N(4D+1) additional parameters. Typically N ∈ [10, 100]
and D ∈ [500, 5000]. For the sake of illustration, assuming
N = 20 and D = 1000 and using LAUREL-RW+LR leads
to 160, 040 extra parameters in a 1B parameter model. Thus,
the number of new parameters is dwarfed by that of the orig-
inal model. Furthermore, the additional latency introduced
by LAUREL-RW+LR was within the noise range.

We evaluated both the pre-trained baseline and LAUREL
models on a host of common LLM tasks such as Q&A,
NLU, Math, Code, etc; see Table 2 for the results. The
task type and individual tasks are listed in the first and
second columns respectively, and a higher score is better
for all the tasks. LAUREL outperforms the baselines on
all tasks except on the MBPP dataset where it was neutral.
To reiterate, these improvements were achieved with only
0.012% extra parameters and nearly no increase in latency.

3.2.2. LLM-4B: LOW ADDITIONAL FOOTPRINT

In this second setting, we experimented with a 4B parameter
decoder-only model with a similar token budget, but trained
on a multimodal and multilingual corpus of tokens.

To compensate for a 4× larger model, and also the fact that
the dataset and the evaluation tasks are harder, we allowing
a bigger footprint budget for LAUREL; ∼ 0.1% extra pa-
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Table 2. Evaluation results on LLM-1B as described in Section
3.2.1; a 1B parameter decoder-only LLM pre-trained from scratch
with (a) once with the baseline model architecture, and (b) once
using LAUREL on top. We evaluated both the models on a number
of common evaluation benchmarks (higher is better for all task
type and task combinations listed below). LAUREL variant outper-
forms the baseline on all but one dataset while adding only 0.012%
extra parameters. Results that provide ≥ 2% relative improvement
over the baseline are highlighted in green and bold.

TASK TYPE TASK BASELINE LAUREL

MATH MATH 3.54 3.70
(HENDRYCKS ET AL., 2021B) (+4.51%)

GSM8K-COT 8.34 8.79
(COBBE ET AL., 2021) (+5.39%)

GENERAL MMLU 25.72 25.89
REASONING (HENDRYCKS ET AL., 2021A) (+0.06%)

Q&A BOOLQ 58.07 65.66
(CLARK ET AL., 2019) (+13.07%)

TYDI QA 67.98 72.58
(GOLDP) (+6.76%)

(CLARK ET AL., 2020)

SENTENCE HELLASWAG 64.84 65.06
COMPLETION (ZELLERS ET AL., 2019) (+0.03%)

CODE HUMANEVAL 18.29 18.90
(CHEN ET AL., 2021) (3.33%)

MBPP 27.00 27.00
(AUSTIN ET AL., 2021)

GSM8K-PAL 10.31 11.37
(COBBE ET AL., 2021) (10.28%)

rameters and ∼ 1% extra latency. Note that this is still a
negligible increase in model parameters and latency.

To match these budgets, we set r = 64, which provides a fa-
vorable trade-off of providing more capacity to the low-rank
matrices as specified in the LAUREL-RW+LR formulation
in (6), while also meeting the above-mentioned budgets.

In this setting, both the baseline and the LAUREL experi-
ment were trained using 1024 Google Cloud TPU v4 chips
for slightly more than two days each. See Table 3 for the
evaluation results of both the baseline model and the model
with LAUREL. The task type and individual tasks are listed
in the first and second columns respectively, and a higher
score is better for all the tasks. LLM-4B had a sophisticated
suite of evaluation tasks, including math, general reasoning,
reading comprehension, translation, and multimodal tasks.
All of the listed evaluation tasks are used by leading LLMs
to evaluate model quality, further solidifying our confidence
in the model evaluation setup.

To start off, two of the LLM-4B evaluation tasks, Math,
and MMLU were common with LLM-1B (refer to Table 2
for LLM-1B results). It can be seen that LLM-4B is much

Table 3. Evaluation results on LLM-4B as described in Section
3.2.2; a 4B parameter decoder-only LLM pre-trained from scratch
with (a) once with the baseline model architecture, and (b) once
using LAUREL on top. We evaluated both the models on a number
of common evaluation benchmarks (higher is better for all task
type and task combinations listed below). LAUREL variant out-
performs the baseline on all but two tasks, while adding only ∼
0.1% extra parameters. Results that provide statistically significant
improvement over the baseline are highlighted in green and bold.

TASK TYPE TASK BASELINE LAUREL

MATH MATH 14.70 15.30
(HENDRYCKS ET AL., 2021B) (+4.08%)

MGSM 20.0 23.09
(SHI ET AL., 2023) (+15.45%)

GENERAL MMLU 49.85 51.12
REASONING (HENDRYCKS ET AL., 2021A) (2.54%)

READING BELEBELE 58.40 63.23
COMPRE- (BANDARKAR ET AL., 2024) (+8.27%)
HENSION BOOKQA 50.36 60.46

(MIHAYLOV ET AL., 2018) (+20.05%)

TRANSLATION WMT23 68.32 68.24
(KOCMI ET AL., 2023) (-0.11%)

MULTIMODAL MMMU 32.22 36.33
(YUE ET AL., 2024) (+12.75%)

COCO-CAPTION 95.69 99.15
(LIN ET AL., 2014) (+3.61%)

DOCVQA 68.28 68.34
(MATHEW ET AL., 2021) (+0.08%)

TEXTVQA 60.07 62.64
(SINGH ET AL., 2019) (+4.27%)

stronger than LLM-1B on both the common evals; 4.16×
better on the Math task, and 1.93× better on the MMLU task.
We attribute this to LLM-4B being 4× larger, and having
a more sophisticated pre-training mixture. LAUREL using
the LAUREL-RW+LR variant improves on both Math and
MMLU, which is pleasantly surprising given how powerful
is LLM-4B. For other tasks LAUREL improves significantly
over the baseline as well, except for WMT23 and DocVQA,
where it was neutral.

In terms of costs, the model adds ∼ 0.1% more parameters.
This is still a very reasonable since it means additional 4M
parameters on top of a 4B parameter model. In terms of
latency, we tested on both server-side (Google CloudTPU)
for cloud serving, and a leading smartphone for on-device
inference. In both the benchmarks, we measure nearly 1–2%
increase in latency for prefill and generation. There was no
human perceptible difference in terms of time-to-first-token.

We did not try the LAUREL-PA version for the above LLM
experiments, as the LLM training was expensive. How-
ever, we expect the LAUREL-PA results from the ResNet
experiments to also hold in this case as well.
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3.3. LAUREL-LR: Rank vs Accuracy

We note that for the LAUREL-LR version on the ResNet-
50/ImageNet combination, there is a pattern in terms of
the best accuracy achieved with different values of r. In
the combined LAUREL-RW+LR version, we experimented
with different values of r, and computed the average of the
best accuracy@1 achieved over 5 trials; see Figure 3. From
Table 1, with the LAUREL-RW version alone we already
achieve an average best accuracy@1 of 75.10%, therefore
for the combined LAUREL-RW+LR version we would like
to see the accuracy exceeding that.

We observe that when r is small (r ∈ {4, 8}), there is not
a significant improvement over the baseline LAUREL-RW
experiment. This could be because a very small r acts
as an information bottleneck in the low-rank product in
(3). As r increases, the accuracy reaches the maximum
for r ∈ {16, 32}; beyond this, the accuracy seems to drop
though still higher than the LAUREL-RW baseline.

We believe this unimodal phenomenon could be due to the
number of parameters added to the model (which increases
linearly in r), since this would also require appropriate
tuning of hyperparameters such as the learning rate as well
as the regularization penalty.

Another possible cause could be how the low-rank matri-
ces A and B are initialized. For A ∈ RD×r, we used the
Xavier initialization for the ResNet experiment and a col-
umn orthogonal initialization for the LLM experiments2

while B was always initialized to zero; this is similar to the
scheme used in Hu et al. (2022). We found that initializa-
tion made a significant difference in the performance of the
LAUREL-LR variant, and we posit that further work study-
ing and improving the initialization scheme of the low-rank
matrices could lead to better performance of the variant.

In terms of the tuning required, since r ≪ D, and if
D = 512, 768, 1024, . . . as in typical LLMs, this leaves
a small range of discrete values for r (unlike real-valued
hyperparameters such as learning rate, weight decay, etc).
In our experience r ∈ {32, 48, 64} work well for LLMs.

4. Efficiency
Large models (LLMs and beyond) have been scaled both in
the number of parameters as well as the number of tokens
to achieve better model quality that scaling laws (Hoffmann
et al., 2022) promise. However, this is directly in conflict
with keeping training and inference costs reasonably low
(we describe these costs shortly). These competing forces
have resulted in the emergence of models such as Gem-
ini Flash and Nano (Gemini-Team et al., 2024), DeepSeek
(DeepSeek-A.I. et al., 2024), etc., which have attractive cost

2We use Ai,j = 1/
√
rD if imod r = j and 0 otherwise.

Figure 3. Average best accuracy@1 vs the rank (r) in the LAU-
REL-RW+LR variant.

versus quality trade-offs.

To achieve these favorable trade-offs, the above-mentioned
models incorporate training techniques and architectural
changes that can help improve quality while keeping training
and inference costs low. Therefore, any proposed model ef-
ficiency technique including LAUREL should demonstrate
not just improvement in quality, but also training and infer-
ence efficiency.

4.1. Efficiency Metrics

We now define some of the metrics on which we can mea-
sure model training and inference efficiency, before describ-
ing how LAUREL scores on them.

4.1.1. NUMBER OF PARAMETERS

This is the most common metric designed to capture the
cost of training and serving the model. A larger number of
parameters implies larger forward and backward pass costs.

4.1.2. LATENCY (TRAINING AND INFERENCE)

For training, a key metric to consider would be the number
of steps taken per second. Similarly, another key metric
would be the inference latency when deploying the model.
For LLMs this can be broken down into the latency met-
rics in the warm-up stage (e.g., time-to-first-token, which
can be further refined to prefill latency), and the genera-
tion stage (output tokens/second). For LLMs and other
interactive models, both the time-to-first token and output
tokens/second are important for a good user experience.

4.1.3. PEAK MEMORY

Peak memory used during training is another key metric
that is tracked to ensure that accelerators can accommodate
the model graph and have enough free memory available
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for forward and backward passes. Inefficiencies can be
compensated by strategies like rematerialization (Kumar
et al., 2019), which can help reduce peak memory usage but
need recomputing some activations. Similarly, inference-
time peak memory usage is also a key metric to track.

4.2. Efficiency Analysis

LAUREL variants are designed with the above efficiency
metrics in mind, and in this section we study the perfor-
mance of the variants on these metrics.

Table 4. Analysis of extra parameters, memory, and latency in-
curred for each LAUREL variant, per instantiation, except the
LAUREL-PA case where at any time no more than k previous
activations are in-memory, incurring a total Θ(kD) extra memory
cost. Also note that the latency cost of LAUREL-LR can be tighter
than O(rD2), depending upon which matrix multiplication algo-
rithm used. For simplicity, the latency bounds drop the batch and
sequence dimensions.

LAUREL PARAMS MEMORY LATENCY
VARIANT

LAUREL-RW 1 OR 2 Θ(1) O(1)

LAUREL-LR 2rD Θ(2rD) O(rD2)

LAUREL-PA k Θ(kD) O(kD)

LAUREL-LR+PA 2rkD + k Θ(2rkD + k) O(krD2 + kD)

Table 4 lists the costs associated for each LAUREL layer.
We assume that we are working with a vector of size D
(the last dimension of the input). Note that the listed costs
are per-LAUREL instantiation. Hence, if there are many
transformer layers and if a particular LAUREL variant is
used in each layer, then the relevant costs accumulate across
the layers. We now examine the costs of the variants.

LAUREL-RW is the cheapest with one or two scalars as
parameters, a constant memory cost (the constant depend-
ing on the data type: fp32, fp16 / bf16, unit8 / int8,
etc.), and a constant latency cost since the scalar multiplica-
tion might be optimized by the compiler.

The LAUREL-LR variant has 2rD parameters per instantia-
tion (rD for each of the two low-rank matrices, A and B),
and uses Θ(rD) memory. The latency is upper bounded by
O(rD2), since the input is a vector of dimension D (ignor-
ing the batch and sequence dimensions), and there are two
matrix multiplication steps.

Finally, the LAUREL-PA variant uses k previous activa-
tions. Assuming hi is an identity function, it uses k extra
parameters, and uses Θ(kD) extra memory for the previous
activations. Since it requires k extra vector additions, this

Table 5. Performance of LAUREL variants on a small LLM pre-
training task. LAUREL experiments are based on top of BASE-
LINE-24 (using 24 layers). LAUREL variants achieve a better
test loss than the large baseline, while having fewer parameters,
requiring lesser memory, and being faster in average step time.

VARIANT PARAMS TEST PEAK AVG. STEP
(M) LOSS MEMORY TIME

(GB) (SEC)

BASELINE-24 157.20 3.0159 11.65 0.095
BASELINE-28 179.23 2.9963 13.23 0.105

LAUREL-24 VARIANTS

LAUREL-RW 157.20 2.9557 11.93 0.095
LAUREL-LR 158.40 2.9624 12.29 0.098
LAUREL-PA 157.22 2.9512 12.55 0.100

LAUREL-RW+LR 158.40 2.9531 12.57 0.099
LAUREL-RW+LR+PA 160.83 2.9499 12.90 0.104

introduces an additional latency of O(kD).

4.3. Ablation Study of LAUREL Variants

To supplement the efficiency analysis in Section 4.2, we
provide an ablation study of LAUREL variants on a small
LLM pre-training baseline. We used the C4 corpus (Raffel
et al., 2020) with ∼ 10B tokens, and a 4× 4 Google Cloud
TPU v6e (Trillium) topology3 for compute.

In order to simplify the comparison across many ablations
(and also to avoid the noise in downstream evaluations at
the 10B tokens scale), we report model performance using
the test loss, a reasonable proxy for downstream model
quality. For each model we report the number of parameters,
test loss, peak memory reported by profiling tools, and the
average step time. The last two metrics are proxies for
the theoretical memory and latency bounds respectively, as
mentioned in Section 4.2. Lower is better for all metrics.

We trained our main baseline with 24 layers (BASELINE-24)
and 157.2M parameters, along with a larger baseline with
28 layers (BASELINE-28) and 179.2M parameters. We ran
all the LAUREL variants and two combinations (RW+LR,
RW+LR+PA) on top of BASELINE-24. For the LAUREL-
LR variants and its combinations, we picked r = 32. Sim-
ilarly for LAUREL-PA variant and its combinations, we
chose k = 3. Table 5 shows the results.

As seen in the results, all LAUREL variants have a lower
test loss than the BASELINE-24, while having a negligible
impact on additional parameters, peak memory, or average
step time. In fact, LAUREL variants perform better than
even BASELINE-28 in terms of the test loss while using
much fewer parameters, lower peak memory, and lower
average step time.

3We expect similar results with a comparable GPU setup.
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4.4. Practical Recommendations

Given the experiments and the analysis of individual vari-
ants and their combinations, LAUREL-RW is clearly the
first candidate to try. LAUREL-RW+LR offers further im-
provements to model quality, and seems to provide the best
trade-off in terms of quality improvements and the addi-
tional overhead. We validated this in the ResNet (Section
3.1) and LLM experiments (Sections 3.2.1, 3.2.2, 4.3).

The LAUREL-RW+LR+PA variant also leads to improve-
ments over LAUREL-RW+LR. The main caveat is the ad-
ditional Θ(kD) memory, which might need to be moni-
tored. If it is a concern, it can be mitigated to some extent
by choosing a small value of k or by changing the model
sharding/re-materialization schemes.

Given the above tradeoffs in loss, memory, step time, etc. we
recommend trying the LAUREL variants in the following
order: RW → LR → RW+LR / PA → RW+LR+PA.

4.5. Comparison with Naive Model Scaling

One of the advantages of LAUREL we would like to high-
light is that it is competitive against naive scaling. Con-
cretely, given a modest additional budget for parameters,
latency, and memory, allocating that budget to LAUREL
variants is likely to produce larger gains than using that bud-
get in naive scaling methods such as additional layers. We
first observed this in the ResNet experiments (Section 3.1),
where LAUREL variants match the performance of naive
scaling while adding 2.6× fewer parameters, thus showing
the Pareto-efficiency of LAUREL (vs naive scaling).

In the LLM experiments in Section 3.2, the gains achieved
using LAUREL variants are at the cost of ∼ 0.01–0.1%
more parameters. A naive way to use this ‘additional’ bud-
get would be to increase the model dimension (D) such that
we match the extra parameter budget. However, this is may
not be feasible due to hardware limitations and memory
alignment issues. Another way to use this ‘additional’ bud-
get would be to increase the vocabulary size. However, the
gains would be limited since this will include more tokens
only from the tail of the distribution and may not contribute
much to the model quality. Interestingly, Karpathy (2023)
reported that the NanoGPT model (Karpathy, 2022) pre-
training was sped up by ∼ 25% when the vocabulary size
was made divisible by 64. Therefore naive scaling might
also hurt metrics like latency and memory by making the
model setup suboptimal on the hardware.

Additionally, we also conducted a detailed study comparing
LAUREL with naive scaling on the same LLM pre-training
task as LLM-4B as mentioned in Section 3.2.2. The baseline
model and the the LAUREL experiments are similar to
their counterparts in Section 3.2.2, except a configuration
change, which allows adding a layer. Both have 40 layers

each, and are referred to as BASELINE-40 and LAUREL-40
respectively.

The naive scaling baseline had 41 layers, and is referred
to as BASELINE-41 henceforth. In Table 6, we present the
respective number of parameters and average step times of
the three models when training (forward + backward pass).
A lower average step time is better. For BASELINE-41 and
LAUREL, we report the delta in number of parameters and
average step time when compared to the original baseline.

Table 6. Comparison between BASELINE-40 (40 layers), BASE-
LINE-41 (41 layers), and LAUREL in terms of parameters and
average step time (forward and backward pass).

MODEL PARAMS AVG. STEP TIME
(B) (SEC)

BASELINE-40 4.400 1.65
BASELINE-41 4.560 (+3.63%) 1.68 (+1.81%)

LAUREL-40 4.404 (+0.1%) 1.69 (+2.42%)

Note LAUREL adds only +0.1% parameters and incurs a
step time penalty of 2.42%. In terms of extra parameters
added, LAUREL adds 36× fewer parameters than the
extra parameters added by BASELINE-41. The latency of
LAUREL is slightly higher than naively adding another
layer because LAUREL is invoked for each layer (40 times
for BASELINE-40), but the per-layer invocation cost is small.

Table 7 shows the downstream quality of the baselines and
LAUREL on 10 tasks across Math, General Reasoning,
Reading Comprehension, Translation, and Mutimodal do-
mains. LAUREL wins on all tasks, except WMT23 and
DocVQA where it matches the baselines. It outperforms
not just BASELINE-40, but also BASELINE-41, achieving
between 2%–21% improvement over BASELINE-40’s per-
formance.

We posit that naive scaling by adding an extra layer or two
in a very deep network does not always lead to a correspond-
ing improvement in performance out of the box. For such
networks, we might require hyperparameter tuning (learn-
ing rate, weight decay) to counter overfitting, or training
on more tokens to realize the expected theoretical model
performance predicted by the scaling laws.

It is also well known that with deeper networks, the residual
stream starts to play a crucial role in model convergence
and quality. We suggest that this is the primary reason
why LAUREL performs well. It augments the residual
stream with learned components, allocating capacity for the
network to learn the linear components of the input better.
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Table 7. LAUREL’s comparison with naive scaling. Results that provide statistically significant improvement over the BASELINE-40 are
highlighted in green and bold. The percentages in the last row of the LAUREL section indicate the relative improvement over the baseline.

MATH
GENERAL

REASONING
READING

COMPREHENSION
TRANSLATION MULTIMODAL

METHOD MATH MGSM MMLU BELEBELE BOOKQA WMT23 MMMU COCO-CAP DOCVQA TEXTVQA

BASELINE-40 14.20 20.29 48.83 57.92 47.11 67.72 33.77 97.29 66.87 60.86
(4.40B PARAMS) ± 0.88 ± 3.16 ± 0.81 ± 3.42 ± 4.06 ± 0.20 ± 3.11 ± 4.41 ± 2.67 ± 2.86

BASELINE-41 14.50 20.29 49.10 59.30 42.77 67.74 35.33 98.50 66.18 60.23
(4.56B PARAMS) ± 0.9 ± 3.15 ± 0.82 ± 3.34 ± 4.15 ± 0.21 ± 3.12 ± 3.53 ± 2.76 ± 2.87

LAUREL-40 15.11 23.12 50.32 62.65 57.22 67.71 37.57 99.27 66.92 63.15
(4.404B PARAMS) ± 1.01 ± 3.51 ± 0.82 ± 3.15 ± 3.81 ± 0.19 ± 3.10 ± 5.03 ± 2.65 ± 2.82

(+6.48%) (+13.94%) (+3.05%) (+8.16%) (+21.46%) (-0.02%) (+11.25%) (+2.03%) (+0.07%) (+3.76%)

5. Related Work
Residual Stream. DenseNet (Huang et al., 2017) connects
every pair of layers in the network and hence in the basic
variant of DenseNet, all the activations need to be in memory.
This is prohibitively expensive for deep LLMs and other
modern transformers. When introducing dense-blocks, all
previous activations within the block need to be visible to
any given layer within the block; this requires refactoring
the model architecture into dense blocks.

On the other hand, LAUREL requires minimal changes. In
fact, in LAUREL-PA, which is the most similar to DenseNet,
we make three design choices to achieve memory efficiency
and performance. First, each layer only looks at the k past
activations (k = 3 seems sufficient in our experiments). Sec-
ond, we use low-rank linear functions to further reduce mem-
ory usage due to activations. Third, we use learned scalars
(γi, γi−1, . . . ) to weigh the previous activations (which we
found to be crucial in practice), whereas DenseNet assumes
a simple sum of the previous activations.

He et al. (2016) introduce variants of residual connections
with different types of ‘gating’, which look similar to the
LAUREL-RW variant, except that they use a much larger
number of parameters (O(D2) per layer), where LAUREL-
RW uses one or two extra parameters per layer. Highway
Nets (Srivastava et al., 2015) is similar to LAUREL-RW
but they also use D2 + D parameters; furthermore, they
incur additional latency due a full-rank matrix multiplication.
Residual Gates (Savarese, 2016) also is similar to LAUREL-
RW, except they use ReLU as the gating function. However,
LAUREL is a more general formulation.

Architectural Changes. Our work is inspired by recent
model architecture improvements such as LoRA (Hu et al.,
2022) and AltUp (Baykal et al., 2023) amongst others.
LoRA is designed to efficiently fine-tune large pre-trained
models and it works directly on the model weight matri-

ces level by introducing low-rank ‘adapter’ weights that
are learned during the fine-tuning stage, while other model
weights are held constant. In contrast, LAUREL works at
the residual connection level, which likely spans multiple
weight matrices involved in the function f ; furthermore, it
is applied during the pre-training stage.

AltUp (Baykal et al., 2023) is designed to replicate the qual-
ity improvements of a model with a large model dimension,
without having to pay the additional cost. It operates at the
transformer-block level, constructing parallel ‘lightweight’
transformer blocks to approximate the model dimension
scaling effect. In contrast, LAUREL does not aim to repli-
cate the dimension scaling effect.

Interestingly, LAUREL can be applied in conjunction with
both LoRA (during fine-tuning) and AltUp (during pre-
training and fine-tuning). LAUREL can also be enabled
at the same time as parameter-sharing techniques.

6. Conclusion
In this paper we introduce the LAUREL framework, which
is a novel architectural change and a generalization of the
residual/skip connection aimed at improving the model qual-
ity without significantly increasing the model size or la-
tency. We study three versions (LAUREL-RW, LAUREL-
LR, LAUREL-PA) that can be mixed-and-matched together.

Through experiments, we demonstrate the efficacy of re-
placing the conventional residual connection with LAUREL
on both vision and language tasks, while also providing
evidence for its advantages over naive model scaling meth-
ods. For future work, we aim to further improve LAUREL
by developing new variants with better trade-offs between
quality and model footprint.
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