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ABSTRACT

Theory of Mind (ToM), the ability to understand people’s mental variables based
on their behavior, is key to developing socially intelligent agents. Current ap-
proaches to Theory of Mind reasoning either rely on prompting Large Language
Models (LLMs), which are prone to systematic errors, or use rigid, handcrafted
Bayesian Theory of Mind (BToM) models, which are more robust but cannot gen-
eralize across different domains. In this work, we introduce AutoToM , an auto-
mated Bayesian Theory of Mind method for achieving open-ended machine The-
ory of Mind. AutoToM can operate in any domain, infer any mental variable, and
conduct robust Theory of Mind reasoning of any order. Given a Theory of Mind
inference problem, AutoToM first proposes an initial BToM model. It then con-
ducts automated Bayesian inverse planning based on the proposed model, leverag-
ing an LLM as the backend. Based on the uncertainty of the inference, it iteratively
refines the model, by introducing additional mental variables and/or incorporating
more timesteps in the context. Empirical evaluations across multiple Theory of
Mind benchmarks demonstrate that AutoToM consistently achieves state-of-the-
art performance, offering a scalable, robust, and interpretable approach to machine
Theory of Mind.

⋆ chuanyangjin.com/AutoToM § github.com/SCAI-JHU/AutoToM

1 INTRODUCTION

To successfully engage in rich and complex social interactions such as cooperation, communication,
and social learning, humans must adequately understand one another’s mental states (e.g., goals,
beliefs, desires). This ability is termed Theory of Mind (ToM) (Wimmer & Perner, 1983). Prior
works have demonstrated that like human interactions, Theory of Mind is also crucial for the success
of human-AI interactions (e.g., Dautenhahn, 2007; Hadfield-Menell et al., 2016; Liu et al., 2018).
In particular, to safely and productively interact with humans in an open-ended manner, AI systems
need to interpret humans’ mental states from observed human behavior (e.g., Chandra et al., 2020;
Wang et al., 2021; Wan et al., 2022; Patel & Chernova, 2022; Puig et al., 2023; Zhi-Xuan et al.,
2024; Ying et al., 2024).

There are two primary approaches to developing machine Theory of Mind in recent works. First,
with the rapid progress of large language models (LLMs), there has been an increasing interest in
directly applying LLMs to reason about people’s mental states with prompting strategies such as
perspective-taking (Wilf et al., 2023; Sclar et al., 2023; Jung et al., 2024), change-tracking (Huang
et al., 2024), and temporal-spatial reasoning (Hou et al., 2024). However, even with these advanced
prompting techniques, state-of-the-art LLMs still make systematic errors in complex scenarios (Jin
et al., 2024). Second, cognitive studies have demonstrated that model-based inference, in particular,
Bayesian inverse planning (BIP), can reverse engineer human-like theory of Mind reasoning (Baker
et al., 2009; Ullman et al., 2009; Baker et al., 2017; Zhi-Xuan et al., 2020). BIP relies on Bayesian
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Figure 1: An overview of AutoToM . Xts:t are observable variables, V ts:t are latent mental vari-
ables, and q is the query (in this case, a mental variable vti ∈ V t). ts : t denotes timesteps from ts
to t in the context that are considered for inference. Variables st, ot, bt, at, gt represent state, obser-
vation, belief, action, and goal, respectively, with solid arrows indicating dependencies defined in
the models. Given a question, we extract the observable variables (information extraction) and pro-
pose an initial BToM model. This is followed by automated Bayesian inverse planning and iterative
model adjustment. When the model utility is high enough, we will produce the final answer based
on the inference result.

Theory of Mind (BToM) models (Baker et al., 2017) to approximate rational agent behaviors. In-
spired by this, recent works have proposed to combine BIP and LLMs to achieve scalable yet robust
model-based ToM inference (Jin et al., 2024; Shi et al., 2024). While these methods significantly
outperform LLMs in specific domains, they typically require manual specification of BToM mod-
els, including necessary mental variables (e.g., goals, beliefs) for answering a given ToM question.
Therefore, they lack the required generalizability for open-ended Theory of Mind.

In this work, we aim to develop a fully automated and open-ended Theory of Mind reasoning
method. That is a unified method that can be applied to robustly infer any given mental variable
in any domain. Achieving this aim requires addressing two critical questions: (1) How can we en-
sure that our approach is flexible enough to adapt across contexts, robust enough to model diverse
human behaviors, and scalable enough to tackle increasingly complex scenarios? (2) How can we
avoid manually defining model structures and instead autonomously discover the appropriate model
for mental inference?

To address these challenges, we introduce AutoToM , a general framework for open-ended Theory of
Mind. It automates every aspect of Bayesian inverse planning, including the proposal and adjustment
of model structures, the identification of relevant timesteps, the generation of hypotheses, and the
execution of Bayesian inference. It is designed to operate in any context, infer any mental state,
reason about any number of agents, and support any order of recursive reasoning, which represents
our vision of an open-ended and robust machine Theory of Mind.

Figure 1 provides an overview of AutoToM , which consists of two main components:

First, Automated Bayesian Inverse Planning. AutoToM is capable of flexibly modeling various
mental variables and their dependencies for any specified BToM model (in the form of a Bayesian
network). The construction, information flow, and computations within a given BToM model are
entirely automated, leveraging the adaptability of the LLM backend. Specifically, conditioned on
observable variables and their values extracted from the context (by an LLM), AutoToM samples a
small set of hypotheses for each latent mental variable using an LLM. Given the hypotheses, Au-
toToM then conducts Bayesian inference to produce the posterior distribution of the target mental
variable in the question. To achieve this, AutoToM leverages an LLM to estimate each local condi-
tional in the BToM model. (Section 3.3)

Second, Automated Model Discovery. In a given scenario, AutoToM performs automated model
proposals and iteratively adjusts variables and the timesteps of observable variables. We ground
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the BToM model proposals in cognitive models of human decision-making (e.g., Baker et al., 2017;
Ullman et al., 2009). The goal is to include the relevant mental variables and timesteps necessary
for the inference, optimizing based on model utility, which balances the certainty of the inference
and the complexity of the model. This approach eliminates the need for manual effort in defining
model structures and enhances generalization by enabling automatic adaptation to diverse scenarios.
Furthermore, AutoToM can select a different suitable model for each timestep, enabling it to adapt
dynamically to changing circumstances. (Section 3.4)

AutoToM is the first model-based ToM method that extends beyond domain-specific applications
and addresses open-ended scenarios. It integrates the flexibility of LLMs with the robustness of
Bayesian inverse planning. We evaluate AutoToM in multiple ToM benchmarks. The results con-
sistently show that AutoToM achieves state-of-the-art performance, establishing a scalable, robust,
and interpretable framework for machine ToM.

2 RELATED WORKS

Enhancing LLMs’ Theory of Mind. There has been systematic evaluation that revealed LLMs’
limitations in achieving robust Theory of Mind inference (Ullman, 2023; Shapira et al., 2023). To en-
hance LLMs’ Theory of Mind capacity, recent works have proposed various prompting techniques.
For instance, SimToM (Wilf et al., 2023) encourages LLMs to adopt perspective-taking, Percep-
ToM (Jung et al., 2024) improves perception-to-belief inference by extracting relevant contextual
details, and Huang et al. (2024) utilize an LLM as a world model to track environmental changes
and refine prompts. Explicit symbolic modules also seem to improve LLM’s accuracy through dy-
namic updates based on inputs. Specifically, TimeToM (Hou et al., 2024) constructs a temporal
reasoning framework to support inference, while SymbolicToM (Sclar et al., 2023) uses graphical
representations to track characters’ beliefs. Additionally, Wagner et al. (2024) investigates ToM’s
necessity and the level of recursion required for specific tasks. However, these approaches continue
to exhibit systematic errors in long contexts, complex behaviors, and recursive reasoning due to in-
herent limitations in inference and modeling (Jin et al., 2024; Shi et al., 2024). Most of them rely on
domain-specific designs, lacking open-endedness.

Model-based Theory of Mind inference. Model-based Theory of Mind inference, in particular,
Bayesian inverse planning (BIP) (Baker et al., 2009; Ullman et al., 2009; Baker et al., 2017; Zhi-
Xuan et al., 2020), explicitly constructs representations of agents’ mental states and how mental
states guide agents’ behavior via Bayesian Theory of Mind (BToM) models. These methods can
reverse engineer human ToM inference in simple domains (e.g., Baker et al., 2017; Netanyahu et al.,
2021; Shu et al., 2021). Recent works have proposed to combine BIP with LLMs to achieve ro-
bust ToM inference in more realistic settings (Ying et al., 2023; Jin et al., 2024; Shi et al., 2024).
However, these methods require manual specification of the BToM models as well as rigid, domain-
specific implementations of Bayesian inference, limiting their adaptability to open-ended scenarios.
To overcome this limitation, we propose AutoToM , a method capable of automatically modeling
mental variables across diverse conditions and conducting automated BIP without domain-specific
knowledge or implementations.

Automated Modeling with LLMs. There has been an increasing interest in integrating LLMs with
inductive reasoning and probabilistic inference for automated modeling. Piriyakulkij et al. (2024)
combine LLMs with Sequential Monte Carlo to perform probabilistic inference about underlying
rules. Iterative hypothesis refinement techniques (Qiu et al., 2023) further enhance LLM-based
inductive reasoning by iteratively proposing, selecting, and refining textual hypotheses of rules.
Beyond rule-based hypotheses, Wang et al. (2023) prompt LLMs to generate natural language hy-
potheses that are then implemented as verifiable programs, while Li et al. (2024) propose a method in
which LLMs construct, critique, and refine statistical models represented as probabilistic programs
for data modeling. Cross et al. (2024) leverage LLMs to propose and evaluate agent strategies for
multi-agent planning but do not specifically infer individual mental variables. Our method also aims
to achieve automated modeling with LLMs. Unlike prior works, we propose a novel automated
model discovery approach for Bayesian inverse planning, where the objective is to confidently infer
any mental variable given any context via constructing a suitable Bayesian Theory of Mind model.
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Story: Mei is a pearl diver in a small 
coastal village in Japan. Mei wants to 
find a perfect pearl to give to her
grandmother for her birthday. Mei
spots an oyster at the bottom of the
sea that looks to be the right size and
age to contain a pearl. Mei believes
that the oyster she spotted contains a
pearl. A curious octopus opens the
oyster, revealing that there is no pearl
inside, and then swims away. Mei
dives down to collect the oyster. 
Question: Does Mei believe the 
oyster she spotted contains a pearl
or that it is empty?

…

Scene: … The first cabinet, from left 
to right, contains a bag of chips. 
Actions: Mary… walks towards the 
cabinet, opens it, and then closes it.
Question: Which one of the following 
statements is more likely to be true?
(a) Mary has been trying to get a bag 
of chips.
(b) Mary has been trying to get a 
condiment bottle.

Story: Mila entered the basement.
Isla entered the basement.
The orange is in the box.
The box is in the basement.
Isla dislikes the box.
Mila moved the orange to the blue 
container.
Phone rang.
Isla exited the basement.
Mila moved the orange to the suitcase.
Question: Where does Isla think that 
Mila searches for the orange?

Model

Have you seen 
the magazine?

It’s in the cabinet 
in the bedroom.

Kevin closes the cabinet 
without grabbing anything.

⋮

Question: If Jessica knows what is 
inside the cabinet in the bedroom, 
which of the following is MOST likely?
(a) Jessica is trying to help Kevin.
(b) Jessica is trying to hinder Kevin.

Story: The milk is on the table.
Sally exited the room.
Anne transferred the milk onto the 
box.
Alex exited the room, then Anne 
exited the room.
Outside the room, the three 
interacted with each other —
Alex lied to all: The milk is in
the fridge!
Sally secretly told Anne: The milk is 
on the table!
Question: Where does Alex think 
Sally thinks Anne thinks the milk is?
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Figure 2: Examples questions (top panels) and the necessary Bayesian Theory of Mind (BToM)
model for Bayesian inverse planning (bottom panels) in diverse Theory of Mind benchmarks. Au-
toToM aims to answer any Theory of Mind question in a variety of benchmarks, encompassing
different mental variables, observable contexts, numbers of agents, the presence or absence of ut-
terances, wording styles, and modalities. It proposes and iteratively adjusts an appropriate BToM
and conducts automated Bayesian inverse planning based on the model. There can be more types of
questions/models in each benchmark beyond the examples shown in this figure.

3 AUTOTOM

3.1 PRELIMINARIES

Bayesian Inverse Planning (BIP) is a computational framework that models how observers infer un-
observable mental states—such as beliefs and goals—from an agent’s behavior (Baker et al., 2009).
It assumes that the agent acts rationally according to a generative model, a Bayesian Theory of Mind
(BToM) model (Baker et al., 2017), which specifies how internal variables lead to observable ac-
tions in a Bayesian network (e.g., the example models on the bottom panels in Figure 2). Using
inverse inference, BIP inverts this generative process to assess what latent mental variables can lead
to observed agent behavior. This probabilistic inference reasons about how agents make decisions,
serving as a robust solution to ToM challenges.

There have been different instantiations of BIP in prior works (e.g., Baker et al., 2009; Ullman
et al., 2009; Ong et al., 2019; Jha et al., 2024). Here we formally define BIP in a unified way.
We denote the observable variables at time t describing the environment and an agent’s behaviors
as Xt = {xt

i}i∈NX
, where NX is the set of observable variables and xt

i is a particular variable
(state, action, or utterance) at t. We can extract the values of these observable variables from the
context provided in a ToM problem. We denote an agent’s latent mental variables at time t as
V t = {vti}i∈NV

, where NV is the set of mental variables and vti is a particular mental variable
(e.g., goal, desire, belief) at t. BIP formulates a BToM model as a Bayesian network that defines
P (V t, Xt), which indicates how the mental variables drive an agent’s behavior. Given this model,
BIP infers the latent mental variables for the current step t:

P (V t|Xt) =
P (V t, Xt)∑
V P (V,Xt)

∝ P (V t, Xt). (1)

In many real-world scenarios, past observations (such as actions taken at the previous steps) are
often valuable for inferring the mental variables at the current step. Suppose the context from step
ts to step t is relevant for the current mental variable inference, then the inference becomes:

P (V ts:t|Xts:t) ∝ P (V ts:t, Xts:t). (2)

In a ToM problem, there is a query concerning a specific target variable q to be inferred. We can
answer the query via P (q|Xts:t). Typically, the query asks about a latent mental variable q = vti ∈
V t, the posterior probability is obtained by marginalizing over other latent variables V ts:t

−i which is
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the subset of V ts:t excluding vti :

P (vti |Xts:t) ∝
∑
V ts:t
−i

P (vti , V
ts:t
−i , Xts:t). (3)

This can also be extended to predicting a future observable variable q = xt+1
i given observations

from ts to t:
P (xt+1

i |Xts:t) ∝
∑
V ts:t

P (V ts:t, xt+1
i , Xts:t). (4)

To conduct BIP in different scenarios, we must formulate the mental variables and their causal
relationships with agent behavior using suitable BToM models. Each model M is uniquely defined
by the observable variables and the latent mental variables, i.e., M = (V ts:t, Xts:t). Let st ∈ S be
the state at time t, and at ∈ A be the action taken by the agent at time t. The current state and action
determines the next state st+1. When the agent has an explicit goal g ∈ G, this setup constitutes a
Markov Decision Process (MDP). If the agent only has a partial observation of the state, the model
becomes a Partially Observable Markov Decision Process (POMDP) (Kaelbling et al., 1998). In
POMDP, the agent receives a partial observation ot of the true state st, maintains a belief bt over
the possible states, and selects its action at based on this belief and goal. When there is high-order
recursive reasoning between two agents (i and j), we can adopt an Interactive POMDP (I-POMDP)
(Gmytrasiewicz & Doshi, 2005), where the belief of state at level l > 0 for agent i will become the
belief of interactive state ist = (s, bj,l−1, gj), where bj,l−1 is the belief of agent j at the lower level
l − 1 and gj is agent j’s goal.

For instance, given a POMDP model, we can conduct the following Bayesian inference to infer the
agent’s belief bt at time t from the observed state st and at:

P (bt | st, at) ∝
∑
bt−1

∑
ot

∑
g

P (at | bt, g)P (bt | bt−1, ot)P (ot | st)P (bt−1)P (g). (5)

3.2 OVERVIEW OF AutoToM

As shown in Figure 1, AutoToM aim to construct a suitable BToM model for Bayesian inverse
planning to confidently infer any target variable. There are several key challenges in achieving this:
First, different ToM inference problems require different BToM models (as illustrated in Figure 2);
our model does not know which is most suitable a priori. Second, in a given context, our method
must determine which time steps are relevant. Third, there is no predefined hypothesis space for
each mental variable, and each space could be infinite. Last, to infer mental variables in any context,
our method must flexibly represent them without assuming specific types of representations.

AutoToM addresses these challenges in the two key components: (1) automated Bayesian inverse
planning which conducted Bayesian inverse planning given a specified BToM model and (2) au-
tomated model discovery which proposes and adjusts the BToM model based on the question and
the inference results. These two components form a self-improvement loop to iteratively update
the BToM model and corresponding inference result as summarized in Algorithm 1. We discuss
these two components in Section 3.3 and Section 3.4 respectively. More details are provided in
Appendix B.

3.3 AUTOMATED BAYESIAN INVERSE PLANNING

Given a BToM model, M , including the necessary latent mental variables V ts:t and the observable
variables Xts:t, we integrate LLMs as the computational backend to implement every aspect of the
Bayesian inverse planning (Line 2-6 in Algorithm 1). In particular, the hypothesis sampling module
suggests a small set of possible values of latent variables. The Bayesian inference module then
computes the posterior distribution of the target variable in the query based on Eqn. (3) or Eqn.( 4).

Hypothesis Sampling. Conventional BIP assumes a manually defined hypothesis space and hy-
pothesis representation for each latent mental variable. Our hypothesis sampling module instead
leverages an LLM to propose only a small set of quality hypotheses for each latent variable in V ts:t.
This is similar to amortized inference (Ritchie et al., 2016; Jha et al., 2024) but does not require
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Algorithm 1 AutoToM
Require: Question Q, terminate threshold Umin

1: ▷ Automated Bayesian inverse planning
2: function BIP(M = (V ts:t, Xts:t), q)
3: Sample hypotheses for latent variables V ts:t

4: Conduct Bayesian inference via LLMs to compute P (q |ts:t) ▷ Based on Eqn. (3) or Eqn. (4)
5: return P (q | Xts:t)
6: end function
7: ▷ Automated Model Discovery
8: Extract query q from Q
9: Extract observable variables X1:t from Q

10: ts ← t
11: while ts ≥ 1 do
12: Propose initial V ts

13: M ← (V ts:t, Xts:t)
14: P (q | Xts:t)← BIP(M, q)
15: Compute the model utility U(M, q)
16: while V ts does not contain all mental variables do
17: vtsnew = argmaxv/∈V ts U(M + v, q) ▷ Based on results from BIP(M + v, q)

18: if U(M + vtsnew, q) > U(M, q) then
19: M ←M + vtsnew
20: P (q | Xts:t)← BIP(M, q)
21: else
22: Exit loop
23: end if
24: end while
25: if U(M, q) ≥ Umin then
26: Exit loop
27: else
28: ts ← ts − 1
29: end if
30: end while
31: Return the answer A← argmaxq P (q | Xts:t)

learning a data-driven proposal distribution. To ensure that the sampled hypotheses are relevant
to the ToM inference problem, we guide the sampling process with both the question and the ob-
servable variables Xts:t. To remove spurious hypotheses generated by the LLM, we further apply
hypothesis reduction to eliminate unlikely hypotheses and reduce the hypothesis space. Unlikely
hypotheses are identified by evaluating the local conditionals. For instance, we discard observation
hypotheses with low likelihood conditioned on the state as shown in Figure 3.

Bayesian Inference. As shown in Figure 3, we estimate each local conditional in P (V ts:t, Xts:t)
using an LLM. After marginalizing the joint distribution over non-target latent variables, we then
produce the posterior probabilities of the target variable, i.e., Eqn. (3). This also applies to predicting
a future observable variable, i.e., Eqn. (4).

Our automated Bayesian inverse planning greatly generalizes prior methods that combine BIP and
LLMs, such as BIP-ALM (Jin et al., 2024) and LIMP (Shi et al., 2024). Specifically, prior methods
assume a fixed model structure for a few specific ToM inference problems. They also cannot propose
hypotheses for non-target latent variables. In contrast, AutoToM can conduct any ToM inference
based on any BToM model structure and consider multiple non-target latent variables simultane-
ously. Additionally, unlike prior methods, our Bayesian inference can work with arbitrary levels of
recursive for high-order ToM inference.

3.4 AUTOMATED MODEL DISCOVERY

Prior works on Bayesian inverse planning rely on manually designed BToM models, which limits
their applicability to domain-specific scenarios. In contrast, the Automated Model Discovery com-
ponent automatically proposes a model and dynamically adjusts it to ensure both the effectiveness of
the model—confidently inferring agents’ mental states—and the efficiency of the inference by min-
imizing model complexity. To achieve this, we formulate the utility of a model M = (V ts:t, Xts:t)
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used for answering a given query q as

U(M, q) = R(M, q)− C(M), (6)

where R(M, q) assesses the model’s confidence in answering the query, and C(M) is its computa-
tional cost. In this work, the reward is defined as R(M, q) = −H(P (q|Xts:t)), where P (q|Xts:t)
is the probability distribution of the target variable based on Eqn. (3) or Eqn. (4), and H(·) is its
entropy. This is designed to decrease the uncertainty in the inference. To minimize the compute
needed for the inference, we define the cost of the model as C(M) = α|M |, where |M | denotes the
model’s complexity, measured by the number of latent mental variables, and α > 0 is a weighting
factor. The cost increases with complexity, encouraging parsimonious models with lower compute.

There are three modules for Automated Model Discovery:

Information Extraction. The information extraction module (Line 9 in Algorithm 1) processes the
context to identify the values of observable variables X1:t, including states (st), actions (at), and
utterances (ut), organized along a timeline (the number of timesteps is determined by the number of
actions and utterances). When there are multiple agents, we identify whose mental state the question
is asking about (i.e., the target agent), and then construct the timesteps based on the target agent’s
actions and/or utterances. The extraction is performed once using an LLM and used for model
proposal and Bayesian inverse planning.

Initial Model Proposal. We employ an LLM to propose an initial BToM model based on X1:t and
the query (Line 12-15 in Algorithm 1). This initial model represents a minimal model, containing
only the essential mental variables needed to answer the question. This initial proposal also includes
assessing the level of recursive reasoning necessary for higher-order ToM inference. Note that we
always begin with only considering the last timestep in context, i.e., ts = t. Following this model,
we conduct automated Bayesian inverse planning, as described in Section 3.3. If the model utility
exceeds a threshold Umin, we accept the inference result as the final answer. Otherwise, we use the
model utility to guide model adjustments.

Model Adjustment. We iteratively adjust the proposed model to maximize the utility (Line 11-30
in Algorithm 1) by considering two types of model adjustments: variable adjustment (Figure 4A)
and timestep adjustment (Figure 4B):

Variable Adjustment. We refine the model structure at a specific timestep by iteratively introducing
new, relevant latent variables into the model to address uncertainty in the inference. These variables
include goal, belief, observation, and interactive state as summarized in Table 10 in Appendix B.
This follows the typical causal structures introduced in prior decision-making models (e.g., Kael-
bling et al., 1998; Baker et al., 2017; Ullman et al., 2009; Gmytrasiewicz & Doshi, 2005). Such
restricted variable adjustment helps reduce the model space and ensures the proposed models can
explain human behavior. For each adjustment, we compute the updated model utility and accept
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Table 1: Results of AutoToM and baselines on all benchmarks. There are two groups of methods:
methods that require domain-specific knowledge (e.g., AutoToM w/ Model Spec.) or implementa-
tions (e.g., SymbolicToM) and methods that can be generally applied to any domain. “-” indicates
that the domain-specific method is not applicable to the benchmark. The best results for each method
type are highlighted in bold.

Method Type ToMi BigToM MMToM-QA MuMA-ToM Hi-ToM All

SymbolicToM Specific 98.60 - - - - -
TimeToM Specific 87.80 - - - - -
PercepToM Specific 82.90 - - - - -
BIP-ALM Specific - - 76.70 33.90 - -
LIMP Specific - - - 76.60 - -
AutoToM w/ Model Spec. Specific 88.80 86.75 79.83 84.00 74.00 82.68

Llama 3.1 70B General 72.00 77.83 43.83 55.78 35.00 47.41
Gemini 2.0 Flash General 66.70 82.00 48.00 55.33 52.50 60.91
Gemini 2.0 Pro General 71.90 86.33 50.84 62.22 57.50 65.76
GPT-4o General 77.00 82.42 44.00 63.55 50.00 63.39
SimToM General 79.90 77.50 51.00 47.63 71.00 65.41
AutoToM General 88.30 86.92 75.50 81.44 72.50 80.93

the modification that offers the biggest increase in utility. This iterative process continues until
no further significant improvements are possible. Note that our method can still propose diverse
models beyond standard MDP, POMDP, and I-POMDP even with this restricted model adjustment.
Appendix B.5 provides more details on the model space.

Timestep Adjustment. If model utility remains low and no significant improvement can be achieved
via variable adjustment within the current timesteps ts : t, we incorporate an additional step, ts − 1,
to enhance context for inference. Upon adding a timestep, we first apply the initial model structure
and then adjust variables accordingly.

We iterate the variable and timestep adjustments, as outlined in Algorithm 1, until either the model
utility exceeds the desired threshold or no further meaningful improvement is possible.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We evaluated our method on multiple Theory of Mind benchmarks, including ToMi (Le et al., 2019),
BigToM (Gandhi et al., 2024), MMToM-QA (Jin et al., 2024), MuMA-ToM (Shi et al., 2024), and
Hi-ToM (He et al., 2023). The diversity and complexity of these benchmarks pose significant rea-
soning challenges. For instance, MMToM-QA and MuMA-ToM incorporate both visual and textual
input, while MuMA-ToM and Hi-ToM require higher-order inference. Additionally, MMToM-QA
features exceptionally long contexts, and BigToM presents open-ended scenarios.

Besides the full AutoToM method, we additionally evaluated AutoToM given manually specified
models (AutoToM w/ Model Spec.).

We compared AutoToM against state-of-the-art baselines: LLMs: Llama 3.1 70B (Dubey et al.,
2024), Gemini 2.0 Flash, Gemini 2.0 Pro (Team et al., 2023) and GPT-4o (Achiam et al., 2023);

ToM prompting for LLMs: SymbolicToM (Sclar et al., 2023), SimToM (Wilf et al., 2023), Time-
ToM (Hou et al., 2024), and PercepToM (Jung et al., 2024);

Model-based inference: BIP-ALM (Jin et al., 2024) and LIMP (Shi et al., 2024).

For multimodal benchmarks, MMToM-QA and MuMA-ToM, we adopt the information fusion
methods proposed by Jin et al. (2024) and Shi et al. (2024) to fuse information from visual and
text inputs respectively. The fused information is in text form. We ensure that all methods use the
same fused information as their input.

We use GPT-4o as the LLM backend for AutoToM and all ToM prompting and model-based infer-
ence baselines to ensure a fair comparison—except for TimeToM, which relies on GPT-4 and is not
open-sourced.
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4.2 RESULTS

The main results are summarized in Table 1. Unlike AutoToM , many recent ToM baselines can
only be applied to specific benchmarks. Among general methods, AutoToM achieves state-of-the-
art results across all benchmarks. In particular, it outperforms its LLM backend, GPT-4o, by a large
margin. This is because Bayesian inverse planning is more robust for inferring mental states given
long contexts with complex environments and agent behavior. It is also more adept at recursive rea-
soning which is key to higher-order inference. Notably, AutoToM performs comparably to manually
specified models, showing that automatic model discovery without domain knowledge is as effective
as human-provided models. We provide additional results and qualitative examples in Appendix A.

4.3 ABLATED STUDY
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Figure 5: Averaged performance and
compute of the full AutoToM method
(star) and the ablated methods (circles)
on all benchmarks.

We evaluated the following variants of AutoToM for an
ablation study: no hypothesis reduction (w/o hypo. re-
duction); always using POMDP (w/ POMDP); always
using the initial model proposal without variable ad-
justment (w/o variable adj.); only considering the last
timestep (w/ last timestep); and considering all timesteps
without timestep adjustment (w/ all timesteps).

The results in Figure 5 show that the full AutoToM
method constructs a suitable BToM model, enabling rich
ToM inferences while reducing compute. We analyze key
model components below:

Hypothesis reduction. Compared to the full method,
AutoToM w/o hypo. reduction has a similar accuracy
but consumes 53% more tokens on average, demonstrat-
ing that hypothesis reduction optimizes efficiency without
sacrificing performance.

Variable adjustment. AutoToM dynamically identifies relevant variables for ToM inference, gen-
eralizing domain-specific BIP approaches to open-ended scenarios. Compared to its variant without
variable adjustment, AutoToM improves performance with minimal additional compute. The vari-
ant that always uses POMDP performs well in scenarios aligned with the POMDP assumption (e.g.,
MMToM-QA) but generalizes poorly elsewhere and incurs much higher computational costs.

Timestep adjustment. By selecting relevant steps for inference, timestep adjustment enhances per-
formance by focusing on essential information. In contrast, the variant using only the last timestep
misses crucial details, significantly lowering performance. The variant incorporating all timesteps
suffers from higher computational costs and reduced accuracy due to conditioning on unnecessary,
potentially distracting information.

Full ablation results are provided in Appendix A.3.

5 CONCLUSION

We have proposed AutoToM , a novel framework for open-ended Theory of Mind. Given any ToM
inference problem, AutoToM can automatically construct a suitable BToM model and conduct auto-
mated Bayesian inverse planning with an LLM backend. Our experimental results demonstrated that
AutoToM can answer different Theory of Mind questions in diverse scenarios, significantly outper-
forming baselines. AutoToM suggests a promising direction toward cognitively grounded Theory of
Mind modeling that is scalable, robust, and open-ended. In the future, we intend to further improve
the robustness of AutoToM while reducing its inference cost by exploring the possibility of implicit
model proposal and Bayesian inference.
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LIMITATIONS

AutoToM still makes mistakes in several aspects of the inference and model discovery. First, it
sometimes proposes hypotheses unrelated to the ToM inference problem, particularly in questions
where the definitions of certain mental variables are more ambiguous. Second, the LLM backend
may also produce inaccurate likelihood estimation when there are multiple similar hypotheses for a
latent variable. Last, model adjustment may fail to recognize the relevance of certain mental vari-
ables, resulting in an insufficient model. In addition, while AutoToM can balance accuracy and cost
to a certain degree, it still requires multiple API calls. For applications with a strict computational
budget, there is a need for further reducing the cost.

ETHICS STATEMENT

Engineering machine Theory of Mind is an important step toward building socially intelligent AI
systems that can safely and productively interact with humans in the real world. Our work provides a
novel framework for achieving open-ended and reliable machine Theory of Mind, which may serve
as a component of any AI systems designed to interact with humans. The explicit BToM model
discovered by AutoToM offers an interpretable explanation of the model results, enabling human
users to examine and diagnose the model inference. While we do not foresee any negative impact
or risk of our work, we acknowledge the importance of robust and trustworthy machine Theory of
Mind. Interpretable and cognitively grounded machine Theory of Mind methods such as AutoToM
may help mitigate the negative effects of LLMs, including hallucinations and biases. Additionally,
current Theory of Mind benchmarks are typically constructed using procedurally generated stories
and questions. There is a need to carefully examine the potential biases in these benchmarks, to
ensure that the models evaluated on these benchmarks are fair and unbiased.
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A MORE RESULTS

A.1 QUALITATIVE RESULTS

Among general methods, AutoToM achieves state-of-the-art results across all benchmarks. We
provide two qualitative examples to illustrate the effect of variable adjustment (example 1) and
timestep adjustment (example 2). These examples also demonstrate the interpretability of AutoToM ,
as the constructed model offers us insights into how the method is modeling the agent behavior for
the inference.

Example 1: BigToM (Backward Belief Inference)

Story: Kavya is a florist in a vibrant Indian market. Kavya wants to create a beautiful
bouquet of fresh roses for a customer’s anniversary celebration. Kavya sees a batch of
roses in her shop that appear to be fresh and vibrant. Unbeknownst to her a mischievous
monkey sneaks into the shop and nibbles on the rose petals leaving them damaged and un-
suitable for the bouquet. Kavya starts arranging the bouquet using the roses she initially saw.

Question: Does Kavya believe the roses are fresh and perfect for the bouquet or dam-
aged by the monkey?
(a) Kavya believes the roses are fresh and perfect for the bouquet. (Correct Answer)
(b) Kavya believes the roses are damaged by the monkey.

Variables in the Initial Model Proposal: State, Observation, Belief

Since the scenario involves only one timestep, a single model suffices. In the initial model, the
state of the world indicates that the flowers are damaged after the monkey nibbles on them. How-
ever, it remains unclear whether Kavya observes the true condition of the flowers. The model
lacks crucial information about Kavya’s actions, which are observable and influenced by her beliefs
about the flowers’ state. These actions can help infer her true belief. Initially, the probability that
Kavya believes the flowers are fresh is moderate, P (Kavya believes the roses are fresh and perfect
for the bouquet|X1) = 0.50. Without variable adjustment, the model cannot answer the question.

Variables in the Adjusted Model: State, Observation, Belief, Action, Goal

For the initial model, the reward is R(M, q) = −H(P (q|Xts:t)) = −0.693 and the model cost is
C(M) = α|M | = 0.04, resulting in a utility U(M, q) = −0.733, which does not exceed the utility
threshold Umin = −0.693. To address the insufficiency of the initial model’s utility relative to our
termination threshold, we propose an enhanced model incorporating state, observation, belief, ac-
tion, and goal. In this revised model, Kavya’s actions—specifically arranging the bouquet using the
roses—align with her goal of creating a beautiful bouquet. These observations allow us to infer with
high probability that Kavya believes the roses are fresh and suitable for the bouquet, increasing the
belief probability to P (Kavya believes the roses are fresh and perfect for the bouquet|X1) = 0.97.
With this revised model, the reward is R(M, q) = −H(P (q|Xts:t)) = −0.135 and the model cost
is C(M) = α|M | = 0.06, resulting in a utility U(M, q) = −0.195, which exceeds our utility
threshold Umin = −0.693. Based on the adjusted model, AutoToM can confidently determine the
correct answer: (a) Kavya believes the roses are fresh and perfect for the bouquet.

Example 2: MMToM-QA (Belief Inference)

Video input:
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What’s inside the apartment: The apartment consists of a bedroom, kitchen, living room,
and bathroom. In the bedroom, there is a coffee table and a desk. The kitchen is equipped
with four cabinets, a fridge, a kitchen table, a microwave, and a stove. The 3rd kitchen
cabinet from the left houses a water glass and a dish bowl. Inside the fridge, there are two
apples, a salmon, a plate, and a dish bowl. The 2nd kitchen cabinet from the left contains a
water glass, a chips, a condiment bottle, and a dish bowl. The 1st kitchen cabinet from the
left holds a wineglass, a wine, and a condiment bottle. The microwave contains a salmon,
and there is a cupcake in the stove. The 4th kitchen cabinet from the left has a plate. The
living room features a cabinet, a sofa, a coffee table, and a desk. Inside the cabinet, there
are two apples and four books. A plate and a remote control are placed on the coffee table.
The bathroom is furnished with a bathroom cabinet, which is currently empty.

Actions taken by Mark: Mark is situated in the bathroom. He proceeds towards the
kitchen, making his way to the stove. He opens and then closes the stove. Subsequently, he
strides towards the 4th kitchen cabinet, opens it, and then shuts it. He then moves to the 2nd
kitchen cabinet, opens and closes it, before doing the same with the 3rd kitchen cabinet.
Finally, he heads towards the 1st kitchen cabinet, opens and closes it, and is about to open
the microwave.

Question: If Mark has been trying to get a salmon, which one of the following state-
ments is more likely to be true?
(a) Mark thinks that the salmon is not inside the microwave.
(b) Mark thinks that the salmon is inside the microwave. (Correct Answer)

In this problem, we first fuse the information from text and video following Jin et al. (2024). The
fused information is structured into 23 timesteps, each corresponding to an action of Mark at the
time. We then propose the initial model: State, Observation, Belief, Action, Goal.

Without timestep adjustment. Bayesian inference must be performed sequentially from the first
timestep, even though most actions do not contribute to answering the final question. The model
will compute across all timesteps, while the most informative action is actually the last one: if Mark
wants to get a salmon but does not believe there is one inside the microwave, he will not open it.

With timestep adjustment. We begin inference from the last timestep, where the action likelihood
P (a|b, g) is low when b = Mark thinks that the salmon is not inside the microwave, and high when
b = Mark thinks that the salmon is inside the microwave. After performing inference at the last
timestep, the belief probabilities corresponding to the choices are 0.998 and 0.002. The reward
is given by R(M, q) = −H(P (q|Xts:t)) = −0.014, while the model cost is C(M) = α|M | =
0.06. This results in a utility of U(M, q) = −0.074, which exceeds the threshold Umin = −0.693,
allowing our model to determine the final answer without considering earlier timesteps.

A.2 RESULTS FOR HIGHER ORDER INFERENCE

Higher-order Theory of Mind (ToM) involves recursive reasoning about others’ mental states across
multiple levels. The Hi-ToM benchmark (He et al., 2023) includes questions ranging from Order
0, which involves no agents and asks about the actual location of objects, up to Order 4, which
requires recursive reasoning among four agents. Figure 6 compares the performance of GPT-4o and
AutoToM across these different question orders. While GPT-4o experiences a significant decline in
accuracy as the ToM order increases, AutoToM maintains a smaller performance drop and achieves
substantially higher accuracy on higher-order questions. This demonstrates that our model-based
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Figure 6: Comparison of accuracy between AutoToM and GPT-4o on the HiToM dataset across
different reasoning orders. Order 0 refers to questions about an object’s actual location; order 1
questions are about an agent’s belief about an object’s location; order 2 involves questions about an
agent’s belief regarding another agent’s belief, and so forth.
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Table 2: Results of ablated methods compared to the full AutoToM method.

Method ToMi BigToM MMToM-QA MuMA-ToM Hi-ToM All

w/o hypo. reduction 87.60 86.17 75.83 81.67 69.50 80.15
w/ POMDP 76.00 86.50 79.83 50.78 67.00 72.02

w/o variable adj. 85.80 78.25 76.17 77.89 66.50 76.92
w/ last timestep 68.40 77.83 74.33 78.33 44.50 68.68
w/ all timesteps 86.00 79.09 76.50 79.33 69.00 77.98

AutoToM 88.30 86.92 75.50 81.44 72.50 80.93

approach is more robust and scalable, effectively handling complex scenarios involving multiple
agents and various levels of recursive reasoning.

A.3 FULL RESULTS OF THE ABLATION STUDY

Table 2 shows the performance of ablated methods compared to the full AutoToM method on all
benchmarks.

In Table 3 and 4, we compare the ablated methods and the full model on the averaged number of
tokens per question (in thousands) and the averaged number of API calls at inference per question.

A.4 PER-TYPE ACCURACY ON ALL BENCHMARKS

In Tables 5 - 9, we present the results of AutoToM and baselines on each question type of all
benchmarks. Here we compare general methods that can be applied to all benchmarks.

B AutoToM IMPLEMENTATION DETAILS

B.1 VARIABLE ADJUSTMENTS

Table 10 summarizes possible variable adjustments at each timestep.
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Table 3: Comparison of ablated models and the full model on the averaged number of tokens per
question (in thousands). Lower is better.

Method ToMi BigToM MMToM-QA MuMA-ToM Hi-ToM All

w/o hypo. reduction 15.8 6.8 19.2 24.4 20.4 17.3
w/ POMDP 14.9 5.5 15.6 20.0 18.8 15.0

w/o variable adj. 8.5 6.1 16.4 14.0 10.0 11.0
w/ last timestep 7.8 6.1 6.4 11.6 4.0 7.2
w/ all timesteps 14.2 7.7 57.2 16.4 12.4 21.6

AutoToM 9.8 6.5 14.4 13.6 12.0 11.3

Table 4: Comparison of ablated models and the full model on the averaged number of API calls at
inference per question. Lower is better.

Method ToMi BigToM MMToM-QA MuMA-ToM Hi-ToM All

w/o hypo. reduction 38.91 13.99 45.97 70.73 72.58 48.44
w/ POMDP 36.25 8.32 41.18 42.10 51.73 35.92

w/o variable adj. 22.91 12.99 35.46 35.76 29.81 27.39
w/ last timestep 21.60 12.76 12.75 28.39 9.39 16.98
w/ all timesteps 39.83 15.95 116.81 43.25 36.27 50.42

AutoToM 32.23 13.81 31.36 35.08 36.45 29.79

Table 5: Detailed accuracy for ToMi.

Question Type First order Second order Reality Memory All

Llama 3.1 70B 73.75 56.25 100.00 100.00 72.00
Gemini 2.0 Flash 58.50 58.25 100.00 100.00 66.70
Gemini 2.0 Pro 75.00 54.75 100.00 100.00 71.90

GPT-4o 80.25 62.25 100.00 100.00 77.00
SimToM 84.75 65.00 100.00 100.00 79.90
AutoToM 95.00 77.50 93.00 100.00 88.30

Table 6: Detailed accuracy for BigToM.

Question Type Forward TB Forward FB Backward TB Backward FB All

Llama 3.1 70B 93.75 81.00 57.00 60.50 77.83
Gemini 2.0 Flash 94.25 87.50 77.50 51.00 82.00
Gemini 2.0 Pro 96.00 93.75 70.00 68.50 86.33

GPT-4o 96.00 88.50 63.50 62.00 82.42
SimToM 92.50 90.00 25.00 75.00 77.50
AutoToM 91.25 93.75 73.00 78.50 86.92

Table 7: Detailed accuracy for MMToM-QA.

Question Type Belief Goal All

Llama 3.1 70B 51.33 36.33 43.83
Gemini 2.0 Flash 62.67 33.33 48.00
Gemini 2.0 Pro 57.00 44.67 50.84

GPT-4o 55.67 32.33 44.00
SimToM 75.67 26.33 51.00
AutoToM 88.67 62.33 75.50
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Table 8: Detailed accuracy for MuMA-ToM.

Question Type Belief Goal Belief of Goal All

Llama 3.1 70B 68.67 51.33 47.33 55.78
Gemini 2.0 Flash 68.33 50.67 47.00 55.33
Gemini 2.0 Pro 63.00 66.67 57.00 62.22

GPT-4o 85.33 57.00 48.33 63.55
SimToM 54.60 43.50 44.80 47.63
AutoToM 88.33 77.00 79.00 81.44

Table 9: Detailed accuracy for HiToM.

Question Type Order 0 Order 1 Order 2 Order 3 Order 4 All

Llama 3.1 70B 65.00 47.50 22.50 20.00 20.00 35.00
Gemini 2.0 Flash 95.00 70.00 50.00 27.50 20.00 52.50
Gemini 2.0 Pro 100.00 62.50 50.00 37.50 37.50 57.50

GPT-4o 92.50 65.00 40.00 27.50 25.00 50.00
SimToM 100 77.50 60.00 60.00 57.50 71.00
AutoToM 95.00 75.00 70.00 67.50 55.00 72.50

Table 10: Potential variable adjustments, including introducing goal, belief, observation, and inter-
active state (for high-order ToM). We show the corresponding local conditionals before and after
introducing the new variables.

New Var. Before After

Goal

P (at | st) P (at | st, g)P (g)
P (at | bt) P (at | bt, g)P (g)
P (at) P (at | st, g)P (g)
P (at) P (at | bt, g)P (g)

Belief
P (at | st) P (at | bt)P (bt | st, bt−1)
P (at | st, g) P (at | bt, g)P (bt | st, bt−1)

Observ. P (bt | st, bt−1) P (bt | ot, bt−1)P (ot | st)

Int. State b(st) b(ist)

B.2 AUTOMATED BAYESIAN INVERSE PLANNING

Hypothesis Sampling. At each timestep, hypotheses for the latent variables are generated using
a Large Language Model (LLM) as the backend, guided by the observed variables. Specifically,
when the state is not explicitly provided, the LLM acts as a world model, tracking state changes in
the story based on the previous state and current actions. For an agent’s observation, the LLM is
prompted to adopt the perspective of a character, simulating what that character might see, know, or
hear in the given environment (e.g., inside a closed room). If no new observation is available at a
specific timestep, we neither generate new observations nor update the belief. Additionally, the LLM
proposes plausible hypotheses for the agent’s belief and goal based on the available information.

Hypothesis reduction. We examine all local conditional probabilities involving a single uncertain
variable with multiple hypotheses and eliminate those hypotheses that result in significantly low
likelihood values. For example, in P (ot | st), where st represents a determined state, any obser-
vation hypothesis that yields a low likelihood for this term is discarded. This approach reduces
the computational cost of estimating P (bt | ot, bt−1). Similarly, the same principle is applied to
P (at | bt, gt) and P (ut | bt, gt), where unlikely belief hypotheses are removed to further reduce
computational complexity.
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B.3 AUTOMATED MODEL DISCOVERY

When exploring different models during the model discovery, AutoToM can reuse the hypothesis
proposals of variables and local conditionals from previously computed models to avoid repeated
computation.

We configure the hyperparameters in Automated Model Discovery as follows: α = 0.02, Umin =
−0.693.

B.4 RECURSIVE REASONING

Interactive Partially Observable Markov Decision Process (I-POMDP) extends POMDP to multi-
agent settings by introducing the concept of interactive states, which include agent models into the
state space to capture the recursive reasoning process (Gmytrasiewicz & Doshi, 2005). We denote
isi,l as the interactive state of agent i at level l. For two agents i and j, where agent i is interacting
with agent j, the interactive states at each level are defined as:

• Level 0: isi,1 = s

• Level 1: isi,1 = (s, bj,0, gj) where bj,0 is a distribution over j’s interactive state at level 0,
isj,0

• ...

The framework provides a generative model for agents: given agent i’s belief of interactive state
b(isi,l), its action policy will be π(ai|isi,l, gi), and its utterance policy will be π(ui|isi,l, gi).
In our implementation, we sample one possible state based on b(s) at level l to approximate the state
at level l−1 as imagined by the agent at level l. We can recursively apply this process until reaching
level 0. Based on the state sampled for level 0, we can then conduct the typical automated BIP based
on the model structure at that level. This approach can be conveniently applied to arbitrary levels of
recursive reasoning, allowing us to answer higher-order Theory of Mind questions using the same
method.

B.5 BTOM MODEL SPACE

To apply Bayesian Inverse Planning (BIP) across various scenarios, we define the mental vari-
ables and their causal relationships with agent behavior using a family of Bayesian Theory of Mind
(BToM) models. These models accommodate different levels of complexity in how agents behave
and reason about their environment.

At each timestep t, the observable variables are represented by:

Xt = {xt
i}i∈NX

, where NX = {st, at, ut}

Here, the state st always appear in Xt, while either at (action) or ut (utterance) is included at
timestep t, depending on whether physical motion or verbal communication is presented. In some
cases, at is only used to update the state and does not affect the inference of beliefs or goals, while
in other scenarios it can be crucial for inferring hidden mental states (e.g., an agent’s belief or goal).

The latent variables are denoted by

V t = {vti}i∈NV
, where NV = {ot, bt, gt}

Here, the observation ot is only included when the agent’s belief bt is part of the model, as it updates
bt. The goal gt is included only if it influences action and is relevant to inference. In cases of higher-
order recursive reasoning among multiple agents, the belief over the state bt(st) extends to belief
over an interactive state bt(ist).

Combining these choices at each timestep yields a model space with 30 possible configurations:

• Action/Utterance: which one is included (2 options).
• Belief/Observation: no belief, belief of state, belief of interactive state, belief of state, or

belief of interactive state + observation (5 options).
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• Action(Utterance)/Goal: no goal (action(utterance) irrelevant), action(utterance) only, or
action(utterance) + goal (3 options).

Over a time interval from ts to t, this scales to 30t−ts+1 possible models.

Examples. In addition to the Markov Decision Process (MDP), Partially Observable Markov Deci-
sion Process (POMDP), and Interactive POMDP (I-POMDP) models introduced in Section 3.1, we
present additional examples of models from the BToM model space:

• Observation Update Model: Used in the ToMi benchmark (see Figure 2), this model fo-
cuses on how observations update beliefs. Actions are present but only serve to update
states and are irrelevant to the inference questions. This model is well-suited for passive
scenarios where the focus is on understanding how hidden states produce observable evi-
dence and how the agent updates its beliefs about the world.

• POMDP Variant without Goal: A partially observable scenario in which goals are trivial or
irrelevant. This variant emphasizes how partial observability affects belief formation and
action selection, without explicit goal-driven behavior.

C BASELINE IMPLEMENTATION DETAILS

Among the ToM prompting for LLM benchmarks previously tested on the BigToM dataset, e.g.,
TimeToM and SimToM, they only tested the subset of the entire dataset with questions for forward
action and forward belief and did not test on backward belief questions. With the available SimToM
code, we tested it on the full BigToM dataset with GPT-4o, while TimeToM does not have its code
available. We separately report the performance on the forward inference tasks (e.g., forward action
and forward belief) and backward inference tasks (e.g., backward belief) for both true and false
belief questions as TimToM has only been evaluated on the forward inference.

SymbolicToM maps out the agents’ beliefs throughout stories of different levels of reasoning via
symbolic graphs. However, the construction of these graphs is specifically designed for the ToMi
dataset, where there are fixed actions and sentence formats in the story. Thus it is difficult to gener-
alize to more open-ended scenarios (e.g., BigToM) or stories with multiple agents acting simultane-
ously (e.g., Hi-ToM). Therefore, we can only evaluate SymbolicToM on ToMi (tested with GPT-4o
on the full dataset), for which it was designed.

BIP-ALM and LIMP are both models that combine BIP and LLMs to solve ToM problems. BIP-
ALM manually defines symbolic representations of observable and latent variables and assumes
POMDP. LIMP is designed to only solve two-level reasoning problems. It uses natural language to
represent variables. Both methods assume that the goals are about finding an object and the beliefs
are about the locations of that object in a household environment.

D BENCHMARK DETAILS

In our evaluation, we test AutoToM on BigToM (Gandhi et al., 2024), MMToM-QA (Jin et al.,
2024), MuMA-ToM (Shi et al., 2024), ToMi (Le et al., 2019) and Hi-ToM (He et al., 2023). For
ToMi, we use the ToMi dataset that has disambiguated container locations in the story and correctly
labeled order of reasoning (Arodi & Cheung, 2021; Sap et al., 2022). For Hi-ToM, we choose the
length 1 subset consisting of 200 questions across all orders (0-4) due to the high cost of testing the
full dataset.

Table 11 summarizes the benchmarks used to evaluate AutoToM against baselines, detailing key
features such as test concepts, input modalities, and the number of agents. The results demonstrate
that AutoToM operates across diverse contexts, infers any mental state, reasons about any number
of agents, and supports any level of recursive reasoning.
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Table 11: Summary of the ToM benchmarks used in the experiments.

Benchmark Agent
number

Tested concepts Size Modality Communication Generation Evaluation

ToMi (Le
et al., 2019)

Multi
agents

First & Second Or-
der belief

400 Text No Templates Multiple choice
Q&A

BigToM
(Gandhi et al.,
2024)

Single
agent

Belief 5000 Text No Procedural gen-
eration

Question an-
swering

MMTOM-QA
(Jin et al.,
2024)

Single
agent

Belief & Goal 600 Text &
Video

No Procedural gen-
eration

Multiple choice
Q&A

MuMA-ToM
(Shi et al.,
2024)

Multi
agents

Belief, social goal
and belief of other’s
goal

900 Text &
Video

Yes Procedural gen-
eration

Multiple choice
Q&A

Hi-ToM (He
et al., 2023)

Multi
agents

High-order beliefs 600 Text Yes Procedural
Generation

Multiple choice
Q&A

E PROMPTS USED IN AutoToM

E.1 INFORMATION EXTRACTION

We use the following prompts to extract information for each variable in a given question.

Prompt for identifying main agent
Find the name of the character that we need to infer about in the question and choices. Only output the name. Do
not answer the question.
[Question]
[Choices]
Character name:

Prompt for identifying agents present in the story for a question
Extract the names of all the characters from the story and question. Provide only the names or roles, without any
additional information. Do not answer the question.
Your response should be a list containing the names, like [’name1’, ’name2’]
[Story]
Response:

Prompt for identifying inferring variable
Choose the variable that best summarizes the information of differences that the choices contain.
Only output the variable.
Variables include: [Variables]
[Choices]
Variable:

Prompt for identifying extra information in the question
If there is any assumed information in the question given (a conditional clause starting with specific words like ’if’
is contained), rewrite it as a declarative sentence. Do not include any questions in the extra information. Do not
make up details for the information. Use the original wording.
Otherwise, output ’NONE’.
Question: [Question]
Extra Information:
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Prompt for extracting actions of main agent
Extract the actions of [Inferred_agent] in the story verbatim without changing any of the original words, pluralizing
the words, adding in [Inferred_agent] or any other name, replacing any of the words, replacing pronouns with
names or replacing any names with pronouns. Actions of [Inferred_agent] are defined as events that will change
the world state, e.g., [Inferred_agent] moving to a new location is an action but [Inferred_agent] being at a location
is not an action. If [Inferred_agent] say something, the whole sentence (with ’replied’, ’said’) is seen as an action.

Do not change the names of any of the agents, if there is not a name and only a pronoun then just leave
the pronoun. There can more than one agent or more than just the inferred agent.
If there are multiple actions in a sentence then they should be extracted as one single action, without changing any
of the original words, such as pluralizing the words, replacing any of the words, replacing pronouns with names or
replacing any names with pronouns, and do not add any words.
Do not insert actions or pronouns or other words that are not explicitly stated in the text. Do not separate the
objects in the same action.
Do not add any pronouns. Keep the commas, if any.
Only actions that have already occurred at the time can be considered clearly stated. Again, only extract actions
performed by [Inferred_agent].
The output format should be: ["aaa.", "bbb.", ...]. Output only this list.

[Story]
Extraction:

Prompt for extracting action
Determine if [Character]’s action(s) is clearly stated in the story.
The action(s) cannot be the character’s inner thoughts.
Only actions of [Character] that have already occurred, or are currently taking place can be considered clearly
stated.
If it’s more like [Character]’s desire or goal, it does not count as an action. [Character]’s utterance is considered
as an action (include the verb like "said" or "replied" in the evidence sentence, if any). Do not change any of the
original wording.
Answer in the form of a list. The first element of the list contains the option A or B. A means clearly stated, and B
means not clearly stated.
If the answer is A, include sentence(s) from the original story that serves as evidence, and place it in the second
element of the list, without any kind of formatting. Note that there could be multiple action sentences.
Otherwise the second element can be an empty string. Do not write anything else.
Example 1: ["A", "evidence sentence."]
Example 2: ["B", ""]

[Story]
Answer:

Prompt for extracting belief
Determine if the belief of [Character] is clearly stated in the story.
Usually, belief is one’s understanding of the state of the world or the state of others. An subjective attitude towards
things does not count as belief. An action or utterance of the agent does not count as belief. Words like "know" or
"believe" could be hints for belief.
Answer in the form of a list. The first element of the list contains the option A or B. A means clearly stated, and B
means not clearly stated.
If the answer is A, include sentence(s) from the original story that serves as evidence, and place it in the second
element of the list, without any kind of formatting.
Otherwise the second element can be an empty string. Do not write anything else.
Example 1: ["A", "evidence sentence."]
Example 2: ["B", ""]

[Story]
Answer:
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Prompt for extracting goal
Determine if the goal of [Character] is clearly stated in the story.
Usually, goal refers to a person’s goals or intentions regarding a particular event. Moreover, a sentence that shows
a person has been trying to do something, or summarizes their efforts of doing something should always be
considered a goal. Helping others to achieve their goals also counts as a person’s goal.
Answer in the form of a list. The first element of the list contains the option A or B. A means clearly stated, and B
means not clearly stated.
If the answer is A, include sentence(s) from the original story that serves as evidence, and place it in the second
element of the list, without any kind of formatting.
Otherwise the second element can be an empty string. Do not write anything else.
Example 1: ["A", "evidence sentence."]
Example 2: ["B", ""]

[Story]
Answer:

Prompt for extracting observation
Determine if the observation of [Character] is clearly stated in the story.
Observation refers to the main character’s perception of an event; it is only considered clearly stated when the
protagonist’s perception is explicitly mentioned, like if they visually see something, visually notice something or
hear something, or any other state that can be perceived by the agent with but not limited to their 5 senses.
A character’s utterance does not mean that their observation is clearly stated, because they might lie.
Answer in the form of a list. The first element of the list contains the option A or B. A means clearly stated, and B
means not clearly stated.
If the answer is A, include sentence(s) from the original story that serves as evidence, and place it in the second
element of the list, without any kind of formatting.
Otherwise the second element can be an empty string. Do not write anything else.
Example 1: ["A", "evidence sentence."]
Example 2: ["B", ""]

[Story]
Answer:

Prompt for extracting state
Determine if the story contains the objective state(s) of an object or an event.
State refers to the physical condition of something or the state of the world.
No actions of agents should be involved in the state but it can be the result of an action of an agent. For example,
"A entered B" is not a state, while "A is in B" is a state.
An objective state statement should not include personal perspectives but should be objective. If a person’s
perception is involved, it is no longer considered an objective state.
Answer in the form of a list. The first element of the list contains the option A or B. A means clearly stated, and B
means not clearly stated.
If the answer is A, include sentence(s) from the original story that serves as evidence, and place it in the second
element of the list, without any kind of formatting.
If there are multiple sentences, include them all in the second element of the list.
Otherwise the second element can be an empty string. Do not write anything else.
Example 1: ["A", "evidence sentence(s)."]
Example 2: ["B", ""]

[Story]
Answer:

While we can use the general information extraction prompt for all datasets, we can also alter it
to increase the accuracy of information extraction for different datasets. To account for BigToM’s
more diverse linguistic writing styles and settings, we used more domain-specific prompts for the
information extraction portion of AutoToM for BigToM. Below is an example of a more domain-
specific extraction for observation.
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Prompt for extracting observation for BigToM
Determine the observation of [Character] that is clearly stated in the story.
Observation only refers to [Character]’s perception of an event; it is only considered clearly stated when the
[Character]’s perception is explicitly mentioned, like if [Character] visually sees or does not visually see something,
visually notices or does not visually notice something or hears something, or any other state that can be perceived,
known, learned or realized by [Character] with but not limited to their 5 senses or it says explicitly that [Character]
does not perceive, know, learn or realize something. The sentences included are only allowed to be [Character]’s
observations and no other agents.
Observations can be either [Character] observes or no observe when stated in the story.
Determine the subject or object or item of [Character]’s observation is referring to and identify the prior sentence(s)
that includes details about the subject or object or item. If this sentence exists then also include this sentence as
evidence.
If there are more than one sentence stating [Character]’s observation, determine if [Character]’s observation in the
first sentence changes than [Character]’s observation in the last sentences. If [Character]’s observation changes
then only include the last sentence with the [Character]’s most updated observation. Otherwise if [Character]’s
observations are the same meaning and there are more than one sentence clearly stating [Character]’s observation
then include all sentences.
If the observation is part of a sentence, then include the entire sentence instead of only a part of a sentence with the
observation. Extract entire sentences without changing any of the wording.
Answer in the form of a list. The first element of the list contains the option A. A means clearly stated. If the
answer is A, include sentence(s) from the original story that serves as evidence, and place it in the second element
of the list, without any kind of formatting. You can rewrite the sentences to define the observation. Remember, this
is the only sentence with the most updated observation if observation changes or all the sentences if observation
remains the same. Otherwise the second element can be an empty string. Do not write anything else.

Strictly output the answer in this format: ["A", "evidence sentence."]

Prompt for determining if a sentence in the story is observable to an agent
Determine if [Agent] can observe the sentence in the story.
[Agent] can only observe events where [Agent] is located in.
If the sentence is about someone’s inner thoughts, [Agent] cannot observe it.

[Story]
Determine if [Agent] can observe the sentence: [Sentence]
A) [Agent] can observe the sentence.
B) [Agent] cannot observe the sentence.
Answer:

Prompt for rephrasing a question by removing a higher order agent’s perspective.
Rephrase the question, removing the perspective of [Agent].
Do not contain any explanation.
Here is an example:
Question: Where does A think that B goes for lunch?
Output: Where will B go for lunch?

[Question]
Output:

E.2 HYPOTHESIS SAMPLING

We use the following prompts to sample hypotheses for latent variables in the proposed model when
they are not clearly stated in the story.
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Prompt for sampling belief
Propose [num] hypotheses for the belief of [Character] in the story aligned with the context of: [Context]. Make
sure that it is not any of the hypotheses in [Wrong Hypotheses], if it is then propose new hypotheses that are very
different.
It should be related to [Information] and the context described above.
The hypotheses do not require reasoning or consideration of whether they are likely to occur. The only limitation is
that they must be relevant to the information already provided. You cannot return nothing. Usually, belief is one’s
view or perspective on a matter, and it represents an understanding of the state of the world or the state of others.
The emotional attitudes toward a specific thing do not count as belief. Do not state any reason for the hypotheses.
Do not contain any form of explanation in the hypotheses. Output a list of hypotheses of length [num] in following
form: ["aaa.", "bbb.", ...]

[Context]
Belief Hypotheses:

Prompt for sampling goal
Propose [num] hypotheses for the goal of [Character].
The goal refers to [Character]’s intentions.
Do not provide any explanation for the hypotheses. Do not propose any sentence that’s not depicting the goal, like
action or belief of [Character].
The wording for hypotheses cannot be speculative.
The proposed goal does not have to be too specific, e.g., Andy wants to help others; Andy wants to hinder others;
Andy is indifferent towards other’s goals, etc.
Given information: [Information]
Ensure that the hypotheses align with the given information perfectly. It means that proposed [Character]’s goal
matches what’s contained in the information.
Output the hypotheses in the following form: ["aaa."]

Goal Hypotheses: []

Prompt for sampling observation
Propose [num] hypotheses for [Character]’s observation of the world.
The observation refers to [Character]’s current perception of events or the world state. It is only considered
clearly stated when [Character]’s perception is explicitly mentioned, like if [Character] see something or perceive
something through other senses. Do not be speculative.
Do not provide any explanation for the hypotheses. Do not propose any sentence that’s not depicting the
observation, like action or belief of [Character].
The wording for hypotheses cannot be speculative.
If the information contains "not", make sure the verb for perception (e.g., "see", ’perceives’) goes before "not" in
the hypotheses. e.g., use ’sees that A is not in B’ instead of ’does not see that A is in B’ Otherwise, do not include
"not" in your hypotheses, and make sure the verb for perception goes first, e.g., ’sees that A is in B’.
Given information: [Information]
Ensure that the hypotheses align with the given information perfectly. It means that when the person has the
observation the person will act according to the given information.
First, list out all entities in the given information. Then, formulate hypotheses using all entities. Make sure the
hypotheses starts with [Character].
Output the hypotheses in the following form: ["aaa."]

Observation Hypotheses: []

Like the information extraction prompts, we improved upon the general hypothesis sampling
prompts for BigToM to account for its more diverse linguistic writing styles and settings. Below
is an example of a more domain-specific hypothesis sampling for beliefs for BigToM.
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Prompt for sampling belief in BigToM
First determine the observation of [Character] is explicitly mentioned in the given context, this will be in the rough
format of [Character] observes ... or [Character] does not observe ...
If the observation is explicitly mentioned, determine what the object the observation is about without including
any information about the state or any adjectives.
In the context, there is an initial state of the object and an action that will change the state of it.
Identify both the initial state and the final state of the object.
Based on both the initial and final state of the object, propose a hypothesis for each in the format of [Character]
believes ...
However, do not mention anything about the action that changes the state of the object, e.g. only describe the state
or adjective of the object before and after.
Output in this format: ["Belief About Initial State", "Belief About Final State"] for a list length of [num] so that
only [num] hypotheses are proposed.

[Context]
Belief Hypotheses:

E.3 LIKELIHOOD ESTIMATION

We use the following prompts to estimate the likelihood for different variables.

Prompt for estimating likelihood of observation given state
Determine if the statement is likely, respond with only either A or B.
State: {state}
Here is a statement of {inf_agent}’s current observation. Only evaluate current observation of {inf_agent} based
on the state. Do not imagine anything else. Think about {inf_agent}’s location. {inf_agent} is quite likely to
observe all objects and events in {inf_agent}’s location, and is unlikely to observe states in another location. If
{inf_agent} does not appear in the state, {inf_agent} can’t observe anything. Note that the statement has to be
precise in wording to be likely. For example, treasure chest and container are different in wording and they’re
different objects.
Determine if the following statement is likely: {statement}
A) Likely.
B) Unlikely.

Prompt for estimating likelihood of action given the goal, belief, and belief of goal
Determine if the statement is likely, respond with only either A or B.
{inf_agent}’s goal: {goal}
{inf_agent}’s belief: {belief}
{inf_agent}’s belief of other’s goal: {belief of goal}
{inf_agent}’s action: {action}
When {inf_agent} wants to help, {inf_agent} is likely to bring an object to other’s desired location, and unlikely
to grab an object away from other’s desired location.
When {inf_agent} wants to hinder, {inf_agent} is likely to grab an object away from other’s desired location, and
unlikely to bring an object to other’s desired location.
When {inf_agent} doesn’t know other’s goal, {inf_agent} is likely to act according to {inf_agent}’s belief. If
{inf_agent} wants to help and {inf_agent} believed the object is placed at other’s desired location, it’s unlikely
{inf_agent} will move the object.
If {inf_agent}’s goal, {inf_agent}’s belief of goal, and {inf_agent}’s action do not align in any way, the action is
unlikely.
Determine if {inf_agent}’s action is likely.
A) Likely.
B) Unlikely.
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Prompt for estimating likelihood of action given goal and belief
Determine if the statement is likely, respond with only either A or B. If it’s not certain but it’s possible, it’s likely.
{inf_agent}’s goal: {goal}
{inf_agent}’s belief: {belief}
Here is a statement of {inf_agent}’s action. Think about {inf_agent}’s goal.
{inf_agent} will perform actions according to {inf_agent}’s belief, and any action that does not align with the
belief is very unlikely, except when {inf_agent}’s goal is to hinder or to prevent others. In this case (goal is
hindering others) {inf_agent}’s action is only likely when it’s different with {inf_agent}’s belief. If {inf_agent}’s
mental states contain conditions like "When giving information" and the action is not giving information, it’s
unlikely.
Determine if the following statement is likely: {statement}
A) Likely.
B) Unlikely.

Prompt for estimating likelihood of best action among choices given goal and belief
Determine if the statement is likely, respond with only either A or B. If it’s not certain but it’s possible, it’s likely.
{inf_agent}’s belief: {belief}
{inf_agent}’s goal: {goal}
If the next immediate actions possible are: {actions}
Determine which immediate action is most possible given the information about {inf_agent}’s goal and belief.
Determine if the following statement is likely: {action_a} is a better immediate action than {action_b}.
A) Likely.
B) Unlikely.

Prompt for estimating likelihood of initial belief
Determine if the statement is likely, respond with only either A or B. If it’s not certain but it’s possible, it’s consid-
ered likely.
Here is a statement of the story and {inf_agent}’ initial belief.
There is an action that causes the state of the main object to change. Based on {inf_agent}’s observations determine
if {inf_agent} perceives the state of the object change.
If it is not clearly stated that {inf_agent} perceives it then we do not assume that {inf_agent} perceived the change
of state.
If {inf_agent} perceives this change then it is highly likely that {inf_agent}’s belief aligns with the change of state
of the object.
If {inf_agent} does not perceive this change or if it is unknown if {inf_agent} perceives this change then it is highly
likely that {inf_agent}’s belief does not align with the change of state of the object.
Story: {story}
Think about the state of the world and others actions. {inf_agent}’ belief can change throughout time through
other’s actions and what {inf_agent} can observe. It is also important to think about if {inf_agent} can observe
other’s actions. If {inf_agent} can observe the same then their belief will change and if not then their belief will
remain constant. Use this to determine {inf_agent}’s beliefs.
Determine if the following statement is likely: {statement}
A) Likely.
B) Unlikely.

Prompt for estimating likelihood of belief given observation and previous belief
Determine if the statement is likely, respond with only either A or B.
{inf_agent}’s previous belief: {previous_belief}
{inf_agent}’s observation: {observation}
Here is a statement of {inf_agent}’s current belief. If {inf_agent}’s current belief is not aligned with {inf_agent}’s
observation, it is very unlikely.
Determine if the following statement is likely: {statement}
A) Likely.
B) Unlikely.
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Prompt for estimating likelihood of belief given state and previous belief
Determine if the statement is likely, respond with only either A or B.
{inf_agent}’s previous belief: {belief}
State: {state}
Here is a statement of {inf_agent}’s current belief. If {inf_agent}’s current belief is not aligned with the state, it is
very unlikely.
Determine if the following statement is likely: {statement}
A) Likely.
B) Unlikely.

Prompt for estimating likelihood of utterance
Determine if {inf_agent}’s utterance is likely, respond with only either A or B.
{inf_agent}’s belief: {belief}
{inf_agent}’s goal: {goal}
{inf_agent}’s utterance: {utterance}
When {inf_agent}’s goal is to help others, {inf_agent}’s utterance is likely when it strictly reflect {inf_agent}’s
belief, and unlikely if it does not reflect {inf_agent}’s belief.
When {inf_agent}’s goal is to hinder or to prevent others from achieving their goals, {inf_agent}’s utterance is
likely when it’s different from {inf_agent}’s belief, and unlikely if it reflects {inf_agent}’s belief.
Determine if {inf_agent}’s utterance is likely.
A) Likely.
B) Unlikely.

E.4 INITIAL MODEL PROPOSAL

We use the following prompts to propose an initial model for a question and determine if the question
has higher-order beliefs.

Prompt for proposing initial model for AutoToM
What variables are necessary to solve this question? Please provide the answer without an explanation.
Please select from the following: [’State’, ’Observation’, ’Belief’, ’Action’, ’Goal’]
State: The true condition of the environment. This should always be included.
Observation: The observed information about the state. Include this when the agent has partial observations of the
state.
Belief: The agent’s current estimation of the true state based on the state or its observation.
Action: A move made by the agent, informed by the state or belief. Include this only when it is directly relevant to
answering the question.
Goal: The objective the agent is trying to achieve. Include this only if ’Action’ is included.

Question:{example_question}
Variables: {example_answer}
Question: {question}
Variables:

Prompt for determining if the question contains a higher-order belief for AutoToM
Determine whether the question is about a higher-order belief.
A higher-order belief refers to a belief about another person’s belief, goal or action.
It is not a high-order belief if it only asks about one agent’s belief.
Please respond with ’Yes’ or ’No’.
If the answer is ’Yes’, the question often ends with ’Where does A think that B ...?’ Otherwise, respond ’No’.

Question: [A story involving several people.] Where will Jack look for the celery?
Higher-order belief: No
Question: [A story involving several people.] Where does Jack think that Chloe searches for the hat?
Higher-order belief: Yes
Question: question
Higher-order belief:
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