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Abstract

Existing studies of neural networks have focused largely on compositionality—whether in-
dividual features can be linearly decoded and reused—while overlooking the equally impor-
tant issue of binding, i.e., how features are linked together to form coherent objects. This
leaves a gap in understanding whether models truly represent feature conjunctions rather
than mere unstructured feature bags. We propose a geometric and functional framework
for quantifying binding, introducing a binding score based on principal angles between
concept subspaces and validating it with linear or non-linear probes. To complement this,
we design a behavioral diagnostic dataset in which pairs of images share identical feature
bags but differ in how those features are bound into objects. Together, these frameworks
highlight binding as a distinct and measurable dimension of representation, providing tools
to diagnose where current vision models succeed—and where they fail—in capturing object
structure.

Keywords: binding, compositionality, linear representation

1. Introduction

Any object in a neural system—biological or artificial—is represented by a collection of
features distributed across neurons, tokens, or layers. What makes these features an object
is not just their presence but their binding : the fact that they belong together as a coherent
whole. In fact, failure to bind features to corresponding objects is a common failure mode
of vision models (see Appendix A for qualitative examples) (Campbell et al., 2025; Lewis
et al., 2024; Zhang et al., 2024; Yuksekgonul et al., 2023; Assouel et al., 2025).

However, the need to encode both feature compositionality and their binding gives rise
to a fundamental trade-off for vision models. On one side, a network could encode every
possible conjunction explicitly, akin to a one-hot encoding, which ensures perfect binding
but introduces massive redundancy and discards compositional reuse. On the other, it
could represent features in isolation, ignoring object structure and allowing spurious cross-
object interactions. In practice, models such as Vision Transformers (ViTs) must navigate
between these extremes, allocating limited capacity to directions that support binding and
compositionality. Our aim is to provide a mathematical framework and concrete tools to
measure this allocation.

Existing interpretability work largely focuses on whether individual concepts can be lin-
early decoded, and in some cases on whether the corresponding directions are orthogonal.
However, orthogonality between concept directions does not capture binding, but only mea-
sures the correlation of features often caused by dataset imbalance (Uselis et al., 2025). On
the other hand, binding concerns whether conjunctions of features require new directions
beyond the linear combinations of the individual concepts.
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In this paper, we develop a framework to directly measure binding in neural embeddings.

Our approach compares the subspace of a joint probe (predicting feature conjunctions) to
the union of single-feature subspaces: directions required by the joint but orthogonal to the
union serve as evidence of binding. We formalize this geometrically with principal angles
and introduce a binding score. We complement this with a functional test based on the
relative performance of a joint probe and a union probe, which allows non-linear decoding.

To evaluate binding behaviorally, we further design a diagnostic dataset in which image
pairs share identical bags of feature but differ in how features are bound together into
objects. Success requires encoding conjunctions rather than unstructured feature bags.
Our contributions are as follows:

1. A geometric and functional framework for quantifying binding in neural embeddings.

2. A novel behavioral dataset that evaluates binding.

2. Measuring Binding

We study how information about multiple concepts is represented in neural embeddings.
Our key idea is to test whether a joint probe (trained to decode concept pairs or tuples)
relies on directions in representation space that are not captured by the linear span of the
single-concept probes. If so, we interpret these extra directions as evidence of binding.

It is important to distinguish binding from mere correlations between concepts. Corre-
lations typically arise from imbalances in the dataset (e.g., “red is more often a square than
a circle”), and are reflected as directions lying within the span of the single-concept sub-
spaces (Uselis et al., 2025). In contrast, a true binding direction is orthogonal to the single-
concept subspaces: it cannot be reconstructed from any linear combination of single-concept
features. At the extreme, imagine a one-hot representation for each possible (color, shape)
pair that discards all compositional structure. Each such vector would be entirely orthogo-
nal to the color and shape subspaces, reflecting pure binding without composition.

To formalize this intuition, we treat each probe as defining a subspace of the represen-
tation space: single-concept probes span subspaces HCi , while a joint probe spans HS for a
set of concepts S. Binding then corresponds to the extent to which HS requires directions
outside the union of the single-concept subspaces. In the following sections, we develop the
geometry and metrics needed to quantify this relationship. A detailed derivation is left in
Appendix B, with Figure 3 illustrating our framework.

Concept and joint subspaces. For each concept Ci with ki classes, we train a linear
probe with weight matrix

WCi ∈ Rki×d,

and define the concept subspace

HCi = rowspan(WCi) ⊆ Rd.

For example, if Ci corresponds to color with classes {red, blue, green}, the probe weights
Wcolor span a subspace Hcolor of Rd. Similarly, if Cj corresponds to shape with classes
{circle, square, triangle}, we obtain a subspace Hshape.
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For a set of concepts S ⊆ {C1, . . . , Cn}, the joint probe predicting their Cartesian
product has weights

WS ∈ RKS×d, KS =
∏
Ci∈S

ki,

with joint subspace HS = rowspan(WS). Continuing the example, the joint probe for
(color, shape) has KS = 3× 3 = 9 classes such as “red-square” or “blue-circle.”

Union versus joint. The union subspace of the single-concept probes in S is

H∪S =
∑
Ci∈S

HCi .

If HS ⊆ H∪S , then the joint probe uses no information beyond the individual concepts. If
HS requires new directions outside H∪S , these extra components are candidates for binding.

Binding score. Let U∪S and VS be orthonormal bases for H∪S and HS , respectively, and
set

MS = U⊤
∪SVS .

The singular values σi ofMS are related to the principal angles ϕi between the two subspaces
by

σi = cosϕi, i = 1, . . . , q, q = min(r∪S , rS).

We define the binding score as

BS = 1− 1

rS

q∑
i=1

σ2
i = 1− 1

rS

q∑
i=1

cos2 ϕi,
1

which measures the fraction of the joint subspace unexplained by the union. A value of
BS = 0 indicates no binding, while larger values indicate stronger binding.

Dimension mismatch. When dim(HS) > dim(H∪S), some nonzero binding score is
inevitable. To ensure that binding is not trivially inflated by excess rank, we repeat the
analysis after truncating the joint probe to match the dimensionality of the union and report
the discarded variance. Appendix D contains preliminary results on the binding score and
associated tail energies.

Functional validation. Geometry alone can be misleading. We therefore complement
BS with a functional test: train one joint probe on the raw representations,

grawS : h 7→ ŷS ,

and another on the union features,

g∪S : U⊤
∪Sh 7→ ŷS .

The difference in classification accuracy,

∆Acc = Acc(grawS )−Acc(g∪S ),

1. Equivalently BS = 1− 1
rS

∥MS∥2F , where ∥ · ∥F is the Frobenius norm. This avoids the need to find the
singular values of MS using SVD.
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indicates whether the raw representations contain additional predictive information beyond
the union. We interpret binding as present only when both BS > 0 after rank-matching
and ∆Acc > 0.

We note that our geometric analysis is conducted under the assumption that features
are represented linearly, an assumption that is common but not entirely realistic. In con-
trast, the functional probes here can be implemented as non-linear classifiers, allowing
them to capture binding structure that may only be accessible through non-linear decision
boundaries. This flexibility provides a practical complement to the linear subspace analysis.

Summary. Our framework provides a simple operational test: if a joint probe uses direc-
tions outside the span of single probes and achieves higher accuracy than a union probe, we
conclude that the representation contains dedicated features for binding concepts together.

3. A Behavioral Dataset for Binding

A central challenge in vision models is determining whether models encode bindings—the
conjunction of features into coherent objects—or whether they merely maintain unstruc-
tured bags of features. To test this, we design a behavioral diagnostic dataset tailored for
binding, inspired by the classic “superposition catastrophe” in the binding problem (Greff
et al., 2020).

Dataset construction. Each datapoint in our dataset is a pair of images. Every image
contains two non-overlapping objects, each defined by a color and a shape. Crucially, the
two images in a pair always contain the same bag of features: the set of colors and the set of
shapes across the two images are identical (Figure 4). What differs is the binding of these
features. In pairs labeled “same”, the two images contain the same bound objects (e.g., a
red circle and a blue square in both images). In pairs labeled “different”, the bindings are
swapped across images while preserving the feature marginals (e.g., red circle + blue square
in one image versus red square + blue circle in the other). Solving this task requires the
model to represent the conjunction of features into objects: a representation that discards
binding and stores only feature bags cannot succeed above chance.

We further introduce several baseline variants of the dataset—such as fixing locations,
changing only one feature, or using entirely different objects—to provide simplified controls
where binding is less critical (see Appendix for details).

Probing procedure. To quantify whether binding information is present in intermediate
representations of a Vision Transformer (ViT), we extract the [CLS] activations at a given
layer for each image in a pair. We then train a lightweight “CLIP-style” probe: each image
is projected through a learned linear mapping into a shared latent space, and the similarity
of the two images in a pair is computed via their dot product (Radford et al., 2021). The dot
product is interpreted as a logit, which is passed through a sigmoid to yield a probability.
A binary cross-entropy loss is then applied. Formally, letting hA, hB ∈ Rd denote the [CLS]
activations of the two images in a pair, and W ∈ Rd×k the learned projection, the probe
computes

s = ⟨W⊤hA, W
⊤hB⟩, p = σ(s), ℓ = −

(
y log p+ (1− y) log(1− p)

)
,
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where y ∈ {0, 1} denotes the label (“different” vs. “same”). High probe accuracy at a given
layer indicates that binding information is encoded in the corresponding representation. We
include preliminary results in Appendix 7.
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Appendix A. Examples of Binding Failure in Vision Models

Figure 1: Campbell et al. (2025) demonstrate that Vision-Language Models (VLMs) strug-
gle with conjunctive search tasks, particularly as the total number of objects
increases.

Figure 2: Zhang et al. (2024) prompt VLMs to describe grid patterns. For the middle-right
block, the model outputs “a triangle with an X inside,” apparently combining ele-
ments from adjacent blocks (middle-center and middle-right). They further show
that segmenting the grid into separate images before passing them in significantly
reduces such errors.
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Appendix B. Mathematical Formulation of Binding

Figure 3: Illustration of the subspaces and binding when concepts are shape and color, each
of which contains two classes.

B.1. Setup and Notation

We work in a d-dimensional representation space Rd. Let the set of concepts be denoted by
{C1, . . . , Cn}, where each concept Ci has ki possible classes. For each concept Ci, we train
a multi-class linear probe with weight matrix

WCi ∈ Rki×d.

The probe defines a linear subspace associated with the concept,

HCi := rowspan(WCi) ⊆ Rd, rCi := rank(WCi),

which we refer to as the concept subspace.

More generally, for any subset of concepts S ⊆ {C1, . . . , Cn}, we consider a joint probe
that predicts the Cartesian product of their classes. The corresponding probe weight matrix
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is

WS ∈ RKS×d, KS =
∏
Ci∈S

ki,

and the associated subspace is

HS := rowspan(WS), rS := rank(WS).

The row span of WS thus captures all directions in representation space that are linearly
exploited by the probe to decode the joint labels across the concepts in S.

B.2. Orthonormal Bases

For each concept subspace HCi defined by the row span of the probe weights WCi , we con-
struct an orthonormal basis in order to work with a numerically stable and basis-invariant
representation of the subspace.

Given a probe weight matrix

WCi ∈ Rki×d, rCi = rank(WCi),

we compute an orthonormal basis
UCi ∈ Rd×rCi

such that the columns of UCi span HCi .
This can be achieved in two equivalent ways. One option is to apply an economy QR

decomposition to the transpose:

W⊤
Ci

= QiRi, UCi = Qi(:, 1 : rCi),

where the first rCi columns of Qi form an orthonormal basis. Alternatively, we may compute
a singular value decomposition

WCi = AiΣiV
⊤
i , UCi = Vi(:, 1 : rCi),

where the first rCi right singular vectors of WCi define the basis.
The same procedure is applied to the joint probe WS , yielding an orthonormal basis

VS ∈ Rd×rS

whose columns span the joint subspace HS . In all subsequent analysis, we work with
these orthonormalized representations of the subspaces rather than the raw weight matrices,
ensuring that comparisons between subspaces are invariant to arbitrary reparameterizations
of the probes.

B.3. Union Subspace

Given a collection of concepts S ⊆ {C1, . . . , Cn}, we define the union subspace as the linear
span of their individual concept subspaces,

H∪S :=
∑
Ci∈S

HCi = span{UCi : Ci ∈ S }.
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To construct an orthonormal basis forH∪S , we first concatenate the individual orthonor-
mal bases,

XS :=
[
UCi1

UCi2
· · · UCi|S|

]
,

and then apply a QR decomposition or singular value decomposition,

XS = Q∪SR∪S .

The orthonormal basis of the union subspace is taken as

U∪S := Q∪S(:, 1 : r∪S),

where
r∪S = dim(H∪S).

Thus U∪S provides a numerically stable representation of the union subspace that will
be used for all subsequent comparisons with joint probes.

B.4. Principal Angles and Binding Score

To compare the information captured by the union subspace H∪S with the joint subspace
HS , we compute the principal angles between them. Let

U∪S ∈ Rd×r∪S , VS ∈ Rd×rS

denote the orthonormal bases spanning H∪S and HS , respectively. The overlap matrix is
defined as

MS := U⊤
∪SVS ∈ Rr∪S×rS .

We compute the thin singular value decomposition

MS = QΣR⊤,

where
Σ = diag(σ1, . . . , σq), q = min(r∪S , rS).

The singular values satisfy
σi = cosϕi,

with ϕi the i-th principal angle between H∪S and HS .
To summarize the overall alignment, we define the binding score

BS = 1− 1

rS

q∑
i=1

σ2
i .

2

This score measures the average fraction of the joint probe subspace that lies outside the
union subspace. A value of BS = 0 indicates that the joint subspace is entirely contained
in the union, and thus no additional binding information is present. A value of BS > 0
indicates that some directions of the joint subspace are not explained by the union, reflecting
evidence of binding. At the extreme, BS = 1 corresponds to the case where the joint
subspace is orthogonal to the union.

2. Equivalently, BS = 1− 1
rS

∥MS∥2F , since the squared singular values of MS sum to the squared Frobenius
norm. This avoids the need for SVD on MS .
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Dimension mismatch. When rS > r∪S , at least rS − r∪S directions of the joint sub-
space necessarily fall outside the union. In this case, interpreting BS requires caution, as
some nonzero binding score arises purely from dimensionality mismatch rather than genuine
binding structure.

B.5. Rank-Matching

A key consideration in interpreting the binding score is the potential effect of dimension
mismatch between the union subspace H∪S and the joint subspace HS . In particular, when
rS > r∪S , it is inevitable that at least rS − r∪S directions of HS lie outside the union. If left
uncorrected, this effect can artificially inflate the binding score BS , even when the apparent
“extra” directions carry little or no meaningful information. To mitigate this problem, we
adopt a strict rank-matching procedure.

Given the joint probe weight matrix WS ∈ RKS×d, we compute its singular value de-
composition

W⊤
S = ŨΣṼ ⊤,

where the diagonal entries of Σ contain the singular values σ1 ≥ σ2 ≥ · · · ≥ σrS > 0. To
match the dimensionality of the union subspace, we retain only the top r∪S right singular
vectors, weighted by their singular values. Formally, we define

V
(cap)
S := Ṽ (:, 1 : r∪S),

which spans the truncated joint subspace of dimension r∪S .
The amount of variance discarded by this truncation is quantified by the tail energy,

Etail =
∥Σ>(r∪S)∥

2
F

∥Σ∥2F
,

where Σ>(r∪S) denotes the diagonal submatrix of singular values beyond the first r∪S . A
small value of Etail indicates that most of the energy of the joint probe is preserved within
the top r∪S directions, while a large value suggests that the truncated directions may be

carrying nontrivial signal. After constructing V
(cap)
S , we recompute the principal angles and

the binding score using this rank-matched basis in place of VS .
This rank-matching step ensures that binding scores are not trivially inflated by dimen-

sionality mismatch, and that any evidence of binding reflects additional structure rather
than excess capacity of the joint probe.

B.6. Functional Evidence for Binding

While geometric measures provide a principled way to quantify the overlap between union
and joint subspaces, geometry alone can be misleading. In particular, apparent binding
may arise due to correlations in the training data or as an artifact of mismatched probe
capacity. To address this issue, we complement the geometric analysis with functional tests
that directly evaluate probe performance.

We first train a joint probe on the raw representations,

grawS : h 7→ ŷS ,

10



Extended Abstract Track
Short Title

where h ∈ Rd denotes the hidden representation and ŷS the predicted joint label across the
concepts in S. We then train a second probe that only has access to the union subspace
features,

g∪S : U⊤
∪Sh 7→ ŷS ,

where U∪S is the orthonormal basis of the union subspace constructed in Section 3. Both
probes are trained with identical architectures and regularization so that their performance
can be fairly compared.

Let Acc(·) denote the classification accuracy of a probe. We define the accuracy gap as

∆Acc = Acc(grawS )−Acc(g∪S ).

When ∆Acc ≈ 0, the union subspace suffices to recover the joint labels, suggesting
little evidence for binding. In contrast, when ∆Acc > 0, the raw representations contain
additional predictive information that is not captured by the union subspace, pointing to
the presence of binding features.

In practice, best results are obtained by carefully controlling the probe capacity and
ensuring a balanced dataset over the Cartesian product of classes. This avoids spurious
improvements due to probe expressivity or label correlations. We adopt a conservative
interpretation: binding is taken to be present only when both the geometric score BS is
strictly positive after rank-matching, and the functional accuracy gap ∆Acc is positive.

Appendix C. Dataset Baseline Variations

Figure 4: Sample datapoints from the original dataset.

We introduce several controlled baseline variations of our dataset to contextualize the
binding task. In one variation, object locations are fixed within each pair, and “same”
pairs are created by optionally swapping the two positions between images, which increases
the potential for positional confusion (Figure 5 Red and Green). In another variation,
“different” pairs are generated such that one object remains the same across both images
while the other object changes only one feature (e.g., color but not shape), providing a
simplified comparison where binding may not be strictly required (Figure 5 Yellow). Finally,
in the most simplified variant, the “different” pair is constructed so that the two objects in
one image are completely different from those in the other image of the pair, a case where
binding is unlikely to be necessary for successful discrimination (Figure 5 Blue).
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Figure 5: Samples from baseline datasets (last row is the original).

Appendix D. Preliminary Results on Binding Metrics

We perform preliminary experiments to compute the binding metrics. The plots in Figure 6
reveal a non-monotonic trajectory of binding across the layers of a DINO-pretrained Vision
Transformer. Binding scores are high in the earliest layers, dip steadily through the middle
layers, and then rise again at deeper layers, suggesting that early representations contain en-
tangled low-level interactions, mid-layer representations are more compositional, and later
layers reintroduce binding for higher-level integrated features. Tail energy shows a comple-
mentary trend: it is lowest in the middle layers and increases steadily toward deeper layers,
indicating that the joint probe allocates more variance to directions outside the union as
depth grows. However, we emphasize that our experimental results remain preliminary, and
a systematic evaluation across different architectures, synthetic and natural datasets and
their variations, as well as the aforementioned linear and non-linear probing experiments
are needed to establish the robustness and generality of our findings.

Appendix E. Preliminary Results on the Binding Dataset

We perform probing on various dataset aforementioned and find that performance is gener-
ally high for most layers of a DINO-pretrained vision transformer. The location-swapping
Green dataset (Figure 5) is, however, particularly difficult for layers 1 and 2. We plan
on extending our dataset to natural images with more complex features (texture,
semantic, etc.) and more objects to provide a more realistic testbed for binding in vision
models.
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(a) (b)

Figure 6: Binding scores and tail energies across layers of a DINO-pretrained Vision Trans-
former.

Figure 7: Testing ROC-AUC for each dataset. Curve colors correspond to the color coding
of datasets in Figure 5.
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