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ABSTRACT

Mixup, a convex interpolation technique for data augmentation, has achieved great
success in deep neural networks. However, the community usually confines it to
supervised scenarios or applies it as a predefined augmentation strategy in various
fields, grossly underestimating its capacity for modeling relationships between
two classes or instances. In this paper, we decompose mixup into two sub-tasks
of mixup generation and classification and formulate it for discriminative repre-
sentations as class- and instance-level mixup. We first analyze and summarize the
properties of instance-level mixup as local smoothness and global discrimination.
Then, we improve mixup generation with these properties from two aspects: we
enhance modeling non-linear mixup relationships between two samples and discuss
learning objectives for mixup generation. Eventually, we propose a general mixup
training method called AMix to improve discriminative representations on various
scenarios. Extensive experiments on supervised and self-supervised scenarios show
that AMix consistently outperforms leading methods by a large margin.

1 INTRODUCTION

One of the fundamental problems in machine learning is to learn a good low-dimensional represen-
tation efficiently that captures the intrinsic structures of data and facilitates downstream tasks such
as classification or clustering (Bengio et al., 2013). Supervised learning (SL) and self-supervised
learning (SSL) are two commonly-used settings for discriminative representation learning and have
demonstrated their successes in several domains. Recently, SSL has shown more exciting achieve-
ments than SL on image recognition (He et al., 2016), natural language processing (Devlin et al.,
2018), and video understanding (Korbar et al., 2018).

Since class information is invisible to SSL, pretext tasks are proposed as the supervision, such as
context prediction (Doersch et al., 2015), inpainting (Pathak et al., 2016), and recently proposed
contrastive learning (CL) (Grill et al., 2020; He et al., 2020). Among them, CL has shown state-of-the-
art performance for learning discriminative representations on large-scale datasets. Based on specific
domain knowledge, like anchors and positive samples constructed from the same data, CL optimizes
a neighborhood system of each instance by maximizing the similarity between positive pairs while
minimizing that of negative ones. Despite their effectiveness, there is a serious limitation of these
two approaches: SL and SSL mainly focus on aligning each sample to a discrete class centroid or
anchor and discriminating from other centroids or instances but without considering the transitional
space between centroids. For example, SL methods suffer an over-confidence problem (Thulasidasan
et al., 2019); CL establishes the neighborhood system from a single instance and push-away all other
instances even if they should be considered in the same cluster (Robinson et al., 2021).

MixUp (Zhang et al., 2017), proposed for SL, bridges the decision boundary between two class
distributions by generating virtual samples via convex interpolation. There are three types of variants
in terms of the way of mixed sample generation: (1) linear approaches (Yun et al., 2019; Qin et al.,
2020; Harris et al., 2020) combine two samples by cutting or the same weighted pixel-wise mask; (2)
saliency-based methods (Kim et al., 2020; 2021) significantly improve performance by generating
mixed samples that maximizing saliency information; (3) end-to-end fashion, AutoMix (Liu et al.,
2021) proposes a sub-network (Mix Block) to learn inter-class relationships online via feature maps.
However, they are all limited to the class-level. Some recently proposed works try to combine mixup
and CL (Lee et al., 2021; Shen et al., 2021), but they focus on the mixup classification problem, i.e.,
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Figure 1: In cluster-level (supervised), the high-dimensional data is supported on its classes sub-
manifoldMi, while a neighborhood systems {Sj} is defined by their augmented views. We hope
that the mixed samples can prompt the representation to be learned more discriminative.

modifying the contrastive loss to utilize linear mixup samples. In this paper, we discuss mixup from
a general view in discriminative representation, including class- and instance-level mixup in SL and
SSL settings. Compared to CL, which achieves the compactness of a neighborhood system for each
instance by discriminating augmented positive and negative samples, mixup smoothly optimizes the
relationship between two classes (or instances) by discriminating mixed samples from corresponding
classes (or instances). Meanwhile, mixup is more flexible than CL since the mixed samples can be
generated according to the data. Naturally, we decompose mixup into two sub-tasks of mixed sample
generation and mixup classification, and automaticly learn the smooth relationships in both class-
and instance-level to improve the discriminative representation learned by SL and SSL. Specifically,
we propose and verify properties of the mixed sample as follows:

• Local relationships: The inter-class mixed data should smooth the gap between the two
clusters while the intra-class one should be correlated to its neighborhood system.

• Global relationships: an inter-class mixed data should be discriminative to other clusters.

Based on the properties above, we propose AMix, a general class- and instance-level mixup training
framework for discriminative representations. Taking AutoMix (Liu et al., 2021) as a baseline, we
first improve Mix Block, a sub-network used to generate mixed samples, as Mix Block+, which
strengthens the learning ability of non-linear relationship between two samples by content modeling
and global attention with adaptive λ encoding. We then discuss the learning objective for mixup
generation by analyzing local and global properties of mixup CE and infoNCE loss and propose
binary cross-entropy (BCE) loss which delivers local relationships by regressing two related views.
As for instance-level mixup, combining with BCE, we propose AMix-I using infoNCE loss while
AMix-C using CE loss which adopts class information from pseudo labels. Extensive experiments in
both SL and SSL tasks show that AMix has strong generalization and outperforms existing methods.

2 PROBLEM DEFINITION

Given a finite set of i.i.d samples, X = [xi]
n
i=1 ∈ RD×n, each data xi ∈ RD is drawn from a mixture

of, say K, distributions D = {Dc}Kc=1. Our basic assumption for discriminative representations is
that the each component distribution Dc has relatively low-dimensional intrinsic structures. Thus,
we may assume that the distribution Dc is constrained on a sub-manifold, sayMc with dimension
dc � D, and the distribution D of X is consisted of these sub-manifolds,M = ∪Kc=1Mc. Consider
a discriminative problem like classification or clustering, we seek a low-dimensional representation
zi ∈M of xi by learning a continuous mapping modeled by a deep network, fθ(x) : x 7−→ z with
the parameter θ ∈ Θ, which captures intrinsic structures ofM and facilitates discriminative tasks.

2.1 DISCRIMINATIVE REPRESENTATION LEARNING

We may divide most methods for the discriminative problem into two categories in terms of class
supervision is available or not, and define their learning objective of fθ respectively.

Parametric training with class supervision To ease the discriminative tasks in practical scenarios,
some supervised class information is available, such as the class labels in supervised learning (SL)
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or the cluster number K in clustering (C). Here, we assume that a one-hot label yi ∈ RK of each
sample xi can be somehow obtained, Y = [y1, y2, ..., yn] ∈ RK×n. We denote the labels generated
or adjusted during training as pseudo labels (PL), while the fixed as ground truth labels (L). Notice
that each component Dc (or sub-manifoldMc) is considered separated in this scenario. Then, a
parametric classifier can be learned to map the representation zi of each sample to its class label yi
by predicting the probability of zi being assigned to the c-th class using the softmax criterion,

P (c|zi) =
exp(wTc zi)∑K

j=1 exp(wTj=1zi)
, (1)

where wc is a weight vector for the class c, and wTc zi measures how similar between zi and the class
c. The learning objective is to minimize the negative log-likelihood, say cross-entropy loss (CE).

Non-parametric training as instance discrimination Complementary to the above parametric
settings, non-parametric approaches are usually adopted in unsupervised scenarios (label-free).
Due to the lack of class information, an instance discriminative task can be designed instead of
using the parametric class centroids in Eq.1. Based on an assumption of local compactness, the
low-dimensional neighborhood systems Si ∈ Rdi of the data xi is invariant to a set of predefined
augmentations T , i.e., xi ∈ Si iff τ(xi) ∈ Si for all τ ∈ T . We mainly discuss contrastive learning
(CL) and taking MoCo (He et al., 2020) as an example. Consider a pair of augmented image (xq, xk+)

from the same instance x ∈ RC×H×W , the local compactness is introduced by alignment of the
encoded representation pair (zq, zk+) from fθ,q and fθ,k, while constrained to the global uniformity
by contrasting zq to a dictionary of encoded keys from other images, {zk,j}Kj=1, where K denotes the
length of the dictionary. It can be achieved by the popular non-parametric CL loss, called infoNCE:

Lq,k+ = − log
exp(zqzk,+/t)∑K
j=1 exp(zqzk,j/t)

(2)

where t is a temperature hyper-parameter. Comparing to Eq.1, the infoNCE loss is a (K + 1)-way
non-parametric classification problem that attempts to classify zq as zk,+.

2.2 MIXUP TRAINING FOR DISCRIMINATIVE REPRESENTATION

Recall two sub-tasks in mixup training: (a) mixed data generation and (b) mixup classification. As
for the sub-task (a), two mixup functions are defined, h(·) and g(·), to generate mixed samples and
corresponding mixed labels with a mixing ratio λ sampled from Beta(α, α) Given the mixed data,
(b) defines a mixup training objective to optimize the inter-class discriminative relationships.

Mixup classification as the main task We first define two types of mixup classification objectives,
cluster-level and instance-level mixup, for parametric and non-parametric training. As for parametric
training, given two randomly selected data pairs, (xi, yi) and (xj , yj), the mixed data is generated as
xmix = h(xi, xj , λ) and ymix = g(yi, yj , λ). The cluster-level mixup can be formally write as:

min
θ,w

`CE(fθ(h(xi, xj , λ)), g(yi, yj , λ)). (3)

Notice that we fix the label mixup as the linear interpolation in our discussions, i.e., g(yi, yj , λ) =
λyi + (1− λ)yj . Similarly to Eq.3, we can generate xmix with a sample pair randomly selected from
different instances (xi, xj) and generalize mixup to the infoNCE loss as instance-level mixup:

Lqm,ki,kj (λ) = −λ log
exp(zq,mzk,i/t)∑K
c=1 exp(zq,mzk,c/t)

− (1− λ) log
exp(zq,mzk,j/t)∑K
c=1 exp(zq,mzk,c/t)

(4)

where zq,m, zk,i and zk,j denote the representation of xmix and corresponding instances.

Mixup generation as auxiliary task Different from the learning object on the fixed data X in
Sec.2.1, the performance of classification is depending on the sub-task (a) because the mixup policies
h and g reflect a certain relationship between the two sub-manifolds. Following AutoMix (Liu
et al., 2021), we regard (b) as an auxiliary task to (a) and model h(·) as a sub-networkMφ with
another set of parameters φ ∈ Φ, called Mix Block (MB).Mφ generates a pixel-wise mixup mask
s ∈ RH×W , where sw,h ∈ [0, 1]. Since the mixup mask is directly related to representations of
(xi, xj) and the mixing ratio λ, Mφ takes l-th layer feature maps zl ∈ RCl×Hl×Wl and λ as the
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Figure 2: (a) Illustration of the cross-view pipeline for instance-level mixup training. (b) Analysis of
mixup in CL, whether to use the cross-view pipeline and combining the mixup infoNCE loss. (c) A
heat map that represents the effects of using MixUp and CutMix as the inter- and intra-class mixup.

input, si =Mφ(zli, z
l
j , λ) and sj = 1 − si. Mφ can be supervised by a mixup classification loss,

denoted as Lclsφ , and the loss for generated mask si, denoted as Lmaskφ . Both Lθ and Lφ can be
optimized alternatively in a unified framework, e.g., the momentum pipeline proposed in AutoMix.

3 AMIX FOR DISCRIMINATIVE REPRESENTATIONS

We first propose an efficient pipeline for instance-level mixup training and discuss the properties of
two sub-tasks in instance-level mixup in Sec.3.1. Then, we discuss MB in two aspects: improving
relationship modeling in Sec.3.2 and discussing the objective of mixup generation Lφ in Sec.3.3.
Moreover, we analyze mixed samples generated by Mix Block+ to reflect mixup properties.

3.1 INSTANCE-LEVEL MIXUP

Cross-view training pipeline We first analyze the instance-level mixup classification with fixed
mixup samples. As shown in Fig.2 (b), we design an experiment of instance-level mixup methods with
α = 1 on STL-10 based on ResNet-18 (more experiment settings are detailed in Sec.4.2) to answer
following two questions: (i) Properties of mixup classification. When only use Eq.4, degenerated
solutions occur when use same augmented views for both mixup generation and classification, i.e.,
xmix = h(x

τq
i , x

τq
j , λ), zk,i = fθ,k(x

τq
i ), zk,j = fθ,k(x

τq
j ), where τq denotes the augmentation for

fθ,q . We hypothesize that it is caused by degenerated mixed samples which contain parts of the same
view of two source images. Therefore, we propose a cross-view pipeline to address this issue, which
is shown in Fig.2 (a), where zk,i and zk,j in Eq.4 are representations of xτki and xτkj . Notice that we
use this framework in all subsequent experiments. (ii) Relationship between the CL task (Eq.2) and
mixup (Eq.4). We find that combining both the Eq.2 and Eq.4 surpasses only using one of them,
which indicate that mixup enables fθ to learn relationship between each local neighborhood system.

Properties of mixup generation We then discuss the properties of instance-level mixup generation
from two aspects: inter-class and intra-class mixup. In the case of class-level mixup, as we already
know, it is important to consider class information to model the inter-class mixup relationship while
there is no need to model the intra-class since each class sub-manifold is considered compact. At the
instance level, we argue that the difference of inter- and intra-class relationships should be considered.
To verify our assumption, we conducted an experiment that tries MixUp or CutMix as inter- and
intra-class mixup policies on Tiny-ImageNet, as shown in Fig.2. This experiment uses different α
values to approximate the intensity of MixUp and CutMix within or between classes, based on their
global and local properties. Notice that the best result is achieved by using MixUp with large α as
the intra-class mixup while CutMix with small α as the inter-class. Obviously, the class information
is vital to mixup generation to distinguish the relationships between global and local, inter- and
intra-class. Formally, following properties are expected to be held by the sample mixup function
h∗(·), suppose the generated x∗mix is the optimal from xi ∈Ma and xj ∈Mb by the given λ:

• Local λ smoothness inter two classes: IfMa 6= Mb, x∗mix is generated as intermediate
sample for filling the gap betweenMa andMb.

• Local compactness intra-class: IfMa =Mb, then x∗mix ∈Ma.
• Global discriminative inter-class: x∗mix is all orthogonal to other sub-manifolds, x∗mix 6=
Mc for c 6= a and c 6= b.
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3.2 MIX BLOCK+

We improve MB in AutoMix from three aspects: (a) how to encode the ratio λ, (b) how to model the
non-linear relationship between two samples, and (c) how to encode the prior knowledge of mixup.

Adaptive λ encoding According to the mixup labels, the predicted mask should be proportional
to the randomly sampled λ. In original MB, λ is combined to the feature zi by concatenating,
zli,λ = concat(zli, λ). However, this λ concatenating method only provides static additive impact
to zli, which might be ignored or cause trivial solutions during training. Therefore, we propose an
adaptive λ encoding, zli,λ = (1 + γλ)zli, where γ is a learnable scalar that constrained to [0, 1].
Symmetrically, we have zlj,1−λ = (1 + γ(1− λ))zlj . Notice that γ is initialized to 0 during training.

Non-linear content modeling and global attention Intuitively, the mask si should take the content
of both xi and xj into account. Based on (zli,λ, z

l
j,1−λ), MB in AutoMix predicts si by two steps:

Firstly, it models the content of xi as a linear projection, Ci = Wzz
l
i,λ, where WZ is a 1 × 1

convolution and Ci ∈ RHl×Wl is a 2D tensor like the final mask si. Meanwhile, it computes the

relationship between two samples as a cross-attention weight, Pi,j = Softmax(
WP z

l
i,λ⊗WP z

l
j,1−λ

N(zli,λ,z
l
j,1−λ)

),

whereN(zli,λ, z
l
j,1−λ) denotes a normalization factor and⊗ is matrix multiplication. Then, it predicts

the probability of each coordinate belonging to xi as, si = U(Sigmoid(Pi,j ⊗ Ci)), where U is
an upsampling function. However, we find that MB in AutoMix is unstable in the early training
period and sometimes trapped in trivial solutions, such as all coordinates on si predicted as a constant.
We visualize Ci and Pi,j and compare some trivial results with the non-trivial ones, as shown in
Appendix. We find that the constant si is usually caused by a constant Ci. We hypothesize that trivial
solutions happen earlier in Ci, which might be caused by the linear projection from Cl-dim to 1-dim.
Thus, we design a non-linear content modeling module CNCL that contains two 1× 1 convolution
layers with a batch normalization layer and a ReLU layer in between, as shown in Fig.3. To increase
the robustness and randomness of mixup training, we add a Dropout layer with the dropout ratio of
0.1 to CNCL. Moreover, we replace the original cross-attention with a self-attention mechanism by
concatenating (zli,λ, z

l
j,1−λ) as the input, zlconcat = concat(zli,λ, z

l
j,1−λ), which provides a global

attention of cross samples and each sample itself. Formally, the improved MB can be written as,

sλi = U

(
Sigmoid

(
Softmax

(WP z
l
concat ⊗WP z

l
concat

N(zlconcat, z
l
concat)

)
⊗ CNCL(zli,λ)

))
. (5)

Content 
Modeling Global  
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Figure 3: Illustration of Mix Block.

STL-10+0.0 Tiny ImageNet
Loss function SL+0.00 CL+0.00 SL+0.00 CL+0.00

Mixup 78.94+0.00 84.51+0.00 63.39+0.00 41.24+0.00

CE (L) 82.14+0.00 85.95+0.00 68.56+0.00 43.11+0.00

CE (PL), K=100 81.47−0.67 85.56−0.39 67.12−1.44 41.97−1.14

CE (PL), K=200 81.65−0.49 85.64−0.31 67.39−1.17 42.36−0.75

pBCE (L) 81.96−0.18 85.78−0.17 67.84−0.72 42.70−0.41

BCE 80.50+0.00 85.25+0.00 66.02+0.00 41.28+0.00

infoNCE 80.67+0.17 85.37+0.12 66.36+0.34 41.93+0.65

infoNCE (PL) 81.04+0.54 85.53+0.28 66.79+0.77 42.10+0.82

infoNCE (L) 81.28+0.78 85.64+0.39 67.07+1.05 42.31+1.03

Table 1: Analysis of the loss functions for training
MixBlock. L and PL denote ground-truth labels and pseudo
labels respectively. K is the number cluster assigned to the
clustering algorithm (ODC). The upper part of the table
demonstrates the analysis for parametric losses, while the
lower part is for non-parametric losses.

Prior knowledge of mixup Taking the input space pixel-wise mixup mask si ∈ RH×W as an
example, we recall some prior knowledge of mixup: (i) the mean of si should be linearly correlated
with λ, (ii) mixed image should be discriminative to both classes (cluster-level mixup), (iii) the
local patch of mixed images is smooth. We summarize these prior properties into two aspects:
(a) adjusting si with λ, and (b) balancing the local smoothness and discrimination. Since MB in
AutoMix has a mask loss to align the mean of si to λ, Lmean = βmax(|λ − µi| − ε, 0), where
µi = 1

HW

∑
h,w si,h,w is the mean and ε = 0.1 as a margin, we improve the first aspect by a test

time λ adjusting method. As we discussed in Sec.3.1, we regrad MixUp as mixing global (image
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level) information of two samples, while patch-wise or pixel-wise mixup policies as mixing local
discriminative regions. Assuming µi < λ, we adjust each coordinate on si as ŝi = µi

λ si, and
ŝj = 1− ŝi. As for the second aspect, we adopt a bilinear upsampling as U for smoother masks and
propose a variance loss to encourage the sparsity of learned masks, Lvar = 1

WH

∑
w, h(µi− sw,h)2.

Following the original MB, we summarize the mask loss Lmaskθ = β(Lmean + Lvar).

3.3 HOW TO TRAIN MIX BLOCK

Based on the improved Mix Block+ (MB+) in Sec.3.2, we discuss the learning objective Lclsθ for MB
in both class-level and instance-level mixup. Referring to the properties of an optimal mixup sample
in Sec.3.1, the learning object Lclsθ demands balancing between the global and local relationships,
like the mixup CE loss in Eq.3. Since the mixup CE has achieved good performance in optimizing
both the mixup classification and generation, we regard it as a template and design an experiment of
testing various losses in both SL and CL tasks, as shown in Tab.1, to answer the question: how much
does local structure influence the optimization of mix block? We first decompose the mixup CE
and mixup infoNCE in Eq.4 into the global and local parts. Both mixup CE and infoNCE provide a
global view, i.e., the denominator contains all the class centroids or negative instances. The local part
in mixup CE can be defined as parametric binary cross-entropy loss (pBCE), which can be formulated
as: LpBCE = λP (q|zmix) + (1−λ)P (k|zmix). pBCE only considers the local relationship between
two sub-manifold. Symmetrically, we have non-parametric binary cross-entropy (BCE) as:

LBCE = λ
zqzmix

zqzmix + zkzmix
+ (1− λ)

zkzmix
zqzmix + zkzmix

(6)

Notice that the main difference between CE and infoNCE is whether to adopt class centroids. Then
we try to weaken the effect of centroids in mixup CE by using a pseudo label (PL) instead of labels
(L), where PL is generated online by ODC (Zhan et al., 2020). Meanwhile, the class supervision to
mixup infoNCE is added by PL and L for filtering out views that belong to the same sub-manifold,
i.e., approximating the centroid in SL, denoted as infoNCE (L) and infoNCE (PL).

As shown in the upper part of Tab.1, we find that destroying the structure of sub-manifolds has a
negative impact on MB optimization. Surprisingly, using pBCE achieves better performance than CE
(PL), which proves the importance of optimizing local relationships for mixup generation. As shown
in the latter part of Tab.1 of the non-parametric loss, infoNCE is more accurate for global modeling of
sub-manifold after introducing the label. In the end, the experimental results are consistent with our
expectations. We conclude that modeling local relationships determines the performance of mixup
generation while global discrimination serves as a constraint. Thus, We propose two versions of Lclsφ
to train MB for instance-level mixup, LCE + LBCE as the clustering version (AMix-C) using ODC
to generate PL, Lqm,ki,kj + LBCE as the instance version (AMix-I).

3.4 DISCUSSION AND ANALYSIS OF AMIX

From supervised (fine-grained to coarse-grained) to unsupervised (clustering and infoNCE) training,
the richness of predefined cluster centroids decreases in order to learn more general representations.
Since the learning objective for mixup generation in AMix influences global and local properties of
mixup by cluster characteristics. We visualize mixed samples generated by AMix, as presented in
Fig.4, to provide some insights for understanding the essence of automatic mixup training.

Class-level mixup in parametric learning From the left to right, the first four mixed samples are
generated under the parametric loss. We see that as the granularity of clusters becomes larger, the
discriminative information shifts from the attributes, the head of the bird and plane, to the whole object.
Notice that the continuity of objects is influenced by the environmental textures (Wu et al., 2021).
This is caused by the inaccurate pseudo-labeling provided from the clustering algorithm, the detailed
analysis please refer to Tab.1. Although these different scenarios have their own characteristics, MB
is still able to generate beneficial virtual samples in a specific task.

Instance-level mixup in non-parametric learning From the perspective of mixed features, we
see that fine-grained SL and CL result in similar fine-grained features. Hence we hypothesize that
both fine-grained SL and CL adopt fine-grained clusters than standard SL, i.e., fine-grained SL
further differentiating within a coarse class and CL discriminating each instance. In a sense, CL can
be regarded as unsupervised finer-grained classification. Nevertheless, the former has fine-grained
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Image A Fine-grained SL SL CL(C) CL Image B

Figure 4: Visualization of mixed samples generated by AMix in various learning scenarios. Note that
λ=0.5 and Image B is set as the value. CL(C) and CL denote AMix-C and AMix-I separately.

class supervision while the latter does not. Therefore, the mixed sample of CL should have specific
and attributed features. We further generated mixed samples by only using BCE or infoNCE loss in
Appendix. We find that mixed samples generated with BCE contain continuous and certain parts of
objects while samples generated with infoNCE prefer more specific and fragmented features. Thus,
to take both the local and global characteristics into account, BCE is the key to the mixup generation
unsupervised and the class/cluster information is also important for mixup to be discriminative.

4 EXPERIMENTS

We first evaluate AMix in two popular discriminative representation learning, supervised learning
(SL) in Sec.4.1 and self-supervised learning (SSL) in Sec.4.2, and then perform ablation studies
in Sec.4.3. Six benchmarks are used for evaluating AMix: CIFAR100 (Krizhevsky et al., 2009),
Tiny-ImageNet (Tiny) (Chrabaszcz et al., 2017), ImageNet-1k (IN-1k) (Russakovsky et al., 2015),
STL-10 (Coates et al., 2011), CUB-200 (Wah et al., 2011), and FGVC-Aircraft (Maji et al., 2013).
All experiments are conducted with PyTorch and Tesla V100 GPU and reported the mean of 3 trials.

CIFAR-100 CUB-200 FGVC-Aircraft
Method R-18 RX-50 R-18 RX-50 R-18 RX-50
Vanilla 78.04 81.09 77.68 83.01 80.23 85.10
MixUp 79.12 82.10 78.39 84.58 79.52 85.18
CutMix 78.17 78.32 78.40 85.68 78.84 84.55
ManifoldMix 80.35 82.88 79.76 86.38 80.68 86.60
SaliencyMix 79.12 78.77 77.95 83.29 80.02 84.31
FMix 79.69 79.02 77.28 84.06 79.36 84.85
PuzzleMix 80.43 82.57 78.63 84.51 80.76 86.23
ResizeMix 80.01 79.73 78.50 84.77 78.10 84.08
AutoMix 82.04 83.64 79.87 86.56 81.37 86.69
AMix (ours) 82.20 84.07 81.11 86.83 82.15 86.80
Gain +0.16 +0.37 +1.24 +0.27 +0.78 +0.11

Table 2: Top-1 accuracy (%) on CIFAR-100, CUB-
200 and FGVC-Aircraft using R-18 and RX-50.

Tiny ImageNet ImageNet-1k
Method R-18 RX-50 R-18 R-34 R-50 R-101
Vanilla 61.68 65.04 71.83 75.29 77.35 78.91
MixUp 63.39 66.36 71.72 75.73 78.44 80.60
CutMix 64.40 66.47 70.03 75.16 78.69 80.59
ManifoldMix 62.76 67.30 71.73 75.44 78.21 80.64
SaliencyMix 64.95 66.55 70.21 75.01 78.46 80.45
FMix 62.28 65.08 70.30 75.12 78.51 80.20
PuzzleMix 65.63 66.92 71.64 75.84 78.87 80.67
Co-Mixup 66.29 67.31 71.73 75.89 78.92 80.69
ResizeMix 64.50 65.87 71.32 75.64 78.91 80.52
AutoMix 67.33 70.72 72.05 76.10 79.25 80.98
AMix (Ours) 68.56 72.12 72.32 76.31 79.35 81.03
Gain +1.23 +1.40 +0.27 +0.21 +0.10 +0.05

Table 3: Top-1 accuracy (%) on Tiny ImageNet
and ImageNet-1k using various backbones.

4.1 EVALUATION ON SUPERVISED IMAGE CLASSIFICATION

This subsection evaluates the performance gain of AMix for fine-grained and large-scale image
classification tasks. To verify the generalizability of AMix for various scale network architectures,
we adopt the residual neural networks ResNet (R) and ResNeXt (32x4d) (RX) (Xie et al., 2017) as
backbone networks. Also, all experiments used the cosine scheduler (Loshchilov & Hutter, 2016) to
adjust the learning rate with the SGD optimizer. For a fair comparison, grid search is performed for
hyper-parameters of all mixup algorithms, α ∈ {0.2, 0.5, 1.0, 2.0, 4.0}. The default setting is α = 1
and other hyper-parameters follow the original paper. Following AutoMix, the momentum coefficient
in AMix is gradually increased from m = 0.999 to 1 in a cosine curve and the feature layer l = 3 by
default. The median of test performances in the last 10 training epochs is recorded for each trial.

Setups For a fair comparison, the basic training settings are set identically for all algorithms as
following. We adopt RandomFlip and RandomCrop with 4 pixels reflect padding as basic data
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augmentations for CIFAR-100 while RandomFlip and RandomResizedCrop for the rest datasets. For
CIFAR-100, the SGD weight decay wd = 0.0001, momentum is 0.9, initial learning rate lr = 0.1,
and train 800 epochs with the batch size of 100. For Tiny ImageNet, the total epochs are 400 with the
initial learning rate lr = 0.2 and the batch size of 100. For ImageNet-1k, the total epochs are 300
with the initial learning rate lr = 0.1 and the batch size of 200. For fine-grained classification tasks,
we use ImageNet pre-trained models provided by Pytorch as initialization, and set the initial learning
rate lr = 0.001, the weight decay wd = 0.0005, the batch size is 16, and total epochs are 200.

Comparison and discussion On the small scale and fine-grained classification tasks, as shown in
Tab.2, AMix consistently improves the classification performance over the previous best algorithm
AutoMix on CIFAR-100, CUB-200, and FGVC-Aircraft by improving the design of Mix Block.
Notice that AMix significantly improved the performance of CUB-200 and FGVC-Aircraft by 1.24%
and 0.78% based on ResNet-18, and continued to expand its dominance on Tiny ImageNet by
bringing 1.23% and 1.40% improvement on ResNet-18 and ResNeXt-50. Meanwhile, on the large-
scale classification task, AMix also outperforms all existing methods. It is noteworthy to point out
that AMix and AutoMix are the only two algorithms that surpass Vanilla based on ResNet-18.

R18 R50
CL baseline mixup method 400ep 800ep 400ep 800ep
MoCo.V2 - 81.50 85.64 84.89 89.68

MixUp 84.51 87.93 88.24 92.20
ManifoldMix 84.17 87.70 88.06 91.65
CutMix 84.28 87.60 87.51 90.81

MoCo.V2 SaliencyMix 84.33 87.27 87.35 90.77
FMix 84.43 87.68 88.14 91.56
ResizeMix 83.88 87.25 86.88 90.83
AMix-I (Ours) 85.37 88.58 88.87 92.41

SwAV* (C) - 81.10 85.56 84.35 88.79
MoCo.V2 (C) Inter-Intra 84.89 87.85 88.33 92.24
MoCo.V2 (C) PuzzleMix 84.98 88.07 88.40 91.98
MoCo.V2 (C) AMix-C (Ours) 85.56 88.63 88.91 92.45

Table 4: Top-1 accuracy (%) of linear classifica-
tion on STL-10 pre-training 400 and 800-epoch.

CL method mixup method Tiny ImageNet ImageNet-1k
R18 R50 R18 R50

MoCo.V2 - 38.29 42.08 52.85 67.66
MoCo.V2 MixUp 41.24 46.61 53.03 68.07
MoCo.V2 CutMix 41.62 46.24 52.98 68.28
MoCo.V2 FMix 41.09 46.30 53.10 68.42
MoCo.V2 (C) PuzzleMix 41.86 46.72 53.28 68.48
MoCHi* input+latent 41.78 46.55 53.12 68.01
i-Mix* input+latent 41.61 46.57 53.09 68.10
UnMix† input+latent - - - 68.60
WBSIM† input - - - 68.40
MoCo.V2 AMix-I (Ours) 41.97 47.23 53.47 68.79
MoCo.V2 (C) AMix-C (Ours) 42.53 47.41 53.62 68.86

Table 5: Top-1 accuracy (%) of linear classification
on Tiny ImageNet and ImageNet-1k.

CL Method mixup method AP AP50 AP75

MoCo.V2 - 56.9 82.2 63.4
MoCo.V2 Mixup 57.2 82.6 64.1
MoCo.V2 CutMix 57.3 82.7 64.0
MoCHi* input+latent 57.1 82.7 64.1
i-Mix* input+latent 57.5 82.7 64.2
UnMix† input+latent 57.7 83.0 64.3
WBSIM† input 57.4 82.8 64.2
MoCo.V2 AMix-I (Ours) 57.8 83.1 64.3

Table 6: Transferring to detection with
Faster R-CNN on VOC07+12.

method STL-10 Tiny
BCE 85.25 41.28
infoNCE 85.37 41.90
infoNCE+BCE 85.44 41.97
pBCE (C) 85.45 42.18
CE (C) 85.56 42.36
CE (C)+infoNCE 85.41 42.12
CE (C)+BCE 85.60 42.53

Table 7: Ablation of proposed
losses on STL-10 and Tiny.

module SL CL
MixBlocl (baseline) 67.33 41.25
+Adaptive λ 67.85 41.62
+Non-linear content 68.08 41.96
+Global attention 68.34 42.10
+Lmask 68.42 42.17
+Bilinear 68.56 42.28
+λ adjusting 68.37 42.53

Table 8: Ablation of proposed
modules in MB+ on Tiny.

4.2 EVALUATION ON SELF-SUPERVISED LEARNING

In this subsection, we evaluate AMix on SSL tasks on STL-10, Tiny ImageNet, and ImageNet-1k.
Excepts SwAV (Caron et al., 2020), all comparing methods are based on MoCo.V2. We adopt all
the training and hyper-parameter configurations from MoCo.V2 for pre-training on these datasets
unless otherwise stated. We compared AMix in two dimensions in CL: (i) compare with other
mixup variants, based on our proposed cross-view pipeline, and the predefined cluster information
is given (denotes by C) or not, as shown in Fig.4. (ii) we then provide a longitudinal comparison
with CL methods that utilize input space (i.e., Mixup and CutMix) and latent space mixup strategies,
including MoCHi (Kalantidis et al., 2020), i-Mix (Lee et al., 2021), Un-Mix (Shen et al., 2021) and
WBSIM (Chu et al., 2020), as presented in Fig.5. Notice that * denotes results reproduced with the
official source code and † denotes results reported in the original paper.

Linear Classification Following the linear classification protocol proposed in MoCo (He et al.,
2020), we train a linear classifier on the top of frozen backbone features with the supervised train
set. We train 100 epochs using SGD with a batch size of 256. The initialized learning rate is set
to 0.1 for Tiny ImageNet and STL-10 while 30 for ImageNet, and decay by 0.1 at epoch 30 and
60. As shown in Tab.4, AMix outperforms all the linear mixup methods by a large margin and
surpasses the saliency-based PuzzleMix when the cluster information is available. And AMix-I has
both global and local properties through infoNCE and BCE losses. Meanwhile, Tab.5 demonstrates
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Ours
AutoMix

ResizeMix

CutMix

MixUp

AugMix

PuzzleMix CoMix

SuperMix
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Figure 5: Left: top-1 accuracy (%) and the training time on IN-1k based on ResNet-50 training 100
epochs. Middle and Right: hyper-parameter ablation on α and the cluster number K on Tiny.

that AMix surpasses the other CL methods combined with the mixup, while AMix-C which using
class information (PL) provided by ODC indeed helps MB to generate more accurate virtual samples.

Downstream Tasks Following the evaluation protocol in MoCo, we evaluate the transferable ability
of the learned representation on the object detection task, in Fig.6. We benchmark the comparing
methods on PASCAL VOC using Faster R-CNN (Ren et al., 2015) implemented in Detectron2 (Wu
et al., 2019) with ResNet50-C4 backbone (i.e., using extracted features of the 4-th stage). We fine-tune
the pre-trained models on the split of trainval07+12 and evaluate on the VOC test2007.

4.3 ABLATION STUDY

We conduct ablation studies in four aspects: (a) MixBlock+: The effectiveness of each proposed
module to improve MB is verified in parametric (SL) and non-parametric (CL) tasks. As shown
in Tab.8, the first three key modules strengthen the ability of mixup relationship modeling. Notice
that the prior knowledge λ adjusting obtains a large margin gain in CL. (b) Loss functions: Based
on this improved MB, we analyze the effectiveness of proposed losses. As shown in Tab.7, adding
BCE loss to the mixup CE and infoNCE consistently improves the performance both in STL-10 and
Tiny, which shows that BCE loss plays an important role in the mixed sample generation. (c) Time
complexity analysis: As shown in the left of Fig.5, computational analysis is conducted on the SL
task on IN-1k following the 100 epochs training protocol Wong et al. (2020). We can find that the
overall efficiency of AMix is superior in contrast to other methods in this time-accuracy scatter plot.
(d) Hyper-parameter: Fig.5 (middle and left) shows the ablation of the hyper-parameter α and the
clustering number K in ODC for AMix-C. We empirically choose α=2.0 and K = 200 as default.

5 RELATED WORK

Mixup in class level There are three types of class-level mixup: linear (Zhang et al., 2017; Yun
et al., 2019; Qin et al., 2020; Verma et al., 2019; Hendrycks et al., 2019), saliency-based (Uddin et al.,
2020; Kim et al., 2020; 2021), and end-to-end training mixup generation and classification (Liu et al.,
2021; Dabouei et al., 2021). In this paper, AMix belongs to the third class, which also can model
instance-level relationships.

Mixup in instance level A complementary method for better instance-level representation learning
is to apply mixup on CL. Most approaches are limited to linear mixup meth attempts to use MixUp in
the input space for self-supervised learning without a ground-truth label. In contrast, the developers
of MoChi (Kalantidis et al., 2020) propose mixing the negative sample in the embedding space to
increase the number of hard negatives but at the expense of classification accuracy. i-Mix (Lee et al.,
2021) and BSIM (Chu et al., 2020) demonstrated how to regularize contrastive learning by mixing
instances in the input/latent and virtual label spaces. We introduce AMix for SSL, which adaptively
learns the instance relationship based on inter- and intra-cluster properties online.

6 CONCLUSION

Learning the intrinsic structure of data is a challenge in the deep learning community. However, as a
method of modeling relationships between samples, mixup has been underestimated and is only used
as a means of data augmentation. AMix provides a landscape for learning adaptive mixup policy at
both class and instance levels, which is guided by the properties of mixup training. Specifically, the
improved MB+ and cross-view training pipeline empower mixup beyond just "data augmentation".
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