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Abstract
Complex nonlinear system control faces chal-
lenges in achieving sample-efficient, reliable
performance. While diffusion-based methods
have demonstrated advantages over classical
and reinforcement learning approaches in long-
term control performance, they are limited by
sample efficiency. This paper presents SEDC
(Sample-Efficient Diffusion-based Control), a
novel diffusion-based control framework address-
ing three core challenges: high-dimensional state-
action spaces, nonlinear system dynamics, and
the gap between non-optimal training data and
near-optimal control solutions. Through three
innovations - Decoupled State Diffusion, Dual-
Mode Decomposition, and Guided Self-finetuning
- SEDC achieves 39.5%-49.4% better control ac-
curacy than baselines while using only 10% of the
training samples, as validated across three com-
plex nonlinear dynamic systems. Our approach
represents a significant advancement in sample-
efficient control of complex nonlinear systems.
The implementation of the code can be found
at https://anonymous.4open.science/r/DIFOCON-
C019.

1. Introduction
The control of complex systems plays a critical role
across diverse domains, from industrial automation (Baggio
et al., 2021) and biological networks (Gu et al., 2015) to
robotics (Zhang et al., 2022). Given the challenges in deriv-
ing governing equations for empirical systems, data-driven
control methods—which design control modules directly
based on experimental data collected from the system, by-
passing the need for explicit mathematical modeling—have
gained prominence for their robust real-world applicabil-
ity (Baggio et al., 2021; Janner et al., 2022; Ajay et al., 2022;
Zhou et al., 2024; Liang et al., 2023; Wei et al., 2024).

LBefore data-driven control methods, traditional
Proportional-Integral-Derivative (PID) (Li et al., 2006)
controllers dominated complex system control through
continuous error correction. However, these classical
methods show limitations with complex nonlinear systems

due to their linear control nature. Data-driven machine
learning approaches have emerged to address these
limitations by learning nonlinear control policies from
interaction data, falling into three categories: supervised
learning, reinforcement learning (RL), and diffusion-
based methods. Supervised learning approaches like
Behavior Cloning (BC) (Pomerleau, 1988) learn direct
state-to-action mappings from expert demonstrations, while
RL methods like Batch Proximal Policy Optimization
(BPPO) (Zhuang et al., 2023) learn control policies through
value function approximation, showing better adaptability
to high-dimensional states than classical methods. However,
both approaches often exhibit myopic decision-making in
long-horizon tasks due to their iterative view of control
dynamics. In contrast, diffusion-based methods (Janner
et al., 2022; Ajay et al., 2022; Zhou et al., 2024; Liang et al.,
2023; Wei et al., 2024) reformulate control as sequence
generation, enabling comprehensive optimization over
entire system trajectories. This long-term perspective
allows diffusion-based methods to overcome limitations
of both classical and RL approaches, achieving superior
long-term control performance.

The success of diffusion models in data-driven control stems
from their exceptional ability to learn complex trajectory
distributions from empirical data. In practice, these trajec-
tories are typically collected from systems operated under
empirical rules or random policies. Moreover, due to op-
erational costs, the available data volume is often limited.
Diffusion-based methods must therefore learn effective con-
trol policies from such non-optimal and sparse trajectory
data—a challenge that manifests in three key aspects. First,
limited data volume impedes sample-efficient learning
in high-dimensional systems. Existing diffusion-based
controllers (e.g., DiffPhyCon (Wei et al., 2024)) attempt
to directly generate long-term (T steps) state-action tra-
jectories by learning a T × (P + M)-dimensional distri-
bution of system states yP and control inputs uM . This
joint distribution implicitly encodes system dynamics of
state transitions under external control inputs, which often
leads to physically inconsistent trajectories when training
samples are insufficient. Second, learning control poli-
cies for nonlinear systems remains an open challenge
both theoretically and practically. Traditional analytical
methods (Baggio et al., 2021) designed for linear systems
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fail to perform robustly when applied to nonlinear systems.
While diffusion-based approaches (Janner et al., 2022; Ajay
et al., 2022; Zhou et al., 2024) employ deep neural networks
(e.g., U-Net architectures) as denoising modules to capture
nonlinearity, learning effective control policies from limited
data remains particularly challenging for complex systems
with strong nonlinearity, such as fluid dynamics and power
grids. Third, extracting improved control policies from
non-optimal training data poses fundamental difficul-
ties. Diffusion-based methods (Janner et al., 2022) struggle
when training data significantly deviates from optimal solu-
tions. Although recent work (Wei et al., 2024) introduces
reweighting mechanism to expand the solution space during
generation, discovering truly near-optimal control policies
remains elusive without explicit optimization guidance.

To address these challenges, we propose SEDC (Sample-
Efficient Diffusion-based Control), a novel diffusion-based
framework for learning control policies of complex non-
linear systems with limited, non-optimal data. At its core,
SEDC reformulates the control problem as a denoising dif-
fusion process that samples control sequences optimized for
reaching desired states while minimizing energy consump-
tion. To address the curse of dimensionality, we introduce
Decoupled State Diffusion (DSD), which confines diffusion
process within state space and leverages inverse dynam-
ics to generate control inputs, i.e., actions. This approach
reduces learning complexity in high-dimensional systems
while ensuring physics-aware control synthesis. To tackle
strong nonlinearity, we propose Dual-Mode Decomposi-
tion (DMD) by designing a dual-UNet denoising module
with residual connections. This architecture decomposes
system dynamics into hierarchical linear and nonlinear com-
ponents, enabling structured modeling of complex systems.
To bridge the gap between non-optimal offline training data
and optimal control policies, we introduce Guided Self-
finetuning (GSF). This method progressively synthesizes
guided control trajectories for iterative fine-tuning, facilitat-
ing exploration beyond initial training data and convergence
toward near-optimal control strategies.

We demonstrate SEDC’s superiority over traditional, rein-
forcement learning, and diffusion-based methods through
experiments on three typical complex nonlinear systems.
Our model demonstrates 39.5%-49.4% improvement in con-
trol accuracy compared to state-of-the-art baselines while
maintaining better balance between accuracy and energy
consumption. In sample efficiency experiments, SEDC
matches state-of-the-art performance using only 10% of
the training samples. Additional ablation studies validate
the effectiveness of SEDC’s key design components.

2. Related Works
Classic control methods. Data-driven control of com-
plex systems has witnessed significant methodological de-
velopments across multiple paradigms. Classical control
methods, represented by Proportional-Integral-Derivative
(PID) controllers (Li et al., 2006), operate through contin-
uous sensing-actuation cycles in a feedback-based manner.
While these methods offer straightforward implementation,
they face fundamental limitations when dealing with high-
dimensional complex scenarios. More sophisticated analyt-
ical approaches, such as those presented in (Baggio et al.,
2021), have attempted to determine optimal control inputs
for complex networks without explicit dynamics knowledge.
However, their foundation in linear systems theory inher-
ently restricts their applicability to nonlinear systems.

Data-driven control methods. The emergence of super-
vised learning (Pomerleau, 1988) and reinforcement learn-
ing (Haarnoja et al., 2018; Zhuang et al., 2023) has in-
troduced more adaptive approaches to complex control
problems, demonstrating promising results in sequential
decision-making tasks. However, these approaches often
struggle with real-world deployment due to computational
constraints and the challenge of making effective decisions
over extended time horizons. More recently, denoising diffu-
sion probabilistic models (Ho et al., 2020) have emerged as
a powerful framework for modeling high-dimensional dis-
tributions, achieving remarkable success across various do-
mains including image, audio, and video generation (Dhari-
wal & Nichol, 2021; Kong et al., 2020; Ho et al., 2022). This
success has inspired their application to control problems,
with several works demonstrating their potential in robotic
control (Janner et al., 2022; Ajay et al., 2022) and trajec-
tory generation (Liang et al., 2023; Zhou et al., 2024). The
diffusion framework has also shown promise in related tech-
nical domains such as optimization (Krishnamoorthy et al.,
2023; Sun & Yang, 2023) and inverse problems (Chung
et al., 2022). For diffusion-based control methods, works
like (Janner et al., 2022; Ajay et al., 2022) demonstrate capa-
bilities in generating long-term control trajectories for rein-
forcement learning environments, but they employ generic
architectures that struggle to capture highly nonlinear dy-
namics, while our method incorporates specialized designs
for effective nonlinear system learning. Other works like
(Liang et al., 2023; Zhou et al., 2024) focus primarily on
robotic control without specific considerations for complex
system dynamics, while our approach is specifically de-
signed to handle the challenges of high-dimensional state-
action spaces and strong nonlinearity in complex systems.
Recent work DiffPhyCon (Wei et al., 2024) incorporates
reweighting techniques to optimize trajectories beyond the
training data distribution, and attempts to optimize trajecto-
ries through implicit dynamics modeling and reweighting
mechanisms, but this approach lacks explicit guidance for
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Figure 1. Illustration of SEDC, the proposed conditional diffusion-based controller.

optimization and may lead to physically inconsistent pre-
dictions, whereas our method combines explicit dynamics
modeling with guided optimization to ensure both physical
consistency and optimality.

3. Backgrounds
3.1. Problem Setting

The dynamics of a controlled complex system can be repre-
sented by the differential equation ẏt = Φ(yt,ut), where
yt ∈ RN represents the observed system state and ut ∈ RM

denotes the control input. We assume the system satisfies
the controllability condition without loss of generality: for
any initial state y∗

0 and target state yf , there exists a finite
time T and a corresponding control input u that can drive
the system from y∗

0 to yf . This assumption ensures the
technical feasibility of our control objectives. In practical
applications, beyond achieving state transitions, we need to
optimize the energy consumption during the control process.
The energy cost can be quantified using the L2-norm integral
of the control input: J(y,u) =

∫ T

0
|u(t′)|2dt′. For data-

driven optimal control problems, we can only understand
the system dynamics through observational data. Consider
a dataset D = {u(i),y(i)}Pi=1 containing P non-optimal
control trajectories, where each trajectory consists of:(1)
complete state trajectories y(i) sampled at fixed time inter-
vals; (2) corresponding control input sequences u(i). Based
on this dataset, our objective is to find the optimal control

input trajectory u∗ ∈ RT×M that satisfies:

u∗ = argmin
u

J(y,u)

s.t. Ψ(u,y) = 0, y0 = y∗
0, yT = yf ,

(1)

where y ∈ RT×N is the corresponding complete state tra-
jectory given y0 and Ψ(u,y) = 0. Here, Ψ(u,y) = 0 rep-
resents the system dynamics constraint implicitly defined
by dataset D. This constraint effectively serves as a data-
driven representation of the unknown dynamics equation
ẏt = Φ(yt,ut).

Our key idea is to train a diffusion-based model to directly
produce near-optimal control trajectories u[0:T−1], provid-
ing a starting state y∗

0 , the target yf and optimized by the
cost J . Next, we summarize the details of the diffusion-
based framework.

3.2. Diffusion Model

Diffusion models have become leading generative models,
showing exceptional results across image synthesis, audio
generation and other applications (Ho et al., 2020; Dhari-
wal & Nichol, 2021; Song & Ermon, 2019). These models,
when applied to trajectory generation, operate by progres-
sively adding noise to sequential data in the forward process
and then learning to reverse this noise corruption through
a denoising process. We denote that xk represents the se-
quential data at diffusion timestep k. In the forward process,
a clean trajectory x0 is progressively corrupted through K

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Sample-efficient diffusion-based control of complex nonlinear systems

timesteps, resulting in a sequence of increasingly noisy ver-
sions x1,x2, ...,xK . Each step applies a small amount of
Gaussian noise:

q(xk|xk−1) = N (xk;
√

1− βkxk−1, βkI),

where βk is a variance schedule that controls the noise level.
With a large enough K we can get q(xK) ≈ N (xK ;0, I).
In the reverse process, the diffusion model learns to grad-
ually denoise the data, starting from pure noise xK and
working backward to reconstruct the original plausible tra-
jectory x0. Each denoising step is conditioned on the start
and target state:

pθ(x
k−1|xk,y∗

0,yf ) = N (xk−1;µθ(x
k, k,y∗

0,yf ),Σ
k),

where θ represents the learnable parameters of the model
and Σk is from a fixed schedule.

Training of diffusion model. In order to facilitate the
design of the denoising network, the network with θ for the
denoising process does not directly predict µ. Instead, it is
trained to learn to predict clean trajectory x0, outputting x̂0.

The training objective for diffusion models typically in-
volves minimizing the variational lower bound (VLB) on
the negative log-likelihood (Sohl-Dickstein et al., 2015). In
practice, this often reduces to a form of denoising score
matching (Song & Ermon, 2019):

Ex,k,y∗
0 ,yf ,ϵ[||x− xθ(x

k, k,y∗
0,yf )||2],

where x, k,y∗
0,yf are sampled from the dataset, k ∼

U{1, 2, ...,K} is the step index and ϵ ∼ N (0, I) is the
noise used to corrupt x.

4. SEDC: the Proposed Method
In this section, we introduce our three key innovative designs
of SEDC: Decoupled State Diffusion, Denoising Network
Design of Dual Mode Decomposition, and Guided Self-
finetuning.

4.1. Decoupled State Diffusion (DSD)

Decoupling Control Estimation using Inverse Dynamics.
There are deep connections behind states, controls, and con-
straints, considering both the relationship between control
and state and learning the dynamics behind state evolution.
Such relation becomes more complex as the dimension of
the system states goes up. However, some diffusion-based
methods (e.g., DiffPhyCon (Wei et al., 2024)), which jointly
diffuse over state and input, learn the relationship implicitly
and may generate physically inconsistent state-control pairs
that violate the underlying system dynamics. Additionally,
control actions are less smooth than states, making their
distribution more challenging to model (Ajay et al., 2022).

Therefore, rather than jointly sampling both control signals
and intermediate states using the denoising network, we
choose to decouple them and diffuse only states y, i.e.

x := y[0:T ].

Then we update the prediction of control u sequence by
inputting the generated state trajectory to an inverse dynamic
model fϕ:

u0
t,update = fϕ(y

0
t ,y

0
t+1),

where 0 denotes the final output of the denoising timestep
from the diffusion model. We parameterize it using an
Autoregressive MLP and optimize it simultaneously with
the denoiser via training data. Our final optimization loss
function is:

L(θ, ϕ) := Ex,k,y∗
0 ,yf ,ϵ[||x− xθ(x

k, k,y∗
0,yf )||2]

+ Eyt,ut,yt+1
[||ut − fϕ(yt,yt+1)||2],

(2)

where yt,ut,yt+1 are sampled from the dataset. Note that
the data used to train the diffusion model can also be utilized
to train fϕ.

Cost Optimization via Gradient Guidance. After train-
ing both models, we optimize the cost function J through
inference-time gradient guidance. During the denoising pro-
cess, we modify the sampling procedure by incorporating
cost gradients:

µθ(x
k, k,y∗

0,yf ) =

√
ᾱk−1βk

1− ᾱk
x̂0 +

√
αk(1− ᾱk−1)

1− ᾱk
xk

− λΣk∇xkJ(x̂0(xk)),
(3)

where λ controls guidance strength, Σk is the noise scale
at step k, αk := 1 − βk and ᾱk :=

∏k
s=1 α

s. Since our
diffusion model operates on states only, we recover control
inputs using the inverse dynamics model fϕ at each step.
This approach enables optimization of arbitrary cost func-
tions without model retraining, while maintaining trajectory
feasibility through the learned diffusion process.

Target-conditioning as Inpainting. Modeling whether the
generated trajectory accurately satisfies the initial state of
y∗
0 and the desired target state of yf can also be regarded as

a constraint satisfaction of equations, that is, the generated
trajectory should contain the start and target. We adopt a
more direct method to solve this: we not only input it as an
additional condition to the diffusion denoising network but
also treat it as an inpainting problem similar to image gener-
ation. In brief, we substitute the corresponding location in
the sampled trajectories xk−1 ∼ pθ(x

k−1|xk,y∗
0,yf ) with

the given start and target y∗
0,yf after all diffusion timesteps,

analogously to observed pixels in image generation (Lug-
mayr et al., 2022).
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4.2. Dual Mode Decomposition (DMD) for Denoising
Module

In this section, we propose a design for the denoising net-
work that decomposes the modeling of linear and nonlinear
modes in the sampled trajectory by a dual-Unet architecture,
as shown in Figure 1.

Our design draws inspiration from control theory. For linear
systems, Yan et al. (2012) demonstrated that optimal control
signals have a linear relationship with a specific linear com-
bination yc of initial and target states. Building upon this
insight, we develop a framework where a bias-free linear
layer first learns this crucial linear combination yc from the
initial state y0 and target state yf . The first UNet then learns
coefficients that map yc to control signals, establishing first-
order terms, while the second UNet learns coefficients for
quadratic terms. These quadratic terms, introduced through
residual connections, refine the first-order approximation
and enhance the network’s capacity to model complex dy-
namics. Note that the nonlinear terms essentially come from
the nonlinearity of the dynamics.

The implementation includes several key components. The
network accepts as input: (1) noisy trajectory xk with dimen-
sion (N ) corresponding to the network’s channel dimension;
(2) initial state y0 and target state yf , which generate yc

through a bias-less linear layer; and (3) diffusion timesteps
k, encoded via sinusoidal embedding (Ho et al., 2020) as
kemb. The first UNet generates first-order coefficients to
compute an initial prediction using yc. Subsequently, the
second UNet combines these features to generate quadratic
coefficients, producing correction terms through quadratic
operations with yc. The final output x̂0 combines these
components to predict the denoised trajectory.

The architecture decomposes system dynamics into linear
and nonlinear components, effectively handling complex
features in nonlinear control systems while maintaining
numerical stability during training. The first-order and
quadratic terms based on yc incorporate fundamental con-
trol principles into the network structure, providing effective
constraints for the learning process. This structured induc-
tive bias significantly improves the model’s data efficiency,
enabling reliable control strategy learning from limited train-
ing samples.

The network performs sequential transformations on the
input signals. Let B denote batch size, T sequence length,
C1 and C2 feature dimensions, and N the dimension of yc.
The input noisy trajectory xk ∈ RB×T×N and yc ∈ RB×C1

are processed through two UNets to generate first-order and
quadratic predictions:

C1 = UNet1(xk,kemb), (4)

O1 = reshape(C1) · yc, (5)

C2 = UNet2([xk,C1],kemb), (6)

O2 = yT
c · reshape(C2) · yc, (7)

x̂0 = O1 +O2, (8)

where C1 produces first-order coefficients
∈ RB×T×(N×C1), O1 computes linear predictions
∈ RB×T×N , C2 generates quadratic coefficients
∈ RB×T×(C1×N×C1), and both O2 and the final output x̂0

are ∈ RB×T×N . We illustrate the structural framework of
the denoising network in Figure 1.

4.3. Guided Self-finetuning (GSF)

Randomly generated training data cannot guarantee cover-
age of optimal scenarios. To generate near-optimal controls
that may deviate significantly from the training distribu-
tion. To address this limitation, we propose leveraging
the model’s initially generated data (under the guidance of
cost function), which naturally deviates from the training
distribution toward optimality, for iterative retraining to sys-
tematically expand the exploration space. This approach
maintains physical consistency by ensuring generated sam-
ples adhere to the underlying system dynamics.

Our methodology involves extracting control sequences
from the generated samples (i.e., the output of inverse dy-
namics u0

update) and reintroduces it into the system to in-
teract and generate corresponding state sequences y0

update.
Together we add the renewed [u0

update,y
0
update] to the re-

train data pool used for a new round of fine-tuning, no-
tably without requiring explicit system parameter identifi-
cation. We iterate this process over multiple rounds spec-
ified by a hyperparameter, systematically expanding the
model’s exploration space to progressively approach op-
timal control policy. Denote the sampling process under
cost J’s guidance and the following interacting process as
[u0

update,y
0
update] = S(xK ,y∗

0,yf , J,Φ). The process can be
formulated as:

[u0
update,y

0
update] = S(xK ,y∗

0 ,yf )∼D(xK ,y∗
0,yf , J,Φ), (9)

D = [D, [u0
update,y

0
update]], (10)

where D is the training set.

We provide the algorithm form of SEDC in Appendix 1.

5. Experiments
Experiment settings. We conducted experiments on three
nonlinear systems, following the instructions in the pre-
vious works for data synthesis. These systems include:
the 1-D Burgers dynamics (Hwang et al., 2022; Wei et al.,
2024), which serves as a fundamental model for studying
nonlinear wave propagation and turbulent fluid flow; the

5
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Figure 2. Comparison of target loss and energy cost J across different datasets. The closer the data point is to the bottom left, the better
the performance.
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Figure 3. Sample-efficiency comparison on Burgers, Kuramoto and Inverse Pendulum dynamics.

Kuramoto dynamics (Acebrón et al., 2005; Baggio et al.,
2021; Gupta et al., 2022), which is essential for under-
standing synchronization phenomena in complex networks
and coupled oscillator systems; and the inverted pendulum
dynamics (Boubaker, 2013), which represents a classical
benchmark problem in nonlinear control theory and robotic
systems. For each system, we generated control/state tra-
jectory data using the finite difference method and selected
50 trajectories as the test set. Detailed descriptions of the
system dynamics equations and data synthesis procedures
are provided in the appendix.

We evaluate two metrics which is crucial in complex sys-
tem control: Target Loss, the mean-squared-error (MSE)
of yT and desired target yf , i.e. 1

N ∥yT − yf∥2. (Note
that yT is obtained by simulating the real system using the
control inputs generated by each method, along with the
given initial state conditions, rather than extracted from the
sample trajectories of the diffusion-based methods); Energy
J =

∫ T

0
|u(t′)|2dt′, which measures the cumulative control

effort required to achieve the target state. Lower values of
both metrics indicate better performance.

Baselines. We select the following state-of-the-art(SOTA)
baseline methods for comparison. For traditional control
approaches, we employ the classical PID (Proportional-
Integral-Derivative) controller (Li et al., 2006), which re-
mains widely used in industrial applications. For super-
vised learning ,we employ Behavioral Cloning (BC) (Pomer-
leau, 1988), an established imitation learning approach. In

terms of reinforcement learning methods, we incorporate
BPPO (Zhuang et al., 2023), a state-of-the-art algorithm. For
diffusion-based methods, we include several recent promi-
nent approaches: DecisionDiffuser (DecisionDiff) (Ajay
et al., 2022), which is a SOTA classifier-free diffusion-
based planner; AdaptDiffuser (Liang et al., 2023), which
enhances DecisionDiffuser with a self-evolving mechanism;
RDM (Zhou et al., 2024), which adaptively determines the
timing of complete control sequence sampling; and DiffPhy-
Con (Wei et al., 2024), which is specifically designed for
controlling complex physical systems. Detailed descriptions
of the baselines are included in Appendix D.

5.1. Overall Control Performance

Results. In Figure 2, we compare different methods’
performance across three dynamical systems using two-
dimensional coordinate plots, where proximity to the lower-
left corner indicates better trade-offs between control accu-
racy and energy efficiency. Since unstable control can lead
to system failure regardless of energy efficiency, we prior-
itize control accuracy and report metrics at each method’s
minimum Target Loss. Our method achieves the closest po-
sition to the lower-left corner in three datasets, demonstrat-
ing best balance between accuracy and efficiency despite
varying system characteristics. We achieve the best Target
Loss across all systems, outperforming the best baselines
by 39.5%, 49.4%, and 47.3% in Burgers, Kuramoto, and
IP systems respectively. This superior performance reflects
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our method’s enhanced dynamics learning capability under
identical sampling conditions. For energy efficiency, our
method leads in Kuramoto and IP systems while remain-
ing competitive in Burgers, trailing AdaptDiffuser by only
1.3%.

Regarding method types, traditional PID control shows the
poorest performance, as system complexity exacerbates the
difficulties in PID control and tuning. RL-based methods
are competitive against some diffusion- but sacrifice Target
Loss performance and underperform compared to Diffusion-
based methods in other systems. Diffusion-based methods
demonstrate superior overall performance, as they better
capture long-term dependencies in system dynamics com-
pared to traditional and RL methods, avoiding myopic fail-
ure modes and facilitating global optimization of long-term
dynamics.

Due to the space limits, we present detailed numeric results
in Appendix E. Moreover, we visualize the control dynamics
of SEDC and SOTA baselines in Appendix G.

5.2. Sample Efficiency

Experiment settings. To evaluate the sample efficiency of
diffusion-based methods, we conducted experiments on all
the systems using varying proportions of the full training
dataset. Specifically, we trained models using 1%, 5%, 10%,
20%, and 100% of the available data and assessed their
performance using the Target Loss metric on a held-out test
set.

Results. Figure 3 demonstrates our method’s superior per-
formance in controlling Burgers and Kuramoto systems
compared to state-of-the-art baselines. In all systems, our ap-
proach achieves significantly lower target loss values across
all training data percentages. Most notably, with only 10%
of the training data, our method attains a target loss of
1.71e-4 for Burgers, 1.12e-5 for Kuramoto, and 6.35e-4 for
Inverse Pendulum, matching(-5.5% in Burgers) or exceed-
ing(+36.4% in Kuramoto abd +1.2% in Inverse Pendulum)
the performance of best baseline methods trained on the
complete dataset. This indicates our method can achieve
state-of-the-art performance while requiring only 10% of
the training samples.

5.3. Ablation Study

Overall ablation study. We explore the main performance
against each ablation of the original SEDC. Specifically, w/o
DSD removes the inverse dynamics, unifying the diffusion
of system state and control input, i.e. x = [u,y]. Therefore,
the diffusion model is required to simultaneously capture the
temporal information and implicit dynamics of the control
and system trajectory. Note that the inpainting mechanism
and gradient guidance are retained. w/o DMD removes the

Table 1. Performance comparison of different ablations across mul-
tiple datasets. Target loss results with 10% and 100% training
sample for each method are reported. The best, second-best and
worst results of each row are highlighted in bold, underlined and
italics, respectively.
System Ratio Ours Ours/DSD Ours/DMD Ours/GSF

Burgers 10% 1.74e-4 1.00e-3 3.78e-4 6.67e-4
100% 9.80e-5 8.71e-4 2.28e-4 2.62e-4

Kuramoto 10% 1.12e-5 4.15e-3 5.21e-5 4.77e-5
100% 8.90e-6 5.43e-3 1.76e-5 3.88e-5

IP 10% 6.21e-4 1.58e-3 1.10e-3 2.00e-3
100% 3.49e-4 1.37e-3 6.64e-4 7.85e-4

Table 2. SEDC and w/o DSD Target Loss comparison across dif-
ferent state dimensions in Kuramoto. The Dec. indicates the
reduction in target loss achieved by SEDC compared to w/o DSD.
Notably, the magnitude of loss reduction increases proportionally
with network dimensionality, demonstrating that DSD’s perfor-
mance enhancement scales positively with dimensional growth.
N 4 5 6 7 8

SEDC (e-6) 3.45 2.89 5.67 4.12 8.90
w/o DSD (e-4) 3.98 3.23 16.78 12.45 54.32
Dec.(%) 99.13 99.11 99.66 99.67 99.84

decomposition design, resulting in a single 1-D Unet struc-
ture as the denoising network, following DecisionDiff (Ajay
et al., 2022). Finally, w/o GSF reports the performance with-
out iterative self-finetuning, which means the model only
uses the original dataset to train itself. To show the sample-
efficiency performance, we also investigate the results under
less amount of training sample(10%). For w/o DMD and
w/o DSD, we adjust the number of trainable parameters at a
comparable level against the original version.

Table 1 shows the Target Loss performance of different abla-
tions of SEDC across multiple datasets and different training
sample ratios. As can be seen, removing any component
leads to a certain decrease in performance, whether the train-
ing data is limited or not, demonstrating the effectiveness
of each design. The most significant performance drops are
often observed in w/o DSD, highlighting the importance of
explicit learning of dynamics in complex systems. w/o DMD
exhibits the lowest decline across the three systems. This is
because the single-Unet-structured denoising network can
already capture the nonlinearity to some extent, but not as
good as the proposed decomposition approach. with 10% of
training data, removing individual components still led to
noticeable performance degradation, and the patterns con-
sistent with the full dataset results. This demonstrates that
our designs remain effective in low-data scenarios.

Effectiveness of DSD. To evaluate DSD’s effectiveness
against the curse of dimensionality, we compared the per-
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Figure 4. Comparison of State Trajectory Consistency between
SEDC and w/o DSD Models. The heatmaps show induced states
(left), sampled states (middle), and their absolute differences (right)
for both SEDC (top) and w/o DSD (bottom) approaches under
identical start-target conditions.

Table 3. Performance degradation using different denoiser output
with varying nonlinearity strength γ in the Kuramoto system. The
Dec. indicates the reduction in target loss achieved by nonlinear
output O1 + O2 compared to linear output O1. Notably, the
magnitude of loss reduction increases proportionally with the non-
linearity strength γ, indicating that the quadratic term exhibits
enhanced capability in capturing nonlinear dynamics as the sys-
tem’s nonlinearity intensifies.

γ 1 2 4

O1 +O2 8.90e-6 2.78e-5 3.89e-5
O1 1.42e-5 4.73e-5 8.52e-5

Dec. (%) 37.3 41.2 54.3

formance of original and w/o DSD models across Kuramoto
systems with dimensions ranging from N = 4 to N = 8.
Experimental results (Table 2) show that performance degra-
dation (Dec.) from w/o DSD increases with system dimen-
sionality, demonstrating DSD’s enhanced effectiveness in
higher-dimensional systems and validating its capability to
address dimensionality challenges.

To investigate the effectiveness of dynamical learning, we
compared the consistency between action sequences and
diffusion-sampled state trajectories in models with and with-
out DSD. While both approaches can sample state trajecto-
ries from diffusion samples, they differ in action generation:
SEDC uses inverse dynamics prediction, whereas w/o DSD
obtains actions directly from diffusion samples by simul-
taneously diffusing states and control inputs. We test both
models using identical start-target conditions and visualize
the state induced from the generated actions and the state
sampled from the diffusion model, along with the differ-
ence (error) between the above two states in Figure 4. We
can observe that SEDC’s action-induced state trajectories
showed significantly higher consistency with sampled tra-
jectories compared to w/o DSD, demonstrating that DSD
using inverse dynamics achieves more accurate learning of
control-state dynamical relationships.

Effectiveness of DMD. To investigate the contribution of
DMD’s dual-Unet architecture to nonlinearity learning, we

conducted experiments on the Kuramoto system with vary-
ing degrees of nonlinearity (controlled by the coefficient
γ ∈ {1, 2, 4} of the nonlinear sinusoidal term, where larger
values indicate stronger nonlinearity). We compared the
performance between using only the linear intermediate out-
put (x̂0 = O1) of the denoising network and the original
nonlinear output (x̂0 = O1 +O2) in terms of Target Loss.
As shown in Table 3, the performance degradation (Dec.)
from using only O1 becomes more pronounced as nonlin-
earity increases. This demonstrates both the significance
of the nonlinear branch O2 in capturing strong nonlinear
dynamics and the effectiveness of decoupling linear and
nonlinear modes in handling system nonlinearity.

Effectiveness of GSF. To validate GSF’s effectiveness in
guiding the model toward learning the optimal (energy-
efficient) target distribution, we conduct ablation studies
on fine-tuning rounds and evaluate control signal energy on
the test set. Results show decreasing energy metrics over
rounds, confirming our approach’s convergence behavior
toward near-optimal control strategies. Due to space limits,
results and detailed discussion are provided in Appendix F.

6. Conclusion
In this paper, we presented SEDC, a novel sample-efficient
diffusion-based framework for complex nonlinear system
control. By addressing fundamental challenges in data-
driven control through three key innovations - Decoupled
State Diffusion (DSD), Dual-Mode Decomposition (DMD),
and Guided Self-finetuning (GSF) - SEDC achieves superior
control performance while significantly reducing sample re-
quirements. Our comprehensive experiments across three
nonlinear systems demonstrate that SEDC outperforms ex-
isting methods by 39.5%-49.4% in control accuracy while
maintaining computational efficiency. Most notably, SEDC
achieves state-of-the-art performance using only 10% of
the training samples required by baseline methods, mark-
ing a significant advancement in sample-efficient control
of complex systems. These results validate our approach’s
effectiveness in addressing the curse of dimensionality, han-
dling strong nonlinearities, and bridging the gap between
non-optimal training data and optimal control solutions. As
complex system control continues to evolve across various
domains, SEDC’s sample-efficient framework provides a
promising direction for future research and practical appli-
cations in data-driven control.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Algorithm form of SEDC

Algorithm 1 SEDC: Training and finetuning
Input: Initial dataset D0, diffusion steps K, guidance strength λ, self-finetuning rounds R, forward dynamics fforward
Output: Optimized trajectory y0

0:T , controls u0
0:T

Function Initial Training(D0)
while not converged do

Sample batch (y0:T ,u0:T ) ∼ D0

Sample k ∼ U{1, ...,K}, ϵ ∼ N (0, I)

Corrupt states: yk =
√
ᾱky +

√
1− ᾱkϵ

Predict clean states: ŷ0 = Gθ(yk, k,y∗
0,yf )

Predict controls: ût = fϕ(ŷ
0
t , ŷ

0
t+1)

Compute losses: Ldiff = ∥y − ŷ0∥2
Linv = ∥ut − ût∥2
Update θ, ϕ with∇(Ldiff + Linv)

for r = 1 to R do
Guided Data Generation:

Initialize yK ∼ N (0, I), sample (y∗
0,yf ) ∼ Dr−1

for k = K downto 1 do
Predict ŷ0 = Gθ(yk, k,y∗

0,yf )
Compute gradient: g = ∇ykJ(ŷ0)

Adjust mean: µθ = µ(base)
θ − λΣkg

Sample yk−1 ∼ N (µθ,Σ
kI)

Enforce constraints: yk−1[0]← y∗
0 , yk−1[T ]← yf

Recover controls: u0
t = fϕ(y

0
t ,y

0
t+1)

System Interaction:
Generate y0

update = fforward(u
0
0:T ,y

∗
0)

Augment dataset: Dr = Dr−1 ∪ {(y0
update,u

0
0:T )}

Adaptive Fine-tuning:
while validation loss decreases do

Sample batch from Dr

Perform training steps as in Initial Training

return Optimized θ, ϕ
(Test process follows guided data generation with test conditions (y∗

0,yf ) provided.)

B. Detailed System and Dataset Description
B.1. Burgers Dynamics

The Burgers’ equation is a governing law occurring in various physical systems. We consider the 1D Burgers’ equation with
the Dirichlet boundary condition and external control input u(t, x):


∂y
∂t = −y · ∂y∂x + ν ∂2y

∂x2 + u(t, x) in [0, T ]× Ω

y(t, x) = 0 on [0, T ]× ∂Ω

y(0, x) = y0(x) in {t = 0} × Ω

Here ν is the viscosity parameter, and y0(x) is the initial condition. Subject to these equations, given a target state yd(x),
the objective of control is to minimize the control error Jactual between yT and yd, while constraining the energy cost Jenergy
of the control sequence u(t, x).

We follow instructions in (Wei et al., 2024) to generate a 1D Burgers’ equation dataset. Specifically, for numerical simulation,

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Sample-efficient diffusion-based control of complex nonlinear systems

we discretized the spatial domain [0,1] and temporal domain [0,1] using the finite difference method (FDM). The spatial
grid consisted of 128 points, while the temporal domain was divided into 10000 timesteps. We initiated the system with
randomly sampled initial conditions and control inputs drawn from specified probability distributions. This setup allowed us
to generate 90000 trajectories for training and 50 trajectories for testing purposes.

B.2. Kuramoto Dynamics

The Kuramoto model is a paradigmatic system for studying synchronization phenomena. We considered a ring network of
N = 8 Kuramoto oscillators. The dynamics of the phases (states) of oscillators are expressed by:

θ̇i,t = ω + γ(sin(θi−1,t−1 − θi,t−1) + sin(θi+1,t−1 − θi,t−1)) + ui,t−1, i = 1, 2, ..., N. (11)

For the Kuramoto model, we generated 20,000 samples for training and 50 samples for testing. The initial phases were
sampled from a Gaussian distribution N (0, I), and the random intervention control signals were sampled from N (0, 2I).
The system was simulated for T = 16 time steps with ω = 0, following Baggio et al. (2021). The resulting phase
observations and control signals were used as the training and test datasets.

B.3. Inverted Pendulum Dynamics

The inverted pendulum is a classic nonlinear control system. The dynamics can be represented by:

d2θ

dt2
=

g

L
sin(θ)− µ

L

dθ

dt
+

1

mL2
u

where θ is the angle from the upward position, and u is the control input torque. The system parameters are set as: gravity
g = 9.81 m/s², pendulum length L = 1.0 m, mass m = 1.0 kg, and friction coefficient µ = 0.1.

To generate the training dataset, we simulate 90,000 trajectories for training and 50 for testing with 128 time steps each,
using a time step of 0.01s. For each trajectory, we randomly sample initial states near the unstable equilibrium point with
θ0 ∼ U(−1, 1) and θ̇0 ∼ U(−1, 1), and generate control inputs from u ∼ U(−0.5, 0.5). The resulting dataset contains the
state trajectories and their corresponding control sequences.

C. Implementation Details
C.1. Implementation of SEDC

In this section, we describe various architectural and hyperparameter details:

• The temporal U-Net (1D-Unet) (Janner et al., 2022) in the denoising network consists of a U-Net structure with 4
repeated residual blocks. Each block comprises two temporal convolutions, followed by group normalization, and a
final Mish nonlinearity. The channel dimensions of the downsample layers are 1, 2, 4 ∗ statedimension. Timestep
embedding is produced by a Sinusoidal Positional Encoder, following a 2-layer MLP, and the dimension of this
embedding is 32. The dimension of condition embedding is the same as the system state dimension.

• We represent the inverse dynamics fϕ with an autoregressive model with 64 hidden units and ReLU activations. The
model autoregressively generates control outputs along the control dimensions.

• We train xθ and fϕ using the Adam optimizer with learning rates from {1e-3, 5e-3, 1e-4}. The exact choice varies by
task. Moreover, we also use a learning rate scheduler with step factor=0.1. Training batch size is 32.

• We use K = 128 diffusion steps.

• We use a guidance scale λ ∈ {0.01, 0.001, 0.1} but the exact choice varies by task.

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Sample-efficient diffusion-based control of complex nonlinear systems

Table 4. Approximate Training Time Comparison of Different Models on Various Datasets (in hours)

Dataset/System DecisionDiffuser RDM DiffPhyCon AdaptDiffuser SEDC

Burgers 2.5 2.5 3.0 2.5 2.5
Kuramoto 1.5 1.5 1.5 1.0 1.0
IP 1.0 1.0 1.5 1.0 0.5
Swing 1.5 1.5 2.0 1.5 1.0

Table 5. Approximate Inference Time Comparison of Different Models on Various Datasets (in seconds)

Dataset/System DecisionDiffuser RDM DiffPhyCon AdaptDiffuser SEDC

Burgers 3.0 4.0 6.0 4.0 4.0
Kuramoto 1.0 1.5 2.0 1.5 1.5
IP 0.5 1.0 1.0 0.5 0.5
Swing 1.5 2.0 2.5 1.5 1.5

C.2. Training and Inference Time Analysis

The diffusion-based methods are trained on single NVIDIA GeForce RTX 4090 GPU. We evaluate the training and inference
time of all the diffusion-based methods evaluated in the experiment session. As shown in Table 4, we compare the training
efficiency of different models across various datasets. DiffPhyCon consistently shows longer training times compared to
other methods, because it requires training two models that learn the joint distribution and the prior distribution respectively,
increasing its training time consumption. The training times of DecisionDiffuser, RDM, and AdaptDiffuser are generally
comparable, while SEDC demonstrates relatively efficient training performance across most datasets. This may be because
of the proposed designs that not only improve sample efficiency but also improve learning efficiency.

The inference time comparison in Table 5 reveals that DiffPhyCon requires longer execution time compared to other models,
because it needs to sample from two learned distributions in the denoising process. RDM achieves relatively slower inference
speeds than DecisionDiffuser, AdaptDiffuser, and SEDC, because RDM replans during inference, increasing planning
time. Notably, all models exhibit shorter training and inference times on the IP dataset, suggesting the influence of system
complexity on computational efficiency.

D. Baselines Description
D.1. PID

PID (Proportional-Integral-Derivative) control is a classical feedback control methodology that has been widely adopted
in industrial applications. The control signal is generated by computing the weighted sum of proportional, integral, and
derivative terms of the error. The control law can be expressed as:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
d

dt
e(t)

While PID controllers exhibit robust performance and require minimal system modeling, their effectiveness may be
compromised when dealing with highly nonlinear or time-varying systems, necessitating frequent parameter tuning.

D.2. BC, BPPO

Behavior Cloning (BC) represents a supervised imitation learning paradigm that aims to learn a direct mapping from states
to actions by minimizing the deviation between predicted actions and expert demonstrations. Despite its implementation
simplicity and sample efficiency, BC suffers from distributional shift, where performance degradation occurs when
encountering states outside the training distribution. The objective function can be formulated as:
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LBC(θ) = E(s,a)∼D[− log πθ(a|s)]

where D denotes the expert demonstration dataset.

Behavior-guided PPO (BPPO) presents a hybrid approach that integrates behavior cloning with Proximal Policy Optimization.
By incorporating a behavioral cloning loss term into the PPO objective, BPPO facilitates more efficient policy learning
while maintaining the exploration capabilities inherent to PPO. The composite objective function is defined as:

LBPPO(θ) = LPPO(θ) + αLBC(θ)

where α serves as a balancing coefficient between the PPO and BC objectives.

Each method exhibits distinct characteristics: BC demonstrates effectiveness when abundant high-quality expert demonstra-
tions are available. BPPO leverages the synergy between expert knowledge and reinforcement learning for complex control
scenarios.

D.3. Diffusion-based methods

• DecisionDiffuser:
A novel approach that reformulates sequential decision-making as a conditional generative modeling problem rather
than a reinforcement learning task. The core methodology involves modeling policies as return-conditional diffusion
models, enabling direct learning from offline data without dynamic programming. The model can be conditioned on
various factors including constraints and skills during training.

• DiffPhyCon:
A diffusion-based method for controlling physical systems that operates by jointly optimizing a learned generative
energy function and predefined control objectives across entire trajectories. The approach incorporates a prior
reweighting mechanism to enable exploration beyond the training distribution, allowing the discovery of diverse control
sequences while respecting system dynamics.

• AdaptDiffuser:
An evolutionary planning framework that enhances diffusion models through self-evolution. The method generates
synthetic expert data using reward gradient guidance for goal-conditioned tasks, and employs a discriminator-based
selection mechanism to identify high-quality data for model fine-tuning. This approach enables adaptation to both seen
and unseen tasks through continuous model improvement.

• RDM:
A replanning framework for diffusion-based planning systems that determines replanning timing based on the diffusion
model’s likelihood estimates of existing plans. The method introduces a mechanism to replan existing trajectories
while maintaining consistency with original goal states, enabling efficient bootstrapping from previously generated
plans while adapting to dynamic environments.

E. Numeric Results of Figure 2
We leverage 2-D plots in the main paper to better illustrate the performance comparison of all the methods. Here we provide
the provides the corresponding numerical results in detail in Table 6.

F. Results and Discussion of the ablation study on GSF
To validate GSF’s effectiveness in guiding the model toward learning the optimal (energy- efficient) target distribution, we
conduct ablation studies on fine-tuning rounds and test control signal energy on the test set. The result is provided in Table 7.
Before finetuning, energy performance is the poorest because of the non-optimality of the initial training samples, and
the first round of GSF greatly supplemented the training toward optimality, as the energy of the produced control inputs
decreases at an average of 38.4%. The increases observed in the second round persist but are significantly lower than those
in the first round. This may be because the first round of GSF has already captured the most significant deviations toward
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Table 6. Performance comparison of different models across three datasets. Lower values indicate better performance for both metrics.
Best and second-best results of each row are highlighted in bold and underlined respectively.

Model Burgers Kuramoto IP

Target Loss J(Energy) Target Loss J(Energy) Target Loss J(Energy)

PID 1.30e-1 6.56 7.99e-1 30.35 8.64e-3 2.28e-1
BPPO 5.90e-4 9.72 1.56e-4 26.64 3.63e-3 4.16e-3
BC 4.78e-4 10.73 1.52e-4 27.59 3.63e-3 4.20e-3
DecisionDiffuser 2.46e-4 5.18 3.88e-5 27.48 6.65e-4 9.00e-4
RDM 2.70e-4 7.01 4.60e-4 29.03 7.85e-4 3.38e-3
DiffPhyCon 1.62e-4 5.15 4.80e-4 18.72 6.63e-4 1.99e-3
AdaptDiffuser 2.28e-4 4.645 1.76e-5 26.23 8.64e-4 5.49e-3
Ours 9.80e-5 5.01 8.90e-6 14.90 3.49e-4 8.90e-4

Table 7. Energy consumption reduction across different dynamical systems after each round of GSF. The “Before” column shows energy
performance of the trained model before finetuning. For each round, “∆%” represents the percentage reduction compared to its previous
stage. Lower energy values indicate better system performance. All systems demonstrate significant initial improvements (1st round)
followed by smaller incremental gains (2nd round).

System Before 1st round 2nd round

Value ∆% Value ∆%

Burgers 8.39 5.23 37.7% 5.01 4.2%
Kuramoto 17.48 15.20 13.0% 14.90 2.0%
Swing 0.27 0.24 13.4% 0.23 2.4%
IP 9.00e-3 9.50e-4 89.4% 8.90e-4 6.3%

Average ∆% – – 38.4% – 3.7%

optimality, while subsequent rounds primarily refine these improvements with diminishing returns. The slowing rate of
improvement suggests the model is approaching a convergence point in its exploration of the optimal control space. Overall,
the above result demonstrates the effectiveness of GSF in enabling exploration beyond initial training data and facilitating
convergence toward optimal control strategies.

G. Visualization
We present some visualization results of our method and best-performing baselines under three systems. The goal is to make
the end state (T=10 for Burgers and T=15 for Kuramoto) close to the target state. As can be seen, SEDC’s final state always
coincides with the target state. In contrast, the baselines showed inferior results, as some mismatch with the target state can
be observed.
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((a)) Burgers ((b)) Kuramoto ((c)) Inverse Pendulum

Figure 5. Comparison of different methods on Burgers, Kuramoto and Inverse Pendulum systems
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