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ABSTRACT

Common training strategies for deep neural networks are computationally ex-
pensive, continuing to redundantly train and evaluate on classes already well-
understood by the model. A common strategy to diminish this cost is to reduce
data used in training, however this often comes at the expense of the model’s ac-
curacy or an additional computational cost in training. We propose progressive
data dropout (PDD), an adaptive training strategy which performs class-level data
dropout from the training set as the network develops an understanding for each
class. Our experiments on large-scale image classification demonstrate PDD re-
duces the total number of datapoints needed to train the network by a factor of
10, reducing the overall training time without significantly impacting accuracy
or modifying the model architecture. We additionally demonstrate improvements
via experiments and ablations on computer vision benchmarks, including MNIST,
Fashion-MNIST, SVHN, CIFAR, and ImageNet datasets.

1 INTRODUCTION

Deep neural networks have made a significant impact on a broad range of applications over the
last decade. However, these networks are notoriously data-intensive, often requiring significant
computational power and large datasets in order to properly train for optimal performance. This
can become problematic for many real-world applications as the computational expense of training
these networks will often prevent them from being adopted.

Many optimization techniques have arisen to address this problem in training - from reducing neu-
rons to subsampling data. In this work, we focus on reducing the computational time and cost needed
to fully train any deep network, without modifying the model and while utilizing the entire training
dataset.

In order to properly set the discussion, we need to define some terms that are used throughout this
paper. First, we define a datapoint as a single data sample that is sent through the network during
the training process. For example, if you were to train a network using a dataset of 10 samples for 5
epochs, you would have used 50 datapoints to train that network. So our datapoint calculations are
a collection of the number of samples that were sent to the network during training rather than the
number of unique data samples it was provided. This is because networks often need to see examples
of a class multiple times before understanding them, Secondly, since our proposed method modifies
the training process, the term epoches no longer applicable as we will not iterate over the entire
dataset after dropping data. Instead, we will use the term training rounds to indicate how many
times we iterated over the remaining training set when training the network.

Now, we consider one simple research question: Can data be dropped during training once it is well-
understood by a deep leaning model? We propose Progressive Data Dropout (PDD), an adaptive
training process which leverages the network’s understanding of the data to determine when data
should be dropped from the training process. In comparison with existing data dropout techniques
which focus on identifying “important” samples, we instead evaluate the simple case of full and
partial class-removal.

The main contributions of our simple adaptive training strategy, PDD, include:
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* Reduces time and computational resources required for training.

* Model-agnostic implementation which works for any supervised single-label classification
task.

* Data-agnostic implementation which does not preprocess or examine the data for sample
quality, balance, etc.

* Provides an inherent stopping criterion for training models on sufficiently large datasets.

Further sections motivate the use of PDD for large-scale image classification tasks and describe the
design of this simple strategy. We propose PDD to be complimentary of existing regularization tech-
niques, as well as recent learning/training strategies such as continual learning, curriculum learning,
and others.

2 RELATED WORK

There are a breadth of optimization techniques for the training deep neural networks, motivated
by the traditionally large data requirements of deep models. Given that we are proposing a gener-
alized strategy for optimizing training, this section discusses several types of solutions - learning
techniques, dropout for network regularization, and dropout of data during training.

2.1 CURRICULUM & CONTINUAL LEARNING

Several learning approaches are fundamentally similar in objective to our proposed method, though
they take a drastically different approach. Curriculum learning, for example, aims to slowly intro-
duce difficult aspects of the problem by training the network from the easiest samples to the hardest
samples. [Lyu & Tsang| (2019) introduce a curriculum loss for learning with noisy labels. By in-
troducing a loss function that is bounded and able to select samples during network training, the
authors are able to combine continual and robust learning.

Meta-learning similarly aims to quickly adapt to new tasks by improving the learning algorithm
itself, improving computational bottlenecks as well as generalization. |Finn et al.| (2017) However,
both meta-learning and curriculum learning suffer from occasional catastrophic forgetting of the
original learned task. Continual learning aims to prevent the catastrophic forgetting of the original
learned task Veniat et al.|(2021). More recently, Co2L (Cha et al.,|2021)) contrastive continual learn-
ing proposed a contrastive learning objective which learned and preserved representation through
distillation. These curriculum and continual learning strategies are complimentary to PDD in that
our proposed method can be leveraged toward their respective objectives.

2.2 DROPOUT FOR NETWORK OPTIMIZATION & REGULARIZATION

While our proposed approach is focused on dropping data, the term dropout more often applies to
the dropping of neurons during the training process for regularization of a neural network (Srivastava
et al, |2014). Network dropout regularization techniques K C et al.|(2021) and pruning approaches
(Tanaka et al.| 2020) reduce the size of network during training in response to input stimuli.

Adaptive dropout for training deep neural networks (Ba & Freyl, 2013)) overlaid a binary belief net-
work on top of a neural network allowing the network to adapatively regularize the network by
selectively setting parts to zero. Dropconnect (Wan et al., |2013)) regularized networks by dropping
randomly selected weights instead of randomly selected activations. Curriculum dropout (Morerio
et al.| 2017) showed that the a fixed neuron dropout probability was sub-optimal and instead imple-
mented a time scheduler for updating the dropout probability. An energy-based dropout proposed
by EDropout (Salehinejad & Valaeel [2021)) used an energy based loss to find the best pruning to ap-
ply to the original neural network. In application to different network architectures, Dropout-GAN
dropped connections between a generator and multiple discriminators in a GAN in order to ensure
diversity of generated samples, avoiding mode collapse (Mordido et al., 2018).

While dropout is effective for regularization, these methods often require significant modification
of the network itself in order to be adopted. In comparison, our proposed approached is entirely
model-agnostic, modifying only the number of samples used in training instead of the network or
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data itself. We therefore do not compare with these types of approaches in our experiments, as they
are complementary to PDD rather than comparative.

2.3  DATA DROPOUT

Most similar to our proposed method are approaches which drop data samples during the process of
training a neural network. Some such approaches focus on data augmentation, in an effort to improve
the quality of the data fed to the network and model accuracy. Generalized Dropout (Rahmani &
Atial 2018)) for example is a method of data augmentation, dropping random pixels from an image
in order to generate additional samples for training.

Other methods for data dropout emphasize importance sampling, aiming to first identify quality
samples and then drop the lower quality samples for remaining training epochs (Katharopoulos
& Fleuret, 2018). Data Dropout (Wang et al.| [2018) removes samples from training after they’re
deemed unfavorable in the first epoch, saving time in further training rounds. Similarly, DropSample
(Yang et al.,2016)) applied this concept for Chinese character classification. Subsequently a Greedy
DropSample (Yang et al.| [2020) generalizes the method even further by using a greedy algorithm,
temporarily dropping data as needed for training acceleration, but retaining it for use if the model
requires. In a similar fashion, dataset summarization techniques which strategically subsample the
dataset have been demonstrated to outperform full-set models (Wang et al.| 2020).

Recently |Han et al.| (2020) dropped highly negative predictions iteratively through the utilization of
influence functions. This helped remove highly noisy or out of date labels from the training set.
Similarly, Dynamic Training Data Dropout (DTDD) (Zhong et al.l 2022)) drops samples deemed
noisy after several epochs, with specific application to noise-robust deep face recognition.

In contrast to these methods, our progressive data dropout takes cues from the model while training
to determine when to drop a majority of a class. While each of these existing approaches is similar
to our proposed PDD, we do not compare with those which are so domain-/application-specific as
to not be applicable to standard image classification benchmarks, including DTDD, DropSample for
character classification, and those removing noisy labels. Such methods are complimentary to PDD
rather than comparative as they can be used in combination for their application-specific tasks.

3  PROGRESSIVE DATA DROPOUT

In this work, we present Progressive Data Dropout (PDD), a novel training strategy which combines
data dropout with a residue component to train networks. Like most current data dropout techniques,
PDD can be paired easily with most networks since it requires no network modifications. However,
unlike most other data dropout techniques, PDD progressively removes data from the training set as
the network develops an understanding for classes. By removing data from the training set, it allows
us to create subsets of the data for a network to train on, speeding up the training process. To do
this, we utilize dropout score in conjunction with a residue component to control which subset of
the dataset is provided to the network.

Figure[I] and further demonstrated through our extensive experiments, displays a general view of the
data used in training a neural network. Baseline training strategies have a constant number of data-
points since all data is used in every training round, whereas comparative data dropout approaches
drop datapoints during the training process. This figure demonstrates the significant reduction in
data feasible in training a network. The following subsections detail PDD components and training
strategy in more detail.

3.1 DROPOUT SCORE

An important component to PDD’s strategy is selecting a dropout score since it is responsible for
determining when data should be dropped from the training examples. When determining PDD’s
dropout score, there are two important factors to consider. First, the dropout score should be a metric
that accurately reflects the performance of the individual classes in the network. For example, in our
experiments we used fl-score when evaluating classification models since it depicts how well the
network is performing on a per-class basis. Secondly, once a metric has been selected as the dropout
score, we then need to select an appropriate threshold. Determining the threshold should be treated
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Figure 1: Visualization of the amount of training datapoints used training ResNet34(He et al., [2016))
on ImageNet (Deng et al.,[2009). Best viewed in color.

as an extremely sensitive hyper-parameter which can have significant effects on the network training
process. If the threshold value is set too low, the network will often not have a firm grasp of the data
being dropped, resulting in the eventual forgetting of the data. If the threshold value is set too high,
many of the training data points may never be dropped, severely reducing the benefit provided by
PDD. Unfortunately, like many other hyper-parameters, there is no universally applicable threshold
value as it is highly dependant on your both the metric and the dataset. To help determine an
appropriate metric and its threshold, we recommend experimenting with a smaller data subset first.

3.2 RESIDUE

Intuitively, and reinforced in our experiments, fully removing a class from the training dataset causes
the network to suffer catastrophic forgetting due to the loss only penalizing the network for predict-
ing the removed class. Rather than modifying the loss, which would be considered a network mod-
ification, we instead introduce a residue component into PDD to prevent the catastrophic forgetting
problem. This residue component controls what percentage of randomly-selected training examples
associated with a class are left behind when that class crosses the dropout score threshold. Unlike
the dropout score threshold, we empirically show through our experiments that leaving behind ten
percent of a class is usually enough to encourage the network to remember it. It is important to note
that this residue percentage can be increased; however this will come at the cost of training time.

3.3 RESIDUE SWAPOUT

When leaving a small percentage of data behind as residue, alleviating the catastrophic forgetting
problem, it presents a new problem where networks will often easily over-fit on the residue exam-
ples. To address this problem, we also introduce a residue swapout component to determine how
often residue training examples are swapped out for newer ones. While this does add additional
computational costs, it also helps prevent the network from over-fitting on the residue examples,
especially over long periods of training.

3.4 WARM-UP PERIOD

We also introduce a warm-up period component into PDD. This parameter specifies how long the
network is allowed to train before our training strategy is allowed to begin. This parameter is to
ensure that the network’s feature space has been well established before we begin removing data.
Typically, this parameter is mostly used for lower-dimensionalty data where a network can converge
on a dropout score too quickly.
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3.5 TRAINING STRATEGY

Once the components of PDD have been established, we begin PDD by creating a mask of the
entire datasets’ labels before beginning network training. This mask is used throughout the training
process to determine which subset of the dataset to provide to the network during a single training
round. Once the mask has been created, PDD begins the network training process with the entire
mask on, providing the network with the entire dataset. At the end of a training round, a dropout
score is calculated for each individual class in the dataset. If a class has a dropout score that is above
the provided threshold, and assuming the warm-up period has also been met, we assume the network
has developed an understanding for that class and its presence can be safely reduced in the training
data. In order to reduce the class’ presence, we update the mask to exclude all but randomly selected
residue examples of the class, creating a new data subset to use in the next round of training. PDD
concludes the network training process when either every class has exceed the provided dropout
score threshold or when the maximum rounds of training has been reached. Overall, PDD reduces
the number of datapoints that are needed to train the network, which in turn reduces the overall
training time of a network. In addition, PDD can provide a clear point to when your network should
be stopped with training and help determine classes the network has difficulty converging on.

4 EXPERIMENTS

In order to demonstrate the effectiveness of PDD, we first conduct image classification experiments
in this section and then explore ablation studies for PDD’s components in the subsequent section.
For the purposes of all of our experiments, we selected f1-score as our dropout score metric. Also,
unless otherwise specified, we used the following values for PDD’s components: a residue of .10, a
residue swapout of 1 training round, and a warmup period of 5 training rounds.

4.1 IMAGE CLASSIFICATION BENCHMARKS

We first conducted experiments on lower dimensionality datasets with well-established classification
models to show the efficacy of PDD. We trained Resnet-18 on MNIST (LeCun et al., 2010), Fash-
ionMNIST (Xiao et al.,2017), SVHN (Netzer et al.,|2011), and CIFAR10 (Krizhevskyl 2009) using
a single RTX 8000 GPU. During training, we used the following hyper-parameters: batch sizes of
32, a standard categorical cross-entropy loss, a standard SGD optimizer with learning rate of 0.01,
and a max number of training rounds of 20. Finally, we report the accuracy of the model in relation
to the dataset’s test set. Table[I] shows the results of our experiments in comparison with other data
dropout techniques.

4.2 DROPOUT SCORE THRESHOLD EXPERIMENT

After conducting our benchmark experiments, we then demonstrate the effect the dropout score
threshold has on PDD. Table |2 shows the results of this experiment. Besides MNIST, our experi-
ments show that a higher droput score yields a better network performance at the cost of training
time. Our experiments also demonstrate a faster training time due to PDD concluding the network
training process early. This is because every class has exceed the provided dropout score threshold
thus ending the training of the network.

4.3 LARGE-SCALE IMAGE CLASSIFICATION

We extend our experiments to a large-scale image classification problem. Our experiments show the
result of our training method when applied to the ImageNet (Deng et al.| [2009) dataset on a well-
established classification model. To do this, we trained ResNet-34 on the ImageNet dataset using
8 V100 GPUs, applying a different training strategy to each run. During training, we followed the
standard PyTorch training procedure (PyTorch, [2022)) which included: batch sizes of 32, a standard
categorical cross-entropy loss and a SGD optimizer with a momentum of 0.9, weight decay of le-
4, and a learning rate of 0.01. As the network training progressed, we reduced the learning rate
by a factor of 10 for every 30 rounds of training that occurred. The results of this experiment are
shown on Table[3|which evaluated the performance of the network training methods on the ImageNet



Under review as a conference paper at ICLR 2023

Method Dataset Model Acc. | Time (mins) RT # Datapoints
Baseline MNIST ResNet18 | 0.99 0:13:45 20 1,080,000
GD MNIST custom 0.99 - 250 -
DropSample MNIST custom 0.99 0:25:00 800 -
PDD MNIST ResNetl8 | 0.99 0:04:12 6 324,000
Baseline FashionMNIST | ResNetl8 | 0.91 0:14:03 20 1,080,000
PDD FashionMNIST | ResNetl8 | 0.88 0:04:25 7 334,265
Baseline SVHN ResNet18 | 0.92 0:17:08 20 1,318,640
DataDropout SVHN ResNetl152 | 0.99 0:28:20 50 2,107,811
PDD SVHN ResNet18 | 0.91 0:05:04 6 395,592
Baseline CIFAR-10 ResNetl8 | 0.77 0:11:59 20 900,000
IS CIFAR-10 ResNet28 | 0.95 5:30:00 50,000 -
DropSample CIFAR-10 custom 0.92 0:18:20 24 -
DataDropout CIFAR-10 ResNet110 | 0.95 4:10:00 500 21,901,200
PDD CIFAR-10 ResNetl8 | 0.71 0:04:27 9 324,011

Table 1: Comparison of metrics of various data dropout techniques. Compares a baseline training
strategy, GeneralizedDropout (GD) (Rahmani & Atial [2018)), ImportanceSampling (IS) Katharopou-
los & Fleuret (2018)), Greedy DropSample (Yang et al., [2020), DataDropout Wang et al.[(2018)), and
and PDD (our proposed Progressive Data Dropout method, with 0.85 F1 dropout score). Estimated

values are italicized, and clarified in the appendix. Missing values are noted as °-’, and all other
values are as reported in the original works.

Method Dataset Dropout Score | Accuracy | Time (mins) | RT | # Datapoints
Baseline MNIST - 0.99 0:13:45 20 1,080,000
PDD MNIST 0.85 0.99 0:04:12 6 324,000
PDD MNIST 0.95 0.99 0:04:20 6 324,000
Baseline | FashionMNIST - 0.91 0:14:03 20 1,080,000
PDD FashionMNIST 0.85 0.88 0:04:25 7 334,265
PDD FashionMNIST 0.95 0.90 0:08:24 17 597,705
Baseline SVHN - 0.92 0:17:08 20 1,318,640
PDD SVHN 0.85 0.91 0:05:04 6 395,592
PDD SVHN 0.95 0.91 0:06:21 9 477,939
Baseline CIFAR-10 - 0.77 0:11:59 20 900,000
PDD CIFAR-10 0.85 0.71 0:04:27 9 324,011
PDD CIFAR-10 0.95 0.75 0:07:25 14 544913

Table 2: F1-score PDD experiment on various datasets using ResNet18 (He et al.,[2016). RT stands
for rounds of training. PDD settings shared across runs: Warmup period of 5 rounds, residue of .10,
and a swapout period of 1 round. Dashed values are not applicable.

validation dataset. We additionally provide a visual which shows the number of datapoints over the
network’s training in Figure

Fl1
Method Dropout| Validation Accuracy | Time (hours) | RT | # Datapoints
Score
Baseline - 0.73 8:30:12 90 | 109,544,850
Data dropout
(Wang et al,2018) | - 0.79* - 60* | 108,375,212*
| PDD - 0.80 0.70 7:31:38 90 94,957,921
PDD 0.85 0.72 8:08:12 90 | 103,996,872
PDD 0.90 0.73 8:26:22 90 | 108,570,798

Table 3: Comparison of run times on ImageNet (Deng et al.,2009). RT stands for rounds of training
* Denotes the value was taken or calculated from the original paper.
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5 ABLATION STUDIES

To assess the effectiveness of each component of our proposed method, the following studies demon-
strate the effect of removing our residue, swapout, and warm-up features from PDD. We conduct
these studies on the lower-dimensionality data using the same training specifications that were men-
tioned Section@ In addition, for these studies, PDD components were set to the following values:
dropout score of 0.85, a residue of .10, residue swapout of 1 training round and a warmup of 5
training rounds unless that component was turned off, in which case its value was set to 0.

5.1 RESIDUE COMPONENT

In this study, we looked at the effects the residue component had on PDD network training. Table
shows the results of these studies. As shown in the table, the networks trained on FashionMNIST
and CIFAR-10 performed significantly worse if there is no residue component. For the MNIST
and SVHN networks, PDD ended the training process immediately after the warm-up period. This
meant that all of the classes exceed the dropout score after the warmup period ended, resulting in
the residue and no residue experiments being treated exactly the same.

Method Dataset Accuracy | Time (mins) | RT | # Datapoints
Residue MNIST 0.99 0:04:12 6 324,000
No Residue MNIST 0.99 0:04:15 6 324,000
Residue FashionMNIST 0.88 0:04:25 7 334,265
No Residue | FashionMNIST 0.10 0:04:23 7 329,410
Residue SVHN 0.91 0:05:04 6 395,592
No Residue SVHN 0.92 0:05:05 6 395,592
Residue CIFAR-10 0.71 0:04:27 9 324,011
No Residue CIFAR-10 0.15 0:04:25 9 319,497

Table 4: Residue PDD experiment on various datasets using ResNet18. RT stands for rounds of
training. PDD settings: Dropout score of 0.85, residue of 0.10 where applicable, swapout period of
1 training round, and a warmup period of 5 rounds.

5.2 SwWAPOUT COMPONENT

In this study, we looked at the effects the residue swapout component had on PDD network training.
Table [5] shows the results of these studies. Similar to the last study, networks trained on Fashion-
MNIST and CIFAR-10 suffered from performance drops when removing the swapout component,
although significantly less than when compared to the residue component. Again, PDD ended the
training process of the MNIST and SVHN networks immediately after the warm-up period, resulting
in the swapout experiments being treated the exact same.

Method Dataset Accuracy | Time (mins) | RT | # Datapoints
Swapout MNIST 0.99 0:04:12 6 324,000
No Swapout MNIST 0.98 0:04:14 6 324,000
Swapout FashionMNIST 0.88 0:04:25 7 334,265
No Swapout | FashionMNIST 0.86 0:04:29 7 334,265
Swapout SVHN 091 0:05:04 6 395,592
No Swapout SVHN 0.93 0:05:03 6 395,592
Swapout CIFAR-10 0.71 0:04:27 9 324,011
No Swapout CIFAR-10 0.70 0:04:26 9 319,950

Table 5: Swapout PDD experiment on various datasets using ResNet18. RT stands for rounds of
training. PDD settings: Dropout score of 0.85, residue of 0.10, swapout period of 1 training round
where applicable, and a warmup period of 5 rounds.



Under review as a conference paper at ICLR 2023

5.3 WARMUP COMPONENT

Finally, we studied the effects that the warmup component had on PDD network training. Table
@ shows the results of these studies. Unlike the previous studies, all networks but ones trained on
CIFAR-10 suffered from performance drops when removing the warmup component. However, it
is important to note that having no warmup component did improve training time significantly. As
for the networks trained on CIFAR-10, since it is unlikely to drop a class within the first 5 rounds of
training due to the complexity of the data, the warmup period component did not matter.

Method Dataset Accuracy | Time (mins) | RT | # Datapoints
Warmup MNIST 0.99 0:04:12 6 324,000
No Warmup MNIST 0.97 0:00:42 1 54,000
Warmup FashionMNIST 0.88 0:04:25 7 334,265
No Warmup | FashionMNIST 0.87 0:02:01 5 138,886
Warmup SVHN 0.91 0:05:04 6 395,592
No Warmup SVHN 0.87 0:01:58 3 146,314
Warmup CIFAR-10 0.71 0:04:27 9 324,011
No Warmup CIFAR-10 0.72 0:04:18 9 311,847

Table 6: Warmup PDD experiment on various datasets using ResNet18. RT stands for rounds of
training. PDD settings: Dropout score of 0.85, residue of 0.10, swapout period of 1 training round,
and a warmup period of 5 rounds where applicable.

6 CONCLUSIONS

In this work, we propose Progressive Data Dropout (PDD), a new training optimization strategy
for deep learning networks. Through extensive experimentation on well-established classification
networks and benchmarks, we demonstrate an effective training strategy which reduces data over
network training on both large-scale and small-scale image classification tasks. By reducing the
data over network training, we are able to reduce the overall time needed to train a network while
also showing which classes a network is having difficulty learning.

6.1 LIMITATIONS

Although we demonstrate the effectiveness of PDD, there are limitations that need to be addressed.
One major limitation of our proposed training method is that it is designed with classification net-
works in mind. This is mainly due to our dropout score working inherently with a classification
problem rather than other tasks such as regression. Another major limitation of our training strat-
egy is that we assume that the training dataset is relatively large and balanced, which means our
strategy would likely cause performance issues for problems such as few-shot or anomaly detection.
Finally, our current implementation creates a copy of dataset labels to use as the mask, which could
be expensive for problems with a high label cost such as segmentation and multi-label tasks.

6.2 FUTURE WORK

This proposed PDD implementation randomly selects the residue examples that are left behind when
a class crosses the dropout score threshold. In future works, this randomized residue component
could be replaced with a more deterministic component, such as a method which finds low confi-
dence samples, in order to improve the overall classification performance of the network. However,
when adding the deterministic component, it is important to ensure that the overhead of the new
method maintains a lower computational cost than just training with the entire dataset.

In conjunction with the deterministic residue component, an interesting avenue of exploration is a
more dynamic residue component. With a dynamic residue component, the network could have
different levels of residue for each class depending on their performance. However, there are some
roadblocks to implementing this, such as determining a proper metric tracking and computational
overhead.
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Though PDD focuses on data-level techniques, it can easily be paired with other data dropout or
network modification techniques in order to further improve the overall performance of a network,
including those identified in section 2] Since PDD tracks how well a network is performing on
a per-class basis, that information could be leveraged with other techniques to assist with class
understanding and retention.

Finally, our proposed training method could be extended to other tasks in computer vision, language
processing, and general classification. While PDD could be extended to other single label prob-
lems with relatively minimal changes, multi-label problems such as semantic segmentation or even
multi-label classification would require some extension in order to identify when a sample could be
appropriately dropped. In a large enough dataset, a policy could be established for justifying the
removal of data samples containing only well-understood classes, for example.
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A APPENDIX

A.1 CALCULATION OF ESTIMATED VALUES

In our paper we compare our proposed PDD approach with related data-dropping methods on 5
image classification benchmark datasets. However, not all of these cited works provided results
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on all datasets, nor code to replicate their results. Instead, we were able to estimate some of their
missing information via their described algorithm. In an effort to be as transparent as possible, we
include these calculations here, organized by table/experiment.

A.1.1 TABLE[IDATADROPOUT ESTIMATIONS

The DataDropout method proposed by [Wang et al.| (2018) reported 1220 “unfavorable” training
samples in CIFAR-10 found after the first epoch. Therefore the calculated number of datapoints
for the 500 training rounds noted in the paper for ResNet-110 was (1 epoch of the full CIFAR-10
training set) + (full CIFAR-10 training set - 1220) * (500-1 training rounds) = (45,000) + (45,000-
1,200) * 499 = 21,901,200. If it took our baseline ResNet-18 model 0.6 minutes per training round
on CIFAR-10, we can conservatively estimate training this ResNet-110 model on fewer datapoints
to be 0.5 * (number of training rounds = 0.5 * 500 = 250 minutes = 4 hours and 10 minutes on our
single GPU.

Similarly, for SVHN, DataDropout reported 24,261 “unfavorable” training samples found after the
first epoch. Therefore the calculated number of datapoints for the 50 training rounds in the paper
for ResNet-152 was (1 epoch of the full SVHN training set) + (full SVHN training set - 24,261) *
(50-1 training rounds) = conservatively 65,932 + (65,932-24,261)*49 = 2,107,811. Their reported
accuracy was 98.53. If it took our baseline ResNet-18 model 51 seconds per training round on
SVHN, we can conservatively estimate training rounds = (51 - 51/3) * 50 rounds of training = 34 *
50 = 1,700 seconds = 28 minutes and 20 seconds.

A.1.2 TABLE[I]IMPORTANCE SAMPLING ESTIMATIONS

The Importance Sampling method proposed by |[Katharopoulos & Fleuret| (2018) reported sampling
the CIFAR-10 dataset in a variable fashion, where each iteration resamples the dataset. For this
reason, and because it was not reported, the number of datapoints is not calculable. Their graph in
their figure 3 approximates the error close to 0.95. This graph reports run time of conservatively
20,000 seconds, which is 5 hours and 30 minutes.

A.1.3 TABLE[IIDROPSAMPLE ESTIMATIONS

The Greedy DropSample method proposed by [Yang et al.| (2020) reported stopping the training of
a neural network when the “accuracy stays at one for 10 epochs.” This work used custom CNNs,
rather than out-of-the-box models for the experiments we compare with. For both the MNIST and
CIFAR-10 experiments, graphs are reported to show values for total number of dropped samples
for each round of training a model. Due to the number of training rounds, we are unable to fully
estimate a number of datapoints for this related work.

For MNIST, their CNN model is shown in their figure 6 as a 16-layer convoluational network,
consisting of: [convx2 + pool + dropout] x 2 + [conv + pool] + [dropout + dense] x 3. They trained
on MNIST for approximately 800 epochs, according to their figure 7 graph, taking approximately
1,500 seconds, which is 25 minutes. They report an error rate at 0.4%, and therefore report 0.995
accuracy for their model.

For CIFAR-10, the model used was the DAWN Benchmark winning entry, which consisted of a
3-layer CNN with residual connections. They ran this model for 24 epochs, taking conservatively
1,100 seconds based upon their graph in figure 11 - this is 18 minutes and 20 seconds. Approximated
from the same figure, we estimate error rate at 8%, and therefore report estimated 0.92 accuracy for
their model.

A.1.4 TABLE[I]GENERALIZEDDROPOUT ESTIMATIONS

The GeneralizedDropout method was proposed by Rahmani & Atial(2018). They ran a custom CNN
model consisting of 5-five layers: 3 convolutional and 2 fully-connected. This model is trained on
15,000 images randomly sampled from MNIST. It is trained for 50 epochs without data dropout, then
for 200 epochs “using different basis matrices for the random data dropout.” Due to the random data
dropping in their proposed method, without a reported run time or count of data samples dropped
per round, we are unable to estimate these values.
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