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Abstract

Pre-training is crucial in 3D-related fields such as autonomous driving where
point cloud annotation is costly and challenging. Many recent studies on point
cloud pre-training, however, have overlooked the issue of incompleteness, where
only a fraction of the points are captured by LiDAR, leading to ambiguity dur-
ing the training phase. On the other hand, images offer more comprehensive
information and richer semantics that can bolster point cloud encoders in ad-
dressing the incompleteness issue inherent in point clouds. Yet, incorporating
images into point cloud pre-training presents its own challenges due to occlusions,
potentially causing misalignments between points and pixels. In this work, we
propose PRED, a novel image-assisted pre-training framework for outdoor point
clouds in an occlusion-aware manner. The main ingredient of our framework is
a Birds-Eye-View (BEV) feature map conditioned semantic rendering, leverag-
ing the semantics of images for supervision through neural rendering. We further
enhance our model’s performance by incorporating point-wise masking with a
high mask ratio (95%). Extensive experiments demonstrate PRED’s superiority
over prior point cloud pre-training methods, providing significant improvements
on various large-scale datasets for 3D perception tasks. Codes will be available at
https://github.com/PRED4pc/PRED.

1 Introduction

Pre-training is a fundamental task in deep learning, serving as a powerful tool to harness the potential
of copious unlabeled data and enhance the results of downstream tasks. This is especially critical in
3D-related fields, including autonomous driving, where the annotation of point clouds is both labo-
rious and expensive, contrasting with the relative ease of amassing large volumes of unlabeled point
cloud data (59). To tackle this challenge, we present PRED (PRE-training via semantic renDering),
a novel framework designed to pre-train point cloud processors using multi-view images.

With the tremendous advancements in masked signal modeling within the realms of image and
natural language processing (16; 12; 2), recent studies (55; 30; 62; 17; 61; 6) have delved into
applying masked auto-encoders to pre-training in the field of point clouds. These works firstly apply
patch masking to the input point clouds, then employ an encoder-decoder framework to reconstruct
the point clouds as depicted in Figure 1(a). Apart from masked auto-encoders, other researchers (52;

; 64; 22; 34; 8) have explored point cloud pre-training through contrastive learning. Here, positive
pairs are generated by applying varied data augmentations to the point clouds, as demonstrated
in Figure 1(b). Despite these significant strides, there remains a blind spot regarding the inherent
incompleteness of point clouds, which is a ubiquitous issue in outdoor LiDAR datasets. For example
in nuScenes (4), a large-scale outdoor LiDAR dataset, over 30% of the labeled objects contain fewer
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Figure 1: Comparison of our framework with previous point cloud pre-train methods. Exist-
ing pre-train works can be broadly categorized into (a) mask signal modeling and (b) contrastive
learning. (c) We propose a novel framework that pre-trains point cloud encoder through semantic
rendering.

than five points. As illustrated in Figure 2(a), this incompleteness introduces ambiguity into point
cloud reconstruction, thereby potentially impacting the quality of the training process.

Images, compared to point clouds, embody more comprehensive information and enriched seman-
tics. Several studies (6; 8; 34) have sought to offset the limitations of outdoor point clouds by in-
corporating images into point cloud pre-training. However, these works typically align point clouds
with images through a straightforward point-to-pixel projection, neglecting to account for occlusion
where objects in point clouds may not be visible in the image due to misalignment between LiDAR
and camera. This oversight can lead to mismatches between points and pixels, as depicted in Fig-
ure 2(b), potentially hindering the effectiveness of pre-training. Hence the principal challenge we
address in this paper is an occlusion-aware, image-assisted pre-training framework for outdoor point
clouds.

In this study, we introduce a novel pre-training framework, PRED, designed to tackle the problem of
reconstruction ambiguity and occlusion by integrating image information through semantic render-
ing, as illustrated in Figure 1(c). Neural rendering has demonstrated substantial success in learning
3D implicit representations from 2D images within the sphere of 3D generation (28; 31; 40). This
inspires us to learn point cloud representations from image semantics via neural rendering. To ac-
complish this, we first extract BEV feature map from the point cloud using an encoder. Then, we
render the semantic maps from image views, conditioned on the BEV feature map. The entire pro-
cess is supervised by image semantics, thereby circumventing the introduction of reconstruction
ambiguity and enabling effective occlusion management by assigning a reduced weight to occluded
points during volume rendering. Moreover, we find the critical role of point-wise masking, employ-
ing a substantially higher mask ratio of 95% compared to the 75% utilized in previous patch-wise
masking methods (16; 55).

We conduct extensive experiments on several outdoor LiDAR datasets, applying a variety of base-
lines and encoders to appraise the effectiveness of our pre-training method. The experimental results
consistently showcase the superiority of our approach, outperforming both training from scratch and
recent concurrent point cloud pre-training methods. Our contributions can be summarized as follows:
1) We introduce PRED, a novel pre-training framework for outdoor point clouds via semantic ren-
dering. 2) We incorporate point-wise masking with a high mask ratio to enhance the performance
of PRED. 3) Our approach significantly bolsters the performance of various baselines on large-scale
nuScenes (4) and ONCE (26) datasets across various 3D perception tasks.

2 Related Work

3D Perception on Point Clouds. 3D perception methods generally fall into two categories: point-
based and voxel-based. Point-based methods (9; 24; 32; 38; 48; 57; 58) directly extract features and
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Figure 2: (a) The two point clouds on the left side of 2(a) display varied levels of incompleteness.
Nevertheless, after masking, these two point clouds become strikingly similar, resulting in a single
input corresponding to dual targets during reconstruction, thereby instigating ambiguity in training.
(b) We present the projection of the LiDAR point cloud from the image view. The red dots belong
to the background. However, due to occlusion, these points are mistakenly projected onto the car.

predict 3D objects from raw point clouds, while voxel-based methods (1 1; 13; 15; 36; 37; 39; 45; 54;
60) streamline the process by discretizing these points into regular voxels or pillars for processing
with 3D or 2D convolutional networks. Recently, integrating the Transformer (43) into point cloud
processing has yielded notable results (27; 14; 42; 47; 49). In this work, we show that a wide range
of modern 3D perception methods can benefit from our pre-training framework.

Pre-Training for Point Clouds. Mask-based (61; 30; 62; 46) and contrast-based (22; 52; 64; 23; 33
methods are currently the leading paradigms for point cloud pre-training. However, these tech-
niques often neglect the inherent incompleteness of outdoor point clouds. To address this, some
studies (6; 8; 34) try to integrate images for a more comprehensive perspective. Though impressive,
they overlook potential occlusion when aligning points with images. To counter these challenges,
we introduce PRED, an effective pre-training paradigm that capitalizes on images through semantic
rendering.

Neural Rendering. The implicit representations encoded by a neural network (28; 50; 29; 3; 41;
5; 565 51) have gained a lot of attention recently, where the geometry and appearance in 3D space
are encoded by implicit neural representation supervised from 2D images. NeuS (50) constrains the
scene space as a signed distance function and applies volume rendering to train this representation.
In this work, we apply a NeuS-like rendering method, but different from learning an implicit repre-
sentation of a single scene, we aim to learn generalized point cloud representations for pre-training.
Volumetric Rendering for Perception Tasks. Recently, some works (53; 44) have attempted to
introduce volume rendering into perception tasks. Ponder (19) shares a similar spirit to our work.
However, Ponder focuses on indoor scenes, where point clouds often contain color information,
facilitating color-based pre-training supervision. In contrast, our work addresses outdoor environ-
mentsspecifically, autonomous drivingwhere point clouds are typically LiDAR-derived and color-
less. Consequently, Ponder is not applicable due to the absence of color data. In this context, we
propose semantic rendering. Unlike Ponder’s color-based rendering, our approach capitalizes on the
semantic consistency between point clouds and images, offering a distinct strategy for point cloud
pre-training.

3 Methodology

We introduce PRED, a novel image-assisted pre-training framework designed for outdoor point
clouds, taking into account occlusion. The comprehensive framework is depicted in Figure 3, with
subsequent sections delving into the specifics of our method.

3.1 Revisiting NeuS

NeuS (50) is a neural rendering technique employed for single-scene 3D reconstruction. In this
approach, the 3D scene is represented by two functions: a signed distance function (SDF) d : R? —
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Figure 3: Pipeline of our PRED. Firstly, we apply point-wise masking to the input point cloud, sub-
sequently feeding the remaining points into the encoder to generate the BEV feature map. Semantic
rendering is then performed on the BEV feature map, supervised by both semantic and depth loss.
For the semantic loss, we compute the cross-entropy loss between the rendered semantics and the
pseudo labels, which are predicted by an image segmenter. During pre-training, batches are sam-
pled from the point cloud projections on the image plane, utilizing class balance sampling. Upon
the completion of pre-training, we employ the encoder for downstream tasks.

R, which maps each spatial position r € R3 to its distance from the object’s surface, and a color
function ¢ : R3 x §2 — R3, encoding the color of each point in the scene based on a specific viewing
direction v € S2. Given a pixel with a ray emitted from it denoted as {r(t) = o + tv | t > 0},
where o is the camera center and v is the unit direction vector of the ray, NeuS computes the color
for this pixel by integrating the color values along the ray using the following equation:

+oo
Clo,v) = / w(t)e(e(t), v)dt, (1)

where C'(o0,v) is the pixel’s output color, w(t) represents a weight function for the point r(¢). To
derive an unbiased weight function w(t), NeuS computes the weight function as follows:

! — 9% (d(x (1))
=exp | — u)du = max [ —L -~ 777
w(t) =e p< /0 p(u)d )p(t), p(t) a < B, (d(x(0)) ,0>, (2)

where @ () is the sigmoid function ®,(x) = (1 + e~5%)~1, and s is a trainable parameter. NeuS
is then trained by minimizing the discrepancy between rendered prediction and ground truth colors.

3.2 Pre-Training via Semantic Rendering

We apply Equations 1 and 2 as our rendering method. A simple approach would be to use the
image’s RGB values as supervision for neural rendering like NeuS (50), but it failed to converge
due to the point cloud’s color absence. Consequently, we opt for semantic supervision. Unlike the
lack of color information, the point cloud contains semantic details, which can be further enhanced
through the image, resulting in better convergence during training. As demonstrated in Figure 3, our
proposed method employs an encoder to transform input point clouds into a BEV feature map, and
a decoder to map spatial positions in the 3D space, represented as r € R3, to their corresponding
semantic predictions and signed distances to objects, conditioned on the BEV feature map.

Specifically, let P € RV»*3 and Z € RNi*HixWix3 represent the input point clouds with N,
points and corresponding N; images with width W; and height H;, respectively. Firstly, we encode
the point clouds P into a BEV feature map F € R *WXC yith the encoder E : P — F, where
H, W, and C signify the height, width, and number of channels of the feature map, respectively.
Subsequently, we sample a batch of pixels from the images Z and carry out semantic rendering for
pre-training.



Semantic Rendering. Here, we use the pixel u = [u, v] as an example to illustrate the process. We
denote the camera intrinsic and extrinsic parameters respectively by K € R3*3 and E = [R,t] €
R3%4. A ray emitting from the pixel u can be characterized as a line R = t + § RK ™' [u, v, 1]T
in world coordinates parametrized by §. We then sample a sequence of points r; = R(J;) along the
ray R. For each point, we utilize a decoder D to predict its semantics and signed distance, given by

(s(r), d(r)) = D(Concat(F(r), PE(r))), 3)
where s(r) € R™e and d(r) denote the semantic prediction with N, classes and signed distance of
point r, F(r) symbolizes the feature extracted from the BEV feature map where r is projected, and
PE(r) is the cosine position embedding of r. Finally, we aggregate the semantic predictions along
the ray R employing Equations 1 and 2, but in a discrete format:

N, i-1 i) — Tit1
§— Z; 1:[1 (1 _ Oéj) OziS(I'i), o; = max ((I)s (d(rz;))s (d‘(I;Z)()d( i+1)) ; 0) , @)

where N represents the number of sampled points. Throughout this process, occluded points will
be allocated a low weight (50), thus mitigating the adverse effect of occlusion.

Semantic supervision. Given the absence of ground-truth semantic labels for images, we resort to
DeepLabv3 (7) trained on CityScape (10) for predicting pseudo semantic labels for pixel u, denoted
as 8 € RNe, Intuitively, the accuracy of s is linked to its maximum value: larger maximum values
indicate more confident predictions with fewer errors. Hence, to offset the impact of inaccurate
labels, this maximum value is incorporated as a weight in the loss calculation. Ultimately, our loss
function adopts the form of cross-entropy loss:

N,
1 c
»Csemantic = W Z - max(g) Zgi log(éz)u (5)
ueld i=1

where U denotes the training batch of pixels, which are sampled from the projections of point clouds.
Additionally, considering that the semantic categories in the point cloud are heavily unbalanced with
vegetation constituting more than 30% while pedestrians constitute less than 1% we employ class-
balanced sampling. Here, the sampling probability of each pixel is inversely proportional to the
number of point clouds of the category to which that pixel belongs (see Appendix for more details).

Geometry supervision. We introduce depth rendering to bolster the model’s understanding of geo-
metric information, which can enhance and stabilize pre-training performance. For depth rendering,
we adhere to the same method as outlined in Equation 4:

N, i—1

d=> 1] —ay)aid(ra), ©)

i=1 j=1
where 0(r;) denotes the depth of point r;, and «; is as defined in Equation 4. During the training
phase, we sample batches of pixels projected from the point cloud. The ground-truth depth is deter-
mined by the distance between the point and the projection plane. We opt for the view centered on
the LiDAR position as the rendering view (referred to as the lidar view henceforth) given that the
depth of image views may not be as accurate due to occlusion, as exemplified in Figure 2(b). Finally,
we supervise the rendered depth using the L2 loss function:

1 R
Lacpn = 157 D Ildoe — . @
uey
where dg; represents the ground-truth depth, and V denotes the batch of pixels sampled from the
projection plane of the lidar views.

Point-wise Masking. Contrary to the patch-wise masking approach utilized in masked signal mod-
eling, we found that point-wise masking with a high masking ratio (95%) performs more effectively
within our pre-training framework. Before inputting the point cloud into the encoder, we uniformly
sample a subset of the point cloud without replacement and mask the remaining points. Point-wise
masking is more proficient at maintaining the semantics of the scene. For smaller objects such as
pedestrians, patch-wise masking could potentially obliterate them entirely, leading to a significant
loss of semantics. Conversely, point-wise masking tends to make the point cloud of the object more
sparse, thus preserving its semantics. Our experimental results further validate the effectiveness of
point-wise masking (refer to Section 4.4 for details).



3.3 Learning Objective

Following (50), we adopt a coarse-to-fine sampling strategy during rendering, utilizing 96 sample
points at the coarse stage and 128 sample points at the fine stage. To optimize the model, we min-
imize the sum of the semantic 1oss Lsemantic and the depth loss Lgepen, together with the Eikonal
term L,.4, resulting in a total loss £ defined as follows:

L= Csemantic + Cdepth + /\»Creg7 (®)
where ) is a hyper-parameter that defaults to 0.1, and L,.., represents the Eikonal term defined by:
1 ok )
Lres = Fy] 1;;21 (IVd (ri)], —1)°. ©)

While rendering semantics, we apply the stop-gradient to the signed distance in Equation 4. This is
to circumvent the potential unreliability of semantic labels, which could otherwise adversely affect
the learning of the scene’s geometric information.

Table 1: Comparisons of 3D object detection performance on the nuScenes validation (top)
and test (bottom) sets. We present mAP, NDS, and AP for each class. Quantitatively, our method
surpasses previous state-of-the-art approaches.

Method PreTrain mAP NDS ‘ Car  Truck CV. Bus Trailer Barrier Motor. Bike Ped. TC.

56.2 645 | 848 539 168 670 359 648 558 364 83.1 634
563101 64401 | - - - N - - B - - .
573411 650105 | - - - - - - - - - -
574412 651,06 | 850 538 185 672 385 649 581 417 825 637
590,25 663115 | 849 564 203 686 37.1 645 632 466 828 652

CenterPoint (60)
PointContrast (52)
GCC-3D (22)
ProposalContrast (59)
Ours (CenterPoint’)

X

v

v

v

e
GD-MAE () X 58.1 656 | 854 565 161 703 369 641 590 397 845 68.4

V589,08 66105 | 854 568 185 70.1 382 644 609 393 847 70.4
Ours (Second X 522 635 | 847 560 138 684 353 577 458 189 791 619
ucsieceenc) Vi 552,50 655420 | 848 592 171 711 384 581 550 232 80.1 64.8
Ours (Centerbor X 61.5 680 |856 605 202 716 370 664 643 490 86.1 745
usi(Centeibmt) Vi 642,27 697,17 | 856 608 250 728 402 673 718 585 858 739
Ours (DSVT X 66.4 711 | 87.8 641 254 759 419 692 744 585 88.1 788
) Vi 680,16 720,00 | 87.6 647 275 756 469 738 747 610 885 795
PointPillars (20) X 30.5 453 | 684 230 41 282 234 389 274 L1 597 308
CBGS (65) X 52.8 633 | 8L1 485 105 549 429 657 515 223 801 709
TransFusion (1) X 65.5 702 | 862 567 282 663 588 782 683 442 861 82.0
PillarNet-34 (35) X 66.0 714 | 876 575 279 636 631 772 701 423 873 833
DSVT (47) X 684 727 | 879 576 349 670 633 783 731 497 879 842
o oo X 633 69.1 | 852 546 264 678 571 736 646 360 857 819
uesl(CEnterboint) Vi 659,56 708.17 | 850 545 302 655 609 735 732 479 860 822

X 684 727 | 879 576 349 670 633 783 731 497 879 842

Ours (DSVT) Vi 70117 73710 | 877 587 388 681 655 795 763 534 879 846
1 Use 3D sparse convolution network (60) as the point cloud encoder.

1 Use pixel semantics during pretraining.

Notion of class: Construction vehicle (C.V.), pedestrian (Ped.), traffic cone (T.C.).

4 Experiments

4.1 Experimental Settings

Dataset: nuScenes (4) is a challenging outdoor dataset providing diverse annotations for various
tasks, such as 3D object detection and BEV map segmentation. It comprises approximately 40k
keyframes, each equipped with six cameras and a 32-beam LiDAR scan. For 3D object detection,
we report the nuScenes detection score (NDS) and mean average precision (mAP). For map segmen-
tation, we provide the mean Intersection over Union (IoU).

Dataset: ONCE (20) is a large-scale autonomous driving dataset, featuring 1M LiDAR scenes and
7M corresponding camera images. The dataset is split into training, validation, and testing sets con-
sisting of 5k, 3k, and 8k point clouds, respectively. The remaining unannotated point clouds are



Table 2: 3D object detection performance comparisons on the ONCE val split. We report mAP
and AP per class. Our method achieves the best performance among these state-of-the-art methods.

. . Orientation-aware AP

Methods PreTrain PreTrain Data mAP Vehicle Pedestrian Cyclist
PointRCNN (38) X - 28.74 52.09 428 29.84
PointPillars (20) X - 4434 68.57 17.63 46.81
SECOND (54) X - 51.89 71.19 26.44 58.04
PV-RCNN (36) X - 53.55 77.77 23.50 59.37
IA-SSD (63) X - 57.43 70.30 39.82 62.17
CenterPoint (60) X - 60.05 66.79 49.90 63.45
DepthContrast (64) X - 51.89 71.19 26.44 58.04
|/ medium 52.81+0,92 71.92+0A73 29.01_’_2‘57 57.51_()‘53

PointContrast (57) X . 51.89 71.19 26.44 58.04
\/ large 53.59+1.70 71-87+0.68 28.03+1'59 60.88+2'34

SLidR (34) X - 28.80 52.10 4.17 30.13
\/i large 30.724,1‘92 53.19.{.1‘09 6.74+2A57 32.22.{.2‘09

ProposalContrast (59) X . 64.24 75.26 51.65 65.79
\/ large 66.32+2.08 77~22+1.96 54~01+2.36 67.73+1'94

GD-MAE (55) X - 62.62 75.64 45.92 66.30
|/ la.rge 64.92+2_30 76.79.{.1‘15 48.84_‘_2‘92 69.14.{.2‘84

Ours (Second X . 52.95 74.93 2433 59.58
urs (Second) v large 56104515 | 77115218 2751 518 63.69:411
Ours (PV-RCNN X - 54.35 78.65 24.71 59.70
L=t ) Vi large 5745.510 | 8099250 27.93.322 63.44,574
X - 64.28 76.82 49.99 66.02
. \/]L small 65.87+1'59 78.56+1'74 51.50+1'51 67.55+1'53
Ours (CenterPoint) Vi medium 66.7242.44 | 79271245 52534254 68364234
\/1L large 67.41+3.13 79-50+2.68 53.36+3'37 69.36+3.34

1 Use pixel semantics during pretraining.
T Use super-pixel and pixel features during pretraining.

divided into three subsets: small (100k scenes), medium (500k scenes), and large (1M scenes) for
pre-training purposes. The official evaluation metric is the mean Average Precision (mAP).
Implementation Details. We use DSVT-P (47) as our default encoder, given its flexibility. For the
decoder, we use a 4-layer MLP with 256 hidden channels, and Softplus is chosen as the activation
function. For image segmentation, we utilize DeepLabV3 (7) with MobileNets (18) as the backbone.
During pre-training, we train the model using the AdamW (25) optimizer and the one-cycle policy,
with a maximum learning rate of 3e~4. We pre-train the model for 45 epochs on the nuScenes
dataset, 20 epochs on the ONCE small, 5 epochs on the ONCE medium, and 3 epochs on the ONCE
large. During fine-tuning, we employ random flipping, scaling, rotation, and copy-n-paste as data
augmentations, with a maximum learning rate of 3¢ ~2. All experiments are conducted on NVIDIA
V100 GPUs. For more implementation details, please refer to Appendix.

Overlap of labels between pixel semantics and downstream tasks. Our pre-training phase uti-
lizes pixel semantic labels that include 19 classes such as road, sidewalk, building, wall, fence, pole,
traffic light, sign, vegetation, terrain, sky, person, rider, car, truck, bus, train, motorcycle, and bicy-
cle. In the nuScenes object detection task, the labels include car, truck, construction vehicle, bus,
trailer, barrier, motorcycle, bicycle, pedestrian, and traffic cone. For the ONCE object detection task,
the labels are limited to vehicle, pedestrian, and cyclist. The nuScenes BEV map segmentation task
uses labels such as drivable, pedestrian crossing, walkway, stop line, car park, and divider. There’s
an overlap in labels like *car’, *bicycle’, and *pedestrian’, and our approach is more in line with the
field of weakly supervised learning.



Table 3: Performance comparisons on nuScenes val BEV map segmentation. We report mloU
and IoU per class. Our method quantitatively outperforms prior works.

Method PreTrain mloU ‘ Drivable Ped. Cross. Walkway Stop Line Carpark  Divider
PointPillars (20) X 43.8 72.0 43.1 53.1 29.7 27.7 37.5
CenterPoint (60) X 48.6 75.6 48.4 57.5 36.5 31.7 41.9
DSVT (47) X 51.6 79.7 51.8 61.1 38.2 33.8 45.3
Ours v 55.043.4 82.5 54.4 65.2 40.5 394 48.1

Table 4: Variations in Encoder Types. Table 5: Neural Rendering. Our rendering-based
We maintain the same components, method outperforms direct projection, showcasing

merely swapping the 3D backbone. its effectiveness.
Encoder PreTrain mAP NDS Case PreTrain mAP NDS
2D Conv (20) X 300 607 baseline X 61.5 68.0
v 530430 626410
X 6.2 645 projection v 62.0405 683403
VoxelNet (60) ' ‘ jection-fil v 62.8 68.8
v/ 590125 663418 projection-filt 641.3 8108
X P 6.0 rendering w/o depth v 63.5,20 692,12
DSVT-P (47) v/ 642,57 697,17 rendering w/ depth v 642,27 697,47

4.2 3D Object Detection

In this section, we investigate pre-training in an autonomous driving context. We benchmark the
performance of our model against previous methods on the nuScenes and ONCE datasets.

NuScenes. We employ Second (54), CenterPoint (60), and DSVT (47) as our baseline and present
the performance on the validation and test sets of nuScenes in Table 1. Our pre-trained model con-
sistently improves the performance of all baselines compared to models trained from scratch. On
the validation set, our method boosts the Second, CenterPoint, and DSVT by +3.0/2.0 mAP/NDS,
+2.7/1.7 mAP/NDS, and +1.6/0.9 mAP/NDS, respectively. With CenterPoint-Voxel as the detec-
tor (5-th row), our method surpasses previous pre-training methods (59; 52; 22) that also utilize
CenterPoint-Voxel detector by a large margin. On the test set, our method boosts the CenterPoint
and DSVT by +2.6/1.7 mAP/NDS and +1.7/1.0 mAP/NDS, respectively. Moreover, our method
significantly outperforms previous state-of-the-art LiDAR detectors (20; 65; 47; 1; 35).

ONCE. As shown in Table 2, our model surpasses all other methods on the ONCE validation split.
When using CenterPoint (60) as the detector, our method enhances the baseline by 3.13 mAP, out-
performing the improvements made by ProposalContrast (59) and GD-MAE (55) by 1.05 and 0.83,
respectively. While SLidR (34) also incorporates image information during pre-training, our method
significantly outperforms SLidR, showcasing the effectiveness of our approach in utilizing image in-
formation. The distinction between the 'no-pretrain’ versions of SLidR and our model originates
from their foundational detection frameworks, where SLidR employs PointRCNN as its detector.
As the scale of pre-training data continues to increase (from small to large), our method delivers
continuous gains, indicating its scalability with respect to data size.

4.3 BEYV map segmentation

We also demonstrate the versatility of our approach by evaluating its performance on the BEV Map
Segmentation task of the nuScenes dataset (4). We provide the IoU results for six background
classes in Table 3. Leveraging our PRED, we achieve a significant improvement of 3.4% over
DSVT’s performance, demonstrating the effectiveness of our approach in map segmentation tasks.

4.4 Ablation Studies

In this section, we conduct a series of ablation studies on the nuScenes val to explore the essen-
tial components of our methodology. Unless otherwise specified, we use CenterPoint (60) as the
detector.
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Figure 4: Masking strategy and masking ratio. Point-wise masking outperforms patch-wise mask-
ing and group-wise masking when a high masking ratio (95%) is applied.

Encoder type. To demonstrate the adaptability of our approach across various 3D backbone ar-
chitectures, we experiment by substituting DSVT-P (47) with 2D Conv from PointPillar (20), and
VoxelNet from CenterPoint-Voxel (60). The results, presented in Table 4, show that our approach can
boost detector performance by 3.0/1.9 mAP/NDS and 2.8/1.8 mAP/NDS when employing 2D Conv
and VoxelNet as backbones, respectively. These improvements are comparable to those achieved
using DSVT-P. Due to DSVT-P’s superior performance and flexibility, it was chosen as our default
encoder. However, our method proves to be effective with a variety of encoder types.

Semantic rendering design. Here, we verify the efficacy of
our semantic rendering pipeline as shown in Table 5. A basic Taple 6: Semantic loss. Both class
approach to leveraging images is to directly project the point palance sampling and confidence
cloud onto the images. However, as indicated in the 2nd row, weight play an important role in cal-
this method does not yield significant improvements due to  cylation of semantic loss.

the overlooking of occlusion effects during the projection pro-
cess. A potential solution is to filter the point cloud based on

Weight Cls-balance mAP NDS

the image depth, thereby excluding points that do not align 625 685
with the image depth from the training batch. In the absence v 632 69.0
of ground-truth image depth, we employ BEVDepth (21) for v 637 693
depth estimation. The enhanced performance in the 3rd row v v 642 69.7

underlines the importance of handling occlusion. However,
the inaccuracy of depth estimation hinders further performance improvement. Our neural rendering
approach, shown in the 4th row, surpasses the prior two methods by adaptively managing occlusion,
where attributing a reduced weight to occluded points when accumulating semantics as in Equa-
tion 4. Ultimately, incorporating depth supervision yields the best results, as depicted in the final
Tow.

Table 6 presents ablation experiments on class balance sam-

pling and confidence weight in semantic supervision. Both Tyble 7: LiDAR view. For depth su-
components are crucial for semantic supervision; the confi- pervision, the lidar view proves su-
dence weight mitigates the effects of inaccurate semantic la-  perjor to the image view.

bels, and class balance sampling addresses the issue of cate-

gory imbalance in point clouds. For depth supervision, We Case mAP NDS
compared two different rendering views in Table 7. The lidar image view 63.6 693
view outperforms the image view, as the depth of points might lidar view 64.2 69.7

be inaccurate in the image view, but not in the lidar view.

Masking strategy. In Figure 4, we explore various masking strategies to investigate their impact
on our pre-training framework: 1) Patch-wise masking masks a certain fraction of non-empty to-
kens, with each token representing a non-overlapping patch of the BEV feature map. 2) Group-wise
masking masks a certain proportion of point cloud groups, with each group selected using the Fur-
thest Point Sampling (FPS) and k-Nearest Neighbor (kNN) algorithm, following (61). 3) Point-wise
masking, as elaborated in Section 3.2. As illustrated in Figure 4, group-wise and patch-wise masking
strategies perform better when the masking ratio is low. When the ratio reaches 70%, the impact of
group-wise and patch-wise masking hits its peak. Intriguingly, the effectiveness of point-wise mask-
ing continues to ascend until the masking ratio reaches 95%. The results from point-wise masking
surpass those of the other two methods, achieving a score of 64.2 mAP. Consequently, we opt for



the point-wise masking strategy with a 95% masking ratio, as it offers the advantage of accelerated
processing while preserving good performance.

Data-efficient. A significant advantage of pre-training

lies in its ability to enhance data efficiency for down- Taple 8: Data Efficiency. Our approach
stream tasks that have limited annotated data. In this  ¢onsistently enhances the detection perfor-
study, we examine data-efficient 3D object detection mance, particularly when the labeled data
by first conducting pre-training on the nuScenes (4) g limited.

training data, then fine-tuning the pre-trained model

with varying fractions of training data: 10%, 20%, Dauset fraction PreTrain  mAP NDS
50%, and 100%. The results of these experiments are x 196 59
illustrated in Table 8. Overall, our pre-trained model 10% % " 4‘ 0 0'
consistently boosts detection performance, especially a8 mrsd
when the available labeled data is limited, i.e., improv- 20% X 3.1 62.9
ing 4.8 mAP and 3.1 NDS with only 10% labeled data. v 593142 65526
Remarkably, even when utilizing only 50% of the an- 50% X 59.7 66.2
notated data, the pre-trained model achieves 63.0 mAP v 630133 685,23
and 68.5 NDS, surpassing the performance of a non- 100% X 61.5 68.0
pre-trained version using 100% of the annotated data. 7 v 642,57 69717

More experimental results are provided in Appendix.

5 Conclusion

In this paper, we introduce PRED, an effective pre-training framework for outdoor point cloud data.
Our framework mitigates the inherent incompleteness of point clouds by integrating image informa-
tion through semantic rendering. It also allows for effective occlusion management by assigning a
reduced weight to occluded points during volume rendering. A point-wise masking strategy, with a
mask ratio of 95%, is adopted to optimize performance. Extensive experiments validate the effec-
tiveness of our framework as it significantly improves various baselines on the large-scale nuScenes
and ONCE datasets across various 3D perception tasks. We hope our PRED can serve as a powerful
baseline to inspire future research on point cloud pre-training.

Limitations. PRED mainly focuses on point cloud pre-training with images as supervision. The
integration of an image-point multi-modality pre-training could potentially improve performance.
However, it’s beyond this paper’s scope and we intend to explore this possibility in our future re-
search.
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