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ABSTRACT

Recent years have witnessed the effectiveness of contrastive learning in obtaining
the representation of dataset that is useful in interpretation and downstream tasks.
However, the mechanism by which the contrastive learning succeeds in this feat
has not been fully uncovered. In this paper, we show that contrastive learning can
uncover a fine decomposition of the dataset into a set of latent features defined by
augmentations, and that such a decomposition can be achieved just by changing
the metric in the simCLR-type loss.

1 INTRODUCTION

Collectively, contrastive learning refers to a family of representation-learning methods with a mech-
anism to construct a latent representation in which the members of any positive pair with similar
semantic information are close to each other while the members of negative pairs with different se-
mantic information are far apart (Hjelm et al., 2019; Bachman et al., 2019; Hénaff et al., 2020; Tian
et al., 2019; Chen et al., 2020). Recently, numerous variations of contrastive learning (Radford et al.,
2017; Li et al., 2021; Wang et al., 2021b; Joseph et al., 2021; Laskin et al.) have appeared in litera-
ture, providing evidences in support of the contrastive approach in real world applications. However,
there still seems to be much room left for the investigation of the reason why the contrastive learning
is effective in the domains like image-processing.

Recent works in this direction of research include those pertaining to information theoretic interpre-
tation (Wang & Isola, 2020) as well as the mechanism by which the contrastive objective uncovers
the data generating process and the underlying structure of the dataset in a systematic way (Zim-
mermann et al., 2021). In particular, von Kügelgen et al. (2021) has shown that, under a moderate
transitivity assumptions with respect to the actions of the augmentations used in training, the con-
trastive learning can isolate the content from the style—where the former is defined as the space that
is fixed by all augmentations and the latter is defined as the space altered by some augmentation.
Meanwhile, Wang et al. (2021a) described the similar philosophy in terms of group theoretic con-
text, proclaiming that the contrastive learning can decompose the space into inter-orbital direction
and intra-orbital direction. They even went further to decompose the inter-orbital direction by intro-
ducing an auxiliary IRM-type loss. In a related note, Fumero et al. (2021) assume that the dataset of
interest has the structure of a product manifold with the assumption that each augmentation family
alters only one of the products. They train a set of nonlinear projection operators to extract each
component of the manifold in a self-supervised way.

In this research, we present a result suggesting that contrastive learning alone can possibly decom-
pose the data space not just into the common-invariant space of all augmentations and its comple-
ment, but also into finer spaces that can generate the invariant space of each augmentation. We
empirically show that a standard contrastive learning can reveal such a decomposition of the space
by simply changing the metric from the commonly used angle distance d(a, b) = aT b to the Lasso-
type metric like d(a, b) = |a− b|. Moreover, we show that, in a special case, this decomposition of
the space can be block-identified without assuming strict group structure on the set of augmentations.

2 METHOD

Let X be the space of dataset, and let T = {Ti : X → X} be a set of augmentations. Suppose
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Figure 1: First three rows: the decomposition of the latent space of X induced by three different
augmentations, T1, T2 and T3. The space WT is the invariant space of T . The bottom row: the
decomposition of X into frequency components {Vk} that can generate any intersections of WT s.

that h is an invertible map from X to some latent space. We use WT ⊂ h(X ) to denote the latent
invariant space of a specific augmentation T , i.e., h ◦ T ◦ h−1(w) = w for any w ∈ WT . We would
like to consider a decomposition of the space defined with WT s. The first three rows in Figure 1
are the visualization of the decomposition of X into invariant/non-invariant space for three different
choices of augmentations, T1, T2 and T3. When there are three invariant spaces as such, we want to
consider the decomposition of the space into {Vk} defined as the minimal intersections of invariant
spaces and their complements (fourth row).

Our decomposition has a clear difference from the relevant works; von Kügelgen et al. (2021)
showed that contrastive learning can decompose X into the space Vcontent that is invariant under
the action of all members of T and its complement Vstyle. Because Vcontent is our definition of V1,
the intersection of WT1

,WT2
and WT3

, the structure discussed in von Kügelgen et al. (2021) is only
a decomposition of the space into V1 and

⊕
j ̸=1 Vj . Meanwhile, Wang et al. (2021a) discusses a

further decomposition of V1, but not the other parts.

The most important property of {Vk} is that it can generate the intersection of the invariant spaces
of any arbitrary subset of {Ti}. Thus, if h is such that each Vk can be represented by a set of its
coordinates, then h can represent any intersection of invariant spaces as a set of coordinates. As the
concept we introduce here is akin to the one introduced in harmonic analysis of groups (Weintraub,
2003; Garsia & Ömer Egecioglu, 2020; Clausen & Baum, 1993), we would like to say that the latent
space is Symmetry Adapted to T if the intersection of the invariant spaces for any pair (T, T ′) ⊂ T
can be represented by a set of coordinates1. Likewise, we would like to call the smallest intersection
components (e.g. Vks) that make up the invariant space of each T as a frequency. It turns out that,
at least in a case in which every frequency can be expressed as an intersection of invariant spaces,
such a decomposition can be identified uniquely up to a mixing within each frequency. The result
below is an informal statement of this claim, and is an analogue of the block-identifiability results
in von Kügelgen et al. (2021).

Proposition 1 (Informal). Suppose that {Vj} consists of minimal intersections of invariant spaces
{WT }, and suppose that there exists an invertible map h : X → ⊕Vj . If T satisfies a certain
transitivity assumption then {Vj} are block identifiable. That is, if there is any other such h̃ with
{Ṽj}, then there exists an invertible map between Vj and Ṽj .

We note that this statement assumes that the set of augmentations defining the frequencies is rich
enough that there is no frequency that is not fixed by any augmentation. In a related note, our
identifiability result does not necessarily generalize the result of von Kügelgen et al. (2021) because
the style space in their work may contain a feature altered by all elements of T . Also, Fumero et al.
(2021) assumes that each augmentation alters an unique decompositional component that does not
intersect with the space altered by other augmentations. For the formal statement of Proposition 1,
see Appendix A.

In this paper, we propose a simple contrastive learning objective with the goal of finding a Symmetry
Adapted latent space for X . As shown in Wang & Isola (2020), the contrastive learning based
on noise contrastive error (e.g simCLR) can be described as a combination of two losses: (1) the
alignment loss that attracts the positive pairs in the latent space and (2) the uniformity loss that
encourages the latent variables to be distributed uniformly, thereby preventing the degeneration. We
use the loss of the same type, except that we replace the cosine distance norm in simCLR with the

1In representation theory, the basis of a representation space is called Symmetry Adapted when any irre-
ducible representation of the space can be represented by a subset of basis.
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(a) (b)

Figure 2: (a) Relation between the augmentation T̂ = h∗Th
−1
∗ in the latent space and augmentation

T in the observation space. In a symmetry adapted latent space, each augmentations is a direct sum
of identity map and a block. (b) For each T̂ , the identity map part corresponds to invariant space
WT , and the block part corresponds to W c

T .

L1 loss. That is, we consider the following objective to train the encoder hθ parametrized by θ:

Lalign + Lanti−deg = ET1,T2,X [∥hθ(T1(X))− hθ(T2(X))∥1/τ ]︸ ︷︷ ︸
L1 alignment Loss

+ (−H(hθ))︸ ︷︷ ︸
Anti-Degeneration Loss

, (1)

where X is the observation input, T1 and T2 are the random augmentations, τ is the temperature,
and H is a function that prevents degeneration, such as Shannon’s entropy. Essentially, this objec-
tive function differs from simCLR only in the choice of the metric used to bring the positive pairs
together; the equation 1 becomes simCLR when we replace ∥a − b∥1 with aT b. Notice that L1

distance is particularly different from the angular distance in that is not invariant to the orthogonal
transformation, and hence is able to align particular set of dimensions. The gist of this loss is to
maximize the number of dimensions at which the pair (T1(X), T2(X)) agrees in the latent space in
the way of LASSO (Tibshirani, 1996). If T1 ⊂ T has a common invariant space WT and T2 ⊂ T
has WT2

, and if T1and T2 contains the identity, we can expect our loss to seek a representation in
which WT1

∩WT2
as well as WT2

and WT2
are maximized. In the next subsection, we study if we

can experimentally recover such a decomposition space into Vis using our L1 contrastive loss.

3 EXPERIMENTS

3.1 LINEAR CASE

Our experiment of a linear case is instrumental in describing the effect of the L1-contrastive loss in
the equation 1. In this experiment, we assume that the dataspace X is a 6 dimensional linear subspace
embedded in a 20 dimensional input space via a linear encoding function h∗ : X = R12 → R6 = Z .
This setup is a linear analogue of a 6 dimensional manifold embedded in a 12 dimensional ambient
space. Suppose that, in the 6 dimensional latent space, each augmentation T acts on the input z ∈ Z
by mixing a subset of coordinates AT ⊂ {1, ..., 6} while leaving its complementary coordinates Ac

T

fixed. That is, in the notation of the previous section, RAT = WT . We assume the augmentations in
the latent space are also linear, and that at least one symmetry adapted basis exists with the encoder
h∗. This situation is realized when each augmentation in the latent space, T̂ = h∗Th

−1
∗ , is block

diagonal. See Figure 2 for the visualization of this setup.

Notice that when each augmentation T has an invariant space WT = RAT of its own, the only
choices of the coordinate system that can express the invariant space of every T as a ”subset of
coordinates” is the family of coordinates that can not only express AT as a subset but also AT ∩AT ′

as a subset for all (T, T ′). However, hidden in the shades of unknown encoder map h∗, such an
underlying structure may be hard to obtain just with the pairs (T (X), T ′(X)).

In our linear experiment, we trained an encoder hθ with our L1 contrastive loss on the set of
(T (X), T ′(X)) pairs. We chose a diverse enough set of T in this experiment so that, in the hidden
symmetry adapted space, each Vk is one dimensional. Thus, the goal of this experiment is to learn
an encoder ĥ−1

θ that identifies h∗ up to a permutation of the coordinates and scaling. We trained ĥθ
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by our L1 contrastive loss with the reconstruction-error as the anti-degeneration loss; more specif-
ically, we simultaneously trained the decoder function ĥ−1

θ together with ĥθ. We emphasize that,
during our training, neither the choices nor the functional forms of the used T s are known to the
trainer. Figure 3 illustrates the result of our training. The matrices in the first row of are h∗Th

−1
∗

Figure 3: First row: T̂ = h−1
∗ Th∗ for the set of T s used in the training of hθ. In the first row, all

diagonal entries not belonging to blocks are 1. Second row: ĥθT ĥ
−1
θ for the same set of T s with ĥθ

estimated from the L1 contrastive loss. All diagonals not belonging to blocks are approximately 1
(0.946±0.042). Because the size of the blocks and hence the size of invariant spaces are same for the
first and the second row, our trained ĥ−1

θ identifies the symmetry adapted space up to permutation.

with T s used in our training, and the matrices in the second row are ĥθT ĥ
−1
θ obtained with trained

ĥθ. We see that the size of the blocks in the second row are almost the same as the blocks in the
blocks in the first row. Also, all diagonal entries not belonging to the estimated non-trivial blocks
are approximately 1 (0.946 ± 0.042). Thus, ĥθ identifies all six Vis up to a permutation. In other
words, we have successfully learned the Symmetry-Adapted basis that can represent the invariant
spaces of all augmentations as sets of coordinates.

3.2 NONLINEAR CASE

To verify if our method can handle a case in which h∗ is nonlinear, we experimented on stylized
MNIST, a modified version of MNIST in which the digits are randomly colored and rotated.

Each image in this dataset is 32 × 32 × 3 dimensional. We conducted the self-supervised learning

Figure 4: Stylized MNIST dataset

with our L1 contrastive loss on this dataset in hope to learn the latent space that is symmetry adapted
to the color-jittering and rotation. In order to facilitate the learning of the decomposition, we made
the latent space to be of tensor-form Rda×ds , normalized each ds dimension, and used group lasso
distance for each z(1), z(2) ∈ Rda×ds ; that is, we used d(z(1), z(2)) =

∑
k∈da

∥z(1)k − z
(2)
k ∥2, where

z
(i)
k is the kth row of z(i) (Yuan & Lin). For this experiment, we selected dims = 32 and dima = 16,

yielding the total of 512 dimensional latent space. Just like in the convention of normalization in
contrastive learning, we normalized each one of 16 rows in the vector. We trained the encoder with
ResNet and set the temperature τ of the contrastive learning to be 0.0001. Please see Appendix C for
the detail of the encoder architecture . Our intuition dictates that these two families of augmentations
are orthogonal in the sense that the latent subspace altered by the member of the former family is
disjoint from the latent subspace altered by the latter family. And indeed, this turns out to be exactly
what we observe in the space learned by our L1 contrastive learning. The figure 5 illustrates the
vertically stacked 512 dimensional horizontal vectors of |hθ(T (X)) − hθ(X)| for random T . The
figure in the first row is produced from randomly rotation transformation Trot, and the figure in the
second row is produced from randomly color transformation Tcolor. As we can see in the the figures,
the dimensions that are altered by Trot are not altered by Tcolor, and vice versa. Moreover, we can
observe the dimensions that are fixed by both Trot and Tcolor as well. We can also see that almost
all 512 dimensions are used in the representation. To measure the extent to which the space altered
by rotations is complementary to the space altered by the color transformations, we measured the
following value

ETrot,X [|hθ(Trot(X))− hθ(X)|2]× ETcolor,X [|hθ(Tcolor(X))− hθ(X)|2] (2)
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Figure 5: First row: stacked 512 dimensional vectors representing |hθ(Trot(x))−hθ(x)| for random
rotations Trot. Second row: stacked 512 dimensional vectors representing |hθ(Tcolor(x)) − hθ(x)|
for random color rotations Tcolor. Third row: stacked 512 dimensional vectors representing |hθ(x)|.
Dark (small value) regions represent the invariant spaces.

Table 1: Linear evaluation accuracy scores. For Digit, we conducted Linear Logistic Regression.
For the prediction of color and angle, we conducted linear regression on the pair of images with
random color and rotation to predict the color difference and angle difference.

Features Ours SimCLR Raw representation
Digit Accuracy (Logistic) 0.5836± 0.0013 0.6091± 0.0015 0.5175± 0.0027
Angle Prediction Error 0.0102± 0.0002 0.0245± 0.0023 42.4783± 31.6392
Color Prediction Error 0.0037± 0.0001 0.0175± 0.0001 9.4576± 4.5193

Table 2: Linear classification result on the learned representations.

Where A designates the normalization of the vector A. By definition, this evaluates to 0 when
the Trot-sensitive space has empty intersection with the Tcolor-sensitive space. In our experiment,
simCLR yielded the score of 0.0016 ± 0.0001, while our L1 contrastive learning yielded the score
of 0.00012± 0.00001, numerically validating the complementary decomposition we visually see in
Figure 5.

Also, to verify whether our decomposed representation holds enough information to predict the
important features of our dataset, namely the rotation angle, the color, and the digit shape, we con-
ducted a linear regression for each one of these features based on the learned representation. Table 1
summarizes the result of our linear evaluation. For the angle and color, we encoded a pair of images
x1, x2 with random color and random rotation, concatenated the encoded output z1, z2, and linearly
predicted the color difference in RGB and the sine value of the angle difference. Because the theme
of our study is the representation of the encoder output, we conducted the evaluation on the final
output layer. As we see in Table 1, our model achieves competitive scores for all features, and pre-
dicts the color differences particularly well. The raw representation (flattened 32∗32∗3 vector of
image pixels) performed poorly on the test evaluation. We shall also note that, although the latent
represetation obtained from the simCLR-trained encoder (Figure 6) does not feature the decompo-
sition like the one observed in Figure 5, it has the ability to predict the features like angle and color,
possibly indicating the presence of a hidden invisible structure underneath the representation . To
visually see if our representation retains enough information of the original images, we also trained
decoder on the fixed encoder trained from our L1 contrastive objective function. As we can see in
Figure 7 our representation encodes strong information regarding the orientation, shape and color of
the image while featuring the decomposability.

4 CONCLUSION

In this work, we have investigated the representation learned by the contrastive learning with L1

type distance. We have shown that, without any auxiliary regularization, the L1 contrastive loss has
the ability to decompose the dataspace in such a way that the invariant space of any augmentaion
transformation T can be represented as a set of coordinates. Our study suggests that, by considering
different metrics, we may uncover more secrets behind the mechanism of contrastive learning and
the representation learning in general.
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A PROOF OF THE PROPOSITION 1

Let T = {T} be a set of augmentation transformations on X , and

h : X → Rn

be a homeomorphism, which introduces a coordinate of X . Let WT denote the invariant subspace
of T ∈ T through h, that is, the maximal subspace of Rn such that h ◦ T ◦ h−1(v) = v holds
for any v in the space. For the augmentations T , we can consider the π-system S generated by
the {WT }T∈T , that is, S is the family of subspaces which are generated by intersections any finite
subsets of {WT }T∈T . Let V = {Vj}mj=1 be a family of subspaces in Rn. If ⊕m

j=1Vj = Rn holds and
any W ∈ S is expressed as the direct sum of finite elements of V , we call V symmetry adapted. If T
is a finite set, the symmetry adapted subspaces is given by the minimal intersections of {WT }T∈T ,
where minimal should be interpreted in terms of inclusion of sets. Thus, the symmetry adapted
family is uniquely determined.

Proposition (Formal Version). Under the above notations, let {Vj}mj=1 be the symmetry adapted
subspaces for T , and assume that T acts transitively in the strong sense, that is, for any k, vk ∈ Vk,
and v−k, v

′
−k ∈ V−k :=

⊕
j ̸=k Vj , there exists some Vk-fixing T such that T ◦ h−1(vk, v−k) =

h−1(vk, v
′
−k). Then, {Vj} are block identifiable, that is, if there is another h̃ with {Ṽj} that satisfy

the assumptions, then there exists an invertible map between Vj and Ṽj for each j after appropriate
reordering of {Ṽj}.

Proof. Let v denote an element of Rn =
⊕

Vi, and let v−i ∈
⊕

j ̸=i Vj denote a vector with the i-th
component removed from v. Note that ϕ = h̃ ◦ h−1 :

⊕
i Vi →

⊕
i Ṽi is an invertible map. By the

last remark before Proposition, there is a one-to-one correspondence between {Vj} and {Ṽj}, so we
assume w.l.o.g. that for each k, Vk and Ṽk have the same set of T s to which they are invariant. Now,
write

ϕ(v) = [ϕk(v), ϕ−k(v)]
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where ϕk is the Ṽk component of ϕ, or π̃k ◦ϕ with the projection operator π̃k :
⊕m

j=1 Ṽj → Ṽk. We
first show that ϕk(v) depends only on vk = πk(v), that is,

ϕk(vk, v
′
−k) = ϕk(vk, v−k)

for all vk ∈ Vk and v−k, v
′
−k ∈ V−k. By the assumption, there exists a Vk-fixing T such that

T ◦ h−1(vk, v−k) = h−1(vk, v
′
−k) for all vk, v−k and v′−k. Because T is Vk-fixing, it is also Ṽk-

fixing. Thus,
π̃k ◦ h̃ ◦ T ◦ h̃−1 = π̃k ◦ T ◦ h̃−1,

or we can say π̃k ◦ h̃ ◦ T = πk ◦ h̃. Putting all together, we have

π̃k ◦ ϕ(vk, v−k) = π̃k ◦ h̃ ◦ h−1(vk, v−k)

= π̃k ◦ h̃ ◦ T ◦ h−1(vk, v−k)

= π̃k ◦ h̃ ◦ h−1(vk, v
′
−k)

= π̃k ◦ ϕ(vk, v′−k),

which shows that the map ϕk depends only on vk. Write ϕk(vk) := ϕk(v), then

ϕ(v) =

m⊕
k=1

ϕk(vk).

Since ϕ is invertible, the above relation guarantees that each ϕk is invertible, and the identifiability
follows.

B ADDITIOANL FIGURES

Figure 6: Visualization of SimCLR learned representation. First row: stacked 512 dimensional
vectors representing |hθ(Trot(X)) − hθ(X)| for random rotations Trot. Second row: stacked 512
dimensional vectors representing |hθ(Tcolor(X))−hθ(X)| for random color rotations Tcolor. Third
row: Second row: stacked 512 dimensional vectors representing |hθ(X)|. No apparent structure is
visible in simCLR representation.

C THE ARCHITECTURE USED IN STYLED MNIST DATASET.

For the experiment in Sec.3.2, we adopted ResNet-based encoder and decoder architecture (He et al.,
2016). We use ReLU function (Nair & Hinton, 2010; Glorot et al., 2011; Maas et al., 2013) for each
activation function and the group normalization (Wu & He, 2018) for the normalization layer. The
details of the architecture is found in Figures 8 and 9.
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Figure 7: We trained an decoder for the encoder trained with our L1 contrastive loss. We see that
our encoder with decomposed feature dimensions retains much information about the digit shape,
orientation and color.
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Figure 8: The encoder (top) and decoder (bottom) architecture we used in our experiments. The
detail of the ResBlock architecture is described in Fig.9. The kernel size of all of the convolution
layers is set to 3x3 except the layers replacing the skip connection in the ResBlocks, which is set to
1x1. Each number following each layer name indicates the output dimension for the linear layer and
output channels for the convolution layer.
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Figure 9: The detail of the ResBlock architecture. For the upsampling and downsampling, we
followed the same procedure in Miyato & Koyama (2018). For downsampling, we replaced the
identical mapping with 1x1 convolution followed by downsampling layer (mean avegrage pooling).
For upsampling, we also replaced the identical mapping with nearest-neighbor upsampling followed
by 1x1 convolution. The number of groups for the group normalization layer was set to 32. Weight
standarization (Qiao et al., 2019) is applied to each 3x3 convolution layer.
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