
Fail2Progress: Learning from Failures with Stein
Variational Inference for Robot Manipulation

Yixuan Huang1, Novella Alvina1, Mohanraj Devendran Shanthi1, Tucker Hermans1,2
1University of Utah 2NVIDIA Research

Abstract—Skill effect models for long-horizon manipulation
tasks are prone to failures in conditions not covered by training
data distributions. Therefore, enabling robots to reason about
and learn from failures is necessary. We investigate the problem
of efficiently generating a dataset targeted to observed failures.
After fine-tuning a skill effect model on this dataset, we evaluate
the extent to which the model can recover from failures and
minimize future failures. We propose Fail2Progress, an approach
that leverages Stein variational inference to generate multiple
simulation environments in parallel, enabling efficient data sample
generation similar to observed failures. Our method is capable of
handling several challenging mobile manipulation tasks, including
transporting multiple objects, organizing a constrained shelf, and
tabletop organization. Through large-scale simulation and real-
world experiments, we demonstrate that our approach excels at
learning from failures across different numbers of objects. Further-
more, we show that Fail2Progress outperforms several baselines.

I. INTRODUCTION

Learned models of skill effects [46, 30, 10, 64, 2] show
promising results in solving long-horizon manipulation tasks
via skill sequencing. To train these models, researchers typically
leverage simulation to efficiently generate large-scale, diverse
data. However, robots using skill-based models in unstructured
and uncertain real-world environments will inevitably struggle
in out-of-distribution scenarios that are significantly different
from the training datasets. In response, we want our robots to
detect failures, recover from failures, and learn to minimize fu-
ture failures so that they can continuously adapt once deployed.

Skill-effects models predict the change in world state when
running a skill given an initial observation and continuous
parameters associated with the skill. These effects can be full
metric states, such as the poses of objects, or symbolic states
such as inter-object relations, logical states, or preconditions of
other skills. Within this paradigm, we define a symbolic-level
skill execution failure to occur when the world symbolic state
after execution does not match the predicted (i.e. planned)
symbolic effect state (i.e. incorrect symbolic predictions).
When operating with symbolic states, the robot does not need
to perfectly match any predicted metric state as long as the
high-level sub-goal is reached.

Assuming the robot itself does not break and other agents
do not disturb the environment, we can categorize failures
into two types: (1) those arising from incorrect symbolic
predictions (e.g., Fig. 1) and (2) those resulting from a
Sim-to-Real (Sim2Real) gap during closed-loop skill execution.
Specifically, if the system achieves the desired symbolic out-
come, it indicates there is no skill-symbolic Sim2Real gap, even
if the robot acts somewhat differently in the real world than in
the simulator. If a failure does occur, it arises either because the

trained model would incorrectly predict effects in an equivalent
simulation scenario or because the closed-loop execution in
simulation deviates significantly from its real-world execution.
The Sim2Real gap could be caused by real-world perception
noise, controller mismatch, or inaccurate physical modeling
in the simulation, among other causes (details in Appx. H). In
this paper, we investigate detecting failures, classifying failure
types, and learning from failures due to incorrect symbolic
predictions. Note that our approach is complementary to other
works [81, 78, 67] addressing the Sim2Real gap.

While a robot could learn directly from real-world failure
cases, a single failure instance is insufficient to effectively
refine modern large parameter models [13, 37, 45]. The robot
could instead try to explicitly generate more real-world failure
scenarios [41, 75], but making the robot explore in the open
environment poses risks to the robot and the surrounding
environment. To address this, Real-to-Sim (Real2Sim)
approaches [56, 11, 80] have gained popularity in robot manip-
ulation, as they enable safe and efficient creation of simulation
environments. Nevertheless, current methods emphasize high-
fidelity simulations, which can be computationally expensive
and require extensive fine-tuning [56, 11] or environment
scanning [80]. Therefore, generating diverse data conditioned
on failure cases efficiently and safely to improve skill effect
models is an important and open question to address.

In this work, we advocate for generating low-fidelity simula-
tion environments informed by real-world failures. We can gen-
erate such simulation datasets efficiently and safely to fine-tune
skill effect models to minimize future failures in long-horizon
tasks. Recent progress in physical simulation [55, 61] has
shown success in accelerating simulation by running multiple
environments in parallel on graphics processing units (GPUs).
To leverage the power of parallel simulation, we propose to gen-
erate multiple simulation states in parallel. To this end, we for-
mulate a variational inference problem to generate datasets tar-
geted to observed failures for use in refining a skill effect model.
To efficiently generate samples in parallel, we propose using
Stein variational inference (SVI) [63] as our variational solver.

We introduce Fail2Progress, which employs SVI to generate
a simulation dataset informed by failure cases to enhance the
skill effect model. When the robot detects a real-world failure
occurrence, it records the relevant state information (e.g.,
object relations), observation, and the executed robot skill
associated with the failure. Given this, Fail2Progress generates
a simulation dataset that approximates the joint distribution
of states that match the observed failure and actions that
maximize the robot’s information gain [74] of its current skill

Generate Targeted Data

Real World Execution

🔥 Finetune Model

Multi-object Transport Constrained Packing

Detected Diverse Failures

Hierarchical Tabletop Organization

not enough
space

Fig. 1: Overview of Failure Case Reasoning. Top: Based on failure cases due to incorrect symbolic predictions, our approach generates
targeted, diverse simulation data in parallel to fine-tune the robot’s model. Bottom: The fine-tuned model successfully performs diverse
long-horizon manipulation tasks in challenging real-world scenarios.

effect model. The robot then fine-tunes its skill effect model
on this dataset to improve its future handling of scenarios
similar to the observed failure, as shown in Fig. 1.

In summary, our contributions are: (1): the formulation of a
two-category failure classification problem between incorrect
symbolic predictions and a Sim2Real gap. (2): We are the
first to formulate failure case reasoning for long-horizon
manipulation tasks as a variational inference problem, enabling
the generation of diverse simulation data to improve the
skill effect model. (3): We propose using Stein variational
inference to approximate multi-modal posterior distributions
over simulation states and robot skill parameters, thereby
facilitating effective and efficient dataset generation. (4): We
implement our proposed approach with three distinct skill
effect model formulations [30, 10, 64], efficiently generating
low-fidelity simulation environments. Through large-scale
mobile manipulation experiments, we demonstrate that
Fail2Progress outperforms several baselines.

II. RELATED WORK

Failure case reasoning has gathered significant attention in
the robotics community [20, 34, 3, 72, 5]. Many works leverage
large language models (LLMs) [19, 73, 52] and vision language
models (VLMs) [18, 3, 17] to detect failures, with some propos-
ing replanning strategies to recover from failures [52, 73, 28].
However, less attention has been given to improving models
based on failures to minimize future failure occurrences. Thoma-
son and Kress-Gazit [77] propose to automatically improve a
symbolic abstraction of a robot skill from observed failures. In
contrast, we focus on improving pretrained skill effect models.
Kumar et al. [41] enable the robot to explore real-world envi-
ronments to improve its model. While effective, their approach
is limited to closed environments and faces safety and efficiency
challenges when generalizing to open, unstructured settings.

Real-to-Sim approaches show promise in efficiently
generating large-scale simulation datasets for policy

learning [80, 79, 82, 11, 47], and improving simulation physical
parameters using real-world data [59, 9, 54, 67, 6]. Additionally,
there is extensive literature on generating articulated objects
from real-world 2D or 3D data [66, 11, 56, 35, 26, 57].
However, these approaches primarily focus on creating high-
fidelity simulations, which can be computationally inefficient.

Stein variational inference (SVI) has found application in
robotics due to its ability to approximate high-dimensional,
multimodal posterior distributions [63, 7, 44, 65, 42, 43, 27].
Existing use cases focus on generating diverse and robust
plans under uncertainty in various contexts [7, 43, 63, 44].
We instead use SVI to generate diverse simulated datasets to
improve learned models.

III. SKILL EFFECT MODELS

We build our failure reasoning approach on top of skill effect
models [30, 10, 64] that can solve long-horizon, geometrically
complex tasks directly from high-dimensional, partial-view
point clouds. Our skill effect models require segmented point
clouds and thus assume a perception pipeline with (1): the
semantics of objects and (2): the segmentation of each object.
In this paper, we use open-source models for segmentation [40]
and detection [51]. We assume a given set of manipulation skill
primitives such as push, pick and place, etc. L={ϕ1,...,ϕK}.
Each primitive ϕk is parameterized with a continuous parameter
ak∈Rm. A robot skill ϕk(ak) is a skill primitive parameterized
by ak that can be executed on the robot. A set of relations
R={on,left,right,...} is also given, the relations include
inter-object relations or single-object relations. Inter-object rela-
tions include spatial relations like left and physical relations
like in-contact. Single-object relations include whether an
object is manipulable (e.g., a shelf is not manipulable)
and whether a drawer is open. The plan skeleton ϕ1:H is
defined as a sequence of feasible primitives. When the plan
skeleton is paired with valid continuous parameters, it enables
the robot to achieve the goal relations from the initial state.

A skill effect model can be trained with a large-scale
simulation dataset D={(st,Ot,ϕt,at,st+1,Ot+1)}, where Ot

represents the observation at time t as segmented point clouds
and st represents the simulation state information including
geometric information like object pose and physical information
like the object friction parameters and ϕt represents the skill to
execute on the simulated robot with corresponding continuous
parameters at. Given the initial simulation state st, we can get
the effects of the skill ϕt(at). The ground-truth relations rt are
a function of the simulation state st. We train the model, Γ, with
the dataset, D. The trained model can predict the probability
of achieving specific relations based on an initial point clouds
observation, O0, a robot skill sequence, and a training dataset as
Γ(r|O0,ϕ1:H ,a1:H ,D), where r∈R. Given a goal, G, defined
as a conjunction of desired relations g1 ∧ ... ∧ gM , gi ∈ R.
The planning objective is to find a skill sequence ϕ1:H(a1:H)
that maximizes the probability that the goal relations are
achieved p(G|O0, ϕ1:H , a1:H ,D), where the plan skeletons
ϕ1:H could be generated using any number of techniques
such as: foundation models [30, 48], graph search [31], or
other classical planners [24]. Given the skeleton, one can
maximize the planning objective using standard numerical
optimization techniques such as a shooting method [30, 2, 48]
or a cross-entropy method [31, 29, 32]) to generate continuous
parameters a1:H . For more details (e.g., implementation
details) about the skill effect model, please refer to Appx. L.

IV.
DETECTING AND CLASSIFYING FAILURES AUTONOMOUSLY

Consider a robot operating using a skill effect model Γ
trained on some dataset, D. A user tasks the robot to achieve a
goal, G. Given an initial observation, O0, its skill effect model,
and the goal, the robot plans a skill sequence, ϕ1:H(a1:H).
In addition to the skill sequence itself the skill effect model
predicts a sequence of expected relations, R′

k (i.e. symbolic
states) that the robot will observe after executing each skill in
its sequence for k=1,...,H . The robot now begins executing
its skills following the plan. After each skill execution in the
sequence, the robot can observe the current scene, Ok, and
detect the current symbolic state as R̂k. When the observed
relations, R̂k, don’t match the predicted relations, R′

k, the
robot detects that it has failed to achieve the current subtask.

In the case of a detected failure, the robot stores the
associated failure event in order to learn from it. We define
a failure event to include the relevant observations, relations
(i.e. symbolic states), and skill associated with the failure:
F =(OF =Ok−1,RF = R̂k−1,ϕ

F =ϕk,RF ′= R̂k). Once the
robot has detected a failure, it will classify the failure category.
It first reconstructs the same simulation based on observation
OF and predicts the relational effects of the action ϕk(ak)
as R′′

k . If the simulation relational effects R′′
k match the

real-world relational effects R′
k, then the robot will classify

this failure as stemming from incorrect symbolic predictions.
Otherwise, this failure is classified as a Sim2Real gap. We
now consider the problem of learning from the failure instance
to improve the skill effect model Γ.

V. GENERATING
TARGETED DATASETS TO LEARN FROM FAILURE

Since modern, large neural networks typically cannot learn
from a single failure instance [13, 37, 45], we pose the problem
of learning from failures as a problem of efficiently collecting a
new dataset D+. Determining which data points from an infinite
possible set to generate and label can naturally be defined
as an active learning problem [69, 14, 53, 74]. From this
perspective, we can quantify the effectiveness of the generated
additional training dataset D+ using the expected information
gain criteria [74]. However, we want to target our new
dataset to be similar to the scenario in which the robot failed,
something which information gain alone does not address.

We thus define our problem as finding a dataset D+ that
yields high expected information gain in terms of improvement
in the predictions from Γ associated with the detected failure.
At the same time, we ensure that the samples in D+ have a
high probability of the same relations observed by the robot
prior to executing the failed skill. Let us first define the form of
a single sample d+i ∈D+, as d+i =(s+i ,O

+
i ,ϕ

F ,a+i ,s
++
i ,O++

i).
Note that the skill, ϕF , is fixed for all samples to be the
skill that failed to achieve the subtask. Next let us define the
results of evaluating the sample action a+i in the simulator f
as s++

i =f(s+i ,ϕ
F ,a+i), which when rendered defines the post

skill observation O++
i =Ψ(s++

i). We also render pre-action
states to observations as O+

i =Ψ(s+i). Thus, samples in D+

have only two free variables for us to search over: the initial
simulator state, s+i ; and the action to execute a+i . We will use
S+ to denote the set of state samples, {s+} in D+, and S
to denote the random variable associated with the state. We
will use a similar notation for actions and observations.

We can formalize our dataset generation problem as the fol-
lowing constrained optimization problem, noting that maximiz-
ing the expected information gain is equivalent to maximizing
the KL-divergence between the predictive distributions of the
updated model Γ+ fine-tuned on D+, and the original model Γ

argmax
D+

DKL

(∏
r∈RF ′

Γ+(r|O,ϕF ,A,D∪D+)

∥∥∥∥∥∏
r∈RF ′

Γ(r|O,ϕF ,A,D)

)
(1a)

subject to S+∼P (RF ,OF |S) (1b)

Thus, we must find a set of simulator states, S+, and actions
A+ which maximize the active learning objective, while also
ensuring the sample states would generate the same relations
and point cloud observations observed by the robot before the
failure. This distribution in Eq. 1b factorizes as

P (RF ,OF |S)=
∏

r∈RF

Γ(r|O=Ψ(S))P (OF |S)P (S) (2)

where the first term, Γ(r|O=Ψ(S)), encodes the objective of
finding states in the simulator that achieve the same relations
when rendered and evaluated by the skill effect model. The
second term, P (OF |S), ensures that we generate point clouds

that match the failure observation. The final term, P (S),
encodes a prior over valid states in the simulator.

This formulation presents several computational challenges.
(1) The objective in Eq. 1a is intractable because there exists
an infinite number of possible datasets, D+. (2) Evaluating
Eq. 1 requires running the simulator to generate all samples in
the putative D+ and retraining the skill effect model Γ for each
possible dataset. (3) Finding simulator states s+i that render
to point clouds matching the failure observation, amounts
to an inverse problem over object geometries and poses. (4)
Ensuring that the states obey the constraint while maximizing
the objective defines a high-dimensional, non-convex problem.

A. Approximate Constrained Expected Information Gain

We propose two specific approximations to the problem
defined in Eq. 1 in order to make the problem tractable. We
can summarize these approximations in the following problem:

argmax
S+,A+

∏
r∈RF ′

H
(
Γ(r |ξ(S)OF ,ϕF ,A,D)

)
(3a)

subject to S+∼Γ(rF |O=ξ(S)OF)P (S) (3b)

Here we have replaced the expected information gain objective
in Eq. 1a with the entropy defined over the epistemic uncer-
tainty [33, 36] of the currently trained model, Γ(·,D), where
H(P (Y |X)) =−

∑
y∈Y P (Y = y |X)lnP (Y =y |X). As a

common approximation widely used in active learning [69, 14],
this allows us to avoid running the simulator and fine-tuning
at each iteration of dataset optimization, thereby simplifying
the objective. The distribution defined in Eq. 2 implies that
one needs to search over object poses and geometries that
match the appearance of the partial-view point clouds observed
during the failure event. This defines an infinitely large space of
possible object shapes, which we wish to avoid searching over.
Instead, we simplify the constraint to transpose the poses of the
individual object point clouds in OF , while ensuring that the
point clouds still achieve the same relations when evaluated by
the detector, i.e. Γ evaluated without any actions. We denote by
ξ(s)OF the segment-wise transformation of the point cloud to
the poses defined by the state vector s. Note, this allows us to
search over object poses without using the full physics simulator
or renderer. We use the simulator to generate D+ after finding
S+ and A+. We describe how we instantiate this transformed
point cloud to a full object for the simulator in Sec V-C.

B. Generating Datasets via Stein Variational Inference

We approximately solve the constrained optimization in Eq. 3
in two stages. First, we find a set of state samples S+ that
approximates the posterior distribution defined by Eq. 3b. We
formulate finding this set as a variational inference problem.
Then keeping S+ fixed, we solve for the continuous action pa-
rameters A+ that maximize Eq. 3a using generalized Bayesian
inference [58, 63]. To solve both inference problems, we lever-
age Stein variational gradient descent which we now review.

Stein Variational Gradient Descent: In variational
inference one defines a tractable distribution q(X) to
approximate the target distribution P (X) [8]. One then

optimizes over the parameters defining the variational
distribution q in order to minimize the KL-divergence between
the variational distribution and the target distribution P (X)

as argmin
q(X)

DKL

(
q(X)

∥∥ P (X)
)

. Stein variational inference

represents the posterior as a set of particles q = {xi}Mi=1.
Stein variational gradient descent [50] (SVGD) leverages
gradient-based optimization to guide the particles in a
direction that minimizes the KL divergence. SVGD performs
efficient approximate inference through parallel gradient-based
optimization and can contend with high-dimensional and
multi-modal posterior distributions. An SVGD particle xi

is updated at iteration k as x
+(k)
i ← x

+(k−1)
i +ηΦ(x

+(k−1)
i),

where Φ is the Stein variational gradient computed using the
Stein operator and a kernel k(x+

j ,x
+
i). In this paper, we use

a radial basis function (i.e. squared-exponential) kernel and
set its kernel bandwidth using the median heuristic [63, 21].

In the case of generalized Bayesian inference (GBI),
we modify the variational inference objective to account
for defining a loss function over our variables instead of
a traditional likelihood [58, 63]. Given a loss function
L(Y, X) for an arbitrary random variable X and some
observations Y , GBI defines the following approximate
posterior PL(X | Y) ∝ P (x)exp(−βL(Y,X)). We can then
use this approximate posterior within a Stein variational
inference framework by solving the following problem
argmin

q∈Q
βEX∼q[L(X,Y)]+DKL

(
q(X)

∥∥P (X)
)

.

Generating State Samples: We want to find samples
q(S) = {s+i }Mi=1 that approximate the posterior distribution
P (rF |O+ = ξ(S)OF)P (S), where P (S) is a uniform prior
over all feasible states. The posterior distribution ensures that
the transformed point clouds match the relations in the failure
case rF . This defines the following variational inference
problem: argmin

q(S)

DKL

(
q(S)

∥∥ Γ(rF | O+ = ξ(S)OF)P (S)
)

and it’s solved by using SVI.
Generating Action Samples: Given our state samples

generated using Stein variational inference to approximate
the distribution in Eq. 3b, we can now turn our attention to
solving for the action set A+. To formulate this problem we
make use of the generalized Bayesian inference framework
outlined above. Here we define the loss function, L, to be the
entropy loss defined in Eq. 3a and let β=1. The variational
distribution takes the form q(A) = {(s+i ,a

+
i)}Mi=1, where we

keep the values of s+i fixed and search only over actions. This
defines the following variational inference problem:

argmin
q(A)

Es+,a+∈q(A)

[∏
r∈RF

−H(Γ(r |ξ(s+)OF ,ϕF ,a+,D))

]
+ DKL

(
A+
∥∥P (A)

)
(4)

where P (A) is uniform prior over actions. We solve the
variational inference problem for generating state and action
samples using SVI. We provide the details in Appx. N.

Detected and classified real-
world failure

States:
approximate

failure relations

Actions:
maximize

information gain

SVI

Goal achieved!

Goal: throw all the trash into the garbage can

Generated simulation data

🔥
Finetune m

odel

…

Fig. 2: Overview of Fail2Progress. Our approach first detects the real-world failure and classifies it as incorrect symbolic predictions. Based
on the real-world failure, Fail2Progress generates particles representing simulation states and actions to approximate posterior distributions.
The state posterior distribution captures failure relations (e.g., objects inside the box), while the action posterior distribution maximizes the
information gain of the skill effect model. Using these particles, a diverse simulation dataset is created to fine-tune the skill effect model.
After fine-tuning, the model successfully recovers from the failure and completes the real-world task of cleaning.

C. Real-to-Sim Object Generation

After running the two Stein inference procedures, we
obtain optimized particles denoted as {s+i , a

+
i }Mi=1. We

now must generate the full dataset in simulation. First, we
generate a simulation scene based on s+i and then execute
the corresponding robot skill, a+i . Since a failure observation,
OF , contains semantic segments for each object, we fit the
corresponding object shapes (e.g., cuboids, open boxes, and
drawers) based on these semantics. The bounding box of each
segment determines the size of each object and combined
with each object’s pose, we construct the simulation scene.

We use pre-defined physical parameters (e.g., friction
and center of mass) for each object class. After creating
the simulation scene using s+i and executing robot skill,
(ϕF ,a+i), we obtain our fine-tuning dataset, D+, to refine the
skill effect model Γ. We note that our bounding-box-based
real-to-sim scene generation is chosen primarily for its
efficiency, allowing us to compare different dataset generation
approaches. However, our primary contribution, Fail2Progress,
is complementary to other real-to-sim methods [56, 80, 11].
If simulated objects generated by a Real2Sim pipeline do not
capture important features of real objects, they may cause (1):
incorrect classifications of failure types (incorrect symbolic
predictions vs Sim2Real gap), and (2): poor fine-tuning data
generation to improve the model. We examine the quality of our
Real2Sim approach in the context of Fail2Progress in Sec. VI.

VI. EXPERIMENTS & RESULTS

In this section, we present both simulation and real-world
experiments to address several key questions: (Q1): To what
extent does learning from failures improve long-horizon manip-
ulation tasks? (Q2): Is adding more data sufficient to resolve

all failure cases? (Q3): Can replanning alone effectively handle
all failure scenarios? (Q4): How does Fail2Progress perform
under noisy input? (Q5): Does SVI improve the performance
of Fail2Progress? (Q6): Can Fail2Progress generalize to novel
scenarios absent from both the pre-training and fine-tuning
datasets? (Q7): Is Real2Sim accurate enough for our tasks?

We first use IsaacGym [55] to generate a pre-training
dataset containing 40,000 skill executions, which is larger than
the datasets used in [30, 10, 64]. After pre-training a skill
effect model with this dataset, it is evaluated across diverse
scenarios until a failure is detected. Based on the observed
failure, Fail2Progress utilizes SVI to generate particles
representing simulation states and corresponding robot actions.
Once the simulation scenes are created and the robot skills
are executed, Fail2Progress generates a targeted simulation
dataset to fine-tune the skill effect model. Specifically, this
targeted dataset consists of 20 diverse environments and their
corresponding robot actions. We chose 20 data points based
on an ablation study presented in Appx. F. Figure 2 visualizes
an example simulation dataset generated by our approach.

Baseline Comparisons: In this paper, we compare our
proposed approach, Fail2Progress, against six baselines on three
state-of-the-art skill effect models [30, 10, 64]: Original [30,
10, 64]: These are the state-of-the-art skill effect models
without fine-tuning. It serves as a baseline to demonstrate the
performance of pure skill effect models without learning from
out-of-distribution failures. Small: This baseline was trained
using the pre-training dataset with a small set (40000+20 data
points). Large: This baseline used the pre-training dataset
alongside a much larger dataset (40000+2000 data points).
Gradient [53]: This approach uses stochastic gradient descent
to update individual particles, employing the same objective as

Fail2Progress, while generating each sample sequentially and
independently. This baseline serves to demonstrate the effec-
tiveness of Fail2Progress. Sampling [14]: This sampling-based
method iteratively generates each simulation state with the cor-
responding robot action until they satisfy the objective [25]. We
use this baseline to highlight the challenges faced by sampling-
based approaches in high-dimensional spaces. Replanning [52]:
This approach relies exclusively on replanning to recover from
failure cases. We include it to assess whether a pure replanning
strategy is sufficient for failure recovery. We evaluate our
approach against baselines in the tasks shown in Fig. 1. We
provide detailed explanations of these tasks in Appx. C.

Original Small Large Replanning Sampling Gradient Fail2Progress

Points2Plans [30] 11% 13% 16% 24% 53% 45% 86%
Stow-GNN [10] 10% 11% 15% 21% 51% 44% 80%
Binary-Pred [64] 8% 9% 12% 19% 41% 38% 72%

TABLE I: Simulation experiments for the Hierarchical Tabletop
Organization. Fail2Progress outperforms all baselines by a large
margin. Further details are reported in Appx. G.

Simulation Success Rate Evaluation: We first compare
Fail2Progress against all baselines on the Hierarchical Table-
top Organization task. We evaluate execution success rates
across varying numbers of objects, as shown in Table I. Each
approach is tested with 300 trials. The comparison between
Fail2Progress and Original demonstrates that Fail2Progress
significantly outperforms Original, highlighting the importance
of learning from out-of-distribution failures (Q1). The compar-
ison shows that Fail2Progress outperforms Small and Large
by a large margin, demonstrating that merely adding more
data is insufficient to resolve all failure cases, highlighting
the importance of our approach in selecting quality, targeted
data (Q2). While Replanning performs slightly better than
Original, it falls far short of Fail2Progress, demonstrating that
replanning alone is insufficient for recovering from failures,
particularly in scenarios with large prediction errors in the
dynamics model (Q3). Furthermore, the success rate compar-
isons among Fail2Progress, Gradient, and Sampling reveal that
Fail2Progress consistently outperforms both baselines (Q5).
This superior performance is attributed to SVI’s capability to
effectively approximate high-dimensional, multi-modal poste-
rior distributions. Furthermore, the average relation detection F1
score of our approach is 0.92, ensuring reliable failure detection.

Generalization Scenarios 3objs ↑ 5objs ↑ 7objs ↑ view1 ↑ view2 ↑

Fail2Progress 87% 81% 71% 83% 85%
Gradient 51% 40% 18% 42% 44%
Sampling 62% 45% 23% 51% 47%

TABLE II: We show the generalization capability of Fail2Progress in
simulation across varying numbers of objects and different viewpoints.
The 5objs, 7objs, view1, and view2 scenarios are unseen.

Generalization Evaluation: We assess the generalization
capability of Fail2Progress compared to Gradient and Sampling
in the Multi-object Transport task with the Points2Plans
architecture. We evaluate generalization to an unseen number
of objects and unseen viewpoints shown in Table II. While
all approaches experience some performance degradation,
Fail2Progress maintains strong performance (Q6).

������
����� ���������

���

��	

���

��

���

��
��
��
��
��

��

(b): Success Rate with Noisy Input(a): Real World Success Rate

�����!
����! �����!���

���

��	

���

��

���

�#
��

�!
!�

��
"�

������ �� �!! � �����" ��������

Fig. 3: Fail2Progress consistently achieves higher success rates than
all baselines on the Hierarchical Tabletop Organization task (a).
Without artificially added noise in the point clouds, Fail2Progress
performs well. However, its performance degrades under a large
Sim2Real gap caused by noisy point clouds (b).

Real-world Quantitative Evaluation: We compare our
approach, Fail2Progress, with the Gradient and Sampling
baselines in real-world scenarios with the Points2Plans
architecture. As shown in Fig. 3a, Fail2Progress consistently
outperforms both baselines (Q5). For the real-world
experiments, we performed 10 trials per approach for each
object count. We also examine how the Sim2Real gap affects
the performance of Fail2Progress, as shown in Fig. 3b.
Without artificially added noise in the real-world point clouds,
Fail2Progress successfully detects failures, classifies the failure
reason as incorrect symbolic predictions, and achieves a high
success rate shown in the left bar of Fig. 3b, which demonstrates
that Sim2Real gap is small and Real2Sim is accurate
enough (Q7). However, the Sim2Real gap becomes a significant
issue when the real-world point clouds are noisy. To analyze
this effect, we add random Gaussian noise to the point clouds.
We quantify the Sim2Real gap as the difference in predicted
relations between the real-world and reconstructed simulation
scenarios, using the same robot skill. With noisier point clouds,
the Sim2Real gap increases, leading to a degradation in the
performance of Fail2Progress (Q4). We provide efficiency
experiments (Appx. D), further qualitative analysis (Appx. B),
and a summary of key findings (Appx. E) in the appendix.

VII. CONCLUSION

This work addresses the problem of learning from failures
in long-horizon manipulation tasks using learned skill effect
models. We propose generating additional, targeted simulation
datasets based on observed failures to fine-tune the pre-trained
skill effect model. We formalize the task as a probabilistic
inference problem that maximizes the information gain of
the datasets while ensuring the datasets remain close to the
observed failure. To solve it, we introduce Fail2Progress,
an approach that leverages SVI to approximate multi-modal
posterior distributions. Through experiments, we demonstrate
that Fail2Progress can generate failure-driven simulation
datasets to improve the skill effect model more effectively
and efficiently compared to six baselines. Furthermore, we
deploy Fail2Progress on a mobile manipulator, showcasing
its ability to perform diverse real-world tasks, such as packing
groceries, packing a constrained shelf, and organizing a table.
We provide a detailed limitations analysis in Appx. A.

REFERENCES

[1] Christopher Agia, Krishna Murthy Jatavallabhula,
Mohamed Khodeir, Ondrej Miksik, Vibhav Vineet,
Mustafa Mukadam, Liam Paull, and Florian Shkurti.
Taskography: Evaluating robot task planning over large
3d scene graphs. In Conference on Robot Learning,
pages 46–58. PMLR, 2022.

[2] Christopher Agia, Toki Migimatsu, Jiajun Wu, and
Jeannette Bohg. Stap: Sequencing task-agnostic policies.
In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 7951–7958. IEEE, 2023.

[3] Christopher Agia, Rohan Sinha, Jingyun Yang, Ziang
Cao, Rika Antonova, Marco Pavone, and Jeannette
Bohg. Unpacking failure modes of generative policies:
Runtime monitoring of consistency and progress. In
8th Annual Conference on Robot Learning, 2024. URL
https://openreview.net/forum?id=yqLFb0RnDW.

[4] Alper Ahmetoglu, Batuhan Celik, Erhan Oztop, and
Emre Ugur. Discovering predictive relational object
symbols with symbolic attentive layers. IEEE Robotics
and Automation Letters, 2024.

[5] Pasquale Antonante, David I Spivak, and Luca Carlone.
Monitoring and diagnosability of perception systems. In
2021 IEEE/RSJ international conference on intelligent
robots and systems (IROS), pages 168–175. IEEE, 2021.

[6] Rika Antonova, Jingyun Yang, Priya Sundaresan,
Dieter Fox, Fabio Ramos, and Jeannette Bohg. A
bayesian treatment of real-to-sim for deformable object
manipulation. IEEE Robotics and Automation Letters,
7(3):5819–5826, 2022.

[7] Lucas Barcelos, Alexander Lambert, Rafael Oliveira,
Paulo Borges, Byron Boots, and Fabio Ramos. Dual
Online Stein Variational Inference for Control and Dy-
namics. In Proceedings of Robotics: Science and Systems,
Virtual, July 2021. doi: 10.15607/RSS.2021.XVII.068.

[8] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe.
Variational inference: A review for statisticians. Journal of
the American Statistical Association, 112(518):859–877,
apr 2017. doi: 10.1080/01621459.2017.1285773. URL
https://doi.org/10.1080%2F01621459.2017.1285773.

[9] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk,
Miles Macklin, Jan Issac, Nathan Ratliff, and Dieter
Fox. Closing the sim-to-real loop: Adapting simulation
randomization with real world experience. In 2019
International Conference on Robotics and Automation
(ICRA), pages 8973–8979. IEEE, 2019.

[10] Haonan Chen, Yilong Niu, Kaiwen Hong, Shuijing
Liu, Yixuan Wang, Yunzhu Li, and Katherine Rose
Driggs-Campbell. Predicting object interactions with
behavior primitives: An application in stowing tasks. In
7th Annual Conference on Robot Learning, 2023. URL
https://openreview.net/forum?id=VH6WIPF4Sj.

[11] Zoey Chen, Aaron Walsman, Marius Memmel, Kaichun
Mo, Alex Fang, Karthikeya Vemuri, Alan Wu, Dieter Fox,
and Abhishek Gupta. Urdformer: A pipeline for construct-

ing articulated simulation environments from real-world
images. arXiv preprint arXiv:2405.11656, 2024.

[12] Shuo Cheng and Danfei Xu. League: Guided skill
learning and abstraction for long-horizon manipulation.
IEEE Robotics and Automation Letters, 2023.

[13] Open X-Embodiment Collaboration, Abby O’Neill,
Abdul Rehman, Abhinav Gupta, Abhiram Maddukuri,
Abhishek Gupta, Abhishek Padalkar, Abraham Lee,
Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya
Jain, Albert Tung, Alex Bewley, Alex Herzog, Alex
Irpan, Alexander Khazatsky, Anant Rai, Anchit Gupta,
Andrew Wang, Andrey Kolobov, Anikait Singh, Animesh
Garg, Aniruddha Kembhavi, Annie Xie, Anthony Brohan,
Antonin Raffin, Archit Sharma, Arefeh Yavary, Arhan
Jain, Ashwin Balakrishna, Ayzaan Wahid, Ben Burgess-
Limerick, Beomjoon Kim, Bernhard Schölkopf, Blake
Wulfe, Brian Ichter, Cewu Lu, Charles Xu, Charlotte
Le, Chelsea Finn, Chen Wang, Chenfeng Xu, Cheng
Chi, Chenguang Huang, Christine Chan, Christopher
Agia, Chuer Pan, Chuyuan Fu, Coline Devin, Danfei Xu,
Daniel Morton, Danny Driess, Daphne Chen, Deepak
Pathak, Dhruv Shah, Dieter Büchler, Dinesh Jayaraman,
Dmitry Kalashnikov, Dorsa Sadigh, Edward Johns, Ethan
Foster, Fangchen Liu, Federico Ceola, Fei Xia, Feiyu
Zhao, Felipe Vieira Frujeri, Freek Stulp, Gaoyue Zhou,
Gaurav S. Sukhatme, Gautam Salhotra, Ge Yan, Gilbert
Feng, Giulio Schiavi, Glen Berseth, Gregory Kahn,
Guangwen Yang, Guanzhi Wang, Hao Su, Hao-Shu Fang,
Haochen Shi, Henghui Bao, Heni Ben Amor, Henrik I
Christensen, Hiroki Furuta, Homanga Bharadhwaj, Homer
Walke, Hongjie Fang, Huy Ha, Igor Mordatch, Ilija
Radosavovic, Isabel Leal, Jacky Liang, Jad Abou-Chakra,
Jaehyung Kim, Jaimyn Drake, Jan Peters, Jan Schneider,
Jasmine Hsu, Jay Vakil, Jeannette Bohg, Jeffrey Bingham,
Jeffrey Wu, Jensen Gao, Jiaheng Hu, Jiajun Wu, Jialin
Wu, Jiankai Sun, Jianlan Luo, Jiayuan Gu, Jie Tan, Jihoon
Oh, Jimmy Wu, Jingpei Lu, Jingyun Yang, Jitendra Malik,
João Silvério, Joey Hejna, Jonathan Booher, Jonathan
Tompson, Jonathan Yang, Jordi Salvador, Joseph J. Lim,
Junhyek Han, Kaiyuan Wang, Kanishka Rao, Karl Pertsch,
Karol Hausman, Keegan Go, Keerthana Gopalakrishnan,
Ken Goldberg, Kendra Byrne, Kenneth Oslund, Kento
Kawaharazuka, Kevin Black, Kevin Lin, Kevin Zhang,
Kiana Ehsani, Kiran Lekkala, Kirsty Ellis, Krishan
Rana, Krishnan Srinivasan, Kuan Fang, Kunal Pratap
Singh, Kuo-Hao Zeng, Kyle Hatch, Kyle Hsu, Laurent
Itti, Lawrence Yunliang Chen, Lerrel Pinto, Li Fei-Fei,
Liam Tan, Linxi ”Jim” Fan, Lionel Ott, Lisa Lee, Luca
Weihs, Magnum Chen, Marion Lepert, Marius Memmel,
Masayoshi Tomizuka, Masha Itkina, Mateo Guaman
Castro, Max Spero, Maximilian Du, Michael Ahn,
Michael C. Yip, Mingtong Zhang, Mingyu Ding, Minho
Heo, Mohan Kumar Srirama, Mohit Sharma, Moo Jin
Kim, Naoaki Kanazawa, Nicklas Hansen, Nicolas Heess,
Nikhil J Joshi, Niko Suenderhauf, Ning Liu, Norman Di
Palo, Nur Muhammad Mahi Shafiullah, Oier Mees,

https://openreview.net/forum?id=yqLFb0RnDW
https://doi.org/10.1080%2F01621459.2017.1285773
https://openreview.net/forum?id=VH6WIPF4Sj

Oliver Kroemer, Osbert Bastani, Pannag R Sanketi,
Patrick ”Tree” Miller, Patrick Yin, Paul Wohlhart, Peng
Xu, Peter David Fagan, Peter Mitrano, Pierre Sermanet,
Pieter Abbeel, Priya Sundaresan, Qiuyu Chen, Quan
Vuong, Rafael Rafailov, Ran Tian, Ria Doshi, Roberto
Mart’in-Mart’in, Rohan Baijal, Rosario Scalise, Rose
Hendrix, Roy Lin, Runjia Qian, Ruohan Zhang, Russell
Mendonca, Rutav Shah, Ryan Hoque, Ryan Julian,
Samuel Bustamante, Sean Kirmani, Sergey Levine, Shan
Lin, Sherry Moore, Shikhar Bahl, Shivin Dass, Shubham
Sonawani, Shubham Tulsiani, Shuran Song, Sichun
Xu, Siddhant Haldar, Siddharth Karamcheti, Simeon
Adebola, Simon Guist, Soroush Nasiriany, Stefan Schaal,
Stefan Welker, Stephen Tian, Subramanian Ramamoorthy,
Sudeep Dasari, Suneel Belkhale, Sungjae Park, Suraj
Nair, Suvir Mirchandani, Takayuki Osa, Tanmay Gupta,
Tatsuya Harada, Tatsuya Matsushima, Ted Xiao, Thomas
Kollar, Tianhe Yu, Tianli Ding, Todor Davchev, Tony Z.
Zhao, Travis Armstrong, Trevor Darrell, Trinity Chung,
Vidhi Jain, Vikash Kumar, Vincent Vanhoucke, Wei
Zhan, Wenxuan Zhou, Wolfram Burgard, Xi Chen,
Xiangyu Chen, Xiaolong Wang, Xinghao Zhu, Xinyang
Geng, Xiyuan Liu, Xu Liangwei, Xuanlin Li, Yansong
Pang, Yao Lu, Yecheng Jason Ma, Yejin Kim, Yevgen
Chebotar, Yifan Zhou, Yifeng Zhu, Yilin Wu, Ying Xu,
Yixuan Wang, Yonatan Bisk, Yongqiang Dou, Yoonyoung
Cho, Youngwoon Lee, Yuchen Cui, Yue Cao, Yueh-Hua
Wu, Yujin Tang, Yuke Zhu, Yunchu Zhang, Yunfan
Jiang, Yunshuang Li, Yunzhu Li, Yusuke Iwasawa,
Yutaka Matsuo, Zehan Ma, Zhuo Xu, Zichen Jeff Cui,
Zichen Zhang, Zipeng Fu, and Zipeng Lin. Open
X-Embodiment: Robotic learning datasets and RT-X
models. https://arxiv.org/abs/2310.08864, 2023.

[14] Adam Conkey and Tucker Hermans. Active Learning of
Probabilistic Movement Primitives. In IEEE-RAS Interna-
tional Conference on Humanoid Robotics (Humanoids),
10 2019. URL https://arxiv.org/abs/1907.00277.

[15] Aidan Curtis, Xiaolin Fang, Leslie Pack Kaelbling,
Tomás Lozano-Pérez, and Caelan Reed Garrett. Long-
horizon manipulation of unknown objects via task and
motion planning with estimated affordances. In 2022
International Conference on Robotics and Automation
(ICRA), pages 1940–1946. IEEE, 2022.

[16] Danny Driess, Jung-Su Ha, and Marc Toussaint. Deep
visual reasoning: Learning to predict action sequences
for task and motion planning from an initial scene image.
In Proceedings of Robotics: Science and Systems, 2020.
URL https://arxiv.org/abs/2006.05398.

[17] Yuqing Du, Ksenia Konyushkova, Misha Denil, Akhil
Raju, Jessica Landon, Felix Hill, Nando de Freitas,
and Serkan Cabi. Vision-language models as success
detectors. arXiv preprint arXiv:2303.07280, 2023.

[18] Jiafei Duan, Wilbert Pumacay, Nishanth Kumar, Yi Ru
Wang, Shulin Tian, Wentao Yuan, Ranjay Krishna,
Dieter Fox, Ajay Mandlekar, and Yijie Guo. Aha:
A vision-language-model for detecting and reasoning

over failures in robotic manipulation. arXiv preprint
arXiv:2410.00371, 2024.

[19] Amine Elhafsi, Rohan Sinha, Christopher Agia, Edward
Schmerling, Issa AD Nesnas, and Marco Pavone.
Semantic anomaly detection with large language models.
Autonomous Robots, 47(8):1035–1055, 2023.

[20] Alec Farid, David Snyder, Allen Z Ren, and Anirudha
Majumdar. Failure prediction with statistical guarantees
for vision-based robot control. arXiv preprint
arXiv:2202.05894, 2022.

[21] Damien Garreau, Wittawat Jitkrittum, and Motonobu
Kanagawa. Large sample analysis of the median heuristic.
arXiv preprint arXiv:1707.07269, 2017.

[22] Caelan Reed Garrett, Tomás Lozano-Pérez, and
Leslie Pack Kaelbling. Sample-based methods
for factored task and motion planning. In
Robotics: Science and Systems, 2017. URL
https://dspace.mit.edu/bitstream/handle/1721.1/137701/
garrett-rss17.pdf?sequence=2&isAllowed=y.

[23] Caelan Reed Garrett, Tomás Lozano-Pérez, and
Leslie Pack Kaelbling. Pddlstream: Integrating symbolic
planners and blackbox samplers via optimistic adaptive
planning. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 30, pages
440–448, 2020. URL https://arxiv.org/abs/1802.08705.

[24] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay,
Beomjoon Kim, Tom Silver, Leslie Pack Kaelbling,
and Tomás Lozano-Pérez. Integrated task and
motion planning. Annual review of control, robotics,
and autonomous systems, 4:265–293, 2021. URL
https://arxiv.org/abs/2010.01083.

[25] Walter R Gilks and Pascal Wild. Adaptive rejection
sampling for gibbs sampling. Journal of the Royal
Statistical Society: Series C (Applied Statistics), 41(2):
337–348, 1992.

[26] Eric Heiden, Ziang Liu, Vibhav Vineet, Erwin Coumans,
and Gaurav S Sukhatme. Inferring articulated rigid
body dynamics from rgbd video. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), pages 8383–8390. IEEE, 2022.

[27] Kohei Honda, Naoki Akai, Kosuke Suzuki, Mizuho Aoki,
Hirotaka Hosogaya, Hiroyuki Okuda, and Tatsuya Suzuki.
Stein variational guided model predictive path integral con-
trol: Proposal and experiments with fast maneuvering vehi-
cles. In 2024 IEEE International Conference on Robotics
and Automation (ICRA), pages 7020–7026. IEEE, 2024.

[28] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tompson,
Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Tomas
Jackson, Noah Brown, Linda Luu, Sergey Levine, Karol
Hausman, and brian ichter. Inner monologue: Embodied
reasoning through planning with language models. In
6th Annual Conference on Robot Learning, 2022. URL
https://openreview.net/forum?id=3R3Pz5i0tye.

[29] Yixuan Huang, Adam Conkey, and Tucker Hermans.
Planning for Multi-Object Manipulation with Graph

https://arxiv.org/abs/2310.08864
https://arxiv.org/abs/1907.00277
https://arxiv.org/abs/2006.05398
https://dspace.mit.edu/bitstream/handle/1721.1/137701/garrett-rss17.pdf?sequence=2&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/137701/garrett-rss17.pdf?sequence=2&isAllowed=y
https://arxiv.org/abs/1802.08705
https://arxiv.org/abs/2010.01083
https://openreview.net/forum?id=3R3Pz5i0tye

Neural Network Relational Classifiers. In IEEE
International Conference on Robotics and Automation
(ICRA), 2023. URL https://arxiv.org/abs/2209.11943.

[30] Yixuan Huang, Christopher Agia, Jimmy Wu, Tucker
Hermans, and Jeannette Bohg. Points2plans: From point
clouds to long-horizon plans with composable relational
dynamics. arXiv preprint arXiv:2408.14769, 2024.

[31] Yixuan Huang, Nichols Crawford Taylor, Adam Conkey,
Weiyu Liu, and Tucker Hermans. Latent Space Planning
for Multi-Object Manipulation with Environment-Aware
Relational Classifiers. IEEE Transactions on Robotics
(T-RO), 2024. URL https://arxiv.org/pdf/2305.10857.pdf.

[32] Yixuan Huang, Jialin Yuan, Chanho Kim, Pupul Pradhan,
Bryan Chen, Li Fuxin, and Tucker Hermans. Out of
Sight, Still in Mind: Reasoning and Planning about
Unobserved Objects with Video Tracking Enabled
Memory Models. In IEEE International Conference on
Robotics and Automation (ICRA), 2024.

[33] Eyke Hüllermeier and Willem Waegeman. Aleatoric
and epistemic uncertainty in machine learning: An
introduction to concepts and methods. Machine learning,
110(3):457–506, 2021.

[34] Arda Inceoglu, Eren Erdal Aksoy, Abdullah Cihan Ak, and
Sanem Sariel. Fino-net: A deep multimodal sensor fusion
framework for manipulation failure detection. In 2021
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 6841–6847. IEEE, 2021.

[35] Zhenyu Jiang, Cheng-Chun Hsu, and Yuke Zhu. Ditto:
Building digital twins of articulated objects from
interaction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
5616–5626, 2022.

[36] Alex Kendall and Yarin Gal. What uncertainties do we
need in bayesian deep learning for computer vision?
Advances in neural information processing systems, 30,
2017.

[37] Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin
Balakrishna, Sudeep Dasari, Siddharth Karamcheti,
Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yun-
liang Chen, Kirsty Ellis, Peter David Fagan, Joey Hejna,
Masha Itkina, Marion Lepert, Yecheng Jason Ma,
Patrick Tree Miller, Jimmy Wu, Suneel Belkhale, Shivin
Dass, Huy Ha, Arhan Jain, Abraham Lee, Youngwoon
Lee, Marius Memmel, Sungjae Park, Ilija Radosavovic,
Kaiyuan Wang, Albert Zhan, Kevin Black, Cheng Chi,
Kyle Beltran Hatch, Shan Lin, Jingpei Lu, Jean Mercat,
Abdul Rehman, Pannag R Sanketi, Archit Sharma, Cody
Simpson, Quan Vuong, Homer Rich Walke, Blake Wulfe,
Ted Xiao, Jonathan Heewon Yang, Arefeh Yavary, Tony Z.
Zhao, Christopher Agia, Rohan Baijal, Mateo Guaman
Castro, Daphne Chen, Qiuyu Chen, Trinity Chung, Jaimyn
Drake, Ethan Paul Foster, Jensen Gao, David Antonio
Herrera, Minho Heo, Kyle Hsu, Jiaheng Hu, Donovon
Jackson, Charlotte Le, Yunshuang Li, Kevin Lin, Roy
Lin, Zehan Ma, Abhiram Maddukuri, Suvir Mirchandani,
Daniel Morton, Tony Nguyen, Abigail O’Neill, Rosario

Scalise, Derick Seale, Victor Son, Stephen Tian, Emi
Tran, Andrew E. Wang, Yilin Wu, Annie Xie, Jingyun
Yang, Patrick Yin, Yunchu Zhang, Osbert Bastani, Glen
Berseth, Jeannette Bohg, Ken Goldberg, Abhinav Gupta,
Abhishek Gupta, Dinesh Jayaraman, Joseph J Lim,
Jitendra Malik, Roberto Martı́n-Martı́n, Subramanian
Ramamoorthy, Dorsa Sadigh, Shuran Song, Jiajun Wu,
Michael C. Yip, Yuke Zhu, Thomas Kollar, Sergey Levine,
and Chelsea Finn. Droid: A large-scale in-the-wild robot
manipulation dataset. 2024.

[38] Beomjoon Kim, Zi Wang, Leslie Pack Kaelbling, and
Tomás Lozano-Pérez. Learning to guide task and
motion planning using score-space representation. The
International Journal of Robotics Research, 38(7):
793–812, 2019. URL https://arxiv.org/abs/1807.09962.

[39] Diederik P Kingma. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[40] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen Lo,
et al. Segment anything. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
4015–4026, 2023.

[41] Nishanth Kumar, Tom Silver, Willie McClinton, Linfeng
Zhao, Stephen Proulx, Tomás Lozano-Pérez, Leslie Pack
Kaelbling, and Jennifer Barry. Practice makes perfect:
Planning to learn skill parameter policies. In Robotics:
Science and Systems (RSS), 2024.

[42] Alexander Lambert and Byron Boots. Entropy regularized
motion planning via stein variational inference. arXiv
preprint arXiv:2107.05146, 2021.

[43] Alexander Lambert, Brian Hou, Rosario Scalise,
Siddhartha S Srinivasa, and Byron Boots. Stein
variational probabilistic roadmaps. In 2022 International
Conference on Robotics and Automation (ICRA), pages
11094–11101. IEEE, 2022.

[44] Yewon Lee, Andrew Z Li, Philip Huang, Eric Heiden,
Krishna Murthy Jatavallabhula, Fabian Damken, Kevin
Smith, Derek Nowrouzezahrai, Fabio Ramos, and Florian
Shkurti. Stamp: Differentiable task and motion planning
via stein variational gradient descent. arXiv preprint
arXiv:2310.01775, 2023.

[45] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J
Smola. Efficient mini-batch training for stochastic
optimization. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 661–670, 2014.

[46] Jacky Liang, Mohit Sharma, Alex LaGrassa, Shivam
Vats, Saumya Saxena, and Oliver Kroemer. Search-Based
Task Planning with Learned Skill Effect Models for
Lifelong Robotic Manipulation. In IEEE International
Conference on Robotics and Automation (ICRA), 2022.
URL https://arxiv.org/abs/2109.08771.

[47] Vincent Lim, Huang Huang, Lawrence Yunliang Chen,
Jonathan Wang, Jeffrey Ichnowski, Daniel Seita, Michael
Laskey, and Ken Goldberg. Planar robot casting with

https://arxiv.org/abs/2209.11943
https://arxiv.org/pdf/2305.10857.pdf
https://arxiv.org/abs/1807.09962
https://arxiv.org/abs/2109.08771

real2sim2real self-supervised learning. arXiv preprint
arXiv:2111.04814, 2021.

[48] Kevin Lin, Christopher Agia, Toki Migimatsu, Marco
Pavone, and Jeannette Bohg. Text2motion: From natural
language instructions to feasible plans. Autonomous
Robots, 47(8):1345–1365, 2023.

[49] Peiqi Liu, Zhanqiu Guo, Mohit Warke, Soumith Chintala,
Chris Paxton, Nur Muhammad Mahi Shafiullah, and
Lerrel Pinto. Dynamem: Online dynamic spatio-semantic
memory for open world mobile manipulation. arXiv
preprint arXiv:2411.04999, 2024.

[50] Qiang Liu and Dilin Wang. Stein variational gradient
descent: A general purpose bayesian inference algorithm.
Advances in neural information processing systems, 29,
2016.

[51] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang
Su, Jun Zhu, et al. Grounding dino: Marrying dino
with grounded pre-training for open-set object detection.
arXiv preprint arXiv:2303.05499, 2023.

[52] Zeyi Liu, Arpit Bahety, and Shuran Song. Reflect:
Summarizing robot experiences for failure explanation
and correction. arXiv preprint arXiv:2306.15724, 2023.

[53] Qingkai Lu, Mark Van der Merwe, and Tucker Hermans.
Multi-Fingered Active Grasp Learning. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), 10 2020. URL https://arxiv.org/abs/2006.05264.

[54] Liqian Ma, Jiaojiao Meng, Shuntao Liu, Weihang Chen,
Jing Xu, and Rui Chen. Sim2real 2: Actively building
explicit physics model for precise articulated object
manipulation. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pages 11698–11704.
IEEE, 2023.

[55] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong
Guo, Michelle Lu, Kier Storey, Miles Macklin, David
Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa,
et al. Isaac gym: High performance gpu-based
physics simulation for robot learning. In Advances in
Neural Information Processing Systems, 2021. URL
https://sites.google.com/view/isaacgym-nvidia.

[56] Zhao Mandi, Yijia Weng, Dominik Bauer, and Shuran
Song. Real2code: Reconstruct articulated objects via
code generation. arXiv preprint arXiv:2406.08474, 2024.

[57] Yongsen Mao, Yiming Zhang, Hanxiao Jiang, Angel
Chang, and Manolis Savva. Multiscan: Scalable rgbd
scanning for 3d environments with articulated objects.
Advances in neural information processing systems, 35:
9058–9071, 2022.

[58] Takuo Matsubara, Jeremias Knoblauch, François-Xavier
Briol, and Chris J Oates. Robust generalised bayesian
inference for intractable likelihoods. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 84
(3):997–1022, 2022.

[59] Marius Memmel, Andrew Wagenmaker, Chuning Zhu,
Patrick Yin, Dieter Fox, and Abhishek Gupta. Asid:
Active exploration for system identification in robotic

manipulation. arXiv preprint arXiv:2404.12308, 2024.
[60] Utkarsh Aashu Mishra, Shangjie Xue, Yongxin Chen,

and Danfei Xu. Generative skill chaining: Long-horizon
skill planning with diffusion models. In Conference on
Robot Learning, pages 2905–2925. PMLR, 2023.

[61] Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu,
Nikita Rudin, David Hoeller, Jia Lin Yuan, Ritvik Singh,
Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck
Babich, Gavriel State, Marco Hutter, and Animesh
Garg. Orbit: A unified simulation framework for
interactive robot learning environments. IEEE Robotics
and Automation Letters, 8(6):3740–3747, 2023. doi:
10.1109/LRA.2023.3270034.

[62] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc., 2019.

[63] Jana Pavlasek, Stanley Robert Lewis, Balakumar
Sundaralingam, Fabio Ramos, and Tucker Hermans.
Ready, set, plan! planning to goal sets using
generalized bayesian inference. In 7th Annual
Conference on Robot Learning, 2023. URL
https://openreview.net/forum?id=5JMGq83yf1N.

[64] Chris Paxton, Chris Xie, Tucker Hermans, and Dieter Fox.
Predicting Stable Configurations for Semantic Placement
of Novel Objects. In Conference on Robot Learning
(CoRL), 11 2021. URL https://arxiv.org/abs/2108.12062.

[65] Thomas Power and Dmitry Berenson. Constrained stein
variational trajectory optimization. IEEE Transactions
on Robotics, 2024.

[66] Shengyi Qian, Linyi Jin, Chris Rockwell, Siyi Chen, and
David F Fouhey. Understanding 3d object articulation
in internet videos. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 1599–1609, 2022.

[67] Fabio Ramos, Rafael Carvalhaes Possas, and Dieter
Fox. Bayessim: adaptive domain randomization via
probabilistic inference for robotics simulators. arXiv
preprint arXiv:1906.01728, 2019.

[68] Krishan Rana, Jesse Haviland, Sourav Garg, Jad
Abou-Chakra, Ian Reid, and Niko Suenderhauf.
Sayplan: Grounding large language models using
3d scene graphs for scalable task planning. In 7th
Annual Conference on Robot Learning, 2023. URL
https://openreview.net/forum?id=wMpOMO0Ss7a.

[69] Burr Settles. Active learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning, 6(1):1–114,
6 2012.

[70] Naman Shah, Jayesh Nagpal, Pulkit Verma, and Siddharth
Srivastava. From reals to logic and back: Inventing
symbolic vocabularies, actions and models for planning

https://arxiv.org/abs/2006.05264
https://sites.google.com/view/isaacgym-nvidia
https://openreview.net/forum?id=5JMGq83yf1N
https://arxiv.org/abs/2108.12062
https://openreview.net/forum?id=wMpOMO0Ss7a

from raw data. arXiv preprint arXiv:2402.11871, 2024.
[71] Rutav Shah, Albert Yu, Yifeng Zhu, Yuke Zhu, and

Roberto Martı́n-Martı́n. Bumble: Unifying reasoning and
acting with vision-language models for building-wide
mobile manipulation. arXiv preprint arXiv:2410.06237,
2024.

[72] Apoorva Sharma, Navid Azizan, and Marco Pavone.
Sketching curvature for efficient out-of-distribution
detection for deep neural networks. In Uncertainty in
artificial intelligence, pages 1958–1967. PMLR, 2021.

[73] Rohan Sinha, Amine Elhafsi, Christopher Agia, Matthew
Foutter, Edward Schmerling, and Marco Pavone. Real-
time anomaly detection and reactive planning with large
language models. arXiv preprint arXiv:2407.08735, 2024.

[74] Freddie Bickford Smith, Andreas Kirsch, Sebastian
Farquhar, Yarin Gal, Adam Foster, and Tom Rainforth.
Prediction-oriented bayesian active learning. In
International Conference on Artificial Intelligence and
Statistics, pages 7331–7348. PMLR, 2023.

[75] Laura Smith, Yunhao Cao, and Sergey Levine. Grow
your limits: Continuous improvement with real-world
rl for robotic locomotion. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pages
10829–10836. IEEE, 2024.

[76] Yujie Tang, Meiling Wang, Yinan Deng, Zibo Zheng,
Jingchuan Deng, and Yufeng Yue. Openin: Open-
vocabulary instance-oriented navigation in dynamic
domestic environments. arXiv preprint arXiv:2501.04279,
2025.

[77] Wil Thomason and Hadas Kress-Gazit. Counterexample-
guided repair for symbolic-geometric action abstractions.
IEEE Transactions on Robotics, 39(5):4152–4165, 2023.

[78] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider,
Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks
from simulation to the real world. In 2017 IEEE/RSJ
international conference on intelligent robots and systems
(IROS), pages 23–30. IEEE, 2017.

[79] Marcel Torne, Arhan Jain, Jiayi Yuan, Vidaaranya Macha,
Lars Ankile, Anthony Simeonov, Pulkit Agrawal, and
Abhishek Gupta. Robot learning with super-linear scaling.
arXiv preprint arXiv:2412.01770, 2024.

[80] Marcel Torne, Anthony Simeonov, Zechu Li, April
Chan, Tao Chen, Abhishek Gupta, and Pulkit Agrawal.
Reconciling reality through simulation: A real-to-sim-
to-real approach for robust manipulation. arXiv preprint
arXiv:2403.03949, 2024.

[81] Jonathan Tremblay, Aayush Prakash, David Acuna,
Mark Brophy, Varun Jampani, Cem Anil, Thang To,
Eric Cameracci, Shaad Boochoon, and Stan Birchfield.
Training deep networks with synthetic data: Bridging the
reality gap by domain randomization. In Proceedings
of the IEEE conference on computer vision and pattern
recognition workshops, pages 969–977, 2018.

[82] Luobin Wang, Runlin Guo, Quan Vuong, Yuzhe Qin,
Hao Su, and Henrik Christensen. A real2sim2real

method for robust object grasping with neural surface
reconstruction. In 2023 IEEE 19th International
Conference on Automation Science and Engineering
(CASE), pages 1–8. IEEE, 2023.

[83] Wenxuan Wu, Zhongang Qi, and Li Fuxin. PointConv:
Deep Convolutional Networks on 3D Point Clouds.
In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
9621–9630, 2019. URL https://arxiv.org/abs/1811.07246.

https://arxiv.org/abs/1811.07246

APPENDIX

Overview
The appendix provides additional details, experiments, and

results. Please refer to the supplemental video for real-world
robot executions.

A Detailed Limitations A1
B Qualitative Analysis A2
C Detailed Experimental Tasks A2
D Efficiency Experiments A2
E Key Findings A2
F Ablation Study A4
G Detailed Simulation Results A4
H Detailed Sim2Real Gap A4
I Extra Related Work A4
J Relations Definition A4
K Skills Definition A4
L Details of Skill Effect Models A5
M Real-to-sim details A6
N Stein Update Details A6
O Detailed Generalization Experiments . . A7
P Hardware Information A7

A. Detailed Limitations

Our approach has several limitations. First, although
Fail2Progress significantly improves performance, it still falls
short of perfect reliability, achieving around an 80% success rate
in the real world shown in Fig. 3a. This is because, even after
fine-tuning, some scenarios remain out-of-distribution, leading
to incorrect symbolic predictions. Indeed, one can think of the
results presented in this paper as ”1-shot” Fail2Progress and that
further refinement on the observed failures would lead to higher
future success rates. To continuously improve the performance
as a lifelong learning system, the framework needs to be de-
ployed in a real environment over several days, where we allow
Fail2Progress to update as needed when failures are detected
and classified as being caused by incorrect symbol predictions.
Safely deploying Fail2Progress in such open environments
remains an open research question. Furthermore, our framework
needs to be evaluated under more diverse conditions, including
more complex and dexterous manipulation tasks involving
varied objects, such as deformable objects and liquids.

Second, we do not investigate correcting for failures caused
by the Sim2Real gap in this work. The Sim2Real gap could
potentially be mitigated by methods that explicitly address this
challenge [81, 78, 67]. Showing how to integrate Sim2Real
improvements alongside symbolic prediction failures is an
important next step.

Third, we rely on Real2Sim to classify failures and generate
high-quality fine-tuning datasets. Though our experiments
show that our Real2Sim solution is effective in classifying
failures and improving model performance, our Real2Sim
itself is not perfect, especially when modeling complex object
geometries and deformable objects.

Fourth, our failure classification scheme, which includes two
categories, does not explicitly reason about the environmental
disturbances caused by other agents (human users or other
robots). It additionally does not account for hardware breaking
or changing over time (e.g., cable or belt stretch in a robot
arm drivetrain), which might occur over long deployment
times. Hypothesizing these scenarios as failure causes is also
an interesting future direction.

Fifth, we consider only object poses as the simulation
state. Incorporating additional simulation states, such as object
friction and center of mass [59], into our framework would
be a possible next step.

Sixth, we assume a fixed set of relations. While our large-
scale experiments show that these relations are sufficient, there
are always relations outside the predefined set. Discovering
new relations [70, 4] during robot exploration could enhance
the open-world planning capability of our framework.

Finally, although we demonstrate mobile manipulation in
diverse environments, extending the system to building-wide
open spaces [71] remains an open research question. To
achieve this, our method could integrate with scene graph
construction and online updating [49, 76, 68, 1].

FailurePut four objects into the bag

FailureConstrained Packing

Success

Success

Multi-object Transport

Put capsules into the cups Hierarchical Tabletop Organization Failure

…

…

Success

Success

Fig. 4: Rollouts of real-world evaluations and corresponding failure cases. A detailed explanation of this figure is provided in Sec. B.

B. Qualitative Analysis

We present qualitative results in Fig. 4. Hierarchical
Tabletop Organization task (First row): The robot is tasked
with organizing the cups and capsules on another table while
keeping them in a row. It first places several capsules into
their corresponding cups. In the failure case, the robot fails to
recognize the correlation between cups and capsules, resulting
in the wrong organization. After learning from this failure,
Fail2Progress successfully completes this task by understanding
that the capsules will move with their corresponding cups.
Multi-object Transport task (Second row): The robot is
tasked with packing groceries and placing them on the table.
It places all four groceries inside a bag. In the failure case,
the robot places the bag on the ground instead of the table,
failing the task. After fine-tuning the model with a targeted
dataset, Fail2Progress moves the bag to the table. Constrained
Packing task (Third row): The robot is tasked with organizing
a shelf by placing a stack of cups on a constrained shelf.
In the failure case, the robot fails to make all the wipes in
contact to clear enough space. After learning from the failure,
Fail2Progress first pushes the wipes aside in contact to create
sufficient space for the cups, then places them on the shelf.

Furthermore, we demonstrate how our approach generalizes
to different numbers and shapes of objects, as well as different
tables, in Fig. 5. Specifically, the model is fine-tuned only
on failure cases with 3 objects but is able to generalize to
scenarios involving 3-6 diverse objects on two tables.

C. Detailed Experimental Tasks

Multi-object Transport tasks the robot to transport multiple
objects within a container using a single skill (e.g., carrying
multiple fruits in a grocery bag). To succeed, the robot has to
understand that all objects inside the container move together

when the container is moved. Hierarchical Tabletop Organi-
zation tasks the robot to organize a table by arranging objects
into a hierarchical structure (e.g., multiple objects in different
cups). Success requires the robot to understand the relationships
between these objects and how its skills impact future relations
based on the hierarchical structure. Constrained Packing tasks
the robot to organize objects in a constrained environment (e.g.,
a bookshelf). Success involves using a non-prehensile push skill
to create space and then packing the remaining objects onto the
shelf. In this paper, we present quantitative results for the Multi-
object Transport and Hierarchical Tabletop Organization
tasks, and qualitative results for the Constrained Packing task.

D. Efficiency Experiments

We compare Fail2Progress with the two best-performing
baselines, Gradient and Sampling, to assess optimization
efficiency using the best-performing architecture (Points2Plans).
Error bars in the figure represent standard deviations across
five different random seeds. As shown in Fig. 6, Fail2Progress
is significantly more efficient than Sampling. This superior
efficiency is attributed to the parallel computation capabilities
of SVI on GPUs. Gradient achieves comparable efficiency to
Fail2Progress, but it still performs significantly worse in terms
of fine-tuned model performance shown in Fig. 3 and Table I.

E. Key Findings

Importance of Learning from Failures: Learning from
failures is essential because an initial training dataset for a
skill effect model cannot capture all possible transitions in the
real world. When the robot encounters novel scenarios outside
the training data distributions, failures become inevitable.
By learning from these failures, the robot can improve its
performance more reliably and efficiently.

3objs (Seen)
5objs (U

nseen)
4objs (U

nseen)
6objs (U

nseen)

Fig. 5: Real-world generalization visualizations. We show how Fail2Progress generalizes to different numbers of objects (3-6), different
object shapes, and different tables.

3 objs 5 objs 7 objs

102

103

104

Op
tim

iza
tio

n
Ti

m
e

(s
)

SVGD
Gradient
Sampling

Fig. 6: Efficiency experiments show that Fail2Progress is comparable
to Gradient and more efficient than Sampling. The optimization time
is presented on a logarithmic scale.

Limitations of Replanning: While Replanning can recover
from certain failures, its effectiveness is inherently limited.
It relies on the learned dynamics model, and any inaccuracies
in the model can significantly degrade its performance.

Effectiveness of Fail2Progress with SVI: Through large
scale comparisons, we demonstrate that Fail2Progress consis-
tently outperforms the Sampling and Gradient baselines. This
superior performance is attributed to SVI’s ability to approx-
imate high-dimensional posterior distributions using multiple

particles. In contrast, Sampling does not leverage gradient infor-
mation, making it highly inefficient. It also suffers from poor ex-
ploration with high-dimensional input. While Gradient uses gra-
dient information, it suffers from mode collapse, leading to poor
performance when the posterior distribution is multi-modal.

Efficiency of Fail2Progress with SVI: Generating
additional simulation datasets from observed failures requires
solving a high-dimensional and multi-modal posterior
distribution inference problem. Fail2Progress, utilizing
SVI, performs this task efficiently and achieves superior
performance compared to Sampling. This efficiency is due
to SVI’s ability to approximate complex posterior distributions
in parallel, leveraging GPU computational power.

Our experiments further reveal that as few as 20 targeted
simulation data points are sufficient to fine-tune the skill effect
model. This efficiency stems from the pre-trained model’s
ability to capture general representations that are transferable
to related tasks. As a result, when the robot fails at a specific
task, it can be efficiently fine-tuned on the new task to recover
from failures.

Generalization of Fail2Progress: Through both simulation
and real-world experiments, we demonstrate that our approach
generalizes to varying numbers and shapes of objects, different
environments (e.g., tables), and viewpoints beyond those in
the fine-tuning dataset. This demonstrates that our framework

does not overfit to specific scenarios but instead captures
object interaction in a generalizable manner. By combining
the ability to continuously learn from failures and generalize
to unseen scenarios, we believe our framework can adapt
to diverse and complex real-world household environments,
assisting in daily tasks.

F. Ablation Study

5 10 15 20 25 30
Number of Particles

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Fail2Progress
Fail2Progress time 16

18

20

22

24

26

Op
tim

iza
tio

n
Ti

m
e

(s
)

Fig. 7: An ablation study for different particles.

To determine the best fine-tuning dataset size, measured by
the number of particles, we conduct an ablation study presented
in Fig. 7. The study is performed on the Hierarchical Tabletop
Organization task with three objects, using Points2Plans as
the underlying architecture. Through the ablation study, we
find that increasing the number of particles generally improves
the execution success rate of Fail2Progress but also increases
the optimization time. Using 20 particles achieves the best
balance between performance and efficiency. Therefore, we
use 20 particles for our experiments.

G. Detailed Simulation Results

We provide the detailed simulation results in Table III.
Through the comparison, we find that Fail2Progress
outperforms all baselines with different numbers of objects
using different base architectures.

H. Detailed Sim2Real Gap

We provide a detailed analysis of the Sim2Real gap for our
work. The Sim2Real gap can be caused by the following rea-
sons: (1): Perception gap: This includes differences in rendering
and visualization between simulation and the real world (e.g.,
real-world perception is less accurate and noisier). In simulation,
ground-truth object segmentation are readily available, whereas
in the real world, obtaining accurate information is challenging,
especially for partial views and cluttered scenes. (2): Controller
mismatch: This arises due to differences in robot control
between simulation and the real world. Real robots would
have latency, compliance, and joint limit constraints, which are
often not fully modeled in simulation. (3): Object geometry gap:
Real-world objects vary in material, shape, and appearance,

and often differ from their simulation twin. This discrepancy
is particularly significant for deformable objects. (4): Physical
modeling: The physical modeling in simulation can be inac-
curate, which contributes to unrealistic physical interactions.

I. Extra Related Work
Solving long-horizon manipulation tasks remains a sig-

nificant challenge in the community. Traditionally, task and
motion planning [24] addresses this problem by separating high-
level symbolic reasoning from low-level geometric reasoning.
However, TAMP methods typically rely on explicit 3D object
models [46, 23, 22, 24, 38] and symbolic operators with
predefined effects [15, 23, 22, 24, 38, 16]. Alternatively, recent
works propose to sequence learned skills to handle geometri-
cally complex tasks, but these approaches are also limited to
hand-crafted states [2, 48, 60, 12]. A more recent study [30]
introduces a method to learn the effects of skills directly
from partial-view point clouds, enabling robots to reason
about real-world scenarios involving hard-to-predefine object
interactions. However, none of the existing skill effect mod-
els [2, 48, 60, 12, 30] reason about or learn from failures after
deployment. Our work is the first to leverage the failure cases to
improve skill effect models, thereby minimizing future failures.

J. Relations Definition
We use both unary relations and binary relations in this paper.
We consider the following unary relations: (1)

Movability: indicates whether a specific segment is
movable (e.g., a table is not movable). (2) Drawer identi-
fication: specifies whether a segment is a drawer. (3): Drawer
state: determines whether a drawer is open or closed.

We define the following binary relations: (1) Spatial relations:
includes six spatial relationships-left, right, front,
behind, above, below- defined following [64]. (2)
In-contact: identifies whether two objects are in contact.
Ground-truth labels for this relation are obtained directly
from the IsaacGym [55] simulator. (3) Boundary: Speci-
fies whether an object is on the boundary of a supporting
surface (e.g., a table or shelf). We define boundary(A, B) as
true if object A is above object B, the distance between A and
the nearest boundary of B is less than a threshold ϵboundary , and
the dimensions of B exceed ϵbottom. In this paper, ϵboundary is
set to 0.1m, and ϵbottom is set to 0.2m. (4) Inside: indicates
whether an object is inside another (e.g., a container). We
define Inside(A, B) as true if the bounding box of A is
completely contained within the bounding box of B.

K. Skills Definition
We use the following skills in this paper.
Pick-and-place: This skill enables the robot to grasp an

object and place it in a specific pose. If the grasp pose or
placement pose is outside the robot’s current reachable space,
the robot will first move its base to make it reachable before
executing the arm motions. The continuous parameter encodes
the difference between the placement pose and the grasp pose.

Push: This skill allows the robot to push multiple objects.
The robot first moves to a pre-push pose and then moves its

#Objs Base Original Small Large Replanning Sampling Gradient Fail2Progress

3 Points2Plans [30] 16% 18% 21% 28% 64% 52% 90%
3 Stow-GNN [10] 13% 15% 19% 24% 61% 51% 83%
3 Binary-Pred [64] 11% 13% 15% 23% 51% 47% 78%
5 Points2Plans [30] 10% 13% 15% 26% 54% 45% 87%
5 Stow-GNN [10] 9% 10% 14% 21% 52% 43% 81%
5 Binary-Pred [64] 8% 8% 13% 19% 43% 37% 73%
7 Points2Plans [30] 8% 9% 12% 18% 42% 39% 82%
7 Stow-GNN [10] 8% 7% 11% 17% 41% 37% 76%
7 Binary-Pred [64] 5% 7% 9% 14% 30% 29% 64%
Average Points2Plans [30] 11% 13% 16% 24% 53% 45% 86%
Average Stow-GNN [10] 10% 11% 15% 21% 51% 44% 80%
Average Binary-Pred [64] 8% 9% 12% 19% 41% 38% 72%

TABLE III: Simulation experiments for the Hierarchical Tabletop Organization task across different numbers of objects. The comparisons
demonstrate that Fail2Progress outperforms baselines by a large margin.

end-effector along the push direction for a specific distance.
The continuous parameter encodes both the push direction and
push distance.

Open/Close Drawer: This skill enables the robot to open
or close a drawer. The corresponding continuous parameters
encode the distance and direction of the motion.

Notably, if failures occur with a newly introduced skill,
a new skill effect model can be trained to handle that skill
effectively. Due to the composability of the skill effect model,
the planning can incorporate all the skills.

L. Details of Skill Effect Models

1) Introduction: Given an observation, Ot, at time t, repre-
sented as segmented point clouds, the skill effect model encodes
Ot to a latent state Xt using Enc. Using a decoder, Dec,
the latent state can be decoded to either geometric states like
object poses or symbolic states such as inter-object relations,
R. Furthermore, the latent state, Xt, could also be propagated
by a skill ϕt(at) with a dynamics model Dyn to predict the
latent state Xt+1 at the next time step. The predicted latent
state Xt+1 could also be decoded to predicted object poses or
relations. To simplify, in this paper, we use γ(·) to represent the
skill effect model composing the different components Enc,
Dec, and Dyn as γ(Ot,ϕt,at)=Dec(Dyn(Enc(Ot),ϕt(at))),
that outputs the probabilities of different relations in R,
with Γ(O0,ϕ1:H ,a1:H) = γH ◦ γH−1 ◦ ... ◦ γ1, representing a
composition of skill effect for a skill sequence ϕ1:H(a1:H).

2) Implementation Details: The input of a skill effect
model (e.g., Points2Plans) is a segmented point cloud at
timestep t, denoted as Ot={O0

t ,...,O
n
t }, where n represents

the number of segments.
Encoder: We utilize PointConv [83] as the Enc. The

employed PointConv architecture consists of three set
abstraction layers, each processing input point data and
corresponding positional data to produce sampled positional
data and feature data as output. Both the input and output
positional data have three channels. The first abstract layer

samples 128 points, with 8 neighbors per point determined
using a bandwidth of 0.1. It employs an MLP with 6 input
channels (3 for positions and 3 for features), 32 output channels,
and a kernel size of 1. The second layer reduces the sample size
to 16 points with 16 neighbors per point and uses a bandwidth
of 0.2. This layer’s MLP takes 35 input channels (3 for positions
and 32 for features), and outputs 64 channels with a kernel
size of 1. The third layer is a ”group all” layer that generates
128-dimensional features per segment, using a bandwidth of
0.4, Its MLP has 67 input channels (3 for positions and 64
for features) and 128 output channels, with a kernel size of 1.

Specifically, the encoder (Enc) processes each segment
to generate a corresponding point cloud feature, represented
as P i

t = Enc(Oi
t), where each point cloud feature has 128

dimensions. Additionally, we use positional encoding in
PyTorch [62] to assign a unique identifier to each object,
represented as IDi, which also has 128 dimensions. For each
object, we concatenate the point cloud feature and positional
encoding to form Xi

t = P i
t ⊕ IDi, resulting in a feature

vector with 256 dimensions. Consequently, the latent state is
represented in an object-centric form as Xt = {X0

t ,...,X
n
t },

where each object’s latent state contains 256 features.
Dynamics: The dynamics model (Dyn) takes as input

the latent state Xt along with the corresponding skill and
continuous parameter ϕ1(a1). Since ϕ1 encodes discrete
parameter identifying the object to manipulate, we use
positional encoding to represent the manipulated object ID as
IDi, which has 128 features. For the continuous parameter a1,
we use a simple MLP MLPpara to encode a latent continuous
parameter with 128 features. The MLPpara consists of two
layers, each with 128 neurons, using ReLU as the activation
function. As a result, each skill is represented as a latent state
AL1=MLPpara(a1)⊕IDi, where AL1 has 256 features.

Once the latent skill AL1 is obtained, we use a transformer-
based dynamics model, Dyn. The transformer comprises 2
sub-encoder layers, 2 attention heads in the multi-head attention
mechanism, and a dimensionality of 256 for the input and out-

put. Given the latent state Xt and the corresponding latent skill
AL1, Dyn outputs the change in each latent state, represented
as δXt. The predicted new latent state is then computed as
Xt+1 =Xt+ δXt. For long-horizon planning, the dynamics
model can be applied recurrently as Xt+H =Dyn(Xt,AL1:H).

Decoder: The decoder (Dec) consists of three distinct
modules: a position decoder Decp, a unary relation decoder
Decu, and a binary relation decoder Decb. All decoders take
the latent state (Xt) as input.

Position Decoder (Decp): The position decoder processes
the predicted changes in each latent state (δXt) and outputs
the predicted changes in object positions (δpt). Decp is a
three-layer network, with each layer containing 64 neurons
and ReLU as the activation function.

Unary relation decoder (Decu): The unary relation decoder
takes the absolute latent state (Xt) as input and outputs unary
object relations. Decu consists of two layers, each with 64
neurons, and uses Softmax as the activation function because
unary relations are binary variables.

Binary relation decoder (Decb): The binary relation decoder
takes pairwise latent states ((Xi

t ,X
j
t)) as input and outputs

pairwise object relations, defined as Decb(X
i
t ,X

j
t). Decb is

a three-layer network, with each layer containing 64 neurons.
Like Decu, Decb uses Softmax as the activation function
since binary relations are also binary variables.

Training Details: We collect ground-truth data from the
simulation at the current step, including point cloud observa-
tions (Ot), relations (Rt), and position (pt). Ground-truth data
at the next step is collected after executing a robot skill, which
includes point cloud observations (Ot+1), relations (Rt+1),
and position (pt+1). To train the skill effect model using the
simulation dataset (D), we employ several loss functions:

Current step detection loss: Using the current step point
cloud observation (Ot), the model (Γ) predicts current step
relations (R̂t). The current step detection loss is calculated as
Ldetection=CE(R̂t,Rt), where CE denotes the cross-entropy
loss.

Latent space regularization loss: The mode encodes the
observations (Ot, Ot+1) into the current step latent state (Xt)
and the next step latent state (Xt+1). Using a skill, Γ
predicts the next time step latent state (X ′

t+1), where X ′
t+1

is derived from Ot and the skill while Xt+1 derives from
Ot+1. The regularization loss, calculated as the L2 norm, is
Lregulization= ||Xt+1−X ′

t+1||22.
Position loss: Based on Ot and the applied skill, the model

predicts the change in object positions (δpt). The position loss
compares the predicted position changes with the ground-truth
position changes: Lpos = b ·

√
a·||δpt−(pt+1−pt)||. Here,

a = 12 and b = 5 are used to balance other loss terms, as
defined in [30].

Prediction loss: To minimize the difference between
predicted relations (R′

t+1 = Decb(X
′
t+1)) and ground-truth

relations (Rt+1) at the next time step, we compute the
prediction loss as: Lprediction=CE(R′

t+1,Rt+1).
The total loss is the sum of all four terms:

L = Ldetection+Lregulization+Lpos+Lprediction. We train

and fine-tune the skill effect model using the Adam optimizer
with a learning rate of 1× 10−4. In this paper, we use 10
epochs for the pre-training and 200 epochs for the fine-tuning.

Planning Details: To achieve the goal relations (G), we
employ a shooting-based approach to sample the continuous
parameters (a1:H) given the initial observation (O1) and the
plan skeleton (ϕ1:H). To maximize the likelihood of achieving
the goal relations, we sample a set of continuous parameters
{aj1:H}Ka

j=1 from the robot’s workspace. Each continuous
parameter sequence aj1:H is rolled out, and we select the
sequence that maximizes the probability of satisfying G.

M. Real-to-sim details

For the real-to-sim process, SVI generates both simulation
states and robot skills. The simulation states specify the pose
of each object.

To create a simulation scene, we assume a set of object
shape priors, including cuboids, open boxes, shelves, drawers,
and tables. Based on the semantics of each segment in the
observation, our method selects the appropriate object shape
prior. The bounding box of each segment determines the
dimension of the corresponding object in the simulation. By
combining these dimensions with the object poses, we can
construct the simulation scene.

For the robot skills, we directly execute the parameterized
skills within the simulation, starting from the initial scene.
During the process, we could record point clouds and object
relations both before and after manipulation. Combined with
the executed robot skills, we can generate a fine-tuning dataset
to refine the skill effect model.

Note that we select this bounding-box approximation for
the real-to-sim approach due to efficiency considerations.
However, Fail2Progress can compliment other real-to-sim
approaches [11, 56, 80].

N. Stein Update Details

1) Generating State Samples: First, we aim to solve for
the simulation state set S+. Here we want to find samples
q(S) = {s+i }Mi=1 that approximate the posterior distribution
P (rF |O+ = ξ(S)OF)P (S), where P (S) is a uniform prior
over all feasible simulation states. The posterior distribution
ensures that the transformed point clouds match the relations
in the failure case rF . This defines the following variational
inference problem:

argmin
q(S)

DKL

(
q(S)

∥∥Γ(rF |O+=ξ(S)OF)P (S)
)

(5)

For each state particle s+i , the Stein update term is:

Φ(s+i)=
1

M

M∑
j=1

[
k(s+j ,s

+
i)∇s+j

lnP (RF |ξ(s+j)O
F)+

∇s+j
k(s+j ,s

+
i)
] (6)

where k(s+j ,s
+
i) is a kernel function that defines the similarity

between different particles. The first term in Eq. 6 represents
an attractive force that pushes the particles to move in a

direction based on the gradient while the second term is a
repulsive term that prevents the particles from collapsing. This
update can generate object states that match the failure case
while ensuring diversity over object states.

2) Generating Action Samples: Given our state samples
generated by using Stein variational inference to approximate
the distribution in Eq. 3b, we can now turn our attention to
solving for the action set A+. To formulate this problem we
make use of the generalized Bayesian inference framework
outlined above. Here we define the loss function, L, to be
the entropy loss defined in Eq. 3a and let β = 1. Note that
the variational distribution q(A)={(s+i ,a

+
i)}Mi=1, however we

keep the values of s+i fixed and search only over actions. This
defines the following variational inference problem:

argmin
q(A)

Es+,a+∈q(A)

[∏
r∈RF

−H(Γ(r |ξ(s+)OF ,ϕF ,a+,D))

]
+ DKL

(
A+
∥∥P (A)

)
(7)

where P (A) is uniform prior over actions.
The Stein update term for the action particles a+i is:

Φ(a+i)=
1

M

M∑
j=1

[
k(a+j ,a

+
i)

·∇a+
j
lnH(Γ(RF |ξ(s+j)O

F ,ϕF ,a+j))

+∇a+
j
k(a+j ,a

+
i)
] (8)

3) Implementation Details of SVI: We use RBF kernels for
SVI and follow previous works [63, 21] by applying the median
heuristics to determine the kernel bandwidth. Additionally, the
step size is optimized using the Adam optimizer [39].

O. Detailed Generalization Experiments

Generalization Scenarios 3objs ↑ 5objs ↑ 7objs ↑ view1 ↑ view2 ↑

Fail2Progress 87% 81% 71% 83% 85%
Gradient 51% 40% 18% 42% 44%
Sampling 62% 45% 23% 51% 47%

TABLE IV: Generalization results for the Multi-object Transport
task. We show the generalization capability of Fail2Progress with
respect to different numbers of objects and different viewpoints (5objs,
7objs, view1, and view2 are unseen in the training dataset). Evaluations
on unseen objects and unseen viewpoints show that Fail2Progress per-
forms well and outperforms the best-performing baselines (Sampling
and Gradient).

Generalization Evaluation: We assess the generalization
capability of Fail2Progress compared to the Gradient and
Sampling baselines in the Multi-object Transport task. First,
we evaluate generalization to an unseen number of objects, as
shown in Table IV. The model is fine-tuned only on scenarios
with 3 objects and tested on unseen scenarios with 5 and 7
objects. While all approaches experience some performance
degradation, Fail2Progress maintains strong performance, even
in scenarios with 7 objects. In contrast, Gradient and Sampling

perform poorly, particularly in the 7-object scenarios. Next,
we assess generalization to unseen viewpoints, also shown in
Table IV. Fail2Progress demonstrates robust performance across
two unseen viewpoints and consistently outperforms Gradient
and Sampling baselines. For both evaluations, we perform 100
trials per approach for each evaluation metric. Visualizations
of these generalization scenarios are provided in Fig. 8.

3objs (seen) view1 (unseen) view2 (unseen)5objs (unseen) 7objs (unseen)

Fig. 8: Visualizations of simulation generalization scenarios.
Fail2Progress, fine-tuned on a dataset with 3 objects, successfully
generalizes to scenes with 5 and 7 objects. Additionally, Fail2Progress
demonstrates generalization to two unseen viewpoints.

P. Hardware Information

All the skill effect models are trained and fine-tuned on a
standard workstation with an NVIDIA GeForce RTX 3090
Ti GPU. All the real-world experiments are conducted with
a Stretch-re2 from Hello-Robot.

	Introduction
	Related Work
	Skill Effect Models
	Detecting and Classifying Failures Autonomously
	Generating Targeted Datasets to Learn from Failure
	Approximate Constrained Expected Information Gain
	Generating Datasets via Stein Variational Inference
	Real-to-Sim Object Generation

	Experiments & Results
	Conclusion
	Appendix
	Detailed Limitations
	Qualitative Analysis
	Detailed Experimental Tasks
	Efficiency Experiments
	Key Findings
	Ablation Study
	Detailed Simulation Results
	Detailed Sim2Real Gap
	Extra Related Work
	Relations Definition
	Skills Definition
	Details of Skill Effect Models
	Real-to-sim details
	Stein Update Details
	Detailed Generalization Experiments
	Hardware Information

