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ABSTRACT

We introduce marginalization models (MAMs), a new family of generative models
for high-dimensional discrete data. They offer scalable and flexible generative
modeling with tractable likelihoods by explicitly modeling all induced marginal
distributions. Marginalization models enable fast evaluation of arbitrary marginal
probabilities with a single forward pass of the neural network, which overcomes
a major limitation of methods with exact marginal inference, such as autoregres-
sive models (ARMs). We propose scalable methods for learning the marginals,
grounded in the concept of “marginalization self-consistency”. Unlike previous
methods, MAMs also support scalable training of any-order generative models for
high-dimensional problems under the setting of energy-based training, where the
goal is to match the learned distribution to a given desired probability (specified by
an unnormalized (log) probability function such as energy or reward function). We
demonstrate the effectiveness of the proposed model on a variety of discrete data
distributions, including binary images, language, physical systems, and molecules,
for maximum likelihood and energy-based training settings. MAMs achieve orders
of magnitude speedup in evaluating the marginal probabilities on both settings.
For energy-based training tasks, MAMs enable any-order generative modeling of
high-dimensional problems beyond the capability of previous methods.

1 INTRODUCTION

Deep generative models have enabled remarkable progress across diverse fields, including image
generation, audio synthesis, natural language modeling, and scientific discovery. However, there
remains a pressing need to better support efficient probabilistic inference for key questions involving
marginal probabilities p(xs) and conditional probabilities p(xu|xv), for appropriate subsets s, u, v
of the variables. The ability to directly address such quantities is critical in applications such as
outlier detection [50, 40], masked language modeling [11, 72], image inpainting [73], and constrained
protein/molecule design [69, 55]. Furthermore, the capacity to conduct such inferences for arbitrary
subsets of variables empowers users to leverage the model according to their specific needs and
preferences. For instance, in protein design, scientists may want to manually guide the generation of
a protein from a user-defined substructure under a particular path over the relevant variables. This
requires the generative model to perform arbitrary marginal inferences.

Towards this end, neural autoregressive models (ARMs) [3, 30] have been developed to facilitate
conditional/marginal inference based on the idea of modeling a high-dimensional joint distribution
as a factorization of univariate conditionals using the chain rule of probability. Many efforts have
been made to scale up ARMs and enable any-order generative modeling under the setting of maxi-
mum likelihood estimation (MLE) [30, 66, 20], and great progress has been made in applications
such as masked language modeling [72] and image inpainting [20]. However, marginal likelihood
evaluation in the most widely-used modern neural network architectures (e.g., Transformers [68] and
U-Nets [53]) is limited by O(D) neural network passes, where D is the length of the sequence. This
scaling makes it difficult to evaluate likelihoods on long sequences arising in data such as natural
language and proteins. In contrast to MLE, in the setting of energy-based training (EB), instead of
empirical data samples, we only have access to an unnormalized (log) probability function (specified
by a reward or energy function) that can be evaluated pointwise for the generative model to match. In
such settings, ARMs are limited to fixed-order generative modeling and lack scalability in training.
The subsampling techniques developed to scale the training of conditionals for MLE are no longer
applicable when matching log probabilities in energy-based training (see Section 4.3 for details).
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Figure 1: Marginalization models (MAMs) enable estimation of any marginal probability with a neural network
θ that learns to “marginalize out” variables. The figure illustrates marginalization of a single variable on bit
strings (representing molecules) with two alternatives (versus K in general) for clarity. The bars represent
probability masses.

To enhance scalability and flexibility in the generative modeling of discrete data, we propose a new
family of generative models, marginalization models (MAMs), that directly model the marginal
distribution p(xs) for any subset of variables xs in x. Direct access to marginals has two important
advantages: 1) significantly speeding up inference for any marginal, and 2) enabling scalable training
of any-order generative models under both MLE and EB settings.

Effective batch size (per training sample)

Li
ke

lih
oo

d 
in

fe
r. 

tim
e/

m
em

or
y

𝒪(1) 𝒪(D)

𝒪(1)

𝒪(D)

Sequential discrete generative models

MaM - MLE/DM

ARM - MLE ARM - DM

GFlowNet-TB - MLE/DM

AR Flow - MLE/DM

Any-order 
Fixed/Learned-order 
Any marginal inference

≫

Figure 2: Scalability of sequential dis-
crete generative models. The y-axis
unit is # of NN forward passes required.

The unique structure of the model allows it to simultaneously
represent the coupled collection of all marginal distributions of
a given discrete joint probability mass function. For the model
to be valid, it must be consistent with the sum rule of probability,
a condition we refer to as “marginalization self-consistency”
(see Figure 1); learning to enforce this with scalable training
objectives is one of the key contributions of this work.

We show that MAMs can be trained under both maximum like-
lihood and energy-based training settings with scalable learning
objectives. We demonstrate the effectiveness of MAMs in both
settings on a variety of discrete data distributions, including
binary images, text, physical systems, and molecules. We em-
pirically show that MAMs achieve orders of magnitude speedup
in marginal likelihood evaluation. For energy-based training, MAMs are able to scale training of
any-order generative models to high-dimensional problems that previous methods fail to achieve.

2 BACKGROUND

We first review two prevalent generative modeling settings. Then we introduce autoregressive models
under two training settings.

Maximum likelihood (MLE) Given a dataset D = {x(i)}Ni=1 drawn from a data distribution
p = pdata, we aim to learn the distribution pθ(x) that maximizes the probability of the data under our
model. Mathematically, we aim to learn the parameters θ⋆ that maximize the log-likelihood:

θ⋆ = argmaxθ Ex∼pdata [log pθ(x)] ≈ argmaxθ 1/N
∑N

i=1 log pθ(x
(i)) (1)

which is also equivalent to minimizing the Kullback-Leibler divergence under the empirical distri-
bution, i.e., minimizing DKL(pdata(x)||pθ(x)). This is the setting that is most commonly used in
generation of images (e.g., diffusion models [59, 18, 60]) and language (e.g. GPT [49]) where we
can empirically draw observed data from the distribution.

Energy-based training (EB) In this setting, we do not have data from the distribution of interest.
Instead, we have access to the unnormalized (log) probability mass function f , usually in the form of
reward function or energy function, that are defined by humans or by physical systems to specify
how likely a sample is. Mathematically, we can define the target probability mass function to
be f(x) = exp(r(x)/τ), where r(x) is the reward function and τ > 0 is a temperature parameter.
This expresses the intuitive idea that we would like the model to assign higher probability to data
with larger reward. For example, the reward function can represent human preferences in alignment
of large language models [43, 42]. In molecular/material design applications, scientists can specify
the reward according to how close a particular sample’s measured or calculated properties are to
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some functional desiderata. When modeling the thermodynamic ensemble of physical systems, r(x)
is defined to be the (negative) energy function of a given state [41]. Mathematically, we aim to learn
the parameters θ such that pθ(x) ≈ f(x)/Z, where Z is the normalization constant of f . A common
training criteria is to minimize the KL divergence [41, 71, 9]:

minθ DKL
(
pθ (x)

∥∥f(x)/Z) = Ex∼pθ(x) [log pθ (x)− log f(x)/Z] . (2)

Autoregressive models Autoregressive models (ARMs) [3, 30] model a complex high-dimensional
distribution p(x) by factorizing it into univariate conditionals using the chain rule:

log p(x) =
∑D

d=1 log p (xd | x<d) , (3)

where x<d = {x1, . . . , xd−1}. Recently there has been great success in applying autoregressive
models to discrete data, such as natural language, proteins [58, 32, 36], and molecules [56, 15]. Due
to their sequential nature via modeling the conditionals, evaluation of (joint/marginal) likelihood
requires up to D neural network evaluations. This is costly for long sequences, leading to limitations
that prevent ARMs to be scalable for marginal inference and energy-based training.

Any-order ARMs (AO-ARMs) Under the MLE setting, Uria et al. [66] propose to learn the
conditionals of ARMs for arbitrary orderings that include all permutations of {1, . . . , D}. The model
ϕ can be trained by maximizing a lower-bound objective [66, 20] that takes an expectation under a
uniform distribution on orderings. This objective allows scalable training of AO-ARMs, leveraging
efficient parallel evaluation of multiple one-step conditionals for each token in one forward pass with
architectures such as the U-Net [53] and Transformers [68]. However, under the EB setting, training
AO-ARMs presents challenges, which we will discuss in details in Section 4.3.

3 MARGINALIZATION MODELS

We propose marginalization models (MAMs), a new type of generative model that enables scalable
any-order generative modeling as well as efficient marginal evaluation, for both maximum likelihood
and energy-based training. The flexibility and scalability of marginalization models are enabled by
the explicit modeling of the marginal distribution and enforcing marginalization self-consistency.

In this paper, we focus on generative modeling of discrete structures using vectors of discrete variables.
The vector representation encompasses various real-world problems with discrete structures, including
language sequence modeling, protein design, and molecules with string-based representations (e.g.,
SMILES [70] and SELFIES [29]). Moreover, vector representations are inherently applicable to any
discrete problem, since it is feasible to encode any discrete object into a vector of discrete variables.

Definition We are interested in modeling the discrete probability distribution p(x), where x =
[x1, . . . , xD] is a D-dimensional vector and each xd takes K possible values, i.e. xd ∈ {1, . . . ,K}.
Marginalization Let xs be a subset of variables of x and xsc be the complement set, i.e. xs ⊆
{x1, . . . , xD} and xsc = {x1, . . . , xD} \ xs. The marginal of xs is obtained by summing over all
values of xsc :

p(xs) =
∑

xsc
p(xs,xsc) (4)

We refer to (4) as the “marginalization self-consistency” that any valid distribution should follow. The
goal of a marginalization model θ is to estimate the marginals p(xs) for any subset of variables xs as
closely as possible. To achieve this, we train a deep neural network pθ that minimizes the distance of
pθ(x) and p(x) on the full joint distribution 1 while enforcing the marginalization self-consistency.

Parameterization To approximate arbitrary marginals over xs with a single neural network forward
pass, we additionally include the “marginalized out” variables xsc in the input by introducing a special
symbol “?” to denote the missing values. By doing this, we create an augmented D-dimensional
vector representation xaug

s ∈ X aug ≜ {1, . . . ,K, ?}D and feed it to the NN. For example, for a binary
vector x of length 4, for xs = {x1, x3} with x1 = 0 and x3 = 1, xaug

s = [0, ?, 1, ?] where “?” denotes
x2 and x4 being marginalized out. From here onwards we will use xaug

s and xs interchangeably.

1An alternative is to consider minimizing distance over some marginal distribution of interest if we only
cares about a specific marginal. Note this is impractical under the energy-based training setting, when the true
marginal p(xs) is intractable to evaluate in general.
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A marginalization model parameterized by a neural network θ takes in the augmented vector repre-
sentation xaug

s ∈ {1, . . . ,K, ?}D, and outputs the marginal log probability fθ(xs) = log pθ(xs) that
satisfy the marginalization self-consistency constraints2:∑

xsc
pθ([xs,xsc ]) = pθ(xs) ∀xs ∈ {1, . . . ,K, ?}D

where [xs,xsc ] denotes the concatenation of xs and xsc . Given a random ordering of the variables
σ ∈ SD where SD defines the set of all permutations of 1, 2, · · · , D, let σ(d) denote the d-th element
in σ and σ(< d) be the first d − 1 elements in σ. The marginalization can be imposed over one
variable at a time, which leads to the following one-step marginalization constraints:

pθ(xσ(<d)) =
∑

xσ(d)
pθ(xσ(≤d)), ∀σ ∈ SD,x ∈ {1, · · · ,K}D, d ∈ [1 : D] . (5)

Sampling Given the learned marginalization model, one can sample from the learned distribution
by picking an arbitrary order σ and sampling one variable at a time. To evaluate the conditionals at
each step of the generation, we can use the product rule of probability:

pθ(xσ(d)|xσ(<d)) = pθ(xσ(≤d)) / pθ(xσ(<d)) .

However, the above is not a valid conditional distribution if the marginalization in (5) is not strictly
enforced, since it might not sum up exactly to one. Hence we use following normalized conditional:

pθ(xσ(d)|xσ(<d)) =
pθ([xσ(<d), xσ(d)])∑

xσ(d)
pθ([xσ(<d), xσ(d)])

. (6)

In this paper, we focus on the sampling procedure that generates one variable at a time, but marginal-
ization models can also facilitate sampling multiple variables at a time ( See Appendix B.2 ).

Scalable learning of marginals with conditionals In training, we impose the marginalization
self-consistency by minimizing the squared error of the constraints in (5) in log-space. Evaluation
of each marginalization constraint in (5) requires K NN forward passes, where K is the number of
discrete values xd can take. This makes training challenging to scale when K is large. To address
this issue, we augment the marginalization models with learnable conditionals parameterized by ϕ.
The marginalization constraints in (5) can be decomposed into K parallel marginalization constraints,
which makes it highly scalable to subsample from for training:

pθ(xσ(<d))pϕ(xσ(d)|xσ(<d)) = pθ(xσ(≤d)), ∀σ ∈ SD,x ∈ {1, · · · ,K}D, d ∈ [1 : D]. (7)

During training, we need to specify a distribution q(x) for subsampling the marginalization constraints
to optimize on. In practice, it can be set to the distribution we are interested to perform marginal
inference on, such as pdata or the distribution of the generative model pθ,ϕ.

4 TRAINING THE MARGINALIZATION MODELS

4.1 MAXIMUM LIKELIHOOD ESTIMATION TRAINING

In this setting, we train MAMs with the maximum likelihood objective while additionally enforcing
the marginalization constraints in Equation (5):

max
θ,ϕ

Ex∼pdata log pθ(x) (8)

s.t. pθ(xσ(<d))pϕ(xσ(d)|xσ(<d)) = pθ(xσ(≤d)), ∀σ ∈ SD,x ∈ {1, · · · ,K}D, d ∈ [1 : D].

Two-stage training A typical way to solve the above optimization problem is to convert the
constraints into a penalty term and optimize the penalized objective, but we empirically found
the learning to be slow and unstable. Instead, we identify an alternative two-stage optimization
formulation that is theoretically equivalent to Equation (8), but leads to more efficient training:
Claim 1. Solving the optimization problem in (8) is equivalent to the following two-stage optimization
procedure, under mild assumption about the neural networks used being universal approximators:

Stage 1: maxϕ Ex∼pdataEσ∼U(SD)

∑D
d=1 log pϕ

(
xσ(d) | xσ(<d)

)
Stage 2: minθ Ex∼q(x)Eσ∼U(SD)Ed∼U(1,··· ,D)

(
log[pθ(xσ(<d))pϕ(xσ(d)|xσ(<d))]− log pθ(xσ(≤d))

)2
.

2To make sure pθ is normalized, we can either additionally enforce pθ([?? · · ·?]) = 1 or let Zθ =
pθ([?? · · ·?]) be the normalization constant.
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The first stage can be interpreted as fitting the conditionals in the same way as AO-ARMs [66, 20]
and the second stage acts as distilling the marginals from conditionals. The intuition comes from
the chain rule of probability: there is a one-to-one correspondence between optimal conditionals ϕ
and marginals θ, i.e. log pθ(x) =

∑D
d=1 log pϕ

(
xσ(d)|xσ(<d)

)
for any σ and x. By assuming neural

networks are universal approximators, we can first optimize for the optimal conditionals, and then
optimize for the corresponding optimal marginals. We provide more details in Appendix A.1.

4.2 ENERGY-BASED TRAINING

In this setting, we train MAMs using the energy-based training objective in Equation (2) with a
penalty term to enforce the marginalization constraints in Equation (5):

min
θ,ϕ

DKL(pθ (x)∥p(x)) + λEx∼q(x)EσEd

(
log

[
pθ
(
xσ(<d)

)
pϕ
(
xσ(d)|xσ(<d)

)]
− log pθ

(
xσ(≤d

))2
,

where σ ∼ U(SD), d ∼ U(1, · · · , D) and q(x) is the distribution of interest for evaluating marginals.

Scalable training We use REINFORCE to estimate the gradient of the KL divergence term:

∇θDKL(pθ(x)||p(x)) = Ex∼pθ(x) [∇θ log pθ (x) (log pθ (x)− log f (x))]

≈ 1/N
∑N

i=1∇θ log pθ(x
(i))

(
log pθ(x

(i))− log f(x(i))
)

(9)

For the penalty term, we subsample the ordering σ and step d for each data x.

Efficient sampling with persistent MCMC We need cheap and effective samples from pθ in order
to perform REINFORCE, so a persistent set of Markov chains are maintained by randomly picking an
ordering and taking block Gibbs sampling steps using the conditional distribution pϕ(xσ(d)|xσ(<d))
(full algorithm in Appendix A.5), in similar fashion to persistent contrastive divergence [64]. The
samples from the conditional distribution pϕ serve as approximate samples from pθ when they are
close to each other. Otherwise, we can additionally use importance sampling for adjustment.

4.3 ADDRESSING LIMITATIONS OF ARMS

We discuss in more detail about how MAMs address some limitations of ARMs. The first one is
general to both training settings, while the latter two are specific to energy-based training.

1) Slow marginal inference of likelihoods Due to sequential conditional modeling, evaluation of a
marginal pϕ(xo) with ARMs (or an arbitrary marginal with AO-ARMs) requires applying the NN ϕ
up to D times, which is inefficient in time and memory for high-dimensional data. In comparison,
MAMs are able to estimate any arbitrary marginal with one NN forward pass.
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Figure 3: Approximating log pϕ(x)
with one-step conditional (ARM-MC)
results in extremely high gradient vari-
ance during energy-based training.

2) Lack of support for any-order training In energy-based
training, the objective in Equation (2) aims to minimize
the distance between log pϕ(x) and log p(x), where ϕ
is the NN parameters of an ARM. However, unless the
ARM is perfectly self-consistent over all orderings, it
will not be the case that log pϕ(x) = Eσ log pϕ(x|σ).
Therefore, the expected DKL objective over the orderings

σ would not be equivalent to the original DKL objective, i.e.,
Epϕ

[Eσ log pϕ(x | σ)− log p(x)] ̸= Epϕ
[log pϕ(x)− log p(x)].

As a result, ARMs cannot be trained with the expected DKL
objective over all orderings simultaneously, but instead need
to resort to a preset order and minimize the KL divergence
between log pϕ(x|σ) and the target density log p(x). The
self-consistency constraints imposed by MAMs address this issue. MAMs are not limited to fixed
ordering because marginals are order-agnostic and we can optimize over expectation of orderings for
the marginalization self-consistency constraints.

3) Training not scalable on high-dimensional problems When minimizing the difference between
log pϕ(x|σ) and the target log p(x), ARMs need to sum conditionals to evaluate log pϕ(x|σ). One
might consider subsampling one-step conditionals pϕ(xσ(d)|xσ(<d) to estimate pϕ(x), but this leads
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to high variance of the REINFORCE gradient in Equation (9) due to the product of the score
function and distance terms, which are both high variance (We validate this in experiments, see
Figure 3). Consequently, training ARMs for energy-based training necessitates a sequence of D
conditional evaluations to compute the gradient of the objective function. This constraint leads to
an effective batch size of B × D for batch of B samples, significantly limiting the scalability of
ARMs to high-dimensional problems. Furthermore, obtaining Monte Carlo samples from ARMs
for the REINFORCE gradient estimator is slow when the dimension is high. Due to the fixed input
ordering, this process requires D sequential sampling steps, making more cost-effective sampling
approaches like persistent MCMC infeasible. Marginalization models circumvent this challenge by
directly estimating the log-likelihood with the marginal neural network. Additionally, the support for
any-order training enables efficient sampling through the utilization of persistent MCMC methods.

5 RELATED WORK

Autoregressive models Developments in deep learning have greatly advanced the performance of
ARMs across different modalities, including images, audio, and text. Any-order (Order-agnostic)
ARMs were first introduced in [66] by training with the any-order lower-bound objective for the
maximum likelihood setting and recently seen in ARDM [20] with state-of-the-art performance for
any-order discrete modeling of image/text/audio. Germain et al. [16] train an auto-encoder with
masking that outputs the sequence of all one-step conditionals for a given ordering, but does not
generate as well as methods [67, 72, 20] that predict one-step conditionals under the given masking.
Douglas et al. [14] trains an AO-ARM and use importance sampling to estimate arbitrary conditional
posteriors, but with limited experiment validation on a synthetic dataset. Shih et al. [57] utilizes a
modified training objective of ARMs for better marginal inference performance but loses any-order
generation capability. Comparisons of MAMs and ARMs are discussed in detail in Section 4.3.

Arbitrary conditional/marginal models For continuous data, VAEAC [25] and ACFlow [31]
extends the idea of conditional variational encoder and normalizing flow to model arbitrary con-
ditionals. ACE [62] improves the expressiveness of arbitrary conditional models through directly
modeling the energy function, which puts less constraints on parameterization but comes at the cost of
approximating the normalizing constant. Instead of using neural networks as function approximators,
probabilistic circuits (PCs) [6, 45] offer tractable probabilistic models for both conditionals and
marginals by building a computation graph with sum and product operations following specific
structural constraints. Examples of PCs include Chow-Liu trees [7], arithmetic circuits [10], sum-
product networks [47], etc. Peharz et al. [45] have improved the scalability of PCs through combining
arithmetic operations into a single monolithic einsum-operation and automatic differentiation. More
recently, [33, 34] demonstrated the potential of PCs with distilling latent variables from trained
deep generative models on continuous image data. However, their expressiveness are limited by
the structural constraints. All methods mentioned above focus on MLE settings, except ARMs are
explored in energy-based training of science problems [9, 71], but suffer in scaling when D is large.

GFlowNets GFlowNets [2, 4] formulate the problem of generation as matching the probability
flow at terminal states to the target normalized density. Compared to ARMs, GFlowNets allow
flexible modeling of the generation process by assuming learnable generation paths through a directed
acyclic graph (DAG). The advantages of learnable generation paths come with the trade-off of
sacrificing the flexibility of any-order generation and exact likelihood evaluation. Under fixed
generation path, GFlowNets are reduced to fixed-order ARMs [74]. In Appendix A.3, we further
identify the connections and differences between GFlowNets and AO-ARMs/MAMs. For discrete
problems, Zhang et al. [75] train GFlowNets on the squared distance loss with the trajectory balance
objective [38], which is less scalable for large D (due to the same reason as ARMs in Section 4.3) and
renders direct access to marginals unavailable. For the MLE setting, an energy function is additionally
learned from data such that training is reduced to energy-based training.

6 EXPERIMENTS

We conduct experiments with marginalization models (MAM) on both MLE and EB settings
for discrete problems including binary images, text, molecules and phyiscal systems. We
consider the following baselines for comparison: Any-order ARM (AO-ARM) [20], ARM [30],
GFlowNet [39, 75], Discrete Flow[65] and Probabilistic Circuit (PC) [45]. MAM, PC and
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Figure 4: An example of the data generated (with 100/400/700 pixels masked) for comparing the quality of
likelihood estimate. Numbers below the images are LL estimates from MAM’s marginal network (left) and
AO-ARM-E’s ensemble estimate (right).

Table 1: Performance Comparison on Binary-MNIST

Model NLL (bpd) ↓ Spearman’s ↑ Pearson ↑ Marg. inf. time (s) ↓
AO-ARM-E-U-Net 0.148 1.0 1.0 661.98 ± 0.49
AO-ARM-S-U-Net 0.149 0.996 0.993 132.40 ± 0.03
GflowNet-MLP 0.189 – – –
PC-Image (EiNets)4 0.187 0.716 0.752 0.015 ± 0.00
MAM-U-Net 0.149 0.992 0.993 0.018 ± 0.00

(AO-)ARM support arbitrary marginal inference. Discrete flow3 allows exact likelihood evaluation
while GFlowNet needs to approximate the likelihood with sum using importance samples. For
evaluating AO-ARM’s marginal inference, we can either use an ensemble model by averaging
over several random orderings (AO-ARM-E) or use a single random ordering (AO-ARM-S).
In general, AO-ARM-E should always be better than AO-ARM-S but at a much higher cost.
Neural network architecture and training hyperparameter details can be found in Appendix C.
Ablation studies on measuring marginal self-consistency and sampling with marginals are in Appendices B.1 and B.2.

Guidance on picking q is in Appendix B.3. Appendix C.3 contains more results on CIFAR-10.

6.1 MAXIMUM LIKELIHOOD ESTIMATION TRAINING

Binary MNIST We report the negative test likelihood (bits/digit), marginal estimate quality and
marginal inference time per minibatch (of size 16) in Table (1). To keep GPU memory usage the
same, we sequentially evaluate the likelihood for ARMs. Both MAM and AO-ARM use a U-Net
architecture with 4 ResNet Blocks interleaved with attention layers (see Appendix C). GFlowNets fail
to scale to large architectures as U-Net, hence we report GFlowNet results using an MLP from Zhang
et al. [75]. For MAM, we use the conditional network to evaluate test likelihood (since this is also
how MAM generates data). The marginal network is used for evaluating marginal inference. The
quality of the marginal estimates will be compared to the best performing model.

In order to evaluate the quality of marginal likelihood estimates, we employ a controlled experiment
where we randomly mask out portions of a test image and generate multiple samples with varying
levels of masking (refer to Figure 4). This process allows us to obtain a set of distinct yet comparable
samples, each associated with a different likelihood value. For each model, we evaluate the likelihood
of the generated samples and compare that with AO-ARM-E’s estimate since it achieves the best
likelihood on test data. We repeat this controlled experiment on a random set of test images. The
mean Spearman’s and Pearson correlation are reported to measure the strength of correlation in
marginal inference likelihoods between the given model and AO-ARM-E. MAM achieves close
to 4 order of magnitude speed-up in marginal inference while at comparable quality to that from
AO-ARM-S. PCs are also very fast in marginal inference but there remains a gap in terms of quality.
Generated samples and additional marginal inference on partial images are in Appendix C.

Molecular sets (MOSES) We test generative modeling of MAM on a benchmarking molecular
dataset [46] refined from the ZINC database [61]. Same metrics are reported as Binary-MNIST.
Likelihood quality is measured similarly but on random groups of test molecules instead of generated
ones. The generated molecules from MAM and AO-ARM are comparable to standard state-of-the-art
molecular generative models, such as CharRNN [56], JTN-VAE [26], and LatentGAN [48] (see
Appendix C), with additional controllability and flexibility in any-order generation. MAM supports

3Results are only reported on text8 for discrete flow since there is no public code implementation.
4We adopt the SOTA implementation of PCs from EiNets [45]. Results are reported on Binary MNIST using

the image-tailored PC structure [47]. For text and molecular data, designing tailored PC structures that deliver
competitive performance remains an open challenge.
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Table 2: Performance Comparison on Molecular Sets

Model NLL (bpd) ↓ Spearman’s ↑ Pearson ↑ Marg. inf. time (s) ↓
AO-ARM-E-Transfomer 0.652 1.0 1.0 96.87± 0.04
AO-ARM-S-Transfomer 0.655 0.996 0.994 19.32± 0.01
MAM-Transfomer 0.655 0.998 0.995 0.006±0.00

Table 3: Performance Comparison on text8

Model NLL (bpc) ↓ Spearman’s ↑ Pearson ↑ Marg. inf. time (s) ↓
Discrete Flow (8 flows) 1.23 – – –
AO-ARM-E-Transfomer 1.494 1.0 1.0 207.60 ± 0.33
AO-ARM-S-Transfomer 1.529 0.982 0.987 41.40 ± 0.01
MAM-Transfomer 1.529 0.937 0.945 0.005 ± 0.000

Table 4: Performance Comparison on Ising model (10× 10)

Model NLL (bpd) ↓ KL divergence ↓ Marg. inf. time (s) ↓
ARM-Forward-Order-MLP 0.79 -78.63 5.29±0.07e-01
ARM-MC-Forward-Order-MLP 24.84 -18.01 5.30±0.07e-01
GFlowNet-Learned-Order-MLP 0.78 -78.17 –
MAM-Any-Order-MLP 0.80 -77.77 3.75±0.08e-04

Table 5: Performance Comparison on Target Lipophilicity

Model KL divergence ↓
Distribution logP = 4, τ = 1.0 logP = −4, τ = 1.0 logP = 4, τ = 0.1 logP = 4, τ = 0.1

ARM-FO-MLP -174.25 -168.62 -167.83 -160.2
MAM-AO-MLP -173.07 -166.43 -165.75 -157.59

much faster marginal inference, which is useful for domain scientists to reason about likelihood of
(sub)structures. Generated molecules and property histogram plots of are available in Appendix C.

Text8 Text8 [37] is a widely used character level natural language modeling dataset. The dataset
comprises of 100M characters from Wikipedia, split into chunks of 250 character. We follow the
same testing procedure as Binary-MNIST and report the same metrics. The test NLL of discrete flow
is from [65], for which there are no open-source implementations to evaluate additional metrics.

6.2 ENERGY-BASED TRAINING

We compare with ARM that uses sum of conditionals to evaluate log pϕ with fixed forward ordering
and ARM-MC that uses a one-step conditional to estimate log pϕ. ARM can be regarded as the
golden standard of learning autoregressive conditionals, since its gradient needs to be evaluated on the
full generation trajectory, which is the most informative and costly. MAM uses marginal network to
evaluate log pθ and subsamples a one-step marginalization constraint for each data point in the batch.
The effective batch size for ARM and GFlowNet is B ×O(D) for batch of size B, and B ×O(1)
for ARM-MC and MAM . MAM and ARM optimizes KL divergence using REINFORCE gradient
estimator with baseline. GFlowNet is trained on per-sample gradient of squared distance [75].

Ising model Ising models [24] model interacting spins and are widely studied in mathematics and
physics (see MacKay [35]). We study Ising model on a square lattice. The spins of the D sites are
represented a D-dimensional binary vector and its distribution is p∗(x) ∝ f∗(x) = exp (−EJ(x))
where EJ(x) ≜ −x⊤Jx− θ⊤x, with J the binary adjacency matrix. These models, although sim-
plistic, bear analogies to the complex behavior of high-entropy alloys [9]. We compare MAM with
ARM, ARM-MC, and GFlowNet on a 10×10 (D=100) and a larger 30×30 (D=900) Ising model
where ARMs and GFlowNets fail to scale. 2000 ground truth samples are generated following Grath-
wohl et al. [17] and we measure test negative log-likelihood on those samples. We also measure
DKL(pθ(x)||p∗) by sampling from the learned model and evaluating

∑M
i=1(log pθ(xi)−log f∗(xi)).

Figure 5 contains KDE plots of −EJ(x) for the generated samples. As described in Section 4.3, the
ARM-MC gradient suffers from high variance and fails to converge. It also tends to collapse and
converge to a single sample. MAM has significant speedup in marginal inference and is the only
model that supports any-order generative modeling. The performance in terms of KL divergence
and likelihood are only slightly worse than models with fixed/learned order, which is expected since
any-order modeling is harder than fixed-order modeling, and MAM is solving a more complicated task
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Figure 5: Ising model: 2000 samples are generated for each method.
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Figure 7: Conditionally generate towards low lipophilicity from a user-defined substructure in any given order.
Left: Masking out the left 4 SELFIES characters. Right: Masking the right 4-20 SELFIES characters.

of jointly learning conditionals and marginals. On a 30× 30 (D = 900) Ising model, MAM achieves
a bpd of 0.835 on ground-truth samples while ARM and GFlowNet fails to scale. Distribution of
generated samples is shown in Figure 5.

Molecular generation with target property In this task, we are interested in training generative
models towards a specific target property of interest g(x), such as lipophilicity (logP), synthetic acces-
sibility (SA) etc. We define the distribution of molecules to follow p∗(x) ∝ exp(−(g(x)− g∗)2/τ),
where g∗ is the target value of the property and τ is a temperature parameter. We train ARM and
MAM for lipophilicity of target values 4.0 and−4.0, both with τ = 1.0 and τ = 0.1. Both models are
trained for 4000 iterations with batch size 512. Results are shown in Figure 6 and Table 5 (additional
figures in Appendix C). Findings are consistent with the Ising model experiments. Again, MAM
performs just marginally below ARM. However, only MAM supports any-order modeling and scales
to high-dimensional problems. Figure 6 (right) shows molecular generation with MAM for D = 500.

7 CONCLUSION

In conclusion, marginalization models are a novel family of generative models for high-dimensional
discrete data that offer scalable and flexible generative modeling with tractable likelihoods. These
models explicitly model all induced marginal distributions, allowing for fast evaluation of arbitrary
marginal probabilities with a single forward pass of the neural network. MAMs also support scalable
training objectives for any-order generative modeling, which previous methods struggle to achieve
under the energy-based training setting. Potential future work includes designing new neural network
architectures that automatically satisfy the marginalization self-consistency.
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Esben Jannik Bjerrum, Ola Engkvist, and Hongming Chen. A de novo molecular generation
method using latent vector based generative adversarial network. Journal of Cheminformatics,
11(1):1–13, 2019. (page 7)

[49] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. (page 2)

[50] Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua Dillon,
and Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution detection. Advances in
neural information processing systems, 32, 2019. (page 1)

[51] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International Conference on Machine Learning, pp. 1530–1538. PMLR, 2015. (page 17)

[52] Oren Rippel and Ryan P. Adams. High-dimensional probability estimation with deep density
models. arXiv preprint arXiv:1302.5125, 2013. (page 17)

[53] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9,
2015, Proceedings, Part III 18, pp. 234–241. Springer, 2015. (pages 1 and 3)

[54] Ruslan Salakhutdinov and Iain Murray. On the quantitative analysis of deep belief networks.
In Proceedings of the 25th international conference on Machine learning, pp. 872–879, 2008.
(page 20)

[55] Arne Schneuing, Yuanqi Du, Charles Harris, Arian Jamasb, Ilia Igashov, Weitao Du, Tom
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A ADDITIONAL TECHNICAL DETAILS

A.1 PROOF OF PROPOSITION 1

Proof. From the single-step marginalization self-consistency in (7), we have

log pθ(x) =
∑D

d=1
log pϕ

(
xσ(d)|xσ(<d)

)
, ∀x, σ.

Therefore we can rewrite the optimization in (8) as:

max
ϕ

Ex∼pdataEσ∼U(SD)

∑D

d=1
log pϕ

(
xσ(d) | xσ(<d)

)
(10)

s.t. pθ(xσ(<d))pϕ(xσ(d)|xσ(<d)) = pθ(xσ(≤d)), ∀σ ∈ SD,x ∈ {1, · · · ,K}D, d ∈ [1 : D].

Let p∗ be the optimal probability distribution that maximizes the likelihood on training data, and
from the chain rule we have:

p∗ = argmax
p

Ex∼pdata log p(x) = Ex∼pdataEσ∼U(SD)

∑D

d=1
log p

(
xσ(d)|xσ(<d)

)
Then p∗ is also the optimal solution to (10) the marginalization constraints are automatically satisfied
by p∗ since it is a valid distribution. From the universal approximation theorem [23, 22, 8], we can
use separate neural networks to model pθ (marginals) and pϕ (conditionals), and obtain optimal
solution to (10) with θ∗ and ϕ∗ that approximates p∗ arbitrarily well.

Specifically, if θ∗ and ϕ∗ satisfy the following three conditions below, they are the optimal solution
to (10):

pϕ∗
(
xσ(d) | xσ(<d)

)
= p∗

(
xσ(d) | xσ(<d)

)
, ∀ x, σ (11)

pθ∗(xs) = p∗(xs)Zθ∗ , ∀ x, s ⊆ {1, · · · , D} (12)

pθ∗(xσ(<d))pϕ∗(xσ(d)|xσ(<d)) = pθ∗(xσ(≤d)), ∀σ ∈ SD,x ∈ {1, · · · ,K}D, d ∈ [1 : D] (13)
where Zθ∗ is the normalization constant of pθ∗ and is equal to pθ∗ ((?, · · · , ?)). It is easy to see from
the definition of conditional probabilities that satisfying any two of the optimal conditions leads to
the third one.

To obtain the optimal ϕ∗, it suffices to solve the following optimization problem:

Stage 1: max
ϕ

Ex∼pdataEσ∼U(SD)

∑D

d=1
log pϕ

(
xσ(d) | xσ(<d)

)
because p∗ = argmaxp Ex∼pdataEσ∼U(SD)

∑D
d=1 log p

∗ (xσ(d)|xσ(<d)

)
due to chain rule. Solving

Stage 1 is equivalent to finding ϕ∗ that satisfies condition (11). Then we can obtain the optimal θ∗ by
solving for condition (13) given the optimal conditionals ϕ∗:

Stage 2: min
θ

Ex∼q(x)Eσ∼U(SD)Ed∼U(1,··· ,D)

(
log[pθ(xσ(<d))pϕ∗(xσ(d)|xσ(<d))]− log pθ(xσ(≤d))

)2

A.2 EXPECTED LOWER BOUND OF LOG-LIKELIHOOD

Here we present the expected lower bound objective used for training AO-ARMs under maximum
likelihood setting, which was first proposed by Uria et al. [66]. Hoogeboom et al. [20] provided the
expected lower bound perspective.

Given an ordering σ,

log p(x | σ) =
∑D

d=1
log p

(
xσ(d) | xσ(<d)

)
. (14)

By taking the expectation over all orderings σ, we can derive a lower bound on the log-likelihood via
Jensen’s inequality.

log pϕ(x) = logEσ pϕ(x | σ)
Jensen’s inequality

≥ Eσ

∑D

d=1
log pϕ

(
xσ(d) | xσ(<d)

)
= Eσ∼U(SD) DEd∼U(1,...,D) log pϕ

(
xσ(d) | xσ(<d)

)
= DEd Eσ

1

D − d+ 1

∑
j∈σ(≥d)

log pϕ
(
xj | xσ(<d)

)
, (15)
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where σ ∼ U(SD), d ∼ U(1, . . . , D) and xσ(<d) = {xσ(1), . . . , xσ(d−1)}. U(S) denotes the
uniform distribution over a finite set S and σ(d) denotes the d-th element in the ordering.

A.3 CONNECTIONS BETWEEN MAMS AND GFLOWNETS

In this section, we identify an interesting connection between generative marginalization models
and GFlowNets. The two type of models are designed with different motivations. GFlowNets are
motivated by learning a policy to generate according to an energy function and MAMs are motivated
from any-order generation through learning to perform marginalization. However, under certain
conditions, there exists an interesting connection between generative marginalization models and
GFlowNets. In particular, the marginalization self-consistency condition derived from the definition
of marginals in Equation (4) has an equivalence to the “detailed balance” constraint in GFlowNet
under the following specific conditions.
Observation 1. When the directed acyclic graph (DAG) used for generation in GFlowNet is specified
by the following conditions, there is an equivalence between the marginalization self-consistency
condition in Equation (7) for MAM and the detailed balance constraint proposed for GFlowNet [4].
In particular, the pθ(xσ(d)|xσ(<d)) in MAM is equivalent to the forward policy PF (sd+1 | sd) in
GFlowNet, and the marginals pθ(xσ(d)) are equal to the flows F (sd) up to a normalizing constant.

• DAG Condition: The DAG used for generation in GFlowNet is defined by the given tree-like
structure: a sequence x is generated by incrementally adding one variable at each step,
following a uniformly random ordering σ i.e. σ ∼ U(SD). At step d, the state along the
generation trajectory is defined to be sd = xσ(≤d).

• Backward Policy Condition: At step D − d, the backward policy under the DAG is fixed by
removing (un-assigning) the value of the d+ 1-th element under ordering σ , i.e. PB(sd |
sd+1;σ) = 1{sd=xσ(≤d)}. Or equivalently, the backward policy removes (un-assigns) one
of the existing variables at random, i.e. PB(sd | sd+1) = 1/d+11{sd⊂sd+1}.

Intuitively, this is straight forward to understand, since GFlowNet generates a discrete object autore-
gressively. The model was proposed to enhance the flexibility of generative modeling by allowing for
a learned ordering, as compared with auto-regressive models (see [75] Sec. 5 for a discussion). When
the generation ordering is fixed, it is reduced to autoregressive models with fixed ordering, which
is discussed in [74]. Observation 1 presented above for any-order ARMs can be seen as a extended
result of the connection between GFlowNets and fixed-order ARMs.

We have seen the interesting connection of GFlowNets with ARMs (and MAMs). Next, we discuss
the differences between GFlowNets and MAMs.
Remark 1. The detailed balance constraint was proposed only as a theoretical result in Bengio
et al. [4]. In actual experiments, GFlowNets are trained using either flow matching [2] or trajectory
balance [38, 75].

Zhang et al. [75] is the most relevant GFlowNet work that targets the discrete problem setting.
Training is done via minimizing the squared distance loss with trajectory balance objective. For the
MLE training, it proposes to additionally learn an energy function from data so that the trajectory
balance objetive can still be applied. In particular, MAM is different from GFlowNet in Zhang et al.
[75] in three main aspects.

• First of all, MAMs target any-order generation and direct access to marginals, where as
GFlowNets aim for flexibility in learning generation paths and does not offer exact likelihood
or direct access to marginals under learnable generation paths. When the generation path
is fixed to follow a ordering or random ordering, they are reduced to ARMs or any-order
ARMs, which allow for exact likelihood. However, training with the trajectory balance
objective does not offer direct access to marginals (just like how ARMs do not offer direct
access to marginals but only conditionals).

• Second, training under MLE setting is signiticantly different: GFlowNets learn an additional
learned energy function to reduce MLE training back to energy-based training, while MAMs
directly maximizes the expected lower bound on the log-likelihood under the marginalization
self-consistent constraint.
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• Lastly, the training objective is different under energy-based training. GFlowNets are trained
on squared distance under the expectation to be specified to be either on-policy, off-policy,
or a mixture of both. MAMs are trained on KL divergence where the expectation is defined
to be on-policy. It is possible though to train MAMs with squared distance and recently
Malkin et al. [39] have shown the equivalence of the gradient of KL divergence and the
on-policy expectation of the per-sample gradient of squared distance (which is the gradient
actually used for training GFlowNets).

A.4 DISCUSSION OF NEURAL GENERATIVE MODELS AND PROBABILISTIC CIRCUITS

Probabilistic circuits [6, 45, 33, 34] are very powerful and promising approaches that exhibit great
properties such as fast and exact marginalization through smart design of the model’s structure and
operations.
On the other hand, neural generative models perform approximate inference utilizing the powerful
expressiveness of neural networks. Compared to PCs, the neural approximate inference approaches
do not have the exact marginalization properties but have better flexibility in modeling complex
distributions [57, 20]. Hence there is a trade-off between exact marginalization v.s. approximate
marginalization. Our work falls under the neural generative models category but directly approxi-
mates marginals. Direct modeling of marginals opens opportunites for more flexible sampling, as
shown in Appendix B.2, and more scalable approximate marginal inference and training under EB
settings.

A.5 ALGORITHMS

We present the algorithms for training MAM for maximum likelihood and energy-based training
settings in Algorithm 1 and Algorithm 2.

Algorithm 1 MLE training of MAMs

Input: Data Dtrain, q(x), network θ and ϕ
Stage 1: Train ϕ with Equation (15) used in
AO-ARM
for minibatch x ∼ Dtrain do

Sample σ ∼ U(SD), d ∼ U(1, · · · , D)
L ← D

D−d+1

∑
j∈σ(≥d) log pϕ

(
xj |xσ(<d)

)
Update ϕ with gradient of L

end for
Stage 2: Train θ to distill the marginals from
optimized conditionals ϕ
for minibatch x ∼ q(x) do

Sample σ ∼ U(SD), d ∼ U(1, · · · , D)
L ← squared error of the inconsistencies in

Equation (7)
Update θ with gradient of L

end for

Algorithm 2 Energy-based training of MAMs

Input: q(x), network θ and ϕ, Gibbs sampling
block size M
Joint training of ϕ and θ:
for j in {1, · · · , N} do

Sample σ ∼ U(SD)
Update x ∼ pϕ(xσ(≤M)|xσ(>M))

▷ Persistent block Gibbs sampling
Sample x̃ ∼ q(x)

Sample d̃ ∼ U(1, · · · , D), σ̃ ∼ U(SD)
Lpenalty ← squared error of Equation (7), for

d̃ and σ̃ with x̃
∇θ,ϕDKL ← REINFORCE est. with x
∇θ,ϕ ← ∇θ,ϕDKL + λ∇θ,ϕLpenalty
Update θ and ϕ with gradient

end for

A.6 ADDITIONAL LITERATURE ON DISCRETE GENERATIVE MODELS

Discrete diffusion models Discrete diffusion models learn to denoise from a latent base distribution
into the data distribution. Sohl-Dickstein et al. [59] first proposed diffusion for binary data and was
extended in Hoogeboom et al. [21] for categorical data and both works adds uniform noise in the
diffusion process. A wider range of transition distributions was proposed in Austin et al. [1] and
insert-and-delete diffusion processes have been explored in Johnson et al. [27]. Hoogeboom et al.
[20] explored the connection between ARMs and diffusion models with absorbing diffusion and
showed that OA-ARDMs are equivalent to absorbing diffusion models in infinite time limit, but
achieves better performance with a smaller number of steps.
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Discrete normalizing flow Normalizing flows transform a latent base distribution into the data
distribution by applying a sequence of invertible transformations [52, 63, 12, 59, 51, 13, 28, 44]. They
have been extended to discrete data [65, 19] with carefully designed discrete variable transformations.
Their performance is competitive on character-level text modeling, but they do not allow any-order
modeling and could be limited to discrete data with small number of categories due to the use of a
straight-through gradient estimators.

B ABLATION STUDIES
B.1 SCRUTINIZING MARGINAL SELF-CONSISTENCY

The marginal self-consistency in MAMs is enforced through optimizing the scalable training objective.
Here we empirically examine how well they are enforced in practice. First we look at checkerboard,
a synthetic problem often used for testing clustering algorithms. More recently it has been used
for testing and visualizing both continuous and discrete generative models. We define a discrete
input space by discretizing the continuous coordinates of points in 2D. To be more concrete, the
origin range [−4, 4] of each dimension is converted into a 16-bit string following the standard way
of converting float to string. The target unnormalized probability p(x) is set to 1 for points within
dark squares and 1e − 10 within light squares (since it is infeasible to set it to ln(0) = −∞ for a
NN to learn, and in practice 1e− 10 is negligible compared to 1). We trained a 5-layer MLP with
hidden node size 2048 and residual connections on this problem on both MLE and EBM settings and
q(x) is set to be a balanced mixture of ground truth data and samples from pθ for MLE or uniform
random for EBM:

min
θ
−Ex∼pdatapθ (x) + λEx∼q(x)EσEd

(
log

∑
xσ(d)

pθ([xσ(<d), xσ(d)])− log pθ([xσ(<d), xσ(d)])
)2

.

min
θ

DKL(pθ (x)∥p(x)) + λEx∼q(x)EσEd

(
log

∑
xσ(d)

pθ([xσ(<d), xσ(d)])− log pθ([xσ(<d), xσ(d)])
)2

.

For this problem, only a marginal network θ is trained to predict the log p of any marginals. Upon
training to convergence, the generative models perform on par or better than state of the art discrete
generative models and achieve a 20.68 test NLL. See Figure 10 for a comparison of ground truth and
learned PMF heatmap. It can be seen the PMF are approximated quite accurately. We investigate
how well the marginal self-consistency are enforced, by looking at the marginal estimates of MAMs
trained with λ = 1e2 and λ = 1e4. We evaluate marginals over the first dimension (0 − 16 bits)
by fixing the second dimension (17 − 32 bits) to 1.0 (bit string = 0001111111111111). We plot
marginals by marginalizing out bit 3−16 (i.e. (x1, x2, · · · )) and bit 5−16 (i.e. (x1, x2, x3, x4, · · · )).
In Figure 11, when λ = 1e4, the self-consistency are more strictly enforced, leading to matched
marginals. Notice that there is some tiny residue PMF at the light squares with the 1e − 10
approximation applied to points with 0 probability, but they are negligible compared to the significant
probability masses. After normalizing the marginals over all possibilities, the marginals are almost
exactly matched. In Figure 12, when λ = 1e2, the self-consistency are more loosely enforced as
compared to λ = 1e4. But it is notable that they are only shifted by a constant as compared to
the ground truth marginals. This means although marignal self-consisteny is not strictly enforced
when λ = 1e2, softly enforcing it leads to shifted but consistent estimates of marginals. Using the
constant-shifted marginals to sample will result in the same distribution with the ground truth, since
after normalization, MAM marginals match the ground truth almost exactly. This is observed in the
samples generated under λ = 1e2 in Figure 10 and consistent normalized marginals in Figure 12.
Another interesting observation is that when the marginal self consistency is more softly enforced,
less mass is placed on

B.2 SAMPLING WITH MARGINALS V.S. CONDITIONALS

The trained marginalization model comes with two networks. The conditional network ϕ estimates
any-order conditionals pϕ(xσ(d)|xσ(<d)), and the marginal network θ estimates arbitrary marginals
pθ(xσ(≤d)). When MAM is used for sampling, either network can be used. With the conditional
network ϕ, samples can be drawn autoregressively one variable at each step. Or the marginals can be
used to draw variables using the normalized conditional:

pθ(xsi |xs(<i)) =
pθ([xsi ,xs(<i)])∑
xsi

pθ([xsi ,xs(<i)])
.
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Figure 8: PMF heat map under EB training. The learned PMF and ground truth PMF are consistent to each
other relatively well. The MSE on log p (or p) of dark pixels is 0.0033 (or 7.67e− 20) and the MSE on light
pixels is 0.0076 (or 3.73e− 30). We are evaluating marginals along the red line: i.e. fixing (x17, · · · ,x32) =
(0, 0, 0, 1, 1, 1, · · · , 1), which correspond to 1 in floating number for y-axis, and perform marginalization over
(x1, · · · ,x16). (0, 0, · · · ) corresponds to [0, 2]. (0, 1, · · · ) corresponds to [2, 4]. (1, 0, · · · ) corresponds to
[−2, 0]. (1, 1, · · · ) corresponds to [−4,−2].
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Figure 9: Marginal consistency λ = 1e2 under EB training. Ground truth: summing over ground truth PMF.
MAM Probability Sum: summing over learned PMF from MAM. MAM Marginal: direct estimate with
MAM. The small discrepancy in p(1, 0, ?, · · · , ?) is due to the corner case of (1, 0, 0, 0, · · · , 0) be assigned to
a positive value due to numerical errors in float conversion.
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Figure 10: PMF heat map under MLE training. The learned PMF and ground truth PMF are consistent to each
other relatively well. The MSE on log p (or p) of dark pixels is 0.533 (or 2.5e − 19) and the MSE on light
pixels is 2.5 (or 3e− 28).

where xsi is the next block of variables (can be multiple) to sample at step i and xs(<i) are the
previously sampled variables. We show with experiments that the marginals are also effective to be
used for sampling and they provide extra flexibility in the sampling procedure. We test sampling
with different block sizes using the marginals with random orderings and compare them to sampling
with conditionals in Figure 13. The samples generated are of similar quality. And those different
sampling procedures exhibit similar likelihood on test data. However, sampling with large block size
enables to trade compute memory for less time spent (due to fewer steps) in generation inference,
which we find it interesting to explore for future work. Compared with the conditional network, the
marginal network allows sampling in arbitrary block variable size and ordering. This illustrates the
potential utility of MAMs in flexible generation with tractable likelihood.
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Figure 11: Marginal consistency λ = 1e4 with MLE training. Ground truth: summing over ground truth
PMF. MAM Probability Sum: summing over learned PMF from MAM. MAM Marginal: direct estimate with
MAM. Note that p for (0, 1) and (1, 0) should be in principle close to zero, but are non-zero due to float-to-int
converting numerical errors.
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Figure 12: Marginal consistency λ = 1e2 with MLE training.
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Figure 13: MAM sampling using marginal network (a-d) with different number of variables at each step v.s.
sampling using conditional network (e) with 1 variable at eacth step. (f) compares NLL under different sampling
procedures and the model inference time.

B.3 CHOICE OF q IN SAMPLING THE MARGINALIZATION SELF-CONSISTENCY FOR TRAINING

In simple examples such as the synthetic checkerboard problem, it does not really matter, we have
tried pdata or pθ or random, or a mixture of them. All work fairy well given that the problem is
relatively easy.
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In real-world data problems, it boils down to what the marginal will be used for at test time. Uniform
distribution over x will be a bad choice if there is a data manifold we care about. If it will be used
for generation, for example in the MNIST Binary example in Appendix B.2, q is set to a mixture of
pθ and pdata. If it will be used for mariginal inference on the data manifold, pdata will be enough. We
all know the NN is not robust on data it hasn’t trained on, and so are the marginal networks, they will
not give correct estimates if we evaluate on arbitrary datapoint off the manifold or policy.

C ADDITIONAL EXPERIMENTS DETAILS

C.1 DATASET DETAILS

Binary MNIST Binary MNIST is a dataset introduced in [54] that stochastically set each pixel
to “1” or “0” in proportion to its pixel intensity. We use the training and test split of [54] provided
in https://github.com/yburda/iwae/tree/master [5].

To evaluate the quality of the likelihood estimates, we employ a controlled experiment where we
randomly mask out portions (100, 400, and 700 pixels) of a test image and generate multiple samples
with varying levels of masking (refer to Figure 4). We repeat this for 160 (randomly subsampled)
test images and created a dataset of 640 sets of comparable images. To further test the quality of
the marginal likelihood estimates on partially observed images, we curate a dataset of 160 sets of
partial test images (7 ∼ 9 images in each set) by randomly subsampling from the test set and masking
the upper half of the images. To make sure the partial images are comparable but different in their
log-likelihood, in each set, we remove samples that have a log-likelihood close to another sample
within the threshold of 5.0.

Molecular Sets The molecules in MOSES are represented either in SMILES [70] or SELFIES [29]
strings. We construct a vocabulary (including a stop token) from all molecules and use discrete
valued strings to represent molecules. It is worth noting that MAM can also be applied for modeling
molecules at a coarse-grained level with predefined blocks, which we leave for future work.

The test set used for evaluating likelihood estimate quality is constructed in a similar manner to
Binary MNIST, by drawing sets of random samples from the test dataset.

text8 In this dataset, we use a vocabulary of size 27 to represent the letter alphabet with an extra
value to represent spaces.

The test set of datasets used for evaluating likelihood estimate quality is constructed in a similar
manner to Binary MNIST, each set is generated by randomly masking out portions of a test text
sequence (by 50, 100, 150, 200 tokens) and generating samples.

Ising model The Ising model is defined on a 2D cyclic lattice. The J matrix is defined to be
σAN , where σ is a scalar and AN is the adjacency matrix of a N ×N grid. Positive σ encourages
neighboring sites to have the same spins and negative σ encourages them to have opposite spins.
The bias term θ places a bias towards positive or negative spins. In our experiments, we set σ to 0.1
and θ to 1 scaled by 0.2. Since we only have access to the unnormalized probability, we generate
2000 samples following [17] using Gibbs sampling with 1, 000, 000 steps for 10× 10 and 30× 30
lattice sizes. Those data serve as ground-truth samples from the Ising model for evaluating the test
log-likelihood.

Molecular generation with target property During training, we need to optimize on the loss
objective on samples generated from the neural network model. However, if the model generates
SMILES strings, not all strings correspond to a valid molecule, which makes training at the start
challenging when most generated SMILES strings are invalid molecules. Therefore, we use SELFIES
string representation as it is a 100% robust in that every SELFIES string corresponds to a valid
molecule and every molecule can be represented by SELFIES.

C.2 TRAINING DETAILS

Binary MNIST

• “0”, “1” and “?” are represented by a scalar value (“?” takes the value 0) and additionally a
mask indicating if it is a “?”.
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• U-Net with 4 ResNet Blocks interleaved with attention layers for both AO-ARM and MAM.
MAM uses two separate neural networks for learning marginals ϕ and conditionals θ. Input
resolution is 28× 28 with 256 channels used.

• The mask is concatenated to the input. 3/4 of the channels are used to encode input. The
remaining 1/4 channels encode the mask cardinality (see [20] for details).

• MAM first learns the conditionals ϕ and then learns the marginals θ by finetuning on the
downsampling blocks and an additional MLP with 2 hidden layers of dimension 4096.
We observe it is necessary to finetune not only on the additional MLP but also on the
downsampling blocks to get a good estimate of the marginal probability, which shows
marginal network and conditional network rely on different features to make the final
prediction.

• Batch size is 128, Adam is used with learning rate 0.0001. Gradient clipping is set to 100.
Both AO-ARM and MAM conditionals are trained for 600 epochs. The MAM marginals
are finetuned from the trained conditionals for 100 epochs.

MOSES and text8

• Transformer with 12 layers, 768 dimensions, 12 heads, 3072 MLP hidden layer dimensions
for both AO-ARM and MAM. Two separate networks are used for MAM.

• SMILES or SELFIES string representation and “?” are first converted into one-hot encodings
as input to the Transformer.

• MAM first learns the conditionals ϕ and then learns the marginals θ by finetuning on the
MLP of the Transformer.

• Batch size is 512 for MOSES and 256 for text8.

• AdamW is used with learning rate 0.0005, betas 0.9/0.99, weight decay 0.001. Gradient
clipping is set to 0.25. Both AO-ARM and MAM conditionals are trained for 1000 epochs
for text8 and 200 epochs for MOSES. The MAM marginals are finetuned from the trained
conditionals for 200 epochs.

Ising model and molecule generation with target property

• Ising model input are of {0, 1, ?} values and are one-encoded as input to the neural network.
The same is done for molecule SELFIES strings.

• MLP with residual layers, 3 hidden layers, feature dimension is 2048 for Ising model. 6
hidden layers, feature dimension 4096 for molecule target generation.

• Adam is used with learning rate of 0.0001. Batch size is 512 and 4096 for molecule target
generation. ARM, GFlowNet and MAM are trained with 19, 800 steps for the Ising model.
ARM and MAM are trained with 3, 000 steps for molecule target generation.

• Separate networks are used for conditionals and marginals of MAM. They are trained jointly
with penalty parameter λ set to 4.

Compute

• All models are trained on a single NVIDIA A100. The evaluation time is tested on an
NVIDIA GTX 1080Ti.

C.3 ADDITIONAL RESULTS ON CIFAR-10
Due to limited time, we are only able to train MaMs for 180 epochs and achieve a test NLL of
3.34 bpd (if we continue training to 3000 epochs, test NLL will get close to 2.69 bpd shown in the
AO-ARM literature [20]). The MaM marginal quality are evaluated using the same procedure on
spearman’s and pearson correlation with the AO-ARM model, with 0.9796 and 0.9774 respectively.
The marginal self-consistency error is averaged ∼ 0.3 in log p values. It is conceivable that the same
conclusion will apply when training conditionals for more number of epochs and learning marginals
from conditionals.
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Test NLL is compared in Table 6. MaM achieve highly correlations in terms of log p estimate when
compared with AO-ARM log p’s. Generated samples are shown in Figure 14 and Figure 15. Results
are consistent with Hoogeboom et al. [20] and Shih et al. [57].

Table 6: Performance Comparison on CIFAR-10

Model NLL (bpd) ↓ Spearman’s ↑ Pearson ↑ Marg. inf. time (s) ↓
AO-ARM-S-U-Net 3.344 - - 2400.94 ± 185.72
MAM-U-Net 3.344 0.978 0.977 0.50 ± 0.02

Figure 14: . Conditional generation from masked images. Left: Original test images. Middle: Masked images.

Right: conditionally generated images.

Figure 15: . Generated samples. Note that sometimes images are flipped because MaM is trained on augmented images.

C.4 ADDITIONAL RESULTS ON BINARY MNIST

Likelihood estimate on partial Binary MNIST images

Figure 16 illustrates an example set of partial images that we evaluate and compare likelihood estimate
from MAM against ARM. Table 7 contains the comparison of the marginal likelihood estimate quality
and inference time.

Generated image samples

Figure 17 shows how a digit is generated pixel-by-pixel following a random order. We show generated
samples from MAM using the learned conditionals ϕ in Figure 18.
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Partial-5

Figure 16: An example set of partial images for evaluating marginal likelihood estimate quality. The numbers in
the captions show the log-likelihood calculated using learned marginals (left) v.s. learned conditionals (right)

Table 7: Performance Comparison on Binary-MNIST partial images

Model Spearman’s ↑ Pearson ↑ Marg. inf. time (s) ↓
AO-ARM-E-U-Net 1.0 1.0 248.96 ± 0.14
AO-ARM-S-U-Net 1.0 0.997 49.75 ± 0.03
MAM-U-Net 0.998 0.995 0.02 ± 0.00

0.1111, 0.0000 -14.2229, -16.1155 -26.9883, -28.8949 -39.1542, -42.2621 -51.3186, -53.8418 -61.0715, -63.9271 -67.4851, -71.1942 -79.8951, -84.4266

Figure 17: An example of the trajectory every 112 step when generating an MNIST digit following a random
order. The future pixels are generated by conditioning on the existent filled-in pixels. The numbers in the
captions show the log-likelihood calculated using learned marginals (left) v.s. learned conditionals (right)

C.5 ADDITIONAL RESULTS ON MOSES

Table 8: Performance Comparison on MOSES

Model Valid↑ Unique
10k↑

Frag
Test↓

Scaf
TestSF↑

Int
Div1↑

Int
Div2↑

Filters↑ Novelty↑

Train 1.0 1.0 1.0 0.9907 0.8567 0.8508 1.0 1.0
HMM 0.076 0.5671 0.5754 0.049 0.8466 0.8104 0.9024 0.9994
NGram 0.2376 0.9217 0.9846 0.0977 0.8738 0.8644 0.9582 0.9694
CharRNN 0.9748 0.9994 0.9998 0.1101 0.8562 0.8503 0.9943 0.8419
JTN-VAE 1.0 0.9996 0.9965 0.1009 0.8551 0.8493 0.976 0.9143
MAM-SMILES 0.7192 0.9999 0.9978 0.1264 0.8557 0.8499 0.9763 0.9485
MAM-SELFIES 1.0 0.9999 0.997 0.0943 0.8684 0.8625 0.894 0.9155

Comparing MAM with SOTA on MOSES molecule generation

We compare the quality of molecules generated by MAM with standard baselines and state-of-
the-art methods in Table 8 and Figure 19. Details of the baseline methods are provided in [46].
MAM-SMILES/SELFIES represents MAM trained on SMILES/SELFIES string representations
of molecules. MAM performs either better or comparable to SOTA molecule generative modeling
methods. The major advantage of MAM and AO-ARM is that their order-agnostic modeling enables
generation in any desired order of the SMILES/SELFIES string (or molecule sub-blocks).
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Figure 18: Generated samples: Binary MNIST
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Figure 19: KDE plots of lipophilicity (logP), Synthetic Accessibility (SA), Quantitative Estimation of Drug-
likeness (QED), and molecular weight for generated molecules. 30, 000 molecules are generated for each
method.

Generated molecular samples

Figure 20 and 21 plot the generated molecules from MAM-SMILES and MAM-SELFIES.
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Figure 20: Generated samples from MAM-SMILES: MOSES
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Figure 21: Generated samples from MAM-SELFIES: MOSES
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C.6 ADDITIONAL RESULTS ON TEXT8

Samples used for evaluating likelihood estimate quality

We show an example of a set of generated samples from masking different portions of the same text,
which is then used for evaluating and comparing the likelihood estimate quality. Their log-likelihood
calculated using the conditionals with the AO-ARM are in decreasing order. We use MAM marginal
network to evaluate the log-likelihood and compare its quality with that of the AO-ARM conditionals.

Original text:
the subject of a book by lawrence weschler in one nine nine five
entitled mr wilson s cabinet of wonder and the museum s founder david
wilson received a macarthur foundation genius award in two zero zero
three the museum claims to attract around six

Text generated from masking out 50 tokens:
the su je t of a b ok by la r nce es h n o nine n ne five entitled
mr wilson s cabinet of wonder and the museum s founder vid w l o
r eive a macarthur fou a on e s awa d in two ero z r hree he
museum c aims o attr ct ar u d s
the subject of a book by lawrence heschell in one nine nine five
entitled mr wilson s cabinet of wonder and the museum s founder david
wilson received a macarthur foundation dennis award in two zero zero
three the museum claims to attract around sev

Text generated from masking out 100 tokens:
the su je t f b k y l r nc es h n o nine n ne five
enti l d mr wil o c b et of wond r an h mu eu s f u der vid
w l eive a maca thur f u a n e a a d two er z r h ee
museum c a ms o tr ct ar u
the subject of a book by lawrence bessheim in one nine nine five
entitled mr wilson s cabinet of wonder and the museum s founder david
wilson received a macarthur foundation leaven award in two zero zero
three the museum claims to detract around the

Text generated from masking out 150 tokens:
the u t f l r nc es h n o n e n ne ive
e ti l m wil c et of won an s u der vid
w eiv a a a th a n e a two e z r e use m
c a ms tr ct a
the tudepot of europe de laurence desthefs in one nine nine five
entitled mr wild the cabinet of wonder anne cedallica s founder david
wright received arnasa the culmination team sparked in two zero zero
three the museum claims to retract athlet c a

Text generated from masking out 200 tokens:
t f l r o e n iv
e i l wil c t w a der d
w e a a a n e a t

e u e c a s r c a
the builder of the pro walter a a e sec press one nine nine five
esciele the wild men convert of wark flax notes the world undergroand
whirl spiken america ascent and martin decree a letter to the antler s
default museum chafes in america ascent vis
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Figure 22: Samples: 10× 10 Ising model. Ground truth (left) v.s. MAM (right).

Figure 23: Samples: 30× 30 Ising model. Ground truth (left) v.s. MAM (right).

C.7 ADDITIONAL EXPERIMENTS ON ISING MODEL

Generated samples

We compare ground truth samples and MAM samples in Figure 22 and 23.

C.8 ADDITIONAL EXPERIMENTS ON MOLECULE TARGET GENERATION

Target property energy-based training on lipophilicity (logP)

Figure 24 and 25 show the logP of generated samples of length D = 55 towards target values 4.0 and
−4.0 under distribution temperature τ = 1.0 and τ = 0.1. For τ = 1.0, the peak of the probability
density (mass) appears around 2.0 (or −2.0) because there are more valid molecules in total with
that logP than molecules with 4.0 (or −4.0), although a single molecule with 4.0 (or −4.0) has a
higher probability than 2.0 (or −2.0). When the temperature is set to much lower (τ = 0.1), the
peaks concentrate around 4.0 (or−4.0) because the probability of logP value being away from 4.0 (or
−4.0) quickly diminishes to zero. We additionally show results on molecules of length D = 500. In
this case, logP values are shifted towards the target but their peaks are closer to 0 than when D = 55,
possibly due to the enlarged molecule space containing more molecules with logP around 0. Also,
this is validated by the result when τ = 0.1 for D = 500, the larger design space allows for more
molecules with logP values that are close to, but not precisely, the target value.
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Figure 24: Target property matching with different temperatures. 2000 samples are generated for each method.
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Figure 25: Target property matching with different temperatures. 2000 samples are generated for each method.

Conditionally generated samples

More samples from conditionally generating towards low lipophilicity (target = −4.0, τ = 1.0)
from user-defined substructures of Benzene. We are able to generate from any partial substructures
with any-order generative modeling of MAM. Figure 26 shows conditional generation from masking
out the left 4 SELFIES characters. Figure 27 shows conditional generation from masking the right
4 ∼ 20 characters.
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Figure 26: Generated samples from masking out the left 4 SELFIES characters of a Benzene.

Figure 27: Generated samples from masking out the right 4-20 SELFIES characters of a Benzene.
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D LIMITATIONS AND BROADER IMPACTS

The marginalization self-consistency in MAM is only softly enforced by minimizing the squared
error on subsampled marginalization constraints. Therefore the marginal likelihood estimate is not
guaranteed to be always perfectly valid. In particular, as a deep learning model, it has the risk of
overfitting and low robustness on unseen data distribution. In practice, it means one should not
blindly apply it to data that is very different from the training data and expect the marginal likelihood
estimate can be trusted.

MAM enables training of a new type of generative model. Access to fast marginal likelihood is
helpful for many downstream tasks such as outlier detection, protein/molecule design or screening. By
allowing the training of order-agnostic discrete generative models scalable for energy-based training,
it enhances the flexibility and controllability of generation towards a target distribution. This also
poses the potential risk of deliberate misuse, leading to the generation of content/designs/materials
that could cause harm to individuals.

32


