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ABSTRACT

We consider the problem of distributed optimization over a network, using a stochas-
tic variance reduced gradient (SVRG) algorithm, where executing every iteration
of the algorithm requires computation and exchange of gradients among network
nodes. These tasks always consume network resources, including communication
bandwidth and battery power, which we model as a general cost function. In this
paper, we consider a modified SVRG algorithm with arbitrary sampling (SVRG-
AS+), where the nodes are sampled according to some distribution. We characterize
the convergence of SVRG-AS+, in terms of this distribution. We determine the
distribution that minimizes the costs associated with running the algorithm, with
provable convergence guarantees. We show that our approach can substantially
outperform vanilla SVRG and its variants in terms of both convergence rate and
total cost of running the algorithm. We then show how our approach can optimize
the mini-batch size to address the tradeoff between low communication cost and
fast convergence rate. Comprehensive theoretical and numerical analyses on real
datasets reveal that our algorithm can significantly reduce the cost, especially in
large and heterogeneous networks. Our results provide important practical insights
for using machine learning over Internet-of-Things.

1 INTRODUCTION

Consider the problem of minimizing a sum of differentiable functions {fi : Rd 7→ R}i∈[N ], with
corresponding gradients {gi : Rd 7→ Rd}i∈[N ]:

w? = min
w∈Rd

f(w) = min
w∈Rd

1

N

∑
i∈[N ]

fi(w) . (1)

Such problems frequently arise in statistical learning, in which each fi could represent a regularized
loss over some sampled data points. In practice, such problems are often solved using a gradient-
based algorithm. Due to the large scale of many applications, most modern machine-learning
approaches distribute the tasks of finding the N gradients to some computational nodes (also called
workers) (Bottou et al., 2018), to enable parallel computations, or simply because the data is not
available at a single place. That is, at iteration k, a subset of the workers compute and send their
gradients {gi(wk)}i to a central controller (also called the master node), which updates the model and
broadcasts the updated parameter wk+1 to the workers. One of the most successful class of methods
to solve (1), is the classical stochastic gradient descent and its variance-reduced extensions, including
stochastic variance-reduced gradient (SVRG) and stochastic average gradient (SAGA) (Bottou et al.,
2018; Johnson and Zhang, 2013; Defazio et al., 2014). In this paper, we focus on SVRG.

In a distributed computation setting, running each iteration of the algorithm involves some costs
ci, which could correspond to the number of bits (or energy or latency) needed to send {gi(wk)}i
or the computational resources needed to compute {gi(wk)}i. These costs become of paramount
importance when we implement machine learning and distributed optimization algorithms on band-
width and battery-limited wireless networks. In such networks, tight requirements on low end-to-end
latency (in autonomous driving), low energy usage (Internet-of-Things), and high reliability (remote
industrial operation) may render the ultimate solution, and consequently the distributed algorithm,
useless (Jeschke et al., 2017). Our literature review in Section 2 shows that the existing distributed
optimization solutions often ignore these important cost terms. In the case of SVRG, the gradient
sampling ignores the heterogeneous costs of obtaining gi(w), for different i, as well as the impor-
tance of this gradient for the convergence rate of the algorithm. Here, we address this open research
problem.
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In this paper, we build on SVRG with arbitrary sampling (SVRG-AS), introduced in (Horváth
and Richtarik, 2019) where the gradient sampling follows a generic multinomial distribution. Our
algorithm, SVRG-AS+, allows for a variable inner loop length, reducing the amount of computa-
tions/communications of gradients in the inner loop by half, on average, compared to vanilla SVRG.
We show that, when each fi is strongly convex and Li-smooth, the convergence rate of SVRG-AS+
is a function of L̄ :=

∑
i Li/N instead of Lmax := maxi Li in the vanilla SVRG (Johnson and

Zhang, 2013). Similar results have been proved for SVRG and SAGA in smooth but nonconvex
setting (Horváth and Richtarik, 2019) and for SAGA in convex setting (Qian et al., 2019). We then
use our novel convergence bounds to design a minimum-cost SVRG-AS+ algorithm and transform
the resulting optimization problem into a linear program. Comprehensive theoretical and numerical
analyses on real datasets reveal that the optimal sampling rate of gi is a function of Li. We then
consider cost functions that model two important use cases: 1) stragglers in the federated learning
case and 2) congestion in wireless communications. In both cases, we show that our minimum cost
SVRG-AS+ can significantly outperform the vanilla SVRG and its state-of-the-art variants, including
importance sampling ones, in terms of both total costs of running the algorithm and/or convergence
rate. In particular, we show that the optimal mini-batch size depends not only on the computational
loads and the number of gradient exchanges but also heavily on the communication protocol.

Notation: Normal font w or W , bold font lowercase w, bold-font capital letter W , and cal-
ligraphic font W denote scalar, vector, matrix, and distribution function, respectively. We let
[N ] = {1, 2, . . . , N} for any integer N . We denote by ‖ · ‖ the l2 norm, by xT the transpose of x,
and by 1x the indicator function taking 1 when condition x holds. For easier reference, we have
provided a table of notations in the appendix, where we also present proofs and extra discussions.

2 LITERATURE REVIEW

Communication-efficient distributed optimization. Cost-efficient distributed optimization is ad-
dressed in the literature only via the notion of communication-efficiency. Example settings include
networked control (Hespanha et al., 2007), distributed optimization (Tsitsiklis and Luo, 1987; Rabbat
and Nowak, 2005; Zhang et al., 2012; 2015; Wang and Joshi, 2018), and machine learning (Balcan
et al., 2012; Zhang et al., 2013; Jordan et al., 2018; Zhu and Lafferty, 2018; Stich et al., 2018;
Karimireddy et al., 2019).

In the literature, there are two classes of approaches relevant to this paper: a) quantization of the
parameter and gradient vectors at every iteration, and b) eliminating some communications at every
step (Tang et al., 2020). The first category includes approaches that reduce the number of bits used
to represent wk and gi(wk), thereby alleviating the communication between the master node and
the workers at every iteration. Recent studies have shown that proper quantization approaches can
maintain the convergence to the true minimizer, as well as the convergence rate (Bernstein et al.,
2018; Kamilov, 2018; De Sa et al., 2018; Stich et al., 2018; Magnússon et al., 2019; Karimireddy
et al., 2019).

The second category includes algorithms that eliminate communication between some of the workers
and the master node in some iterations (Chen et al., 2018). Chen et. al. (Chen et al., 2018) proposed
lazily aggregated gradient (LAG) for communication-efficient distributed learning in master-worker
architectures. In LAG, each worker reports its gradient vector to the master node only if the changes
to the gradient from the previous step, measured by l2 norm, is large enough. That way, some nodes
may skip sending their gradients at some iterations, which saves communication resources. Sun et. al.
(Sun et al., 2019) extended LAG by sending quantized gradient vectors, instead of the true values.

To the best of our knowledge, all existing works assess the convergence in terms of the number of
iterations, bits transmitted, or gradients exchanged to achieve a certain solution accuracy. However,
when solving a machine learning problem over a network, the main design objectives are usually
latency, total energy usage, and reliability, rather than the number of algorithm iterations or bits
involved. For instance, in the presence of a congested network, where sending more packets leads
to more communication failures and delays, we may need a fundamental redesign of the distributed
optimization algorithm to control the number of active workers based on the network conditions,
rather than the gradient norm. This paper addresses cost-aware distributed optimization.
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Arbitrary and importance sampling strategies. There has been a recent wave of works on
importance and arbitrary samplings for various stochastic algorithms. Using the primal-dual gap as a
measure, importance sampling has been successfully developed for randomized coordinate descent
algorithms to replace the inefficient random coordinate selection of the updates (Nesterov, 2012;
Allen-Zhu et al., 2016; Perekrestenko et al., 2017; Konečnỳ et al., 2017). Stich et. al. (Stich et al.,
2017) extended these results to adaptive importance sampling for coordinate descent, where the
sampling probability changes over time to cope with the local geometry of the optimization landscape.
Gower et. al. (Gower et al., 2018) introduced a class of variance reduction algorithms based on
Jacobian sketching (JacSketch) in every step and developed importance sampling for SAGA in the
strongly convex case. Qian et. al. (Qian et al., 2019) analyzed SAGA with arbitrary sampling in the
non-smooth setting. Horvath et. al. (Horváth and Richtarik, 2019) analyzed the importance mini-
batch sampling for SVRG and SAGA in the nonconvex setting, and Gazagnadou et. al. (Gazagnadou
et al., 2019) used the JacSketch algorithm to find the optimal mini-batch size for SAGA in the strongly
convex and smooth setting.

Most existing theoretical results suggest that a mini-batch of size 1 gives the best solution, disagreeing
with practical implementations, where much faster convergence can often be achieved using larger
mini-batch sizes. However, Sebbouh et. al. (Sebbouh et al., 2019) established optimal batch sizes
for SVRG, showing that larger batch-sizes can in fact reduce total complexity (number of iterations
required to reach target accuracy). Gazagnadou et. al. (Gazagnadou et al., 2019) showed, both
theoretically and experimentally, that SAGA may benefit from a larger mini-batch size. In this paper,
we extend those results for SVRG and show that the optimal mini-batch size depends on, not only the
smoothness and strong-convexity parameters of each fi, but also the communication link between
the workers and the master node.

3 SVRG-AS+ AND CONVERGENCE RESULTS

In this section, we present our main algorithm and analyze its performance in two scenarios: running
the inner loop of SVRG with either a single gradient or a mini-batch.

3.1 SVRG-AS+

At the beginning of each inner loop of SVRG (also called epoch), which then runs for T iterations,
the master node broadcasts the parameter w̃k to the workers. At each inner iteration t, the master
node broadcasts wk,t−1, realizes the random variable ξ := ξk,t−1 ∈ [N ], and receives gξ(wk,t−1)
from the randomly chosen worker ξ (Johnson and Zhang, 2013). At the end of the inner loop, the
master node picks a random iterate ζ between 1 and T , sets w̃k to wk,ζ−1, and updates g̃k for the
next epoch.

In modified SVRG with arbitrary sampling (SVRG-AS+), each ξ is an i.i.d. random variable with
stationary multinomial distribution P := P(p1, p2, . . . , pN ), with pj := Pr(ξ = j). Due to this
non-uniform sampling, we update based on a scaled version of the gradient, hξ(w) := gξ(w)/Npξ,
rather than gξ(w). The SVRG-AS+ algorithm is illustrated in Algorithm 1. Vanilla SVRG then
corresponds to pj = 1/N for all j ∈ [N ]. We should emphasize that our SVRG-AS+ allows a variable
inner loop length (due to Lines 5 and 6) and computes only the necessary (first ζ) iterates of the inner
loop, as opposed to vanilla SVRG and previous SVRG-AS (Horváth and Richtarik, 2019) where such
selection was at the end of the inner loop, leading to extra unnecessary computations/communications
of gradients and parameter updates. This change reduces the number of inner loop iterations by half,
on average, compared to vanilla SVRG, without affecting the convergence rate.

For the sake of mathematical analysis, we limit the class of objective functions to be strongly
convex and smooth, though our approach may be applicable to invex (Karimi et al., 2016) and multi-
convex (Xu and Yin, 2013) structures (like a deep neural network training optimization problem).
Assumption 1. We assume that f(w) is µ-strongly convex and that each gradient gi is Li-Lipschitz
for all i ∈ [N ]. Namely, (g(v)− g(w))

T
(v −w) ≥ µ‖v−w‖2 and ‖gi(v)−gi(w)‖ ≤ Li‖v−w‖

for all i ∈ [N ] and v and w where g :=
∑
i∈[N ] gi/N .

Next, we characterize the convergence behavior of SVRG-AS+, given in Algorithm 1. The starting
point will be the following lemma, which is based on (Gazagnadou et al., 2019, Definition 2):
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Algorithm 1 SVRG-AS+

1: Inputs: Maximum epoch length T , number of epochs K, N , (αk)k, and probabilities {pi}i.
2: for k = 1, 2, . . . ,K − 1 do
3: h̃k ←

∑
i∈[N ] pihi (w̃k)

4: wk,0 ← w̃k

5: Sample ζ := ζk uniformly from {1, 2, . . . , T}
6: for t = 1, 2, . . . , ζ do
7: Sample ξ := ξk,t−1 from [N ] with probability distribution P , compute gξ (w), and send

hξ (w) := gξ (w) /Npξ to the master node, for both w = wk,t−1 and w = w̃k.
8: Compute wk,t ← wk,t−1 − αk

∑N
i=1 1i∈{ξ} (hi(wk,t−1)− hi (w̃k) + h̃k)

9: Broadcast wk,t

10: end for
11: w̃k+1 ← wk,ζ

12: end for
13: Return: w̃K

Lemma 1 (Expected Smoothness). Let w? be the optimal solution of (1). Let ξ be a draw from a
multinomial distribution P(p1, p2, . . . , pN ) with N outcomes. There exist a positive number L, here-
after called expected smoothness, such that Eξ∼P

[
‖hξ(w)− hξ(w

?)‖2
]
≤ 2L (f(w)− f(w?)).

Assuming that each of the functions fi is Li-smooth, we can set L = Lmax := maxi Li and Lemma 3
follows from (Johnson and Zhang, 2013). Here, we extend (Johnson and Zhang, 2013) and show that
the convergence is a function of expected smoothness, which can be significantly smaller than Lmax.
As a result, we may use a much larger step size to substantially improve the convergence rate.
Lemma 2. Suppose that each of the functions fi is Li-smooth for all i ∈ [N ]. Then L in Lemma 1
respects L ≤ maxi∈[N ] {Li/Npi} .
Proposition 1. Minimizing the upper bound of the expected smoothness L yields the constrained
problem

minimize
p1,p2,...,pN

max
i∈[N ]

{
Li
Npi

}
subject to

∑
i∈[N ]

pi = 1 .

The solution is p?i = Li/(NL̄), and the optimal L is L̄, where L̄ :=
∑
i Li/N is the average of Li’s.

As shown in the following proposition, the step size, and consequently the convergence rate is a
function of L. Non-uniform sampling can potentially lead to a faster convergence rate than uniform
sampling with L = Lmax, since

∑
i Li/N ≤ Lmax. The gain would be more prominent as N

increases, unless all Li’s are equal. The latter is often not the case in practice, when the data
are non-i.i.d. and the network nodes have their own private datasets (Li et al., 2019). Moreover,
Proposition 1 implies that we can adaptively change sampling policy based on local geometry.
We only need to track the local smoothness of the local functions, and sample according to the
probabilities {p?i = Li/

∑
i Li} at the point w̃k. In the following, however, we assume that vector

p = [p1, p2, . . . , pN ]T is fixed for all iterations. Now, we can characterize the convergence of the
SVRG-AS+ algorithm.
Proposition 2. Let αk < 1/4L and T > 1/(µαk(1− 4Lαk)), and set ∆k := E [f(w̃k)]− f(w?).
The iterates of Algorithm 1 satisfy for any k ∈ [0,K − 1]

∆k+1 ≤ σk∆k , 0 < σk =

1
µTαk

+ 2Lαk

1− 2Lαk
< 1 . (2)

Proposition 2 suggests that the convergence of SVRG-AS+ depends heavily on the expected smooth-
ness and therefore on the sampling probability vector p.

3.2 MINI-BATCH SVRG-AS+

An effective approach for reducing the variance of the gradient error, is to use mini-batching in
the inner loop of SVRG-AS+ (Bottou et al., 2018). That is, letting ξ be a random mini-batch;
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see Appendix A for a formal definition. Similar to (Horváth and Richtarik, 2019), we consider a
stochastic definition of mini-batch size in the sense that E[|ξ|] = b. Although different from the
traditional deterministic definition of mini-batch size, i.e., |ξ| = b, this new stochastic model allows
for a distributed implementation of mini-batch SVRG-AS+.

The mini-batch SVRG-AS+ is almost identical to Algorithm 1 except Lines 7 and 8. Line 7 should be
changed to “Every worker i with probability pi, independent of other workers, computes gi (w), and
sends hi (w) := gi (w) /Npi to the master node, for both w = wk,t−1 and w = w̃k. Moreover,
1i∈{ξ} in Line 8 should be changed to 1i∈ξ by redefining ξ to be the set of sampled gradients, i.e.,
ξ = {i | hi(wk,t−1) is sampled}. We have presented this algorithm in the Appendix.
Remark 1. Convergence of mini-batch SVRG-AS+ is the same as of Proposition 2 with the same
definition for L as of Lemma 2. The only difference is that

∑
i pi = b instead of being 1 in

Propositions 1 and 2.

Next, we show how to use these convergence bounds to optimize the operation of SVRG-AS+ on
a network with limited communication resources. Hereafter, we assume αk = α, k ∈ [K] in the
following for notational simplicity.

4 MINIMUM-COST SVRG-AS+

Here, we design a minimum cost SVRG-AS+ whose performance is at least equal to that of SVRG.

4.1 OUTPERFORMING VANILLA SVRG

Let ci be non-negative real numbers representing the cost of collecting the corresponding gradient
gi(w) for any w, and Ck be the cost of running iteration k. Assume that α and T , satisfying the
conditions of Proposition 2, are given. We can formulate cost-efficient SVRG-AS+ as

minimize
p1,p2,...,pN

Eξ∼P [Ck] = T
∑
i∈[N ]

cipi , (3a)

subject to
∑
i∈[N ]

pi = 1 , pi ≥ 0 ∀i ∈ [N ] (3b)

α ≤ 1

4 maxi {Li/Npi}
, (3c)

1
µTα′ + 2α′maxi {Li/Npi}

1− 2α′maxi {Li/Npi}
≤

1
µTα′ + 2α′Lmax

1− 2α′Lmax
∀α′ ∈ [0, 1/4Lmax) , (3d)

where the objective function is the average sampling cost, and constraint (3d) ensures that the
convergence rate of SVRG-AS+ is as good as that of SVRG with uniform sampling (i.e., L = Lmax)
for any admissible step-size α′. As shown in Appendix B, α ≤ 1/4L̄, where L̄ :=

∑N
i=1 Li/N , is

a sufficient condition for the feasibility of (3) at the supplementary materials. Let j be any index
satisfying cj = mini∈[N ] ci. A solution to optimization problem (3) is then given by

p?i =


1−

∑
i∈[N ]\{j}

4Li
N

max

{
α,

1

4Lmax

}
, if i = j,

4Li
N

max

{
α,

1

4Lmax

}
, otherwise,

(4)

and such a sequence (p?i )i exists when α ≤ 1/4L̄. The solution implies that except the node with
minimum sampling cost cmin, we sample at a rate that linearly depends on the smoothness parameter,
Li. Namely, SVRG-AS+ prefers taking fewer samples from nodes with smaller Li.

Notice that we can easily change optimization problems (3) and (A.7) to find a sampling strategy
that ensures a certain contraction for SVRG-AS+, namely σk ≤ σmax for some desired σmax. If the
resulting problem are feasible, namely there exists a sampling strategy for which σk ≤ σmax, the
solution would be similar to (4). We further study this case in Section 4.2.

Moreover, we should point out that T and α are given constants to this optimization problem.
Corollary 1 in Appendix shows the interplay among σmax, T , and α. Generally speaking, a smaller
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σmax (faster convergence) implies a smaller α, and consequently a larger T . This leads to a new
tradeoff in the objective function, as a smaller α may lead to a smaller pi, for i 6= j, and therefore
smaller

∑
cipi, but also a larger T . We can address this tradeoff by optimizing over step-size, which

we leave as our future work. It is also worth mentioning that our experiments show that the bounds
on T and α for SVRG-AS+ as well as the vanilla SVRG may be conservative in general. That is, we
can violate the inequalities of Corollary 1 by using a larger α, and a smaller T , and still converge to
the optimal solution. This observation suggests that T and α may be optimized as hyper-parameters
of the algorithm, independent of p.

4.2 USE CASES

Stragglers. A major disadvantage of Algorithm 1 is the waiting time for slow devices (i.e., strag-
glers or stale workers). This problem is prominent in ML over wireless networks, due to the hardware
constraints and unreliability of some wireless links. For example, a node with low battery power may
automatically enter energy-saving mode and drastically reduce its processing and communication
resources, affecting the convergence of distributed optimization (Zhang and Simeone, 2019).

To model stragglers, we assign a high cost ci to some worker nodes i, called stragglers, while
keeping the rest at a much lower level. Here, we consider SVRG-AS+ of Algorithm 1 and focus
on the mini-batch SVRG-AS+ in the next use case. Referring to the optimization problem in (3),
we obtain the optimal sampling probability given by (4). In particular, the solution keeps sampling
from stragglers at a minimal rate, whose value depends on the smoothness Li for their private dataset.
To further improve the robustness to straggler, we may complement our importance sampling with
other approaches, like data duplication (Zhang and Simeone, 2019), or asynchronous updates (Xie
et al., 2019). We numerically investigate the impact of the straggler nodes on vanilla SVRG and our
cost-efficient SVRG-AS+ in Section 5.

Congestion in wireless communications. In many cases of machine learning over networks,
information exchanges happen through a common wireless channel that is shared among all workers.
ALOHA and carrier-sense multiple access (CSMA) are important classes of algorithms that regulate
how various workers should access the channel and send their data (gradient vectors in this case)
without explicit coordination among themselves (Bertsekas et al., 2004). These algorithms are the
foundations for connectivity of most modern distributed wireless systems, including Bluetooth and
WiFi (Bertsekas et al., 2004).

As we have shown in Appendix C, our minimum latency SVRG-AS+ problem to ensure ∆k ≤ ε1 for
some constant ε1 > 0 reads

minimize
p1,p2,...,pN

KT
exp

{∑
i∈[N ] pi/r1

}
r0
∑
i∈[N ] pi

, s.t. pi ∈
[

2Li
N

max

{
α

ε2
,

1

2Lmax

}
, 1

]
, ∀i ∈ [N ] (5)

where ε2 =

(
(ε1/∆0)1/K

1 + (ε1/∆0)1/K

)(
1 +

1

µTα

)
− 1

µTα
.

Ignoring the constraints, the optimal solution is
∑
i pi = r1 with the objective of 2.72KT/r0r1.

Moreover, the objective is quasi-convex for positive
∑
i pi and therefore the closer to the optimal

point the better objective. When r1 > N , the optimal solution is pi = 1 for all i, namely all of
the nodes should transmit. In other words, the channel capacity is large enough for all workers to
simultaneously report their gradient vectors with manageable cost. However, when r1 < N , we need
to control the channel congestion by asking some workers to use smaller (yet feasible) pi such that∑
i pi = r1. If r1 is too small, the optimal solution may become choosing the lower bound for all pi,

leading to an even smaller mini-batch for every iteration.

Our novel cost-efficient optimization problem (5) suggests that higher transmission probabilities and
consequently larger mini-batch sizes

∑
i pi may not necessarily be optimal, even if we ignore the

higher computational costs involved in obtaining extra gradients. To the best of our knowledge, this
fundamental design insight has never been properly formulated in the literature.
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Figure 1: Convergence results for T = 15, assuming digit 3 is the class 1 while all other digits are class -1. In
(c), legends (0), (2), and (4) corresponds to no straggler, two straggler, and four stragglers scenarios, respectively.

5 EXPERIMENTAL RESULTS

Settings. In this section, we numerically characterize the convergence of the SVRG-AS+ algorithm
on some real-world dataset and communication channels. We use the MNIST dataset, which has
60,000 training samples of dimension d = 784 and 10 classes corresponding to hand-written digits
as well as the CIFAR10 dataset. We split each dataset into N disjoint subsets of size {Mi}i∈[N ],
and assume each node i has access to its own private dataset of size Mi. In Appendix C, we have
characterized the smoothness Li and strong convexity parameter µ for every local function fi, given
its local dataset. On an Nvidia 970GTX GPU, we have used the one-versus-all technique to solve 10
independent binary classification problems (using logistic ridge regression). In the following, we
focus on our two use cases, introduced in Section 4, for multiple networking scenarios.

Use Case 1: stragglers. We first assume that N = 20. To ensure some statistical difference among
the local datasets, so as to ensure different Li, we keep the samples of only 1 randomly selected class
at every node. Consequently, we end up with a training task with around 300 examples in every node
(a total of 5927 examples). We then consider three cost models:

• No straggler: c1 = 0.1 and ci = 1 for all i ∈ [N ] \ {1};
• Two stragglers: c1 = 0.1, c10 = c20 = 100, and ci = 1 for all i ∈ [N ] \ {1, 10, 20}; and
• Four stragglers: c1 = 0.1, c9 = c10 = c19 = c20 = 100, and for all other i ∈ [N ], ci = 1.

Figure 1 illustrates the convergence of our performance measures when the sampling is optimal.
SVRG-AS+ can maintain the convergence to the optimal solution for all cost models, leading to
82% cost reduction of SVRG-AS+ compared to the vanilla SVRG for the two straggler model. The
significant cost reduction in Figure 1(c) is due to optimal sampling as well as better inner loop
structure, as discussed in Section 3. We have reported the performance of our final solution on all
digits in the Appendix.

To study the performance in nonconvex setting, we have reported in Table 1 the F1-score for the
CIFAR10 dataset, trained on the VGG model. For the benchmark, we have implemented SARAH
with arbitrary sampling (Horváth and Richtarik, 2019, Algorithm 3). In all our experiments, including
convex and nonconvex models and a variety of datasets, we have observed a significant gain for
the network cost over the benchmarks, when we add network utility as the cost. In all cases, the
convergence of SVRG-AS+ was as fast as that of SVRG. We should highlight that we did not try to
optimize hyper-parameters to achieve a better F1-score in our experiments.

Table 1: F1-score of the CIFAR10 test dataset and training cost of VGG11 with cross-entropy loss, two stragglers
cost model, (αk = 0.2)k, T = 15, and 100 epochs.

N SVRG SARAH SVRG-AS+
F1-score cost (x1000) F1-score cost (x1000) F1-score cost (x1000)

10 0.915 517.5 0.921 475.1 0.914 182.7
50 0.909 1481.0 0.917 912.9 0.916 104.2
100 0.898 2381.5 0.885 1657.8 0.882 79.2
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Figure 2: Cost and performance of mini-batch updates over a shared wireless network for T = 15, assuming
digit 3 is the class 1 while all other digits are class -1.

Use Case 2: congestion in wireless communications. Here, we design optimal mini-batch size
for SVRG-AS+ to minimize the network cost for solving our logistic regression problem over a
shared wireless media, described in Section 4.2. We consider transmission rate r = r0` exp{−`/r1}
with ` =

∑
i pi for mini-batch SVRG-AS+. To simulate various network models, we analyze three

networking scenarios: high capacity (r0 = 1, r1 = 100), medium capacity (r0 = 1, r1 = 10), and
low capacity (r0 = 1, r1 = 1). As a benchmark, we also implement mini-batch SVRG, by picking
uniformly at random a subset of cardinality b, among all

(
N
b

)
options, to update every inner loop.

Such selection is agnostic to the cost of different subsets.

Figure 2(a) illustrates the cost function for various networking scenarios. The cost function in every
inner-loop, shown in Figure 2(a), is quasi-convex in

∑
i pi. Lower network capacity leads to the

saturation of the shared wireless media with fewer active nodes. After the network saturation, the
costs (latency in our case) of receiving gradients from multiple nodes grows exponentially, making
it infeasible to run the iterations in practice. Assuming N = 100, a relatively small mini-batch
size of 15 leads to per iteration cost of 0.08, 0.3, and around 0.22 × 106 units of cost for high,
medium, and low capacity networks. These significantly different costs correspond to the same
number of gradients per iteration (namely 15), highlighting the importance of our cost-efficient design
compared to the existing approaches that consider only the number of gradients or bits in their designs.
Figure 2(b) shows the convergence of mini-batch SVRG-AS+ with optimal sampling probabilities
for N = 50. With a low capacity network, our design substantially reduces the mini-batch size to
avoid exponentially high usage of the network resources. Consequently, SVRG-AS+ iterations run
with a higher gradient noise, leading to slower convergence. However, this problem can be addressed
by exploiting other communication protocols with a higher transmission rate like r1 = 10, in which
the optimal mini-batch size is indeed 10 (20% of the nodes) in our experiment. A higher mini-batch
size leads to more accurate updates at the inner-iterations and therefore faster convergence. Further
increasing the channel capacity to r1 = 100 leads to the optimal mini-batch size of 50 (all nodes).
However, the performance improvement is negligible due to a marginal reduction in the variance of
the stochastic gradient noise. The latter is because of redundancy in the original dataset and having
enough samples from all classes in every mini-batch of size 10 (in the case of r1 = 10).

Our novel cost-efficient optimization problem (5) suggests that higher transmission probabilities and
consequently larger mini-batch size

∑
i pi may not necessarily be optimal, even if we ignore the

higher computational costs involved in obtaining extra gradients. To the best of our knowledge, this
fundamental design insight has never been properly formulated in the literature.

6 CONCLUSIONS

We addressed the problem of minimizing the network costs associated with running a distributed
optimization algorithm. In particular, we analyzed the convergence of SVRG-AS+ with arbitrary
sampling and characterized the cost (in terms of the usage of network resources) of finding the
solution. We then optimized the sampling probability as well as mini-batch size for SVRG-AS+ for
two networking scenarios: federated learning with straggler nodes and information exchange over a
shared wireless network. We have shown that our optimal design can substantially reduce the cost of
running SVRG while maintaining an acceptable convergence rate. These results provide important
insights to future sustainable networked artificial intelligence and machine learning over large-scale
networks, such as Internet-of-Things and cyber-physical systems.
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