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Abstract

Mean-Field Control (MFC) is a powerful tool
to solve Multi-Agent Reinforcement Learning
(MARL) problems. Recent studies have shown that
MFC can well-approximate MARL when the popu-
lation size is large and the agents are exchangeable.
Unfortunately, the presumption of exchangeability
implies that all agents uniformly interact with one
another which is not true in many practical sce-
narios. In this article, we relax the assumption of
exchangeability and model the interaction between
agents via an arbitrary doubly stochastic matrix.
As a result, in our framework, the mean-field ‘seen’
by different agents are different. We prove that, if
the reward of each agent is an affine function of
the mean-field seen by that agent, then one can
approximate such a non-uniform MARL problem
via its associated MFC problem within an error of
e = O( 1√

N
[
√
|X |+

√
|U|]) where N is the pop-

ulation size and |X |, |U| are the sizes of state and
action spaces respectively. Finally, we develop a
Natural Policy Gradient (NPG) algorithm that can
provide a solution to the non-uniform MARL with
an error O(max{e, ε}) and a sample complexity
of O(ε−3) for any ε > 0.

1 INTRODUCTION

Multi-Agent Systems (MAS) are ubiquitous in the mod-
ern world. Many engineered systems such as transportation
networks, power distribution and wireless communication
systems can be modeled as MAS. Modeling, analysis and
control of such systems to improve the overall performance
is a central goal of research across multiple disciplines.
Multi-Agent Reinforcement Learning (MARL) is a popular
approach to achieve that target. In this article, we primarily
focus on cooperative MARL where the goal is to determine

policies for each individual agent such that the aggregate
cumulative reward of the entire population is maximized.
However, the sizes of joint state, and action spaces of the
population grows exponentially with the number of agents.
This makes the computation of the solution prohibitively
hard for large MAS.

Two major computationally efficient approaches have been
developed to tackle this problem. The first approach restricts
its attention to local policies. In other words, it is assumed
that each individual agent makes its decision solely based
on its local state/observation. Algorithms that fall into this
category are independent Q-learning (IQL) [Tan, 1993], cen-
tralised training and decentralised execution (CTDE) based
algorithms such as VDN [Sunehag et al., 2017], QMIX
[Rashid et al., 2018], WQMIX [Rashid et al., 2020], etc. Un-
fortunately, none of these algorithms can provide theoretical
convergence guarantees. The other approach is called mean-
field control (MFC) [Angiuli et al., 2022]. It is grounded
on the idea that in an infinite population of homogeneous
agents, it is sufficient to study the behaviour of only one
representative agent in order to draw accurate conclusions
about the whole population. Recent studies have shown that,
if the agents are exchangeable, then MFC can be proven to
be a good approximation of MARL [Gu et al., 2021].

Unfortunately, the idea of exchangeability essentially states
that all agents in a population uniformly interact with each
other (uniform means that all pairwise interactions are the
same). This is not true in many practical scenarios. For ex-
ample, in a traffic control network, the congestion at an inter-
section is highly influenced by the control policies adopted
at its immediate neighbouring intersections. Moreover, the
influence of an intersection on another intersection rapidly
diminishes with increase of their separation distance. Non-
uniform interaction is a hallmark characteristic of many
other MASs such as social networks, wireless networks etc.
In the absence of uniformity of the interaction between the
agents, the framework of MFC no longer applies, and the
problem becomes challenging. In this paper, we come up a
new result which assures that even with non-uniform interac-
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tions, MFC is a good choice for approximating MARL if the
reward of each agent is an affine function of the mean-field
distributions ‘seen’ by that agent. We note that the behaviour
of agents in multitude of social and economic networks can
be modeled via affine rewards (refer the examples given in
[Chen et al., 2021]), and thus for many cases of practical
interest, MFC can approximate MARL with non-uniform
interactions.

1.1 CONTRIBUTIONS

We consider a non-uniform MARL setup where the pairwise
interaction between the agents is described by an arbitrary
doubly stochastic matrix (DSM). As a result of non-uniform
interaction, the so-called mean-field effect of the population
on an agent is determined by the identity of the agent. This
is in stark contrast with other existing works [Gu et al., 2021,
Mondal et al., 2022] where the presumption of exchange-
ability washes away the dependence on identity. We demon-
strate that, if the reward of each agent is an affine function
of the mean-field distribution ‘seen’ by that agent, then the
standard MFC approach can approximate the non-uniform
MARL with an error bound of e , O( 1√

N
[
√
|X |+

√
|U|]),

where N is the number of agents and |X |, |U| indicate the
sizes of state and action spaces of individual agent.

We would like to emphasize the importance of this result.
MFC is traditionally seen as an approximation method of
MARL when the agents are exchangeable and hence their
interactions are uniform. Uniformity allows us to solve MFC
problems by tracking only one representative agent. In this
paper, we show that, under certain conditions, a non-uniform
MARL can also be approximated by the MFC approach.
Thus, although the non-uniform interaction is a major part
of the original MARL problem, the assumed affine structure
of the reward function allows us to evade non-uniformity
while obtaining an approximate solution. The key result is
established in Lemma B.7 (Appendix B.2) where, using the
affine structure of the reward function, we show that the in-
stantaneous reward generated from non-uniform MARL can
be closely approximated by MFC-generated instantaneous
reward.

Finally, using the results of [Liu et al., 2020], in section 5,
we design a natural policy-gradient based algorithm that
can solve MFC within an error of O(ε) for any ε > 0, with
a sample complexity of O(ε−3). Invoking our approxima-
tion result, we prove that the devised algorithm can yield a
solution that is O(max{e, ε}) error away from the optimal
MARL solution, with a sample complexity of O(ε−3) for
any ε > 0.

1.2 RELATED WORKS

Single Agent RL: The classical algorithms in single agent

learning include tabular Q-learning Watkins and Dayan
[1992], SARSA Rummery and Niranjan [1994], etc. Al-
though they provide theoretical guarantees, these algorithms
can only be applied to small state-action space based sys-
tems due to their large memory requirements. Recently Neu-
ral Network (NN) based Q-iteration Mnih et al. [2015], and
policy gradient Mnih et al. [2016] algorithms have becomes
popular due to the large expressive power of NN. However,
they cannot be applied to large MAS due to the exponential
blow-up of joint state-space.

MFC as an Approximation to Uniform MARL: Recently,
MFC is gaining traction as a scalable approximate solution
to uniform MARL. On the theory side, recently it has been
proven that MFC can approximate uniform MARL within
an error of O(1/

√
N) [Gu et al., 2021]. However, the result

relies on the assumption that all agents are homogeneous.
Later, this approximation result was extended to heteroge-
neous agents [Mondal et al., 2022]. We would like to clarify
that the idea of heterogeneity is different from the idea of
non-uniformity. In the first case, the agents are divided into
multiple classes. However, the identities of different agents
within a given class are irrelevant. In contrast, non-uniform
interaction takes the identity of each agent into account.

Graphon Approximation: One possible approach to con-
sider non-uniform agent interaction is the notion of Graphon
mean-field, which is recently gaining popularity in the non-
cooperative MARL setup [Caines and Huang, 2019, Cui
and Koeppl, 2021]. The main idea is to approximate the
finite indices of the agents as a continuum of real numbers
and the discrete interaction graph between agents as a con-
tinuous, symmetric, measurable function, called graphon, in
the asymptotic limit of infinite population. The unfortunate
consequence of this approximation is that one is left to deal
with an infinite dimensional mean-field distribution. In order
to obtain practical solution from graphon-approximation,
one must therefore discretise the continuum of agent indices
[Cui and Koeppl, 2021], which limits the use of this approx-
imation. Our paper establishes that for affine reward func-
tions, we do not need to go to the complexity of Graphon
approximation.

Applications of MFC: Alongside the theory, MFC has also
become popular as an application tool. It has been used in
ride-sharing [Al-Abbasi et al., 2019], epidemic management
[Watkins et al., 2016], congestion control in road network
[Wang et al., 2020] etc.

Learning Algorithms for MFC: Both model-free [Angiuli
et al., 2022, Gu et al., 2021] and model-based [Pasztor et al.,
2021] Q-learning algorithms have been proposed in the liter-
ature to solve uniform MARL via MFC with homogeneous
agents. Recently, [Mondal et al., 2022] proposed a policy-
gradient algorithm for heterogeneous-MFC.



2 COOPERATIVE MARL WITH
NON-UNIFORM INTERACTION

We consider a system comprising of N interacting agents.
The (finite) state and action spaces of each agent are denoted
as X , and U respectively. Time is assumed to belong to the
discrete set, T , {0, 1, 2, · · · }. The state and action of i-th
agent at time t are symbolized as xit and uit. The empirical
state and action distributions of the population of agents at
time t are denoted by µNt , and νNt respectively, and defined
as follows.

µNt (x) ,
1

N

N∑
i=1

δ(xit = x), ∀x ∈ X ,∀t ∈ T (1)

νNt (u) ,
1

N

N∑
i=1

δ(uit = u), ∀u ∈ U ,∀t ∈ T (2)

where δ(·) is the indicator function.

Each agent, i ∈ [N ] , {1, · · · , N} is endowed with a
reward function r and a state transition function P that are of
the following forms: r : X×U×P(X )×P(U)→ R and P :
X ×U×P(X )×P(U)→ P(X ) where P(·) is the set of all
Borel probability measures over its argument. In particular,
r, P take the followings as arguments: (a) the state, xit and
action, ait of the corresponding agent and (b) the weighted
state distribution µi,Nt and the weighted action distribution
νi,Nt of the population as seen from the perspective of the
agent. The terms µi,Nt and νi,Nt are defined as follows.

µi,Nt (x) ,
N∑
j=1

W (i, j)δ(xjt = x), ∀x ∈ X ,∀t ∈ T (3)

νi,Nt (u) ,
N∑
j=1

W (i, j)δ(ujt = u), ∀u ∈ U ,∀t ∈ T (4)

The function W : [N ]× [N ]→ [0, 1] dictates the influence
of one agent on another. In particular, W (i, j) specifies
how j-th agent influences i-th agent’s reward and transition
functions. Observe that, for µi,Nt , and νi,Nt to be probability
distributions, W must be right-stochastic i.e.,

N∑
j=1

W (i, j) = 1, ∀i ∈ {1, · · · , N} (5)

In summary, the reward received by the i-th agent at time
t can be expressed as r(xit, u

i
t,µ

i,N
t ,νi,Nt ). Moreover, the

state of the agent at time t+ 1 is decided by the following
probability law: xit+1 ∼ P (xit, u

i
t,µ

i,N
t ,νi,Nt ). We would

like to point out that, in contrast to our framework, existing
works assume reward and state transition to be functions
of µNt ,ν

N
t , thereby making the influence of population to

be identical for every agent [Mondal et al., 2022, Gu et al.,
2021]. If we take the influence functionW to be uniform i.e.,

W (i, j) = 1/N , ∀i, j ∈ [N ], then ∀i ∈ [N ], µi,Nt = µNt ,
and νi,Nt = νNt , which forces our framework to collapse
onto that described in the above mentioned papers.

At time t ∈ T, each agent is also presumed to have a policy
function πt : X × P(X )→ P(U) that maps (xit,µ

i,N
t ) to

a distribution over the action space, U . In simple words, a
policy function πt is a rule that (probabilistically) dictates
what action must be chosen by an agent given its current
state and the mean-distribution of the population as observed
by the agent. Note that the policy function is presumed to be
the same for all the agents as the reward function, r and the
transition function, P is taken to homogeneous across the
population. Homogeneity of r, P is a common assumption
in the mean-field literature [Gu et al., 2021, Vasal et al.,
2021].

For a given set of initial states x0 , {xi0}i∈N, the value of
the sequence of policies, π , {πt}t∈T, for the i-th agent is
defined as follows.

vi(x0,π) ,
∑
t∈T

γtE
[
r
(
xit, u

i
t,µ

i,N
t ,νi,Nt

)]
(6)

where µi,Nt ,νi,Nt are defined by (3), (4), respectively, and
the expectation is computed over all the state-action trajecto-
ries generated by the transition function P and the sequence
of policy functions, π. The term, γ ∈ [0, 1] is called the
time discount factor. We would like to emphasize that the
value function vi is dependent on the interaction matrix W
(because so are µi,Nt , and νi,Nt ). However, such dependence
is not explicitly shown to keep the notation uncluttered. The
average value function of the entire population is expressed
as below.

vMARL(x0,π) =
1

N

N∑
i=1

vi(x0,π) (7)

The goal of MARL is to maximize vMARL(x0, .) over all
policy sequences π. Such an optimization is hard to solve
in general, especially for large N .

Before concluding this section, we would like to point out
two important observations that will be extensively used in
many of our forthcoming results.

Remark 1. ∀t ∈ T, the random variables {uit}i∈[N ] are
conditionally independent given {xit}i∈[N ]. In other words,
given current states, each agent chooses its action indepen-
dent of each other.

Remark 2. ∀t ∈ T, the random variables {xit+1}i∈[N ] are
conditionally independent given {xit}i∈[N ], and {uit}i∈[N ].
In other words, given current states and actions, the next
state of each agent evolves independent of each other.



3 MEAN-FIELD CONTROL

MFC is an approximation method of N−agent MARL that
takes away many of the complexities of the later. The main
idea of MFC is to consider an infinite population of homoge-
neous agents, instead of a finite population as considered in
MARL. The advantage of such presumption is that it allows
us to draw accurate inferences about the whole population
by tracking only a single representative agent. Unfortunately,
as stated before, such approximation method is known to
work [Gu et al., 2021] when the interactions between differ-
ent agents are uniform, i.e., W (i, j) = 1/N , ∀i, j ∈ [N ]. In
this article, we shall show that, under certain conditions, we
can show MFC as an approximation of MARL, even with
non-uniform W . Below we describe the MFC method.

As explained above, in MFC, we only need to track a single
representative agent. Let the state and action of the agent at
time t be denoted as xt, and ut respectively. Also, let µt,
νt be the state, and action distributions of the infinite popu-
lation at time t. The reward and state transition laws of the
representative at time t are denoted as r(xt, ut,µt,νt) and
P (xt, ut,µt,νt), respectively. For a given policy sequence
π , {πt}t∈T, the action distribution νt can be expressed
as a deterministic function of the state distribution, µt as
follows.

νt = νMF(µt, πt) ,
∑
x∈X

πt(x,µt)µt(x) (8)

In a similar fashion, the state distribution at time t+ 1 can
be written as a deterministic function of µt as follows.

µt+1 = PMF(µt, πt)

,
∑
x∈X

∑
u∈U

P (x, u,µt, ν
MF(x,µt))

× πt(x,µt)(u)µt(x)

(9)

For an initial state distribution µ0, the value of a sequence
of policies π , {πt}t∈T, is defined as written below.

vMF(µ0,π) ,
∑
t∈T

γtrMF (µt, πt) ,

where rMF(µt, πt) ,
∑
x∈X

∑
u∈U

r(x, u,µt, ν
MF(µt, πt))

× πt(x,µt)(u)µt(x)

(10)

The term rMF(µt, πt) indicates the average reward of the
population. Alternatively, it can also be expressed as the en-
semble average of the reward of the representative agent i.e.,
rMF(µt, πt) = E[r(xt, ut,µt,νt)] where the expectation
is computed over all possible states xt ∼ µt, and actions
ut ∼ πt(xt,µt) at time t. The mean distributions µt,νt are
sequentially determined by (8), (9) from a given initial state
distribution, µ0.

The goal of MFC is to maximize vMF(µ0, ·) over all policy
sequences. In the next section, we shall demonstrate that,
under certain conditions, vMARL is well-approximated by
vMF. Therefore, in order to solve MARL, it is sufficient to
solve its associated MFC.

It is worthwhile to point out that µt,νt can be thought of as
limiting values of the empirical distributions µNt ,ν

N
t in the

asymptotic limit of infinite population. Note that, µNt ,ν
N
t

and thereby, µt,νt are NOT dependent on W . This makes
the MFC problem agnostic of W . In contrary, agents in the
N−agent MARL problem are influenced by the weighted
mean-field distribution {µi,Nt ,νi,Nt }i∈[N ] which do depend
on W via (3), (4). Therefore, unlike in the existing works,
the mean-field representative in our case cannot be described
as a randomly chosen typical agent in the limit N → ∞.
The concept of mean-field representative, in our work, is a
useful construct that, under certain conditions, can provide
well-approximated solution to MARL.

In the next section, we describe how these seemingly incom-
patible frameworks, namely non-uniform MARL where the
behaviour of agents are dependent onW , and the framework
of W -agnostic MFC, can be merged together.

4 MFC AS AN APPROXIMATION TO
NON-UNIFORM MARL

Before formally stating our main result, we would like to
describe the assumptions that the result is grounded upon.
Our first assumption is on the structure of state-transition
function.

Assumption 1. The state-transition function P is Lipschitz
continuous with parameter LP with respect to the mean-
distribution arguments. Mathematically, the inequality,

|P (x, u,µ1,ν1)− P (x, u,µ2,ν2)|1
≤ LP [|µ1 − µ2|1 + |ν1 − ν2|1]

holds ∀x ∈ X ,∀u ∈ U , ∀µ1,µ2 ∈ P(X ) and ∀ν1,ν2 ∈
P(U). The symbol | · |1 denotes L1 norm.

Assumption 1 states that the transition function, P , is Lips-
chitz continuous with respect to its mean-field arguments.
Essentially, this implies that if the state-distribution changes
from µ to µ + ∆µ, then the corresponding change in the
transition-function can be bounded by a term proportional to
|∆µ|1. Similar property holds for the change in the action-
distribution. This useful assumption commonly appears in
the mean-field literature [Gu et al., 2021, Mondal et al.,
2022, Carmona et al., 2018].

The second assumption is on the structure of r, the reward
function.

Assumption 2. The reward function, r is affine with respect
to mean-distribution arguments. Mathematically, for some



a ∈ R|X |, b ∈ R|U|, and f : X × U → R, the equality,

r(x, u,µ,ν) = aTµ+ bTν + f(x, u)

holds ∀x ∈ X , ∀u ∈ U , ∀µ ∈ P(X ), and ∀ν ∈ P(U).

Assumption 2 dictates that the reward is an affine function
of the mean-field distributions. Although this assumption
does not allow us to encapsulate a large variety of reward
functions, we would like to point out that the behaviour of
agents in multitude of social and economic networks can
be modeled via affine rewards (refer the examples given in
[Chen et al., 2021]). We shall provide one explicit example
at the end of this section. We would also like to reiterate that
the benefit of this seemingly restrictive assumption of affine
reward is it allows us to apply the principles of MFC to an
arbitrarily interacting N -agent system which is notoriously
complex to solve in general.

The immediate corollary of Assumption 2 is that the reward
function is bounded and Lipschitz continuous. The formal
proposition is given below.

Corollary 1. If the reward function, r satisfies Assumption
2, then for some MR, LR > 0, the following holds

(a)|r(x, u,µ1,ν1)| ≤MR,

(b)|r(x, u,µ1,ν1)− r(x, u,µ2,ν2)|
≤ LR [|µ1 − µ2|1 + |ν1 − ν2|1]

∀x ∈ X , ∀u ∈ U , ∀µ1,µ2 ∈ P(X ), and ∀ν1,ν2 ∈ P(U).

The third assumption concerns the set of allowable policy
functions.

Assumption 3. The set of allowable policy functions, Π, is
such that each of its element is Lipschitz continuous with
respect to its mean-state distribution argument. Mathemati-
cally, ∀π ∈ Π, the following inequality holds

|π(x,µ1)− π(x,µ2)|1 ≤ LQ|µ1 − µ2|1
for some LQ > 0 and ∀x ∈ X , ∀µ1,µ2 ∈ P(X ).

Assumption 3 states that the allowable policy functions must
be Lipschitz continuous with respect to its state-distribution
argument. Such requirement typically holds for neural net-
work based policies and are commonly presumed to be true
in the literature [Gu et al., 2021, Cui and Koeppl, 2021,
Pasztor et al., 2021].

The final assumption imposes some constraints on the inter-
action function, W .

Assumption 4. The interaction function, W is such that,
N∑
i=1

W (i, j) = 1, ∀j ∈ {1, · · · , N} (11)

In conjunction with (5), this assumption implies that W is
doubly-stochastic.

Assumption 4 requiresW to be anN×N doubly stochastic
matrix (DSM). Such presumption is commonly applied in
many multi-agent tasks, e.g., distributed consensus [Ala-
viani and Elia, 2019a], distributed optimization [Alaviani
and Elia, 2019b], and multi-agent learning [Wai et al., 2018].

We now state our main result.

Theorem 1. Let, x0 , {xi0}i∈[N ] be the initial states in an
N -agent non-uniform MARL problem and µ0 be its associ-
ated empirical distribution defined by (1). Assume Π to be
a set of policies that obeys Assumption 3, and π , {πt}t∈T
is a sequence of policies such that πt ∈ Π, ∀t ∈ T. If
Assumption 1, 2 and 4 hold, then

|vMARL(x0,π)− vMF(µ0,π)| ≤ CR
√
|U|√
N

1

1− γ

+
1√
N

[√
|X |+

√
|U|
] SRCP
SP − 1

[
1

1− γSP
− 1

1− γ

]
(12)

whenever γSP < 1 where SP , (1 + LQ) + LP (2 + LQ),
SR ,MR(1+LQ)+LR(2+LQ),CP , 2+LP , andCR ,
|b|1 +MF . The parameters LP , b, LQ, LR,MR have been
defined in Assumption 1, 2, 3, and Corollary 1, respectively.
The term MF is such that |f(x, u)| ≤MF , ∀x ∈ X , ∀u ∈
U where f is stated in Assumption 2. The functions vMARL,
and vMF are defined in (7), (10) respectively.

Theorem 1 has an important implication. Specifically, it
states that, if reward and transition functions respectively
are affine and Lipschitz continuous functions of the mean-
distributions, and the interaction between the agents is de-
scribed by a DSM, then the solution of MFC is at most
O(1/

√
N) error away from the solution of the non-uniform

MARL problem. Therefore, the larger the number of agents,
the better is the MFC-based approximation. It also describes
how the approximation error changes with the sizes of the
state, and action spaces. Specifically, if all other parameters
are kept fixed, then the error increases asO(

√
|X |+

√
|U|).

In other words, if individual state and action spaces are large,
then MFC may not be a good approximation to non-uniform
MARL.

Now we shall discuss one example where the reward, transi-
tion function and the interaction function satisfy Assumption
1, 2, and 4 respectively.

Example 1. A version of this model has been adapted in
[Subramanian and Mahajan, 2019] and [Chen et al., 2021].
Consider a network ofN firms operated by a single operator.
All of the firms produce the same product but with varying
quality. A discrete set X , {1, 2, · · · , Q} (state-space) de-
scribes the possible levels of quality of the product. At each
time instant, each firm decides whether to invest to improve
the quality of its product which leads to the following action
set: U = {0, 1}. If at time t, the i-th firm decides to invest,



i.e., uit = 1, its current quality, xit, improves according to
the following transition law.

xit+1 =

x
i
t +

⌊
χ

(
1− µ̄

i,N
t

Q

)
(Q− xit)

⌋
if uit = 1,

xit otherwise

where χ is a uniform random variable between [0, 1], and
µ̄i,Nt is average product quality of its K < N neighbouring
firms. The intuition is that improving product quality might
be difficult if the quality maintained in the local economy is
high. Formally, we assume that each firm equally influences
and is influenced by K other firms. Hence, W (i, j) = 1/K
for all i, j ∈ [N ] that influence each other and W (i, j) = 0
otherwise. The local average product quality is computed
as, µ̄i,Nt ,

∑
x∈X xµ

i,N
t (x) where µi,Nt is given in (3). At

time t, the i-th firm earns a positive reward, αRxit due to
its revenue, a negative reward, βRµ̄

i,N
t due to the average

local quality, and a cost λRuit due to investment. Hence, the
total reward can be expressed as follows.

r(xit, u
i
t,µ

i,N
t ,νi,Nt ) = αRx

i
t − βRµ̄

i,N
t − λRuit

Clearly, in this example, Assumption 1, 2, and 4 are satisfied.

4.1 PROOF OUTLINE

In this subsection, we shall provide a brief sketch of the
proof of Theorem 1.

Step 0: The difference between vMARL and vMF is essen-
tially the time-discounted sum of differences between the
average N -agent reward and average mean-field (MF) re-
ward at time t. Our first goal, therefore, is to estimate the
difference between these rewards.

Step 1: Average N -agent reward at t depends on weighted
empirical distributions {µi,Nt }i∈[N ], {νi,Nt }i∈[N ] whereas
average MF reward depends on the distributions µt,νt. To
estimate their difference, we first compute the difference
between average N -agent reward at t and average MF re-
ward at the same instant generated from the distribution µNt .
This estimate is provided by Lemma B.7 in the Appendix.
Assumption 2 is invoked to establish this result.

Step 2: Next we estimate the difference between the aver-
age MF reward generated by µNt and that generated by µt.
Lemma B.3 in the Appendix bounds this difference by a
term proportional to |µNt − µt|.

Step 3: Using Lemma B.2 and B.6, we now establish a
recursive relation on |µNt − µt|. Via induction, we can now
write this difference as a function of t.

Step 4: Finally, by computing a time-discounted sum of all
the upper bounds described above, we arrive at the desired
result.

5 SOLUTION OF MFC VIA NATURAL
POLICY GRADIENT ALGORITHM

In this section, we develop a Natural Policy Gradient (NPG)
algorithm to solve the MFC problem. By virtue of Theorem
1, it provides an approximate solution to the non-uniform
MARL problem. Recall from section 3 that, in MFC, it is
sufficient to track only one representative agent. At time t,
that agent takes its decision ut based on its own state xt, and
the mean-field state distribution µt. Thus, MFC essentially
reduces to a single-agent Markov Decision Problem (MDP)
with extended state space X × P(X ) and action space U .
To solve MFC, it is therefore sufficient to consider only
stationary policies [Puterman, 2014].

Let the set of stationary policies be denoted by Π and its ele-
ments be parameterized by Φ ∈ Rd. For a given policy πΦ ∈
Π, we shall define its sequence as πΦ , {πΦ, πΦ, · · · }. Let,
QΦ be the Q-function associated with policy πΦ. We define
QΦ(x,µ, u) for arbitrary x ∈ X , µ ∈ P(X ), and u ∈ U ,
as follows.

QΦ(x,µ, u) ,

E

[ ∞∑
t=0

γtr(xt, ut,µt,νt)
∣∣∣x0 = x,µ0 = µ, u0 = u

]
(13)

where the expectation is over ut+1 ∼ πΦ(xt+1,µt+1), and
xt+1 ∼ P (xt, ut,µt,νt), ∀t ∈ T. The mean-field distribu-
tions {µt+1,νt}t∈T are updated via deterministic update
equations (8), and (9). We now define the advantage func-
tion as follows.

AΦ(x,µ, u) , QΦ(x,µ, u)− E[QΦ(x,µ, u)] (14)

where the expectation is over u ∼ πΦ(x,µ).

Let, v∗MF(µ0) = supΦ∈Rd vMF(µ0,πΦ) where vMF is the
value function of MFC problem and is defined in (10). Let,
{Φj}Jj=1 be a sequence of parameters that are generated by
the NPG algorithm [Liu et al., 2020, Agarwal et al., 2021]
as follows.

Φj+1 = Φj + ηwj ,wj , arg minw∈Rd L
ζ

Φj
µ0

(w,Φj)

(15)

The term η is defined as the learning parameter. The function
L
ζ

Φj
µ0

and the distribution ζΦj
µ0

are defined below.

LζΦ′
µ0

(w,Φ) , E(x,µ,u)∼ζΦ′
µ0

[(
AΦ(x,µ, u)

− (1− γ)wT∇Φ log πΦ(x,µ)(u)
)2]

,
(16)

ζΦ′

µ0
(x,µ, u) ,

∞∑
τ=0

γτP(xτ = x,µτ = µ, uτ = u|

x0 = x,µ0 = µ, u0 = u,πΦ′)(1− γ)

(17)



NPG update (15) indicates that, at each iteration, one must
solve another minimization problem to obtain the gradient
direction. It can be solved by applying a stochastic gradient
descent (SGD) approach. In particular, the update equation,
in this case, turns out to be the following: wj,l+1 = wj,l −
αhj,l [Liu et al., 2020]. The term α is the learning rate for
this sub-problem. The update direction hj,l can be defined
as follows.

hj,l ,

(
wT
j,l∇Φj

log πΦj
(x,µ)(u)

− 1

1− γ
ÂΦj (x,µ, u)

)
∇Φj log πΦj (x,µ)(u)

(18)

where (x,µ, u) ∼ ζΦj
µ0

, and ÂΦj
is a unbiased estimator of

AΦj
. The process to obtain the samples and the estimator has

been detailed in Algorithm 1 in the Appendix I. We would
like to point out that Algorithm 1 is based on Algorithm 3
of [Agarwal et al., 2021]. We summarize the whole NPG
process in Algorithm 1.

Algorithm 1 Natural Policy Gradient
Input: η, α: Learning rates, J, L: Number of execution steps
w0,Φ0: Initial parameters, µ0: Initial state distribution
Initialization: Φ← Φ0

1: for j ∈ {0, 1, · · · , J − 1} do
2: wj,0 ← w0

3: for l ∈ {0, 1, · · · , L− 1} do
4: Sample (x,µ, u) ∼ ζ

Φj
µ0

and ÂΦj
(x,µ, u) using

Algorithm 1
5: Compute hj,l using (18)

wj,l+1 ← wj,l − αhj,l
6: end for
7: wj ←

1

L

∑L
l=1 wj,l

8: Φj+1 ← Φj + ηwj

9: end for
Output: {Φ1, · · · ,ΦJ}: Policy parameters

The global converge of NPG is stated in Lemma 1 which is
a direct consequence of Theorem 4.9 of [Liu et al., 2020].
However, the following assumptions are needed to establish
the Lemma. These are similar to Assumptions 2.1, 4.2, 4.4
respectively in [Liu et al., 2020].

Assumption 5. ∀Φ ∈ Rd, ∀µ0 ∈ P(X ), for some χ > 0,
Fµ0

(Φ)− χId is positive semi-definite where Fµ0
(Φ) can

be expressed as follows.

Fµ0
(Φ) , E(x,µ,u)∼ζΦ

µ0

[
{∇ΦπΦ(x,µ)(u)}

× {∇Φ log πΦ(x,µ)(u)}T
]

Assumption 6. ∀Φ ∈ Rd, ∀µ ∈ P(X ), ∀x ∈ X , ∀u ∈ U ,

|∇Φ log πΦ(x,µ)(u)|1 ≤ G

for some positive constant G.

Assumption 7. ∀Φ1,Φ2 ∈ Rd, ∀µ ∈ P(X ), ∀x ∈ X ,
∀u ∈ U ,

|∇Φ1
log πΦ1

(x,µ)(u)−∇Φ2
log πΦ2

(x,µ)(u)|1
≤M |Φ1 − Φ2|1

for some positive constant M .

Assumption 8. ∀Φ ∈ Rd, ∀µ0 ∈ P(X ),

LζΦ∗
µ0

(w∗Φ,Φ) ≤ εbias, w∗Φ , arg minw∈RdLζΦ
µ0

(w,Φ)

where Φ∗ is the parameter of the optimal policy.

Lemma 1. Let {Φj}Jj=1 be the sequence of policy parame-
ters obtained from Algorithm 1. If Assumptions 5−8 hold,
then the following inequality holds for some η, α, J, L,

v∗MF(µ0)− 1

J

J∑
j=1

vMF(µ0, πΦj
) ≤
√
εbias

1− γ
+ ε,

for arbitrary initial parameter Φ0 and initial state distri-
bution µ0 ∈ P(X ). The parameter εbias is a constant. The
sample complexity of Algorithm 1 is O(ε−3).

The bias εbias turns out to be small for rich neural network
based policies [Liu et al., 2020]. Intuitively, it indicates the
expressive power of the policy class, Π.

Lemma 1 establishes that Algorithm 1 can approximate the
optimal mean-field value function with an error bound of ε,
and a sample complexity of O(ε−3). Using Theorem 1, we
can now state the following result.

Theorem 2. Let x0 , {xi0}i∈[N ] be the initial states in
an N -agent system and µ0 their associated empirical dis-
tribution. Assume that {Φj}Jj=1 are the policy parameters
generated from Algorithm 1, and the set of policies, Π satis-
fies Assumption 3. If Assumptions 1, 2, 4, 5 - 8 are satisfied,
then, for any ε > 0, the following inequality holds for cer-
tain choices of η, α, J, L∣∣∣∣∣∣ sup

Φ∈Rd

vMARL(x0, πΦ)− 1

J

J∑
j=1

vMF(µ0, πΦj )

∣∣∣∣∣∣
≤
√
εbias

1− γ
+ C max{e, ε}

where e ,
1√
N

[√
|X |+

√
|U|
]

(19)

whenever γSP < 1 where SP is given in Theorem 1. The
term, C is a constant and the parameter εbias is defined in
Lemma 1. The sample complexity of the process is O(ε−3).



Proof. Note that following inequality,∣∣∣∣∣∣ sup
Φ∈Rd

vMARL(x0, πΦ)− 1

J

J∑
j=1

vMF(µ0, πΦj
)

∣∣∣∣∣∣
≤
∣∣∣∣ sup
Φ∈Rd

vMARL(x0, πΦ)− v∗MF(µ0)

∣∣∣∣
+

∣∣∣∣∣∣v∗MF(µ0)− 1

J

J∑
j=1

vMF(µ0, πΦj )

∣∣∣∣∣∣
Using Theorem 1, the first term can be bounded by C ′e
for some constant C ′. The second term can be bounded by√
εbias/(1 − γ) + ε with a sample complexity of O(ε−3)

(Lemma 1). Assigning C = 2 max{C ′, 1}, we conclude the
result.

Theorem 2 guarantees that Algorithm 1 can yield a policy
such that its associated value is O(max{e, ε}) error away
from the optimal value of the non-uniform MARL problem.
Moreover, it also dictates such a policy can be obtained with
a sample complexity of O(ε−3).

6 EXPERIMENTS

Let the policy sequence that maximizes the mean-field value
function vMF(µ0, ·) be denoted as π∗MF where µ0 indicates
the empirical distribution of the initial joint state, xN0 . We
define the percentage error as follows.

error ,

∣∣∣∣vMARL(xN0 ,π
∗
MF)− vMF(µ0,π

∗
MF)

vMF(µ0,π
∗
MF)

∣∣∣∣× 100%

(20)

We can approximately obtain π∗MF using Algorithm 1. Fig. 1
plots the value of error (defined in (20)) as a function of N
for the reward, transition function, and interaction model de-
scribed in Example 1. The values of various parameters used
in this numerical experiment are provided in the description
of Fig. 1. Evidently, the error decreases with N . Notice that
the reward function stated in Example 1 (thereby that is used
for generating Fig. 1) is linear in its mean-field distribution
argument. In Fig. 2, we exhibit the error as a function of N
with the following non-linear reward function.

r(xit, u
i
t,µ

i,N
t ,νi,Nt ) = αRx

i
t − βR(µ̄i,Nt )σ − λRuit

(21)

The term σ is a measure of non-linearity. All other parame-
ters are same as stated in Example 1. Observe that if σ = 1,
the reward function stated above turns out to be identical to
the reward function given in Example 1. In Fig. 2a, and 2b
we plot error for σ = 1.1, 1.2 respectively. In both of these
scenarios, we see the error to be a decreasing function of N .

Figure 1: Percentage error (defined by (20)) as a function
of N . Reward, state transition, and agent interaction matrix
are same as stated in Example 1. The bold line and the half-
width of the shaded region respectively denote the mean, and
the standard deviation values of the error obtained over 25
random seeds. The values of various system parameters used
in the experiment are as follows: K = 5, αR = 1, βR =
λR = 0.5, and Q = 10. The hyperparameter values used in
Algorithm 1 are as follows: α = η = 10−3, J = L = 102.
We use a feed forward neural network with a single hidden
layer as the policy approximator.

This indicates that although our MFC-based approximation
results are theoretically proven for affine rewards only, they
empirically hold for non-affine rewards as well.

The codes for generating these results are publicly available
at: https://github.com/washim-uddin-mondal/UAI2022

7 CONCLUSION

In this article, we consider a multi-agent reinforcement learn-
ing (MARL) problem where the interaction between agents
is described by a doubly stochastic matrix. We prove that,
if the reward function is affine, one can well-approximate
this non-uniform MARL problem via an associated Mean-
Field Control (MFC) problem. We obtain an upper bound
of the approximation error as a function of the number of
agents, and also propose a natural policy gradient (NPG) al-
gorithm to solve the MFC problem with polynomial sample
complexity. The obvious drawback of our approach is the
restriction on the structure of the reward function. Therefore,
extension of our techniques to non-affine reward functions
is an important future goal.
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