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Abstract

In this paper, we study a novel approach for data-driven decision-making under
uncertainty in the presence of contextual information. Specifically, we address this
problem using a new Conditional Robust Optimization (CRO) paradigm that seeks
the solution of a robust optimization problem where the uncertainty set accounts
for the most recent side information provided by a set of covariates. We propose
an integrated framework that designs the conditional uncertainty set by jointly
learning a partition in the covariate data space and simultaneously constructing
region specific deep uncertainty sets for the random vector that perturbs the CRO
problem. We also provide theoretical guarantees for the coverage provided by
conditional uncertainty sets and for the value-at-risk performances obtained using
the proposed CRO model. Finally, we use simulated and real world data to illustrate
the implementation of our approach and compare it against two non-contextual
robust optimization benchmark approaches to demonstrate the value of exploiting
contextual information in robust optimization.

1 Introduction

In most real world decision problems, the decision maker (DM) faces uncertainty either in the
objective function that he aims to optimize, or some of the constraints that he needs to satisfy.
Stochastic Programming and Robust Optimization (RO) are the most popular methods for addressing
this issue. With the growing availability of data, there has recently been a surge of interest in modeling
optimization under uncertainty as contextual optimization problems that seek to leverage rich feature
observations to make better decisions [Ban and Rudin, 2019, Bertsimas and Kallus, 2020]. In a
simple cost minimization problem, where X ⊆ Rn and c(x, ξ) respectively capture the feasible set
of actions and a cost that depends on both the action x and a random perturbation vector ξ ∈ Rm, the
“contextual” DM has access to a vector of covariates ψ ∈ Rm assumed to be correlated to ξ. This
DM therefore traditionally wishes to identify an optimal policy, i.e. a functional x : Rm → X that
suggests an action in X adapted to the observed realization of ψ, with respect to his expected cost
over the joint distribution of (ψ, ξ):

min
x(·)

E[c(x(ψ), ξ)]. (1)

From a theoretical point of view, one can exploit the interchangeability property (see Theorem 14.60,
[Rockafellar and Wets, 2009]) to identify an optimal policy for Problem (1) using the following
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conditional stochastic optimization (CSO) problem:

(CSO) x∗(ψ) ∈ argmin
x∈X

E[c(x, ξ)|ψ]. (2)

While the literature that treats contextual optimization through the CSO problem is rich, much less
attention has been given to contextual optimization in the risk averse setting. Namely, one can easily
think about replacing the risk neutral expected value operator in problem (2) with a risk measure
such as value-at-risk or conditional value-at-risk in order to prevent the DM from being exposed
to the possibility of large costs. Moreover, while robust optimization is being used pervasively in
disciplines that employ decision models, including chemical, civil, electrical engineering, medicine,
and physics (see respectively [Bernardo and Saraiva, 1998, Bendsøe et al., 1994, Mani et al., 2006,
Chu et al., 2005, Bertsimas et al., 2007]) to name a few, the question of how to systematically integrate
contextual information in this important class of decision models remains to this day unexplored.

In this work, we therefore tackle for the first time the contextual optimization problem from the point
of view of robust optimization. Namely, we will consider a contextual DM that wishes to exploit the
side information in the design and solution of a robust optimization problem. This naturally gives
rise to the following conditional robust optimization (CRO) problem

x∗(ψ) := argmin
x∈X

max
ξ∈U(ψ)

c(x, ξ) ,

where U(ψ) is an uncertainty set designed to contain with high probability the realization of ξ
conditionally on observing ψ. Our proposed approach will be data-driven in the sense that the design
of the CRO problem will make use of historical observations of joint realizations of ψ and ξ.

Our contribution can be summarized as follows.

• We propose for the first time a framework for learning from data an uncertainty set for RO
that adapts to side information. The “training” of this conditional uncertainty set is done by
jointly learning a partition in the covariate data space using deep clustering methods, and
simultaneously constructing region specific deep uncertainty sets, using techniques from
one-class classification, for the random vector that perturbs the CRO problem.

• We establish theoretical connections between CRO and Contextual Value-at-Risk Optimiza-
tion (CVO):

min
x(·)

VaR1−ε(c(x(ψ), ξ)), (3)

where VaR1−ε(Z) := inf{t|P(Z ≤ t) ≥ 1−ε} refers to the value-at-risk of 1−ε confidence
level of Z.

• We demonstrate empirically that contextual robust optimization can improve the performance
of robust optimization models in a data-driven portfolio optimization problem that employs
real world data from the US stock market. In particular, we find that in conditions where
side information carries a strong signal about future returns, the risk of the portfolio can be
reduced by up to 15%.

The paper is organized as follows. Section 2 surveys related work. Section 3 summarizes the
approach discussed in [Goerigk and Kurtz, 2020]. Section 4 presents a Deep Cluster then Classify
(DCC) scheme and our Integrated Deep Cluster then Classify (IDCC) scheme to generate conditional
uncertainty sets. It also establishes the connections to CVO. Our case study based on real world
portfolio optimization is presented in section 5 followed by conclusions in section 6.

2 Related work

Conditional Stochastic Optimization [Hannah et al., 2010] was possibly the earliest work on CSO,
where a kernel density estimation approach is exploited to formulate and solve a CSO problem.
[Ban and Rudin, 2019] apply CSO to a newsvendor optimization problem where the performance
of linear policies and kernel density estimation is explored and where generalization error can be
controlled using regularization. [Kallus and Mao, 2020] studied methods to train forest decision
policies for CSO in a way that directly targets the optimization costs. [Ban et al., 2019] use residual
tree methods to solve general multi-stage stochastic programs where information about the underlying
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uncertainty is available through covariate information. [Kannan et al., 2020a] propose data-driven
SAA frameworks for approximating the solution to two-stage stochastic programs with access to a
finite number of samples of random variables and concurrently observed covariates. Recently, Lin
et al. [2022] has applied a conditional VaR constrained CSO formulation to the newsvendor problem.
While most of the related work focuses on an “estimate-then-optimize” approach (see also [Srivastava
et al., 2021b] and [Hu et al., 2022]), there have also been recent efforts in designing CSO models
using an end-to-end paradigm (see [Elmachtoub and Grigas, 2022] and [Donti et al., 2017]).

Distributionally robust CSO One common challenge with the applications of CSO is due to the
fact that often there are only a few samples (if any at all) drawn from the conditional distribution of ξ
given ψ for each realization of ψ [Hu et al., 2020]. This in turn causes a poor approximation of the
true conditional distribution resulting in poor out-of-sample performance. Most proposed solutions
to this issue have relied on distributionally robust optimization (DRO). For example, [Bertsimas
and Van Parys, 2021], [Bertsimas et al., 2022, Nguyen et al., 2021], and [Srivastava et al., 2021a]
all propose DRO approaches that employ distribution sets that are centered at either the estimated
conditional distribution or joint empirical distribution of (ψ, ξ). [Kannan et al., 2020b] applies
distributionally robust optimization to the residual-based CSO model proposed in [Kannan et al.,
2020a]. We finally note that none of these works have considered the problem of conditional DRO
where the distributional ambiguity set itself, namely its support or size, depending on contextual
information.

Data-driven Robust Optimization and One-class Classification There has been a growing set of
papers (see [Ohmori, 2021, McCord, 2019, Wang and Jacquillat, 2020]) proposing various frameworks
that use both supervised and unsupervised one-class classification techniques in designing the
uncertainty sets which are further integrated into the RO problems. Some approaches make use of
variance and covariance of historical data [Natarajan et al., 2008] while others [Goerigk and Kurtz,
2020, Wang et al., 2021] have exploited the representative power of deep neural networks to construct
compact uncertainty sets Up to this day, none of the data-driven robust optimization approaches have
considered accounting for contextual information.

Deep Clustering Methods Traditional clustering methods like Gaussian Mixture Models (GMM)
and k-means clustering rely on the original data representations and suffer from the curse of di-
mensionality. Recent developments in DNNs led to the learning of high quality representations,
especially auto-encoder(AE) and decoder systems are particularly appealing as they are able to learn
the representations in a fully unsupervised fashion. Several works like [Chang et al., 2017, Guo et al.,
2017, Ji et al., 2017] combine variational AEs and GMMs to perform clustering and non-linearly
map the input data into a latent space. Few works like [Fard et al., 2020] try to jointly learn the
representations and jointly cluster with k-means and learning representations. We modify these
algorithms to introduce a probability simplex that interacts with the centroids and also the center of
the uncertainty sets.

3 The Deep Data-Driven Robust Optimization (DDDRO) Approach

Focusing on a classical robust optimization model, i.e. minx∈X maxξ∈U c(x, ξ), the authors of
[Goerigk and Kurtz, 2020] propose to employ deep learning to characterize the uncertainty set U in a
data-driven environment. In particular, they consider describing the uncertainty set U in the form:

U(W,R) := { ξ ∈ Rm : ‖fW (ξ)− f̄0‖ ≤ R} , (4)

where fW : Rm → Rd is a deep neural network, parametrized using W , that projects the perturbation
vector ξ to a new vector space where the uncertainty set can be more simply defined as a sphere of
radius R centered at some f̄0.

Given a dataset Dξ = {ξ1, ξ2 . . . ξN}, they propose discovering the underlying structure of U by
training the NN using a method found in the one-class classification literature, namely minimizing
the empirical centered total variation of the projected data points:

min
W

1

N

N∑
i=1

‖fW (ξi)− f̄0‖2 , (5)
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where f̄0 := (1/N)
∑
i∈[N ] fW0(ξi) is the center of the projected points under some initial random

choice of fW0 . Once the network is trained, they calibrate the radius R of U in order to reach a
targeted coverage 1− ε of the data set.

In terms of NN architecture, they favor a special class of fully connected neural networks of depth L:

fW (c) = σL(WLσL−1(WL−1 . . . σ1(W 1(c)) . . . )) (6)

where each W ` captures a linear projection while each σ` captures a term-wise piecewise linear
activation function (e.g. ReLU, Hardtanh, or hard sigmoid):

σ`j(wj) = a`kwj + b`k if α`k ≤ wj ≤ α`k, k = 1, . . . ,K

with {a`k, b`k, α`k, α`k}Kk=1 as the parameters that identifies each of the K affine pieces.

The motivation for such an architecture comes from the proposed solution scheme for the RO problem,
which relies on a constraint generation approach (See Algorithm 3, 4 in Appendix). This scheme
relies on progressively adding scenarios to a reduced set U ′ ⊆ U until the worst-case cost of the
solution under U ′ is the same as under U . Numerically, a critical step consists in identifying the
worst-case realization in U , which is shown to reduce to a mixed-integer linear program when c(x, ξ)
is linear in ξ under the selected NN architecture due to the following representation of U(W,R):

U(W,R) =


ξ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃u ∈ {0, 1}d×K×L, ζ ∈ Rd×L, φ ∈ Rd×L∑K
k=1 u

k,`
j = 1, ∀j, `

φ1 = W 1ξ

ζ`j =
∑K
k=1 u

k,`
j a`kφ

`
j +

∑K
k=1 u

k,`
j b`k, ∀j, `

φ` = W `ζ`−1, ∀` ≥ 2∑K
k=1 u

k,`
j α`k ≤ φ`j ≤

∑K
k=1 u

k,`
j α`k, ∀j, `

‖ζL − f̄0‖ ≤ R


, (7)

where we assume for simplicity that each layer of the deep neural network has d neurons and φ`
is the output at l-th layer of the neural network. We refer interested readers to [Goerigk and Kurtz,
2020] for more details.

4 Deep Data-driven Conditional Robust Optimization

Let (ψ, ξ) be a pair of random vectors defining respectively the side-information and random
perturbation vectors of a contextual optimization problem. We can call our dataset Dψξ :=
{(ψ1, ξ1), . . . , (ψN , ξN )}. Our objective is to train a data-driven conditional uncertainty set U(ψ)
that will lead to robust solutions that are adapted to the type of perturbance that is experienced when
ψ is observed. In this section, we propose two algorithms, namely the Deep cluster then classify
(DCC) and the Integrated Deep cluster then classify (IDCC), to do so, and propose a calibration
procedure that offers some guarantees with respect to a contextual value-at-risk problem.

4.1 The Deep “Cluster then Classify” (DCC) Approach

A direct extension of G&K’s DDDRO approach in section 3 consists in reducing the side-information
ψ to a set of K different clusters, which provides states of the environment in which one wishes to
design customized data-driven uncertainty sets. Mathematically, U(ψ) := Ua(ψ), where a : Rm →
[K], is a trained K-class cluster assignment function for ψ, and each Uk, for k = 1, . . . ,K, is an
uncertainty sets for ξ that is trained and sized using the procedure described in section 3 with the
dataset Dkξ := ∪(ψ,ξ)∈Dψξ:a(ψ)=k{ξ}. This process implicitly involves multiple sequential steps
of training deep neural networks. Following [Moradi Fard et al., 2020], when performing deep
K-mean clustering to obtain a(ψ), training can take the form of Algorithm 5, where the deep K-
means algorithm trains simultaneously a representation gVE : Rm → Rd, using an encoder and
gVD : Rd → Rm, using a decoder network, and a K-mean classifier āθ(φ) := argmink∈[K] ‖φ−θk‖2
by minimizing, using stochastic gradient descent in a coordinate descent scheme, a trade-off (using
αK ) between reconstruction error and the within cluster centered total variation in the encoded space:

L1(V, θ) := (1− αK)
1

N

N∑
i=1

‖gVD (gVE (ψi))− ψi‖2 + αK
1

N

N∑
i=1

‖gVE (ψi)− θa(ψi)‖2 , (8)
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where a(ψ) := āθ(gVE (ψ)). To solve this problem, we iterate between improving V := (VE , VD)
while keeping θ fixed, and improving θ while preserving V fixed.

Once the K-mean and one-class classifiers are trained, we correct for a deficiency of DDDRO
approach, which assumes wrongfully that the projected fWk(ξ) are normalized for each Dkξ . Namely,
we replace U(W,R) with a set that employs an ellipsoid in the projected space according to the
statistics of Dkξ :

U(W k, Rk,Sk) := {ξ ∈ Rm : ‖Σkf
−1/2

(fWk(ξ)− µkf )‖ ≤ Rk} , (9)

where Sk is short for (µkf ,Σ
k
f ) with

µkf := |Dkξ |−1
∑
ξ∈Dkξ

fWk
0

(ξ) and Σkf := |Dkξ |−1
∑
ξ∈Dkξ

(fWk(ξ)− µk)(fWk(ξ)− µk)T .

The calibration of each Rk can finally be done using the same procedure as in [Goerigk and Kurtz,
2020]but using the reduced dataset Dkξ .

4.2 The Integrated Deep Cluster-Classify (IDCC) Approach

While the simplicity of the approach presented in section 4.1 makes it appealing, we identify two
important weaknesses. First, by separating the training into multiple steps, it omits tackling the
conditional uncertainty set learning problem as a whole. Namely, that low total variation in the ψ
space (or a projection of it) does not necessarily imply that low total variation can easily be achieved
in a projection of the ξ space. Second, it is unclear how to adapt the approach to a context where a
clear separation of the clusters is impossible and where the notion of partial membership to a cluster
is more appropriate.

To address the first problem, we propose an integrated framework for performing deep clustering
and deep uncertainty set design jointly. Namely, we propose to optimize all of V , θ, and {W k}Kk=1
jointly using a loss function that trades-off between the objectives used for clustering and each of
the K versions of one-class classifiers. We also tackle the issue of hard assignments by training a
parameterized random assignment policy π : Rm → ∆K , where ∆K is the probability simplex in RK ,
and θ the parameters that define the policy space. In the context of employing a soft version of deep
K-means [Fard et al., 2020]; this random assignment policy takes the form of π(ψ) := π̄θ(gV (ψ)),
where

π̄θk(ψ) :=
exp{−β‖gV (ψ)− θk‖2}∑K

k′=1 exp{−β‖gV (ψ)− θk′‖2}
(10)

With these adjustments, our proposed loss function takes the form of:

L3
α(V, θ, {W k}Kk=1) :=αS

(
(1− αK)EπD[‖gVD (gVE (ψi))− ψi‖2]

+ αKEπD[TotalVarπD(gVE (ψ), θã(ψ) |ã(ψ))]
)

+ (1− αS)
1

K

K∑
k=1

min
ϑk

TotalVarπD(fWk(ξ), ϑk |ã(ψ) = k) , (11)

where ã(ψ) ∼ π̄θ(gVE (ψ)) is the randomized assignment based on ψ, TotalVarπD(φ, θ|ã(ψ)) :=∑d
j=1 EπD[(φj − θj)2|ã(ψ)] is the conditional centered total variation of given ã(ψ). In fact, all

statistics are measured using the empirical distribution expressed in Dψξ and the conditional dis-
tribution produced by the randomized assignment policy π̄θ(gV (ψ)), i.e. PπD((ψ, ξ, ã) ∈ E) =

(1/N)
∑N
i=1

∑K
k=1 1{(ψi, ξi, k) ∈ E}π̄θk(gV (ψi)). The explicit form of equation (11) can be found

in Appendix B.1.

Overall, L3
α trades off (using αS) between the reconstruction error of the encoder-decoder networks

on ξ, the expected recognizability of the K clusters, i.e. the fact that the observed features gVE (ψ)
form distinct clusters of points, and the average compactness of the produced conditional uncertainty
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sets. In particular, as αS → 1, we can expect the minimizer of L3
α to converge to the minimizer

of the cluster and classify approach. At the other end of the spectrum, when αS → 0, the model
will produce more self contained conditional uncertainty sets but at the price of less distinguishable
clusters (in terms of ψ) that might poorly exploit the side-information. Algorithm 1 presents our
proposed training scheme for the IDCC approach.

Given that we employ a random assignment policy, we propose replacing the deterministic CRO
problem with its randomized version:

x̃∗(ψ) ∈ argmin
x∈X

max
ξ∈Ũ(ψ)

c(x, ξ) ,

where Ũ(ψ) := U(W ã(ψ), Rã(ψ),S ã(ψ))1 is a random uncertainty set, and where we express the fact
that conditionally on ψ, x̃(ψ) is a random policy that depends on the realization of ã. Given the
randomness of Ũ(ψ), one needs to be more careful in defining a calibration scheme for each Rk. Our
proposed scheme is motivated by the following Lemma, which proof can be found in appendix A.

Lemma 4.1. Let the random uncertainty set Ũ(ψ) satisfy:

PπD(ξ ∈ Ũ(ψ)|ã(ψ) = k) ≥ 1− ε, ∀k , (12)

then it satisfies:

PπD(ξ ∈ Ũ(ψ)) ≥ 1− ε. (13)

In particular, this lemma suggests calibrating each Rk using the bisection to solve:

inf

{
R

∣∣∣∣∣
∑N
i=1 1{ξi ∈ U(W k, R,Sk)}π̄θk(gVE (ψi))∑N

i=1 π̄
θ
k(gVE (ψi))

≥ 1− ε

}
, (14)

given that the resulting Rk are the smallest that satisfy (12).

Algorithm 1 Integrated deep cluster-classify with deep K-means

Input: Data-set Dψξ, Number of clusters K, hyper-parameters αK , αS , β
Randomly initialize θ0, V0, and W0

Let π0 := π̄θ0(gVE0
(ψ)) and W k

0 := W0 for all k’s
Set t := 0
repeat

Set t := t+ 1.
Update θkt := EπD[gVEt−1

(ψ)|ã(ψ) = k] using πt−1
Update (Vt, {W k

t }Kk=1) using gradient descent on (11) with θt
Get πt := π̄θt(gVEt(ψ))

until t ≥ T or convergence
Let π(·) := πt(·) and W k := W k

t for all k’s
for k = 1, . . . ,K do

Calibrate Rk using (14)
Let Uk := U(W k, Rk,Sk)

end for
Return π(·) and {Uk}Kk=1

4.3 Connections to Contextual Value-at-Risk Optimization

In the previous subsections, we proposed two different schemes to produce a possibly randomized
uncertainty set Ũ(ψ) that can be employed in a randomized CRO problem.2. We also proposed a

1Here, Sk refers to (f̄θ,V
Wk|ã(ψi)=k

, Σ̄θ,VWk|ã(ψ)=k) with

Σ̄θ,VWk|ã(ψ)=k :=

N∑
i=1

π̄θk(gVE (ψi))∑N
i=1 π̄

θ
k(gVE (ψi))

· (fWk (ξi)− f̄θ,VWk|ã(ψi)=k
)(fWk (ξi)− f̄θ,VWk|ã(ψi)=k

)T

.
2Note that in the case of section 4.1, the conditional uncertainty set is deterministic thus reducing the

randomized version of CRO to a pure CRO problem
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scheme for radii calibration so that they would satisfy the coverage property in (13). Hence, one can
derive the following connection between conditional robust optimization and the CVO problem (1).
The proof is pushed to Appendix A.

Lemma 4.2. When Ũ satisfies (13), the random policy x̃(·) to the randomized CRO problem together
with

v∗ := esssupπDmin
x∈X

max
ξ∈Ũ(ψ)

c(x, ξ)

provide a conservative approximate solution to the CVO problem under the empirical measure PπD.
Namely,

VaRD,π1−ε(c(x̃(ψ), ξ)) ≤ v∗.
In particular, in the case of the proposed DCC and IDCC approaches we have that

v∗ = max
k∈[K]

min
x∈X

max
ξ∈U(Wk,Rk.Sk)

c(x, ξ) .

As the robust optimization paradigm traditionally aims at offering statistical guarantees on the out-of-
sample performance of the prescribed solutions, we describe below how a bootstrap method can be
used to estimate the radii Rk’s.

Remark 4.1. Using bootstrapping methods, we can get a conservative approximation of each Rk as:

R̃k := inf

{
R

∣∣∣∣∣PD̃
(

N∑
i=1

π̄θk(gVE (ψi)∑N
i=1 π̄

θ
k(gVE (ψi)

1{ξi ∈ U(W k, R,Sk)} ≥ 1− ε

)
≥ 1− δ

}
where PD̃ measures the probabibility when resampling a new dataset of size N with replacement
from Dψξ. When N is large enough and assuming that each data point is drawn i.i.d. according to
some unknown probability measure P, we asymptotically get the guarantee that P(ξ ∈ Ũ(ψ)) ≥ 1− ε
with probability higher than approximately 1−Kδ.

5 Experiments

In this section, we illustrate the coverage aspect of the IDCC approach using simulated data. We will
further demonstrate the advantage of the CRO problem using a standard risk minimizing portfolio
optimization problem. We compare the performance of IDCC with that of DCC, DDDRO (with
ellipsoidal correction in (9)), and the classical ellipsoidal uncertainty approach (i.e. DCC with K = 1
and fW 1(ξ) := ξ). The IDCC and DCC methods incorporate the covariate information whereas
DDDRO and ellipsoid approaches ignore this information. The neural network architecture and other
modeling information are available in Appendix B. The code can be found on github3. Our code uses
the Pytorch implementation from [Goerigk and Kurtz, 2020], which is available online4.

5.1 Conditional uncertainty set illustration using simulated data

For ease of illustration, we consider a simulation environment where [ψT ξT ] ∈ R4 is a random
vector whose distribution is an equal-weighted mixture of two 4-d multivariate normal distributions.
We consider N = 500 and train IDCC (with K = 2), DDDRO, and the ellipsoid and calibrate the
uncertainty sets for a probability coverage of 90%, 99% (i.e. ε ∈ {1%, 10%}). As a result, DDDRO
and IDCC, which use deep neural networks, identify non-convex uncertainty sets, whose convex
hulls are presented in Figure 1 together with the calibrated ellipsoid.The figure also presents the
conditional distribution of ξ according to PπD(·|ã(ψ) = k), using IDCC’s randomized assignment,
and the training dataset. One can remark that the conditional sets produced by IDCC exploit the
side information by concentrating the uncertainty set on the region that has the most mass according
to PπD(·|ã(ψ) = k) thus leading to a less conservative RO problem then DDDRO and the ellipsoid,
which are oblivious to ψ. In fact, it appears to have successfully learned to at least partially recognize
the mixture membership using ψ and exploit this information to adapt the uncertainty set.

3https://anonymous.4open.science/r/Data-Driven-Conditional-Robust-Optimization-E160/
4https://github.com/goerigk/RO-DNN
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(a) ã(ψ) = 1,

90% coverage

(b) ã(ψ) = 1,

99% coverage

(c) ã(ψ) = 2,

90% coverage

(d) ã(ψ) = 2,

99% coverage
IDCC DDDRO Ellipsoid

Figure 1: Convex hull of trained uncertainty sets for two levels of coverage and with a conditional
uncertainty set for IDCC that exploits two clusters. The heatmap represents the conditional distribution
of ξ according to PπD(·|ã(ψ) = k). The cloud of points represents the training dataset.

5.2 Robust portfolio optimization

We further investigate the empirical out-of-sample performance of the proposed uncertainty sets
on a classical robust portfolio optimization problem. Namely, we consider a situation where an
investor is trying to minimize the worst-case return based on an uncertainty set that provides 1− ε
probabilistic coverage of the uncertain future return vector. In particular, given that x captures a vector
of investment in n = m different assets whose return are captured using ξ, we let c(x, ξ) := −ξᵀx to
capture the return on investment, and let X := {x ∈ Rn|

∑n
i=1 xi = 1, x ≥ 0} to capture the need

to invest one unit of wealth among the available assets. Following Lemma 4.2, this model can in turn
be interpreted as conservatively approximating a minx∈X VaR1−ε(ξ

ᵀx), where the objective is a risk
averse value-at-risk metric.

Dataset Our experiments make use of historical data from the US stock market. We collect the
adjusted daily closing prices for 70 stocks (as used in [Xu and Cohen, 2018]) coming from 8 different
sectors from January 1, 2012, to December 31, 2020, using the Y!Finance’s API. Each year has 252
data points and we compute the percentage gain/loss w.r.t the previous day to create our dataset for ξ.
As for side information, we use the trading volume of individual stocks and other market indices5

over the same period as covariates. Our algorithm gives the flexibility to use any number of such
metrics as contextual information. Given the time series nature of the data, at a given instance, we
use 3 years of data to train and the following year as validation to pick the hyperparameters of our
model such as learning rate, weight decay, and the optimal number of clusters. We then retrain the
model using the 4 years of data to build the final model. Upon calibrating the uncertainty set, we use
it to solve the robust portfolio optimization problem. We then apply this policy to the next 1 year’s
of data and compute the performance metric, namely Value at risk (VaR) for different confidence
levels to compare the performances. VaR quantifies the level of risk of a portfolio over a specified
time frame. Here, it gives an estimate of the maximum % loss the decision maker can incur over a
period of 1 year when he uses the policy from the RO model. Intuitively, lower the VaR, less riskier
is the generated policy. Many financial institutions use VaR to determine the amount of collateral
needed when trading financial products so lowering VaR for high confidence levels is crucial.

Experiment Design To test for the robustness of the IDCC algorithm, we experiment on various
randomly sampled stock combinations across different time periods. We randomly sampled a subset
of 15 stocks in a time window and repeated the experiment for 10 runs on 3 moving time frames. We
used learning rate = 0.01, αK = 0.5, αS = 0.5, β = 0.1 for all the experiments. We use a cold start
K-means approach to determine K for each run. We do this across all these experiments as it will
be computationally expensive to tune the parameters through grid search for each run and also our
intention is to show the learning capability of our algorithm even with minimal tuning. The parameter
tuning and implementation details can be found in appendix B.3.

5Volatility Index (VIX), 10-year Treasury Yield Index (TNX), Oil Index (CL=F), S&P 500 (GSPC), Global
Income & Currency Fund (XGCFX), Dow Jones Index (DJI)
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Figure 2: Avg. VaR across portfolio simulations. Error bars report 95% CI.

Results Fig. 2 shows the avg. VaR across the runs at different confidence levels. It is evident that
IDCC generally performs better than the baseline models. This difference is especially noticeable
at a higher confidence level and vanishes as we move to lower confidence levels. Table 1 provides
more details by comparing the overall and conditional cluster level VaR with the baseline models.
Specifically, in each run, we identify each cluster as either the “majority” or “minority” cluster
depending on its frequency and report averages of VaR (among the 10 runs) for each of these labels.
The average frequencies for each label are also reported in the table. In particular, one can observe
that the improvement on average overall VaR can reach up to ∼15% (see in 2019 at a 0.99 confidence
level). This advantage is even more clearly visible when we look at the individual cluster-level
conditional VaR. For instance, in the year 2018 for the 0.99 confidence level, the majority cluster
(∼68% data) provides an improvement of 19% and an overall improvement of 9% compared to the
second best baseline model. A similar pattern is observed for the year 2019 as well. In the year 2017,
the overall performance of IDCC is close and for some confidence levels slightly above the baseline
models. However, we see that the majority cluster (∼80% data) is performing better than the baseline
models while the minority cluster has a slightly higher risk. We attribute this loss in performance to
the fact that the minority clusters are much less frequent (∼20% data) and therefore have fewer data
available to properly learn its conditional uncertainty set. This large difference in frequencies might
also indicate that the side information does not have a strong signal for the behavior of the returns
during this period of time.

2017 2018 2019
Conf. 1− ε 0.8 0.9 0.95 0.99 0.8 0.9 0.95 0.99 0.8 0.9 0.95 0.99
IDCC 0.30 0.55 0.75 1.37 0.64 1.16 1.67 2.86 0.44 0.77 1.11 2.02

Overall DDDRO 0.31 0.52 0.79 1.46 0.63 1.24 1.84 3.17 0.45 0.84 1.27 2.35
Ellipsoid 0.30 0.49 0.75 1.45 0.72 1.45 2.04 3.19 0.47 0.81 1.30 2.52

Cond. on Cluster Freq. 80% 68% 59%
Majority IDCC 0.31 0.52 0.71 1.30 0.57 1.08 1.50 2.62 0.44 0.75 1.17 1.88
Cluster DDDRO 0.31 0.52 0.74 1.35 0.59 1.15 1.63 3.23 0.45 0.85 1.31 2.06

Ellipsoid 0.32 0.52 0.74 1.41 0.69 1.29 1.92 3.08 0.47 0.85 1.25 2.31
Cond. on Cluster Freq. 20% 32% 41%
Minority IDCC 0.30 0.61 0.77 1.43 0.96 1.57 2.05 3.13 0.48 0.82 1.15 2.22
Cluster DDDRO 0.30 0.56 0.84 1.39 1.00 1.66 2.04 3.30 0.49 0.84 1.40 2.39

Ellipsoid 0.28 0.47 0.69 1.13 1.17 1.80 2.43 3.43 0.49 0.82 1.38 2.57

Table 1: Comparison of average value-at-risk (over 10 runs) for different levels of probability
coverage. Both the overall VaR and conditional VaR given the membership to the majority/minority
clusters are presented.

6 Conclusion and Future Work

In this work, we introduced a new approach, Conditional Robust Optimization, for solving contextual
optimization problems in a risk averse setting. We proposed a novel integrated approach to design
uncertainty sets that adapt to revealed covariate information. We identified connections to contextual
value-at-risk optimization and showed empirically that our method reduces the out-of-sample VaR
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considerably compared to non-contextual RO schemes when the level of protection needed is high. As
future work, we find that it should be interesting to integrate data-driven conditional uncertainty sets
in the context of multi-stage robust optimization models. Given that clustering techniques are often
prone to learning correlations from the data that do not reflect true causal relations, so there might
be a need to integrate causal inference methods into our approach. One might also be concerned
regarding fairness considerations in contexts where side information might allow to treat of a certain
class of individuals differently from others. This last issue might be addressed by adding fairness
consideration in our integrated loss function.
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