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ABSTRACT

Generative adversarial networks (GANs) have made great success in image in-
painting yet still have difficulties tackling large missing regions. In contrast, itera-
tive probabilistic algorithms, such as autoregressive and denoising diffusion mod-
els, have to be deployed with massive computing resources for decent effect. To
achieve high-quality results with low computational cost, we present a novel pixel
spread model (PSM) that iteratively employs decoupled probabilistic modeling,
combining the optimization efficiency of GANs with the prediction tractability
of probabilistic models. As a result, our model selectively spreads informative
pixels throughout the image in a few iterations, largely enhancing the completion
quality and efficiency. On multiple benchmarks, we achieve new state-of-the-art
performance. Our code and models will be publicly available.

1 INTRODUCTION

Image inpainting, a fundamental computer vision task, aims to fill the missing regions in an image
with visually pleasing and semantically appropriate content. It has been extensively employed in
graphics and imaging applications, such as photo restoration Wan et al. (2020; 2022), image edit-
ing Barnes et al. (2009); Jo & Park (2019), compositing Levin et al. (2004), re-targeting Cho et al.
(2017), and object removal Criminisi et al. (2004). This task, especially filling large holes, is more
ill-posed than other restoration problems, necessitating models of stronger generation abilities.

In past years, generative adversarial networks (GANs) have made great processes in image inpaint-
ing Pathak et al. (2016); Yan et al. (2018); Yu et al. (2018); Liu et al. (2019); Wan et al. (2021); Li
et al. (2022); Chu et al. (2023); Sargsyan et al. (2023). By implicitly modeling a target distribution
through a min-max game, GANs-based methods significantly outperform traditional exemplar-based
techniques Hays & Efros (2007); Sun et al. (2005); Criminisi et al. (2004; 2003) in terms of visual
quality. However, the one-shot generation of GANs sometimes lead to unstable training Salimans
et al. (2016); Gulrajani et al. (2017); Kodali et al. (2017) and makes it challenging to learn a complex
distribution, particularly when inpainting large holes in high-resolution images.

Conversely, autoregressive models Van den Oord et al. (2016); Van Den Oord et al. (2016); Parmar
et al. (2018) and denoising diffusion models Song & Ermon (2019); Ho et al. (2020); Dhariwal &
Nichol (2021) recently demonstrated remarkable power in content generation Ramesh et al. (2022);
Saharia et al. (2022b); Yu et al. (2022); Singer et al. (2022). These models utilize tractable proba-
bilistic modeling techniques to iteratively refine the image based on prior estimations, resulting in
more stable training and improved coverage. However, it is widely known that autoregressive mod-
els process images pixel by pixel, which makes it cumbersome to handle high-resolution data. On
the other hand, denoising diffusion models typically require thousands of iterations to achieve accu-
rate estimations. Thus, using these methods directly in image inpainting incurs respective drawbacks
– strategies for high-quality large-hole high-resolution image inpainting still fall short.

To complete the map of inpainting, in this paper, we develop a new pixel spread model (PSM) tai-
lored for the large-hole scenario. PSM operates in an iterative manner, where all pixels are predicted
in parallel during each iteration, and only qualified predictions are retained for subsequent iterations.
It acts as a process to gradually spread trustful pixels to unknown locations. Our core design lies
in a simple yet highly effective decoupled probabilistic modeling (see Section 3.1.1), which enjoys
the merits of GANs’ efficient optimization and the tractability of probabilistic models. In detail, our
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Figure 1: Our model supports photo-realistic large-hole inpainting for various scenarios. The first
example for object removal is a high-resolution image captured in the wild, while others (512×512)
come from Places2 Zhou et al. (2017) and CelebA-HQ Karras et al. (2018) datasets.

model simultaneously predicts an inpainted result (i.e., the mean term) and an uncertainty map (i.e.,
the variance term). The mean term is optimized using implicit adversarial training, yielding more
accurate predictions with fewer iterations. The variance term, contrarily, is modeled explicitly using
Gaussian regularization.

The adoption of our decoupled strategy offers numerous advantages. First, the use of adversarial
optimization leads to a significant reduction in the number of iterative steps required to achieve
promising results, as shown in Figure K.1, much faster than autoregressive and denoising diffusion
models. Second, the Gaussian regularization employed produces a variance term that naturally acts
as an uncertainty measure (see Section 3.1.2). This allows for the selection of reliable estimates for
iterative refinement, largely reducing GANs’ artifacts. Furthermore, the explicit modeling of the
distribution facilitates continuous sampling, thereby producing predictions with enhanced quality
and diversity, as demonstrated in Section 4. Ultimately, the uncertainty measure is instrumental in
constructing an uncertainty-guided attention mechanism (see Section 3.2), which encourages the
network to leverage more informative pixels for efficient reasoning. As a result, our PSM completes
large missing regions with photo-realistic content, as illustrated in Figure 1.

Our contributions can be summarized as follows:

• We develop a novel pixel spread model (PSM) customized for large-hole image inpainting.
Thanks to the proposed iteratively decoupled probabilistic modeling, our model achieves
efficient optimization and high-quality completion.

• Our method reaches cutting-edge performance on both Places Zhou et al. (2017) and
CelebA-HQ Karras et al. (2018) benchmark datasets. Notably, our PSM outperforms popu-
lar denoising diffusion models, e.g., LDM Rombach et al. (2022), by a large margin, yield-
ing 1.1 FID improvement on Places2 Zhou et al. (2017) while being significantly more
light-weighted (only 20% parameters, 10× faster).

2 RELATED WORK

2.1 TRADITIONAL METHODS

Image inpainting is a classical computer vision problem. Early methods make use of image priors,
such as self-similarity and sparsity. Diffusion-based methods Bertalmio et al. (2000); Ballester et al.
(2001), for instance, convey information to the holes from nearby undamaged neighbors. Another
line of exemplar-based approaches Hays & Efros (2007); Sun et al. (2005); Le Meur et al. (2011);
Criminisi et al. (2003); Ding et al. (2018); Lee et al. (2016) looks for highly similar patches to
complete missing regions using human-defined distance metrics. The most representative work is
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PatchMatch Barnes et al. (2009), which employs heuristic searching in a multi-scale image space to
speed up inpainting greatly. However, due to a lack of context understanding, they do not guarantee
visually appealing and semantically consistent results.

2.2 DEEP LEARNING BASED METHODS

Using a great amount of training data to considerably increase the ability of high-level understand-
ing, deep-neural-network-based methods Pathak et al. (2016); Yan et al. (2018); Zeng et al. (2019);
Liu et al. (2020); Wang et al. (2018b) achieve success. Pathak et al. Pathak et al. (2016) introduce
the adversarial loss Goodfellow et al. (2014) to inpainting, yielding visually realistic results. Several
approaches along this line continually push the performance to new heights. For example, in order
to obtain locally fine-grained details and globally consistent structures, Iizuka et al. Iizuka et al.
(2017) adopt two discriminators for adversarial training. Additionally, partial Liu et al. (2018) and
gated Yu et al. (2019) convolution layers are proposed to reduce artifacts, e.g., color discrepancy and
blurriness, for irregular masks. Moreover, intermediate cues, including foreground contours Xiong
et al. (2019), object structures Nazeri et al. (2019); Ren et al. (2019), and segmentation maps Song
et al. (2018) are used in multi-stage generation. Despite nice inpainting content for small masks,
these methods still do not guarantee large-hole inpainting quality.

2.3 LARGE HOLE IMAGE INPAINTING

To deal with large missing regions, a surge of effort was made to improve the model capability.
Attention techniques Yu et al. (2018); Liu et al. (2019); Xie et al. (2019); Yi et al. (2020) and
transformer architectures Wan et al. (2021); Zheng et al. (2021); Li et al. (2022); Ko & Kim (2023)
take advantage of context information. They work well when an image contains repeating patterns.
Besides, Zhao et al. Zhao et al. (2020) propose a novel architecture, bridging the gap between image-
conditional and unconditional generation, improving free-form large-scale image completion. There
are also attempts to study the progressive generation. This line is to select only high-quality pixels
each time and gradually fill holes. We note that these methods heavily rely on specially designed
update algorithms Zhang et al. (2018a); Guo et al. (2019); Li et al. (2020); Oh et al. (2019), or
consume additional model capacity to separately assess the prediction accuracy Zeng et al. (2020),
or need more training stages Chang et al. (2022) when processing images.

Recently, benefiting from exact likelihood computation and iterative samplings, autoregressive mod-
els Wan et al. (2021); Yu et al. (2021); Wu et al. (2022) and denoising diffusion models Saharia et al.
(2022a); Rombach et al. (2022); Lugmayr et al. (2022); Avrahami et al. (2022); Zhang et al. (2023)
have shown great potential in producing diversified and realistic content. They inevitably incur high
inference costs with thousands of steps and require massive computation resources. In this work, we
present decoupled probabilistic modeling that obtains predictions and uncertainty measures simul-
taneously. Our model identifies reliable predicted pixels and sends them to subsequent iterations,
thereby mitigating GANs-generated artifacts. Also, the proposed approach can be viewed as a dif-
fusion model that learns pixel spreading rather than denoising and requires fewer iterations.

3 OUR METHOD

Our objective is to use photo-realistic material to complete a masked image with substantial missing
areas. In this section, we first formulate our pixel spread model (PSM) along with a comprehensive
analysis. It is followed by the details of model design and loss functions.

3.1 PIXEL SPREAD MODEL

Although GANs-based methods achieve significantly better results than traditional ones, they still
face great difficulties handling large missing regions. We attribute one of the reasons to the one-shot
nature of GANs and instead propose iterative inpainting.

In each pass, since there are inevitably some good predictions, we use these pixels as clues to
assist the next-time generation. In this way, our pixel spread model gradually propagates valuable
information to the entire image. In the following, we first discuss the single-pass modeling before
moving on to the pixel spread process.
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Figure 2: Our pixel spread model for high-quality large-hole image inpainting. Left illustration is
the pixel spread pipeline with proposed decoupled probabilistic modeling, and the right images are
visual examples. We simplify the input of the t-th iteration to xt−1, and denote the estimated mean
and variance as µt and σ2

t . The σt map on the right is normalized for better visualization. We
observe gradual uncertainty reduction in missing regions during the pixel spread process.

3.1.1 DECOUPLED PROBABILISTIC MODELING

For iterative inpainting, it is essential to find a mechanism to evaluate the accuracy of predictions.
One intuitive solution is introducing a tractable probabilistic model so that uncertainty informa-
tion can be analytically calculated. However, this requirement often leads to the assumption that
the approximated target distribution is Gaussian, which is considerably too simple to explain the
truly complicated distributions. Although iterative models like denoising diffusion models Ho et al.
(2020) enhance marginal distribution expression by including a number of hidden variables and op-
timizing the variational lower evidence bound, these methods typically yield a high inference cost.

To address these key issues, we propose a decoupled probabilistic modeling tailored for efficient
iterative inpainting. The essential insight is that we leverage the advantages of implicit GANs-based
optimization and explicit Gaussian regularization in a decoupled way. Thus we can simultaneously
obtain accurate predictions and explicit uncertainty measures.

As shown in Figure 2, given an input image xt−1 at time t with large holes, our model (see archi-
tecture details in Section 3.2) predicts the inpainting result µt as well as an uncertainty map σ2

t . We
use the adversarial loss (along with other losses of Section 3.3) to supervise image prediction µt,
while jointly treating (µt,σ

2
t ) as the mean and diagonal covariance of Gaussian distribution. GANs’

implicit optimization makes it possible to approximate the true distribution as closely as possible,
greatly reducing the number of iterations. It also supplies us with an explicit uncertainty measure for
the mean term, allowing us to select reliable pixels. The Gaussian regularization is mainly applied
to the variance term using negative log likelihood (NLL) Lnll as

Lnll = −
D∑
i=1

log

∫ δ+(yi)

δ−(yi)

N
(
z; sg[µiθ(x)],σ

i
θ(x)

2
)
dz , (1)

where D is the data dimension and i is the pixel index, θ denotes model parameters, input x and
ground truth y are scaled to [−1, 1], and z follows the obtained Gaussian distributionN . δ+(y) and
δ−(y) are defined as

δ+(y) =

{
∞ if y = 1 ,

y + 1
255 if y < 1 ,

(2)

δ−(y) =

{
−∞ if y = −1 ,

y − 1
255 if y > −1 . (3)

Specifically, we include a stop-gradient operation (i.e., sg[·]), which encourages the Gaussian con-
straint only to optimize the variance term and enables the mean term to be more accurately estimated
through implicit modeling.

Discussion. We use the estimated mean and variance for sampling during the diffusion process,
while taking the deterministic mean term as the output for the final iteration. The feasibility of
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this design is proved by the experiments in Section 4. Additionally, the probabilistic modeling
enables us to apply continuous sampling during pixel spread, yielding higher quality and more
diverse estimations. Finally, we find the uncertainty measure also enables us to design a more
effective attention mechanism in Section 3.2.

3.1.2 PIXEL SPREAD SCHEME

We use a feed-forward network, denoted as fθ(·), to gradually spread informative pixels to the entire
image, starting from known regions as

xt,mt,ut = fθ(xt−1,mt−1,ut−1) , (4)
where t is the time step, xt refers to the masked image, mt stands for a binary mask (1 for valid
pixels while 0 for missing regions), and ut is the uncertainty map. The output includes the updated
image, mask, and uncertainty map. Network parameters are shared across all iterations.

We use several iterations for both training and testing to improve performance. Specifically, as
shown in Figure 2 and Eq. (4), our method runs as follows at the t-th iteration.

1. Predict. Given the masked image xt−1, mask mt−1, and uncertainty map ut−1, our
method estimates mean µt and variance σ2

t for all pixels. Then a preliminary uncertainty
map ũt scaled to [0, 1] is generated by subtracting σt’s min value and dividing by absolute
max-min value. Note that the values of σt remain unchanged.

2. Pick. We first sort the uncertainty scores for missing regions based onmt−1. According to
the pre-defined mask schedule, we calculate the number of pixels that will be added in this
iteration, and insert those with the lowest uncertainty to the known category, updating the
mask to mt. Based on the preliminary uncertainty map ũt, by marking locations that are
still missing as 1 and the initially known pixels as 0, while keeping ũt values of inpainted
pixels up to this iteration (referring tomt −m0), we obtain the final uncertainty map ut.

3. Sample. We consider two situations. First, for the initially known locations based on
m0, we always use the original input pixels x0 (0 for missing regions while other pixels
are valid). Second, we apply continuous sampling in accordance with µt and σt for the
inpainting areas (referring tomt −m0). The result is formulated as

xt = x0 + (mt −m0)� (µt + α · σt � z) , (5)
where α is an adjustable ratio and z ∼ N (0, I), and � denotes Hadamard product. Note
that the previously inpainted content gets updated at each iteration to maintain consistency
with the newly inpainted pixels, and we do not use the σtz term in the final iteration.

3.2 MODEL ARCHITECTURE

We use a deep U-Net Ronneberger et al. (2015) architecture with a StyleGAN Karras et al. (2019;
2020b) decoder, reaching large receptive fields with stacked convolutions to leverage context in-
formation in images Buades et al. (2005); Mairal et al. (2009); Berman et al. (2016); Wang et al.
(2018a). In addition, we adopt multiple attention blocks at various resolutions, in light of the dis-
covery that global interaction significantly improves reconstruction quality on much larger and more
diverse datasets at higher resolutions Yu et al. (2018); Yi et al. (2020); Dhariwal & Nichol (2021).

Based only on feature similarity, the conventional attention mechanism Vaswani et al. (2017) offers
equal opportunity for pixels to exchange information. For the inpainting task, however, missing
pixels are initialized with the same specified values, making them close to one another. As a result,
it is usually unable to effectively leverage useful information from visible regions. Even worse, the
valid pixels are compromised, resulting in blurry content and unpleasing artifacts.

In this situation, as shown in Figure 3, we take into account the pixels’ uncertainty scores to adjust
the aggregating weights in attention by introducing a learnable function F . It properly resolves the
problem mentioned above. The attention output is computed by

Attention(q,k,v,u) = Softmax

(
qkT√
dk

+ F(u)
)
v , (6)

where {q,k,v} are query, key, value matrices, dk denotes the scaling factor, and F predicts biased
pixel weights using uncertainty map u and includes a reshape operation.
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Figure 3: U-Net architecture with uncertainty-guided attention. We omit the mask update for clarity.
The σt map is normalized for better visualization.

3.3 LOSS FUNCTIONS

In each iteration, our model outputs the mean and variance estimates, as shown in Figure 2. The
mean term is optimized using adversarial loss Goodfellow et al. (2014) Ladv and perceptual loss Su-
vorov et al. (2021); Johnson et al. (2016) Lpcp, which aims to produce natural-looking images. The
losses are described as follows.

Adversarial loss. We formulate the adversarial loss as
Lag = −Ex̂ [log (D (x̂))] , (7)
Lad = −Ex [log (D (x))]− Ex̂ [log (1−D (x̂))] , (8)

where D is the discriminator Karras et al. (2019), x and x̂ are real and predicted images.

Perceptual loss. We adopt a high receptive field perceptual loss Suvorov et al. (2021) as

Lpcp =
∑
i

‖φi(x)− φi(x̂)‖22 , (9)

where φi is the layer output of a pre-trained ResNet50 He et al. (2016).

As discussed in Section 3.1.1, we apply the negative log likelihood Lnll to constrain the variance
for uncertainty modeling. Thus the final loss function for the generator is

L =
∑

j
λ1Ljag + λ2Ljpcp + λ3Ljnll, (10)

where j is the number of spread iterations. We empirically set λ1 = 1, λ2 = 2 and λ3 to 1× 10−4.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

We train our models at 512× 512 resolution on Places2 Zhou et al. (2017) and CelebA-HQ Karras
et al. (2018) in order to adequately assess the proposed method. Places2 is a large-scale dataset with
nearly 8 million training images in various scene categories. Additionally, 36,500 images make up
the validation split. During training, images undergo random flipping, cropping, and padding, while
testing images are centrally cropped to the 512 × 512 size. For CelebA-HQ, we employ 24,183
and 2,993 images, respectively, to train and test our models. Following Yu et al. (2019); Zhao et al.
(2020); Suvorov et al. (2021); Li et al. (2022), we use on-the-fly generated masks during training,
where the detailed setup is from MAT Li et al. (2022). We evaluate all models using identical masks
provided by Li et al. (2022) for fair comparisons. Besides, for evaluating model robustness, we use
the same model to inpaint both small and large masks.

Despite being adopted in early inpainting work, L1 distance, PSNR, and SSIM Wang et al. (2004)
are found not strongly associated with human perception when assessing image quality Ledig et al.
(2017); Sajjadi et al. (2017). In this work, in light of Zhao et al. (2020); Li et al. (2022), we use
FID Heusel et al. (2017), P-IDS Zhao et al. (2020), and U-IDS Zhang et al. (2018b), which robustly
measures the perceptual fidelity of inpainted images, as more suitable metrics.
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Table 1: Quantitative ablation study. Model “A” is the full model.
Models “B” and “C” use fewer training iterations. We remove
the decoupled probabilistic modeling (DPM), continuous sam-
pling (CS), and uncertainty-guided attention (UGA) in models
“D”, “E”, and “F”. Model “G” adopts attention at 16× 16 size.

Model Train Iter. DPM CS UGA Att. Res. FID↓
A 3 3 3 3 32,16 2.36
B 1 - - 3 32,16 2.95
C 2 3 3 3 32,16 2.55
D 3 3 3 32,16 2.49
E 3 3 3 32,16 2.45
F 3 3 3 32,16 2.44
G 3 3 3 3 16 2.64

Table 2: Quantitative ablation
study of the number of testing
iterations. As the number of
iterations increases, the FID↓
gets better and then saturates.

Test Iter. Model A Model B
4 2.23 2.27
5 2.16 2.20
6 2.12 2.16
7 2.09 2.14
8 2.07 2.12
9 2.05 2.11
10 2.05 2.11

4.2 IMPLEMENTATION DETAILS

We use an encoder-decoder architecture. The encoder is made up of convolution blocks, while the
decoder is adopted from StyleGAN2 Karras et al. (2020b). The encoder’s channel size starts at 64
and doubles after each downsampling until the maximum of 512. The decoder has a symmetrical
configuration. We adopt attention blocks at 32 × 32 and 16 × 16 resolutions. The uncertainty map
is initialized as “1 - mask” at the first iteration. Given an H ×W input, we first downsample the
feature size to H

32 ×
W
32 before returning to H ×W . More details are provided in Appendix A.

We train our models for 20M images on Places2 and CelebA-HQ using 8 NVIDIA A100 GPUs. We
utilize exponential moving average (EMA), adaptive discriminator augmentation (ADA), and weight
modulation training strategies Karras et al. (2020a); Li et al. (2022). The batch size is 32, and the
learning rate is 1 × 10−3. We employ an Adam Kingma & Ba (2015) optimizer with β1 = 0 and
β2 = 0.99. We empirically set α = 0.01 in Eq. (5) based on experimental results. During training,
our model undergoes the entire pipeline with two iterations to enhance efficiency. However, during
testing, the model iterates four times to achieve improved restoration results.

The fact that previous work Zhao et al. (2020); Li et al. (2022) trains models on Places2 with 50M
or more images – much more extensive data than ours – evidences the benefit of our method. Addi-
tional training can further improve our approach, and yet 20M images already deliver cutting-edge
performance. Our model’s generalization ability is demonstrated in Appendices B and C.

4.3 ABLATION STUDY

For quick evaluation, we train our models for 6M images at 256× 256 resolution using Places365-
Standard, a subset of Places2 Zhou et al. (2017). We start with model “A”, which employs our full
designs and adopts three iterations during training.

Iterative number. Our core idea is to employ iterative optimization to enhance the generation
quality. We adjust the iteration number and maintain the same setup during training and testing. As
illustrated in Table 1, models with one and two iterations, dubbed “B” and “C”, yield 0.59 and 0.19
FID decreases compared to model “A”. Also, as shown in Figure K.1, adopting more iterations is
capable of producing more aesthetically pleasing content. The first and third cases exhibit obviously
fewer artifacts, and the arch in the second example is successfully restored after three iterations.

It is noted that we can test the system with a different iteration number from the training stage. Using
more iterations results in higher FID performance, as demonstrated in Table 2, yet at the expense
of longer inference time. Thus, there is a trade-off between inference speed and generation quality.
Additionally, when comparing models “A” and “B”, it is clear that introducing more iterations in the
training process is beneficial. But the number of iterations in the inference stage is more important.

Decoupled probabilistic modeling. To deliver accurate prediction while supporting the uncertainty
measure for iterative inpainting, we propose decoupled probabilistic modeling. When putting all
supervision on the sampled result, we observe the training diminishes the variance term (close to
0 for all pixels). It is because, unlike denoising diffusion models that precisely quantify the noise
levels at each step, our GANs-based method no longer provides specific optimization targets for the
mean and variance terms. The variance term is underestimated for trivial optimization in this case.
It renders the picking process less effective.
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Figure 4: Qualitative ablation study. Model “A” is the full
model. The proposed decoupled probabilistic modeling, contin-
uous sampling, and uncertainty-guided attention designs are not
used in models “D”, “E”, and “F”.

Figure 5: Visualization of mask
schedule functions.

Table 3: Ablation study of
mask schedule functions.

Mask Sche. Iter. FID↓
Cubic 3 2.54
Cosine 3 2.48
Linear 3 2.36
Square Root 3 2.47

As illustrated in Table 1, model “D” obtains an inferior FID result compared with the full model
“A”. Besides, from the visual comparison in Figure 4, it is observed that model “D” tends to generate
blurry content, while model “A” produces sharper structures and fine-grained details.

Continuous sampling. Our approach uses the estimated variance to perform continuous sampling.
Table 1 indicates that FID decreases by nearly 0.1 when continuous sampling (model ”E”) is not
involved. Also, it is observed that our full model leads to more visually consistent content. For
example, box structures are well restored from the visible pixels in Figure 4. Thus, continuous
sampling brings higher fidelity to our results. As shown in Figure L.2, our model also supports the
pluralistic generation, particularly in the hole’s center. However, when the mean term is estimated
with low uncertainty or the iteration number is constrained, the differences are not always instantly
obvious. A detailed analysis of fidelity-diversity trade-off is further provided in Appendix H.

Uncertainty-guided attention. To fully exploit distant context, we add attention blocks to our
framework. We first compare using attention at 32 × 32, 16 × 16 (model “A”) and only at 16 × 16
(model “G”). We discover a 0.28 FID drop in model “G” from the quantitative comparison in Table 1,
demonstrating the significance of long-range interaction in large-hole image inpainting.

Besides, as aforementioned in Section 3.2, the conventional attention mechanism may result in color
consistency and blurriness. To support this claim, we tease apart the uncertainty guidance and notice
a minor performance drop in Table 1. Also, we provide a visual comparison in Figure 4. We observe
that model “A” produces more visually appealing window details than model “F”.

Mask schedule. As illustrated in Table 3 and Figure 5, we analyze various mask schedule strategies
and discover that the uniform strategy performs best. We argue this is because the mask ratios of in-
put images vary widely, and uniform schedule results in more stable training for different iterations.

4.4 COMPARISONS TO STATE-OF-THE-ART METHODS

We thoroughly compare the proposed pixel spread model (PSM) with GANs-based models Li et al.
(2022); Zhao et al. (2020); Suvorov et al. (2021); Zhu et al. (2021); Zeng et al. (2021); Yi et al.
(2020); Yu et al. (2019), autoregressive models Wan et al. (2021), and denoising diffusion mod-
els Rombach et al. (2022) in Table 4. We use publicly accessible models for 512 × 512 resolution
and test them on the same masks to make a fair comparison.
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Table 4: Quantitative comparisons on Places2 and CelebA-HQ under 512 × 512 small and large
mask settings. “†”: Stable Diffusion inpainting model trained on LAION-Aesthetics V2 5+. P-IDS
and U-IDS are shown as percentages(%). The best and second best results are in red and blue.

Method #Param.
×106

Places2 (512× 512) CelebA-HQ (512× 512)
Small Mask Large Mask Small Mask Large Mask

FID↓ P-IDS↑ U-IDS↑ FID↓ P-IDS↑ U-IDS↑ FID↓ P-IDS↑ U-IDS↑ FID↓ P-IDS↑ U-IDS↑
PSM (ours) 74 0.72 30.95 43.91 1.68 25.33 39.30 2.34 22.42 33.43 4.05 16.10 28.25

Stable Diffusion† 860 1.32 12.69 34.78 2.11 12.01 32.57 - - - - - -
LDM 387 1.06 16.23 39.61 2.76 12.11 33.02 - - - - - -
MAT 62 1.07 27.42 41.93 2.90 19.03 35.36 2.86 21.15 32.56 4.86 13.83 25.33

CoModGAN 109 1.10 26.95 41.88 2.92 19.64 35.78 3.26 19.65 31.41 5.65 11.23 22.54
LaMa 51/27 0.99 22.79 40.58 2.97 13.09 32.29 4.05 9.72 21.57 8.15 2.07 7.58

MADF 85 2.24 14.85 35.03 7.53 6.00 23.78 3.39 12.06 24.61 6.83 3.41 11.26
AOT GAN 15 3.19 8.07 30.94 10.64 3.07 19.92 4.65 7.92 20.45 10.82 1.94 6.97

HFill 3 7.94 3.98 23.60 28.92 1.24 11.24 - - - - - -

Input Original Big-LaMa MAT LDM PSM (ours)

Figure 6: Qualitative comparisons of state-of-the-art methods on 512 × 512 Places2. Our PSM
produces structures and details that are more realistic and reasonable. Best viewed zoomed in.

In Table 4, our method significantly performs better than the existing GANs-based models under
both large and small mask settings. Besides, even with only 20% of the parameters of strong de-
noising diffusion model LDM Rombach et al. (2022), our method delivers superior results in terms
of all metrics. For example, on the Places2 benchmark, our PSM brings about 1.1 improvement on
FID and larger gains on P-IDS and U-ID under the large mask setup. As for the inference speed,
our PSM costs nearly 250ms to obtain a 512 × 512 image, which is 10× faster than LDM (∼3s).
Notably, our model is trained using far fewer samples (our 20M images vs. CoModGAN’s Zhao
et al. (2020) 50M images). Further comparisons are presented in Appendices D to G.

We also provide visual comparisons in Figure 6 and Appendix N. In a variety of scenes, our method
generates more aesthetically pleasing textures with fewer artifacts when compared to existing meth-
ods. For instance, room layouts and building structures are better inpainted by our approach.

5 CONCLUSION

We have proposed a new pixel spread model for large-hole image inpainting. Utilizing the proposed
iteratively decoupled probabilistic modeling, our method can assess the prediction accuracy and
retain the pixels with the lowest uncertainty as hints for subsequent processing, yielding high-quality
completion. Furthermore, our method exhibits favorable inference efficiency, largely surpassing that
of prevalent denoising diffusion models. The state-of-the-art performance in multiple benchmarks
demonstrates the effectiveness of our method. Lastly, we analyze limitations in Appendix M.
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A ARCHITECTURE DETAILS

Apart from the descriptions in Section 3.2 and Section 4.2, we here provide a more through il-
lustration of architecture details. We adopt a U-Net architecture with skip connections, where the
encoder downsamples the size of an H ×W input to H

32 ×
W
32 and the decoder upsamples it back

to H ×W . At each resolution, there is just one residual block made up of two 3× 3 convolutional
layers, unless otherwise stated. Both the encoder and the decoder employ attention blocks at feature
sizes of H

16 ×
W
16 and H

32 ×
W
32 , and an early convolutional block is also introduced at these scales.

Different attention blocks use adaptive mapping functions in Figure 3, each of which is composed
of 4 convolutional layers with a kernel size of 3× 3.

The input consists of 7 channels: 3 for color images, 1 for the initial mask, 1 for the updated mask,
1 for the uncertainty map, and 1 for the time step. The number of channels is initially converted to
64, then doubled after each downsampling, up to a maximum of 512, and the decoder employs a
symmetrical setup. The output contains 6 channels: 3 for the mean term, 3 for the log variance term.

We apply weight modulation, where the style is derived from an image global feature and a random
latent code. As for the global feature, we employ convolutional layers to further downsample the
feature size from H

32 ×
W
32 to H

256 ×
W
256 and a global pooling layer to obtain 1d representation. The

random latent code is generated from Gaussian noise using 8 fully connected layers.

B GENERALIZATION TO 1024×1024 RESOLUTION

To evaluate the generalization ability of models, we compare our pixel spread model (PSM), MAT Li
et al. (2022) and LaMa Suvorov et al. (2021) trained on 512× 512 Places2 Zhou et al. (2017) at the
1024×1024 resolution. As illustrated in Table B.1, our PSM performs significantly better than MAT
and LaMa on all metrics, despite using fewer training samples. Remarkably, our approach results in
an approximately 1.9 FID improvement. We do not involve denoising diffusion models (e.g., LDM)
and other GANs-based models (e.g., CoModGAN) for comparisons because scaling them up to the
1024× 1024 resolution is impractical.

Table B.1: Quantitative comparisons on 1024 × 1024 Places2 Zhou et al. (2017) dataset under the
large mask setup by transferring models trained at the 512 × 512 resolution. Our PSM generalizes
well to higher resolutions.

Method FID↓ P-IDS(%)↑ U-IDS(%)↑
PSM (Ours) 3.95 14.40 32.23

MAT Li et al. (2022) 5.83 9.51 28.02
LaMa Suvorov et al. (2021) 6.31 4.98 23.24

C GENERALIZATION TO UNKNOWN MASK TYPES

Following the NTIRE 2022 Image Inpainting Challenge Romero et al. (2022) guidelines, we prepare
a test set of 6000 samples with an average missing ratio of approximately 60%, covering mask types
of Every N Lines, Image Expansion, and Nearest Neighbor, which are never seen during training.

Table C.2: Quantitative comparisons on unknown mask types.

Method #Param. FID↓ P-IDS↑ LPIPS↓ PSNR↑
Ours + Fine-tune 74M 2.22 26.43 0.091 26.30dB

Ours 74M 5.27 12.98 0.148 23.77dB
Stable Diffusion 860M 95.65 3.65 0.705 13.56dB

LDM 387M 96.39 5.48 0.576 13.11dB
MAT 62M 67.57 3.28 0.458 16.25dB

Big LaMa 51M 47.64 3.97 0.306 20.41dB
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As shown in Table C.2, both other SOTA diffusion and GANs-based models show significant per-
formance degradation, particularly for large models like Stable Diffusion and LDM. Surprisingly,
our method exhibits excellent generalization on unknown mask types. Our FID score of 5.27 far
surpasses the second-best method, LaMa, with a score of 47.64. We attribute this superiority to
our iteratively decoupled probabilistic modeling, which enables the selection of reliable estimates
for iterative refinement. Moreover, fine-tuning with a few iterations leads to great gains. These
findings manifest the exceptional generalization and optimization abilities of our method.

D 512×512 LPIPS RESULTS

LPIPS Zhang et al. (2018b) is also a widely used perceptual metric in image inpainting. For a
comprehensive comparison with state-of-the-art methods, we provide LPIPS results in Table D.3.
We argue that LPIPS may not be suitable for large-hole image inpainting because it is calculated
pixel-by-pixel. This measure is for reference only.

Table D.3: LPIPS↓ results on 512 × 512 Places2 Zhou et al. (2017) and CelebA-HQ Karras et al.
(2018) datasets. “†”: our models are trained with 20M samples, much less than other methods (e.g.,
MAT uses 50M samples on Places2 and 25M samples on CelebA-HQ). We use a single model for
both the small and large mask setups. “‡”: the official Stable Diffusion inpainting model is trained
on a large-scale high-quality dataset LAION-Aesthetics V2 5+.

Method #Param. Places CelebA-HQ
×106 Small Large Small Large

PSM (Ours)† 74 0.084 0.161 0.052 0.099
Stable Diffusion‡ 860 0.148 0.220 - -

LDM Rombach et al. (2022) 387 0.100 0.190 - -
MAT Li et al. (2022) 62 0.099 0.189 0.065 0.125

CoModGAN Zhao et al. (2020) 109 0.101 0.192 0.073 0.140
LaMa Suvorov et al. (2021) 51/27 0.086 0.166 0.075 0.143

MADF Zhu et al. (2021) 85 0.095 0.181 0.068 0.130
AOT GAN Zeng et al. (2021) 15 0.101 0.195 0.074 0.145

HFill Yi et al. (2020) 3 0.148 0.284 - -

E 256×256 CELEBA-HQ RESULTS

We also conduct quantitative comparisons on 256 × 256 CelebA-HQ Karras et al. (2018) dataset.
As shown in Table E.4, our method achieves the best performance among all methods.

Table E.4: Quantitative comparisons on 256 × 256 CelebA-HQ Karras et al. (2018) dataset. The
P-IDS and U-IDS results are shown in percentage (%). “†”: our model is trained with 12M samples,
far less than other methods (e.g., MAT uses 25M samples). We use a single model for both the small
and large mask setups.

Method Small Mask Large Mask
FID↓ P-IDS↑ U-IDS↑ FID↓ P-IDS↑ U-IDS↑

PSM (Ours)† 2.58 21.35 33.70 4.57 14.07 25.28
MAT Li et al. (2022) 2.94 20.88 32.01 5.16 13.90 25.13

LaMa Suvorov et al. (2021) 3.98 8.82 22.57 8.75 2.34 8.77
ICT Wan et al. (2021) 5.24 4.51 17.39 10.92 0.90 5.23
RFR Li et al. (2020) 6.37 5.75 14.97 12.91 0.70 1.77

MADF Zhu et al. (2021) 10.43 6.25 14.62 23.59 0.50 1.44
AOT GAN Zeng et al. (2021) 9.64 5.61 14.62 22.91 0.47 1.65
DeepFill v2 Yu et al. (2019) 5.69 6.62 16.82 13.23 0.84 2.62

EdgeConnect Nazeri et al. (2019) 5.24 5.61 15.65 12.16 0.84 2.31

16



Published as a conference paper at ICLR 2024

F 512×512 PSNR RESULTS AND INFERENCE SPEED

While PSNR may not be the most suitable metric for assessing large-scale hole inpainting per-
formance, we provide the results in Table F.5 for reference. It is worth noting that our method
demonstrates notably superior PSNR outcomes. In terms of inference efficiency, it is evident that
our model stands out for its efficiency among the top-performing models.

Table F.5: PSNR (dB) results and inference speed on 512 × 512 Places2 Zhou et al. (2017) and
CelebA-HQ Karras et al. (2018) datasets.

Method PSM (Ours) Stable Diffusion LDM MAT

Places Small 25.51dB 21.70dB 24.48dB 24.44dB
Large 20.89dB 19.17dB 20.11dB 19.92dB

CelebA-HQ Small 29.61dB - - 28.44dB
Large 24.81dB - - 23.50dB

Inference Speed 0.25s 3.6s 2.7s 0.26s

G COMPARISON TO REPAINT

Considering that the sizes of RePaint Lugmayr et al. (2022) results are at 256 × 256 on Places2
and CelebA-HQ while ours are at 512 × 512, we don’t compare it in the main body of the paper.
Here we compare our model PSM to RePaint at 256 × 256 resolution on Places2 and CelebA-HQ
in Table G.6, where PSM achieves better performance and is 1000× faster than RePaint (i.e., 0.25s
v.s. 250s for one image processing). For saving time, we just use the first 10K Places2 validation
images for evaluation.

Table G.6: Quantitative comparisons with RePaint Lugmayr et al. (2022) on 256× 256 Places Zhou
et al. (2017) and CelebA-HQ Karras et al. (2018) datasets.

Method Places2-10K (256× 256) CelebA-HQ (256× 256)
FID↓ P-IDS(%)↑ U-IDS(%)↑ FID↓ P-IDS(%)↑ U-IDS(%)↑

Ours 3.47 18.32 34.52 4.57 14.07 25.28
RePaint 6.15 11.11 27.16 10.55 0.07 1.47

H FIDELITY-DIVERSITY TRADE-OFF

Apart from FID (depending on both diversity and fidelity), we follow previous work to use Improved
Precision and Recall as fidelity (precision) and diversity (recall) measures. As shown in Table H.7,
our model yields better FID, higher precision yet slightly lower recall than LDM on Places2, while
outperforming MAT on all metrics. Improving diversity will be our future work.

Table H.7: FID, precision and recall comparisons for evaluating fidelity-diversity traed-off on 512×
512 Places Zhou et al. (2017) dataset.

Method #Param. FID↓ Precision↑ Recall↑
PSM (Ours) 74M 1.68 0.983 0.971

LDM 387M 2.76 0.962 0.975
MAT 62M 2.90 0.965 0.939
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I ADDITIONAL COMPARISONS

We have expanded our comparisons to include recent methods, including MI-GAN Sargsyan et al.
(2023) and the inpainting model from ControlNet Zhang et al. (2023), as depicted in Table I.8.
The results from our proposed PSM demonstrate significant improvements across all metrics, high-
lighting its effectiveness. MI-GAN is primarily designed for mobile devices, achieving a favorable
performance-efficiency trade-off. Moreover, it is worth noting that ControlNet may produce subop-
timal results due to its tendency to generate new objects that might not align harmoniously with the
existing content.

Table I.8: Quantitative comparisons on Places2 and CelebA-HQ under 512 × 512 small and large
mask settings. “†”: Stable Diffusion inpainting model trained on LAION-Aesthetics V2 5+. P-IDS
and U-IDS are shown as percentages(%). The best and second best results are in red and blue.

Method #Param.
×106

Places2 (512× 512) CelebA-HQ (512× 512)
Small Mask Large Mask Small Mask Large Mask

FID↓ P-IDS↑ U-IDS↑ FID↓ P-IDS↑ U-IDS↑ FID↓ P-IDS↑ U-IDS↑ FID↓ P-IDS↑ U-IDS↑
PSM (ours) 74 0.72 30.95 43.91 1.68 25.33 39.30 2.34 22.42 33.43 4.05 16.10 28.25

Stable Diffusion† 860 1.32 12.69 34.78 2.11 12.01 32.57 - - - - - -
LDM 387 1.06 16.23 39.61 2.76 12.11 33.02 - - - - - -
MAT 62 1.07 27.42 41.93 2.90 19.03 35.36 2.86 21.15 32.56 4.86 13.83 25.33

CoModGAN 109 1.10 26.95 41.88 2.92 19.64 35.78 3.26 19.65 31.41 5.65 11.23 22.54
LaMa 51/27 0.99 22.79 40.58 2.97 13.09 32.29 4.05 9.72 21.57 8.15 2.07 7.58

MI-GAN 6 1.40 18.43 39.35 3.81 13.50 32.42 - - - - - -
ControlNet 1223 1.86 12.63 35.71 5.55 6.60 25.65 - - - - - -

MADF 85 2.24 14.85 35.03 7.53 6.00 23.78 3.39 12.06 24.61 6.83 3.41 11.26
AOT GAN 15 3.19 8.07 30.94 10.64 3.07 19.92 4.65 7.92 20.45 10.82 1.94 6.97

HFill 3 7.94 3.98 23.60 28.92 1.24 11.24 - - - - - -

J RATIO α IN EQ. (5)

From Table J.9, we see that a large α generally trades fidelity (Precision) for higher diversity (Recall)
on Places2. We empirically choose the α = 0.001 for better evaluation results.

Table J.9: Quantitative results using different α values in Eq. (5).

α Value 0.001 (Ours) 0.1
FID↓/Precision↑/Recall↑ 1.68/0.983/0.971 1.75/0.977/0.975

K VISUAL ITERATION PROCESS

We depict the evolving results at various iterations in Figure K.1. It is evident that our method attains
promising outcomes within a limited number of iterations, significantly faster than autoregressive
and denoising diffusion models. This point is already underscored in the speed comparison discussed
in Section 4.4 and Appendix F.

L PLURALISTIC GENERATION

As discussed in Section 4.3, our method also supports pluralistic generation. From the visual ex-
amples in Figure L.2, we observe that the differences mainly lie in the fine-grained details. We will
work on improving the generating diversity.

M LIMITATION ANALYSIS

Our method shows a tendency to make more changes in small details rather than in large structures.
We aim to improve the diversity of our generation in this regard. Additionally, our method some-

18



Published as a conference paper at ICLR 2024

Input Iteration 1 Iteration 2 Iteration 3

Figure K.1: Inpainting results of our PSM at different iterations. One-shot generation usually results
in blurry content with unpleasing artifacts, while more iterations yield better results.

Input Ours1 Ours2 Input Ours1 Ours2

Figure L.2: Visual examples of diverse generation for our method.

times struggles to understand objects when only a few hints are given, as illustrated by a few failure
cases presented in Figure M.3. For instance, the missing part of the notebook is filled with the back-
ground, and the recovered bus structure is incomplete. We attribute one of the reasons to the lack of
high-level semantic understanding. We will further improve the generative capability of our model.

N ADDITIONAL QUALITATIVE COMPARISONS

We provide more visual examples on 512× 512 Places2 Zhou et al. (2017) and CelebA-HQ Karras
et al. (2018) in Figures N.4 to N.8. Due to space limit, we additionally add comparisons with
CoModGAN Zhao et al. (2020) in Figure N.9. Compared to other methods, our method generates
more photo-realistic and semantically consistent content. For example, our method successfully
recovers human legs, airplane structures, and more realistic indoor and outdoor scenes.

Our model performs well when the input image contains sufficient visible pixel information, en-
abling high-quality generation while maintaining coherence with the existing content. This success
originates from our model’s pixel spreading mechanism, which initiates from visible pixels and
progressively diffuses valuable information throughout the image. This approach is particularly ef-
fective for facial images characterized by strong inherent priors, such as symmetry and structural
attributes. In the third example in Figure N.7, where the right half of the face is visible, our model
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Input PSM (Ours) GT

Figure M.3: Failure cases of our PSM. It is difficult to recover the large-scale missing objects.

reconstructs a comparatively realistic and consistent result using visible features like eyes and beard,
albeit with potential discrepancies in details like ears and nose. However, when the entire face is
masked, as in the first example in Figure N.7, our generated facial image notably diverges from
ground truth. This phenomenon also appears in natural scenes; for instance, in the third example in
Figure N.4, our method successfully restores the airplane structure due to the visibility of the frontal
section, while other methods fail. All the results demonstrate the effectiveness of our method.
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Input Original Big-LaMa MAT LDM PSM (Ours)

Figure N.4: Qualitative side-by-side comparisons of state-of-the-art methods on 512× 512 Places2
dataset. Please zoom in for a better view. Our PSM produces structures and details that are more
realistic and reasonable. Best viewed zoomed in.
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Original Big-LaMa MAT LDM PSM (Ours)Input

Figure N.5: Qualitative side-by-side comparisons of state-of-the-art methods on 512× 512 Places2
dataset. Please zoom in for a better view. Our PSM produces structures and details that are more
realistic and reasonable. Best viewed zoomed in.
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Original Big-LaMa MAT LDM PSM (Ours)Input

Figure N.6: Qualitative side-by-side comparisons of state-of-the-art methods on 512× 512 Places2
dataset. Please zoom in for a better view. Our PSM produces structures and details that are more
realistic and reasonable. Best viewed zoomed in.
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Original MADF CoModGAN MAT PSM (Ours)Input

Figure N.7: Qualitative side-by-side comparisons of state-of-the-art methods on 512× 512 CelebA-
HQ dataset. Please zoom in for a better view. Our PSM produces face outlines and details that are
more realistic and reasonable. Best viewed zoomed in.
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Original MADF CoModGAN MAT PSM (Ours)Input

Figure N.8: Qualitative side-by-side comparisons of state-of-the-art methods on 512× 512 CelebA-
HQ dataset. Please zoom in for a better view. Our PSM produces face outlines and details that are
more realistic and reasonable. Best viewed zoomed in.
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Figure N.9: Qualitative comparisons between CoModGAN and our PSM on 512× 512 Places2 and
CelebA-HQ datasets. Please zoom in for a better view. Our PSM produces structures and details
that are more realistic and reasonable.
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