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ABSTRACT

Representation learning of object deformations from images has been a long-
standing challenge in various image or video analysis tasks. Existing deep neu-
ral networks typically focus on visual features (e.g., intensity and texture), but
they often fail to capture the underlying geometric and topological structures of
objects. This limitation becomes especially critical in areas, such as medical
imaging and 3D modeling, where maintaining the structural integrity of objects
is essential for accuracy and generalization across diverse datasets. In this paper,
we introduce ToRL, a novel Topology-preserving Representation Learning model
that, for the first time, offers an explicit mechanism for modeling intricate ob-
ject topology in the latent feature space. We develop a comprehensive learning
framework that captures object deformations via learned transformation groups
in the latent space. Each layer of our network’s decoder is carefully designed
with an integrated smooth composition module, ensuring that topological proper-
ties are preserved throughout the learning process. Moreover, in contrast to a few
related works that rely on a reference image to predict object deformations dur-
ing inference, our approach eliminates this impractical requirement. To validate
ToRL’s effectiveness, we conduct extensive multi-class classification experiments
across a wide range of datasets, including synthetic 2D images, real 3D brain
magnetic resonance imaging (MRI) scans, real 3D adrenal computed tomography
(CT) shapes, and real 2D facial expression images. Experimental results demon-
strate that ToRL outperforms state-of-the-art methods, setting a new way to en-
force topological consistency in representation learning. Our code is available at
- https://anonymous.4open.science/r/ToRL-44BF/

1 INTRODUCTION

Recent advances in deep learning (DL) have driven remarkable progress in large-scale image anal-
ysis tasks, such as classification (Hao et al., 2023; Vilas et al., 2024), segmentation (Ke et al., 2023;
You et al., 2024), and object detection (Deng et al., 2023; Liu et al., 2023; Pu et al., 2024), of-
ten achieving near-human performance. Yet, beneath these successes lies a fundamental limitation:
current models largely rely on image representations learned from intensity or textures, leading to
much reduced attention to the underlying geometric structure of objects (Geirhos et al., 2018; Baker
et al., 2018; Malhotra et al., 2022). This oversight poses risks to high-stakes domains, including but
not limited to medical imaging, robotics, or 3D modeling, where maintaining the structural integrity
of objects is critical (Malhotra et al., 2021; Linsley et al., 2017; Ullman et al., 2016). While exist-
ing deep neural networks may have access to limited geometric features in the form of local edges
or orientations, they tend to miss the complete object geometry and structure. This negatively im-
pacts their ability to generalize and perform robustly across diverse datasets and applications when
studying objects with preserved topology are indispensable.

To address this problem, recent research in geometric deep learning has focused on representing
and synthesizing objects with predefined geometric properties through analytic math formulations
of graphs or points (Bronstein et al., 2017; Masci et al., 2016; Rematas et al., 2021). While these
approaches have shown promise, they often prove impractical in real-world applications where an-
alytic formulations are unavailable or impractical. Later, other works began leveraging DL to au-
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tomatically learn geometric properties of objects directly from image data (Ouyang et al., 2015;
Papandreou et al., 2015; Jack et al., 2019).
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Figure 1: Classification performance
validating ToRL across 17 network
backbones extracting image features
on Google QuickDraw. ToRL outper-
forms SOTA by more than 5 percent.

However, many of these approaches simplify interior
structures, resulting in a low-level or coarse representa-
tion of complex objects. Additionally, they often lack
smoothness in data representation, which is essential for
accurately modeling fine geometric properties. More re-
cent efforts (Wang & Zhang, 2022) have developed a
framework that leverages DL-trained geometric features of
highly-detailed object deformations from groupwise im-
age data (Dalca et al., 2019; Ding & Niethammer, 2022;
Dey et al., 2021), offering a new approach to capture intri-
cate morphological details and internal dynamics of image
objects for improved classification tasks. Despite these ad-
vances, current methods still face key challenges: (i) their
performance declines when objects across different classes
are non-deformable, and (ii) they rely on a template or ref-
erence image for geometric feature extraction during infer-
ence, a requirement that proves impractical in many real-
world scenarios. Moreover, all aforementioned methods
do not fully capture the topological structures of object de-
formations. They are designed to encode the image differ-
ences between a reference image and individual subjects in the latent feature space, which are then
decoded back into the image space. The representation learning of geometric object is not explic-
itly modeled in the network training process. As a result, the models are incapable of accurately
representing the true geometric properties, especially in scenarios where fine-grained topological
understanding is crucial.

In this paper, we present ToRL, a novel topology-preserving representation learning model, that
for the first time introduces an explicit modeling of intricate and complex object topology in the
latent deformation space. Inspired by prior works in deformation-based representations Balakrish-
nan et al. (2019); Wang & Zhang (2022), our model ToRL captures object geometry down to the
pixel level. Based on the premise that each object can be formulated as a deformed variant of an
ideal template/reference, we incorporate proper topological constraints by regularizing the resulting
deformations between the reference and each individual image. Such constraints will be carefully
designed as a learning module throughout the representation learning process from groupwise im-
ages. The contributions of our proposed method are threefold:

• We develop ToRL, a new approach to model complex objects’ topology via learned trans-
formation groups in the latent space of object deformations derived from images.

• We design a novel network architecture for the decoder, incorporating an integrated smooth
group composition module in the deformation space to ensure the preservation of topolog-
ical properties throughout the learning process.

• In contrast to previous related works that rely on a reference image to predict object defor-
mations during inference, our approach eliminates this impractical requirement.

We validate the effectiveness of our model in the context of binary/multi-class classification across
diverse datasets, including synthetic 2D Google QuickDraw dataset (Jongejan et al., 2016), real
3D Brain MRIs (Jack Jr et al., 2008), real Adrenal CTs (Yang et al., 2023), and real 2D facial ex-
pression images (Gao et al., 2007). Experimental results show that our model achieved improved
performance compared to the SOTA models, effectively preserved the topological structure of ob-
jects in images, and generalized to a wide variety of network backbones in classification tasks (see
exemplary comparisons on Google Quickdraw in Fig. 1).

2 RELATED WORKS AND BACKGROUND

Representation of Object Deformations. Over the decades, significant progress has been made
from traditional to DL-based representation learning of object deformations from images (Ver-
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cauteren et al., 2009; Avants et al., 2008; Beg et al., 2005; Joshi et al., 2004; Wang & Zhang,
2022). With the underlying assumption that objects of a generic class can be described as deformed
versions of the others, descriptors of that class arise naturally by transforming/deforming a refer-
ence image to all the other images in that class (Avants et al., 2008; Reuter et al., 2012; Joshi et al.,
2004). The resulting transformation is then considered as a representation that reflects geometric
object changes. In theory, every topological property of the deformed reference can be preserved
by enforcing the transformation field to be diffeomorphisms, i.e., differentiable, bijective mappings
with differentiable inverses (Beg et al., 2005; Arnold, 1966; Miller et al., 2006). Examples of gener-
ated images with vs. without well-preserved topology are shown in Fig. 2. Violations of topological
constraints in the deformation space introduce artifacts, such as tearing, crossing, or passing through
itself (see pointed arrows in the deformation fields in Fig. 2).

Input Reference Deformed Def. Field Input Reference Deformed Def. Field

Figure 2: Examples of generated deformed images with (left panel)
and without preserved topology (right panel).

Given a reference image S and
a target image T defined on
a d-dimensional torus domain
Ω = Rd/Zd (S(x), T (x) :
x ∈ Ω → R), let us model
the group of diffeomorphisms
by a Lie group G. A diffeo-
morphic transformation, ϕt ∈
G, for t ∈ [0, 1], is defined
as a smooth flow over time to
deform a reference image to
match a target image. In this
paper, we assume that both
G and Ω are discretized and
finite-dimensional. The pro-
cess of deforming images S
by transformation ϕt is mod-
eled by a smooth mapping

f : G × Ω→ Ω, (ϕt, S)→ ϕt · S.
Note that ϕt · S is simply a notation for f(ϕt, S), and the · denotes a group action, i.e. the image
S transformed under the group action of ϕt. In practice, the group action is implemented through a
interpolation operator, i.e., ϕt ·S ≜ S ◦ϕ−1

t . The diffeomorphisms ϕt is typically parameterized by
its linearized time-dependent velocity fields under a large diffeomorphic deformation metric map-
ping (Beg et al., 2005), or a stationary velocity field (SVF) that remains constant over time (Arsigny
et al., 2006). While we employ SVF in this paper, our framework is easily applicable to the other.

For a stationary velocity field v, the diffeomorphisms, ϕt, are generated as solutions to the equation:

dϕt
dt

= v ◦ ϕt, s.t. ϕ0 = x. (1)

The solution of Eq. 1 is identified as a group exponential map using a scaling and squaring
scheme Arsigny et al. (2006). The velocity field, v, is often used as representations of diffeomor-
phisms due to its nice properties of linearity (Wang & Zhang, 2022; Arsigny et al., 2006; Mok &
Chung, 2021).

Learning geometric deformations from groupwise images. Consider a number of N images,
{I1, · · · , IN} of a group of images, the problem of learning geometric deformations of each image
In is to find optimal transformations (diffeomorphisms), {ϕn, · · · , ϕN}, that minimize a defined
energy function

E(I, vn) =

N∑
n=1

1

σ2
Dist(I ◦ ϕ−1

n , In) + ∥∇vn∥, s.t. Eq. 1, (2)

where σ2 is a noise variance and ◦ denotes an interpolation operator that deforms image I with
an estimated transformation ϕn, which is defined as a smooth flow over time to deform a template
image to a target image by a composite function. The Dist(·, ·) is a distance function that measures
the dissimilarity between images, i.e., sum-of-squared differences (Beg et al., 2005), normalized
cross correlation (Avants et al., 2008), and mutual information (Wells III et al., 1996).
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3 OUR METHOD: TORL

In this section, we introduce a novel topology-preserving representation learning network, ToRL.
Our model highlights two key contributions: (i) an explicit mechanism to capture complex object
topology by learning transformation groups in the latent space, and (ii) a newly designed decoder
equipped with a smooth group composition module that carefully integrates features from skip con-
nections at each layer, while complying with topological constraints. This is crucial, as conventional
fusion of features such as addition or concatenation in the deformation space can break the smooth-
ness of transformation fields, leading to the violation of these constraints. An overview of our
proposed architecture is shown in Fig. 3.

3.1 NETWORK DESIGN

Latent representation of transformation groups. Consider a number of C image classes, there
exists a number of Nc, c ∈ {1, . . . , C} images, {IcNc

}, in each class. Let PE represent an L-layer
encoder network, where the output representation at each layer l is given by

El = g(Kl ∗El−1 + bl), for l = 1, 2, . . . , L,

where g(·) is a non-linear activation function, Kl denotes a set of learnable convolutional filters
with ∗ representing the convolution operation, and bl is a bias term. Here, the E0 is the initial
input images to the encoder. The latent representation z can therefore be defined as z = EL =
f(KL ∗EL−1 + bL), where EL represents the final output of the encoder.

The goal of our training process is to learn a latent representation of transformation groups (also
known as diffeomorphisms) that act on the learned latent factors. Our encoder initially extracts
the latent image feature z, which is then passed through a fully connected network to transform it
into geometric features represented in the latent velocity space, denoted as v. This is followed by
our transformation group module (TGM), which generates the associated transformations, ϕl(vl),
at each layer. Similar to Eq. 1, we utilize a network architecture that implements the scaling and
squaring scheme (Dalca et al., 2019; Dey et al., 2021) for practical implementations. The result-
ing output is then fed into the decoder, PD. It is worth noting that while we adopt SVF in this
work, our approach can be easily applied to other parameterizations of diffeomorphisms, such as the
large deformation diffeomorphic metric mapping framework used in (Wang & Zhang, 2022; Ding
& Niethammer, 2022).

In order to enforce topological constraints, we assume that the learned latent transformation group,
Ĝ, follows the same principles as transformations in the input data space. That is to say, for all
ϕ̂, ψ̂ ∈ Ĝ, they are required to satisfy the following axioms:

⊕

Latent representation of transformation groups

𝜙0

Input Image Network Loss

𝑣0

TGM

⊕

𝜙

⊕

𝑣1

TGM
Group

Composition

𝑣2

TGM
Group

Composition

TGM
𝑣𝑙

𝒫𝐸 𝒫𝐷

Group
Composition

𝒰(𝜙0)

𝒰(𝜙1)

𝒰(𝜙2)

𝓏

Figure 3: An overview of our proposed model ToRL.
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Axiom 1 (Closure). The group composition of ϕ̂, ψ̂ must result in an element of Ĝ, i.e., ϕ̂ ◦ ψ̂ ∈ Ĝ.

Axiom 2 (Associativity). For all ϕ̂, ψ̂, ξ̂ ∈ Ĝ, the group operation must be associative, i.e., (ϕ̂◦ ψ̂)◦
ξ̂ = ϕ̂ ◦ (ψ̂ ◦ ξ̂).
Axiom 3 (Identity element). There must exist an identity element ê ∈ Ĝ, such that for any transfor-
mation ϕ̂, applying the identity transformation does not alter the object, i.e., ϕ̂ ◦ ê = ê ◦ ϕ̂ = ϕ̂.

Axiom 4 (Inverse element). For each transformation ϕ̂, there exists an inverse transformation
ϕ̂−1 ∈ Ĝ, such that applying the transformation followed by its inverse returns to identify, i.e.,
ϕ̂ ◦ ϕ̂−1 = ϕ̂−1 ◦ ϕ̂ = ê.

These axioms ensure that transformations in the latent space mirror the group properties in the data
space, preserving structural and topological consistency across both domains. Following a similar
principle, the latent transformation groups can directly act on images, {I}, at the same resolution.
We require the group action to follow the rules:

ê · I = I, ∀I ∈ Ω,

ϕ̂ · (ψ̂ · I) = (ϕ̂ψ̂) · I, ∀ϕ̂, ψ̂ ∈ Ĝ and∀I ∈ Ω. (3)

The first rule indicates that the identity transformation leaves the images unchanged. The second
rule of associativity allows that a sequence of transformation groups can be composed prior to acting
on the images.

Topology-preserving decoder with group composition module. Inspired by the U-Net architec-
ture Ronneberger et al. (2015), we integrate skip connections into our ToRL network architecture to
benefit the performance of representation learning. Specifically, we bridge higher-resolution features
from the downsampling path to the corresponding layers in the upsampling path. However, previous
methods Vaswani et al. (2017) that rely on simple linear addition or concatenation to merge features
may fail to preserve topological constraints in the transformation fields.

To address this challenge, we introduce a novel group composition module, specifically designed
to combine transformation groups in the skip connection phase. Instead of merely mixing features,
our module carefully composes transformations from the upsampled layers, ϕ̂l−1(v̂l−1), with those
from the current layer, ϕ̂l(v̂l), ensuring the preservation of topological properties throughout the
entire decoding process. Drawing on the associative rule in Eq. 3, this composition allows smooth
and consistent transformations across layers.

At each layer of the decoder, PD, with U defining the upsample operator, we can formulate the
composition module as follows

ϕ̂l(v̂l)← ϕ̂l(v̂l) ◦ U(ϕ̂l−1(v̂l−1)). (4)

Our decoder architecture (see Fig. 3) is built on the foundation described above, setting it apart from
conventional approaches. Instead of using learned transpose convolutions for upsampling, we em-
ploy direct interpolation to higher-dimensional spaces. This design well maintains the smoothness
and consistency of transformation grids, preserving the geometric integrity of object deformations
throughout the learning process.

Network loss. Let Ic be a reference image of class c ∈ C. For each class, there exists a set of asso-
ciated deformation fields {ϕc1, · · · , ϕcNc

} between Ic and each individual image {Ic1 , Ic2 , . . . , IcNc
}.

Our loss objective is to minimize

LToRL
(
IcNc

,PD(ϕcNc
(vcNc

(zcNc
))) · Ic

)
.

Let Θ be the parameters of our ToRL architecture. Analogous to Eq. 2, we are now defining the loss
function in the context of groupwise deformation representation learning for all given classes as

LToRL(Θ) =

C∑
c=1

Nc∑
n=1

1

σ2
∥IcNc

− Ic ◦ ϕcn(vcn(zcNc
(Θ)))∥22 + ∥∇vcn(Θ)∥+ reg(Θ), s.t. Eq. (1), (5)

where reg(.) is a regularity term on the network parameters. Note that in contrast to previous
works (Wang & Zhang, 2022; Dalca et al., 2019; Ding & Niethammer, 2022), ToRL introduces a
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fundamentally different approach: the reference image is not fed into the encoder, but is instead uti-
lized in the loss function. Our model transforms encoded image features into the velocity space via
a learned latent transformation group. This approach allows our network to leverage class-specific
reference images during training and eliminate the need for reference images during testing.

3.2 TORL IN DOWNSTREAM TASK & NETWORK OPTIMIZATION

Network 
Loss

Pred 
Label

𝑦

Inference

Trainingℐ𝐸

Image 
Encoder ⊕

𝐓𝐨𝐑𝐋

𝒫𝐸 𝒫𝐷
Latent

Space of GT

Figure 4: ToRL Classification model

We demonstrate the effectiveness of ToRL in im-
proving performance on downstream tasks such as
image classification by integrating learned represen-
tations of object deformations with image features.
The flexibility of our latent representation extends
beyond classification; ToRL can be integrated into a
wide range of image analysis tasks, including seg-
mentation (Ke et al., 2023; You et al., 2024), object
recognition and tracking (Mao et al., 2023; Athar
et al., 2023).

Let IE denote the network of an image encoder re-
sponsible for extracting image features. We integrate
the latent features obtained from the ToRL model
with those from the image feature extractor network to train a boosted classifier, parameterized
by θc. This classifier is designed to predict the class label ync for each input image INc , with a cor-
responding ground truth label ŷnc. While in this work we concatenate the image and shape features
as ψ(PE , IE), more advanced feature fusion modules can be easily integrated into this system. In
this paper, we employ a cross-entropy loss for the classification loss, i.e.,

Lclf(ψ(PE , IE)) = τ

Nc∑
n=1

C∑
c=1

−ync · log ŷnc(ψ(PE , IE)) + reg(ψ(PE , IE)), (6)

where τ is a weighting parameter.

4 EXPERIMENTS AND EVALUATION

We validate the effectiveness of our model across diverse datasets, including 2D synthetic shapes,
3D real brain MRIs capturing complex neurological structures, 3D real adrenal CTs reflecting the
variability and complexity of soft tissue, and 2D real facial expressions. These multi-faceted datasets
covering diverse imaging modalities, dimensions, and physiological contexts underscore robustness
and efficiency our model. Detailed dataset descriptions can be found in Appendix A.1

4.1 EXPERIMENTS

We evaluate the proposed model, ToRL, from three key perspectives: (i) assessing the quality of
learned latent representations by quantitatively measuring within-class and across-class feature dis-
tances in the latent space; (ii) visualizing the latent representations for 2D shapes and 3D adrenal
datasets; and (iii) demonstrating its effectiveness in downstream tasks, particularly image classifica-
tion. A detailed experimental evaluation plan is described as follows.

Baseline selection. We compare ToRL with two existing approaches for learning latent features of
object deformation from groupwise images: Geo-SIC (Wang & Zhang, 2022) and CondiT (Dalca
et al., 2019). These baselines have two key limitations: (i) they require a reference image during the
testing phase, whereas our model ToRL does not; and (ii) they assume that objects across different
classes are deformable, which restricts their application to datasets where this condition is met. To
ensure a fair comparison, we select five deformable classes (circle, cloud, envelope, square, and
triangle) from the Google Quickdraw dataset, following the experimental setup of Geo-SIC. For the
two additional 3D datasets, since the objects are deformable across all classes, we include the entire
dataset for experimental comparison.

Evaluation of learned latent representations. To evaluate the quality of the representations learned
by ToRL, we first compare them against baseline models by leveraging these features for classifi-
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cation tasks across all datasets. We train a classifier consists of three fully connected layers, with
ReLU activation and a dropout layers on the learned features from all methods, and then report key
performance metrics, including classification accuracy (Acc), precision (Prec), and F1-score (F1-
sc). Additionally, for each testing group, we utilize a combination of inter-class divergence and
intra-class compactness metrics to evaluate feature discriminability in the latent space (Li et al.,
2023; Feng et al., 2024). For inter-class separability, we measure the Silhouette Score (Abavisani
et al., 2020), Fisher’s Discriminant Ratio (Wang et al., 2019), and KL-Divergence (Dinari & Freifeld,
2022) to show how separate the features are between classes. For intra-class compactness, we eval-
uate Euclidean Distance and the Davies-Bouldin Index (Abavisani et al., 2020), measuring how
tightly features cluster within each class. Together, these metrics offer a comprehensive evaluation
of both class separation and within-class cohesion in the latent space. To further analyze the learned
latent representation of these models, we visualize the latent space using t-SNE map of all models
across all datasets.

Evaluate the benefit of ToRL in downstream tasks. We demonstrate the effectiveness of ToRL
and two baselines by comparing their learned latent representations integrated into the downstream
image classification tasks. For all experiments, we use a variety of image encoders as backbones to
extract latent image features, including a wide range of models such as ResNet (He et al., 2016),
EfficientNet (Tan, 2019), and DenseNet (Huang et al., 2017), along with their most recent versions.
To evaluate performance, we report classification accuracy (Acc), and precision (Prec).

Evaluation of topology-preserved decoder. To evaluate the quality of our newly designed de-
coder (ND), we compare it to conventional decoders (CD) used in the two baseline models (Geo-
SIC/CondiT). To determine the effectiveness of the decoders, we measure whether the topology is
well-preserved during the learning process. A key metric for this evaluation is the determinant of the
Jacobian (DetJac), which assesses the quality of transformations and their adherence to topological
constraints. For example, there is no volume change when DetJac=1, while volume shrinks when
DetJac<1 and expands when DetJac>1. The value of DetJac smaller than zero indicates an arti-
fact or singularity in the transformation field, i.e., a failure to preserve the diffeomorphic property
when the effect of folding and crossing grids occurs. We also measure RMSE and SSIM scores
between the source and transformed images to evaluate the quality and accuracy of the geometric
transformations across all models.

Evaluation of computational load and ToRL components. We demonstrate the effectiveness of
the transformation group module (TGM) and group composition block by conducting comparative
experiments against baseline Geo-SIC/CondiT architectures which does not consists of these geo-
metric transformation modeling components. Next, we conduct comprehensive quantitative analysis
comparing parameter count, computational complexity, training/testing times per sample, and model
performance across all models, to evaluate computational efficiency and performance trade-offs.

Parameter Setting. We set the noise variance σ = 0.01 and batch size of 128 and 16 for all 2D and
3D experiments. For 2D shape and 3D brain experiments, we split the dataset into 70%/15%/15%
for training/validation/testing. For 3D adrenal experiments, we follow the splitting settings in the
original data repository (Yang et al., 2023). For network training, we utilize the cosine annealing
learning rate scheduler that starts with a learning rate of η = 1e−3. We train all the models with
Adam optimizer, obtain the best validation performance until convergence.

5 RESULTS

Tab. 1 reports the classification performance based on the learned latent representations of defor-
mations on all datasets across all methods. Our model ToRL achieves state-of-the-art results by
outperforming the nearest baselines, CondiT, by 11%, 3%, 3%, 20% in classification accuracy on
2D shape, 3D brain, 3D adrenal, and 2D face datasets, respectively. This highlights the effectiveness
of ToRL in learning more efficient latent representations. Intuitively, the significant performance
improvement of ToRL (particularly on 2D shape and face data, performing multi-class classifica-
tion) can be attributed to its elimination of the need for a reference image during the testing phase.
This allows us to leverage multiple templates during training, improving the model’s capacity to
capture diverse intra-class variations. In contrast, other methods are constrained to using or building
a single template across groups during training to ensure compatibility during testing, which limits
their flexibility and effectiveness.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparison of classifications using latent feature representations across all baselines.
Models Geo-SIC CondiT ToRL

Metrics Acc Prec F1 Acc Prec F1 Acc Prec F1
D

at
as

et
s 2D Shape 83.38 83.48 83.10 87.38 87.52 87.30 98.58 98.59 98.58

3D Brain 95.00 91.63 94.64 94.67 94.05 94.08 97.92 97.54 97.91

3D Adrenal 83.22 82.30 83.00 83.89 84.67 81.00 87.25 84.67 86.00

2D Faces 66.93 66.72 66.73 62.82 62.52 62.43 87.30 87.35 87.22

Table 2 presents a comparison of latent feature distances using three across-class metrics and two
within-class metrics across all baselines. ToRL demonstrates consistently better performance in both
categories. The higher scores on across-class metrics indicate superior class separation, while the
lower within-class scores reflect more compact clustering of samples within the same class. These
findings suggest that ToRL is highly effective for downstream tasks such as image classification,
offering robust inter-class differentiation and strong intra-class cohesion.

Table 2: Comparison of across-class and within-class latent feature distances across all baselines.
Datasets 2D Shapes 3D Brains 3D Adrenals 2D Faces

Models Geo-SIC CondiT ToRL Geo-SIC CondiT ToRL Geo-SIC CondiT ToRL Geo-SIC CondiT ToRL

A
cr

os
s

→

Silhouette 0.0901 0.2178 0.5670 0.0132 0.0017 0.1374 0.0706 0.0780 0.0793 0.0455 0.0782 0.2138

Fisher’s Disc. 0.3577 1.0996 3.4799 0.0128 0.0111 0.0352 0.0340 0.0353 0.0369 0.0328 0.0326 0.9117

KLD 23.971 27.279 38.319 183.81 178.36 193.42 11.232 12.248 12.278 95.705 89.893 109.24

W
ith

in
←

Euclidean 53.825 45.438 38.905 1083.5 1090.7 1091.9 496.48 490.255 487.57 63.735 61.705 54.053

Davies-Bouldin 3.0775 1.8260 0.3445 8.4165 6.4860 2.1990 3.0523 2.9481 2.9370 8.6676 10.083 1.5580

Figure 5: Latent space feature visualization using t-SNE on the 2D shapes, 3D brains, 3D adrenals,
and 2D faces (from left to right) across all models. ToRL shows superior clustering in the latent
spaces of object deformations.

Fig. 5 displays t-SNE visualizations of latent representations for all datasets across all models. For
the 2D shape dataset, while Geo-SIC and CondiT achieve varying degrees of inter-class separation
and intra-class compactness, ToRL shows clear and well-defined clusters in the latent space. In the
real 3D brain and adrenal datasets, ToRL demonstrates the most distinct bimodal distribution, indi-
cating stronger differentiation between the Normal Gland/Adrenal Mass or Healthy/Disease classes.
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In contrast, Geo-SIC and CondiT show increasing levels of class overlap, suggesting limitations in
their ability to learn discriminative features effectively. For the 2D natural faces dataset, ToRL ex-
hibits superior clustering of facial expressions (surprising, laughing, frowning, open/closed mouth)
compared to Geo-SIC and CondiT, which show more scattered and overlapping distributions of
these emotional states. In summary, the distinct geometric patterns and clear separations visible in
the latent space t-SNE plots directly correspond to ToRL’s higher across-class metrics and lower
within-class distances shown in the Tab. 2.

Table 3 presents classification results achieved by integrating latent representations of ToRL with
image features across all datasets on three SOTA network backbones. Our model consistently out-
performs the baselines, highlighting its superiority and effectiveness for downstream tasks. We
present additional experiments on diverse network backbones in Appendix A.2 with an extended
ablation study validating the effectiveness of ToRL and its incorporation into the downstream tasks.

Table 3: Comparison of boosted classification performance using integrated image features and
latent representations from ToRL vs. other baselines.

2D Shapes 3D Brains 3D Adrenals 2D Faces

Backbone Models Acc Prec Acc Prec Acc Prec Acc Prec

ResNet
Geo-SIC 90.67 91.27 94.17 94.83 85.58 85.16 74.50 74.29
CondiT 88.26 89.01 95.00 95.44 84.69 83.67 70.61 70.40
ToRL 99.20 99.19 97.50 97.52 87.92 87.80 93.65 93.54

EfficientNet
Geo-SIC 89.60 90.04 86.67 86.87 85.23 84.87 74.01 73.83
CondiT 88.80 89.62 87.50 87.57 85.91 85.28 71.32 70.68
ToRL 98.93 98.94 90.00 90.15 86.91 86.79 92.06 92.45

DenseNet
Geo-SIC 93.33 93.73 94.17 94.18 85.91 85.44 71.67 71.61
CondiT 93.86 94.32 94.17 94.46 84.69 83.67 71.85 72.99
ToRL 99.46 99.47 95.83 95.99 86.24 85.69 91.53 92.19

Figure 6: Comparison of the transformed images between ToRL and the baselines. Temp.: Template
image, ND: New ToRL Decoder, CD: Conventional Geo-SIC/CondiT Decoder.

9
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Fig. 6 reports a comparison between transformed images generated by ToRL with our newly de-
signed decoder (ToRL-ND) and those generated by a conventional decoder (ToRL-CD) employed
in baseline methods. ToRL-ND shows superior topological consistency and smoother deformations
from the reference image to each individual image. More results can be found in Appendix. A.4.

Tab. 4 presents an evaluation of different topology preserving metrics across all models on all
datasets. ToRL consistently outperforms both Geo-SiC and CondiT across all metrics, achiev-
ing the lowest RMSE, |J<0| and highest SSIM scores. This superior performance is particularly
notable in the 3D experiments (Brains and Adrenals), where ToRL demonstrates better topology
preservation as indicated by the lower DetJac values. Tab. 5 reports parameter counts, computation
load (CL), training/testing times (per sample), and performances across all models on 2D and 3D
datasets. ToRL emerges as a robust and efficient network architecture, achieving superior accuracy
while maintaining comparatively faster inference speed as it directly predicts latent transformations
without requiring template images or decoder networks during inference (unlike all the template-
based baselines). Despite requiring only 10K/40K additional parameters for the TGM and group
composition modules in 2D/3D experiments, respectively, ToRL delivers substantial performance
improvements of 11%/3%. Please note that all the baselines require training an additional atlas
building network to generate the reference image/template, which adds another level of computation
load and complexities.

Table 4: Comparison of different topology-
preserving evaluation metrics across all models.

Dat. Model RMSE (↓) SSIM (↑) (|J<0|% ↓ )

2D
Sh

ap
e Geo-SIC 0.1065 0.8605 1.53± 0.96

CondiT 0.1952 0.6662 1.63± 0.86

ToRL 0.0986 0.8924 0.72± 0.06

3D
B

ra
in Geo-SIC 0.0773 0.8919 0.03± 0.03

CondiT 0.0755 0.8786 0.06± 0.01

ToRL 0.0702 0.9047 0.02± 0.00

3D
A

dr
en

. Geo-SIC 0.0807 0.9345 1.31± 0.19

CondiT 0.0909 0.9312 1.34± 0.18

ToRL 0.0595 0.9506 0.25± 0.06

2D
Fa

ce Geo-SIC 0.0713 0.7125 0.64± 0.05

CondiT 0.0980 0.5488 0.81± 0.18

ToRL 0.0573 0.8835 0.25± 0.05

Table 5: Comparison of parameter count, compu-
tational load, and time across all models.

Metrics Model Geo-SIC CondiT ToRL

Template 2D/3D ✓ ✓ ×
TGM 2D/3D × × ✓

GC 2D/3D × × ✓

Params (M) 2D 2.14M 2.14M 2.15M
3D 6.44M 6.44M 6.48M

CL (GFLOPS) 2D 143.03 143.04 147.02
3D 403.55 464.45 606.05

Accuracy (%) 2D 83.38 87.52 98.58
3D 95.00 94.67 97.92

Training Time 2D 17.61ms 18.65ms 32.18ms
3D 971.3ms 974.3ms 1.22s

Testing Time 2D 1.14ms 1.14ms 1.12ms
3D 218.3ms 220.6ms 178.2ms

Discussion. While we need to select images that are deformable across the classes for a fair com-
parison with all the baselines, our model is not bound by this impractical constraint when applied to
downstream tasks. To demonstrate this, we conduct an extensive analysis on the Google Quickdraw
datasets, performing classification on 40 classes. We evaluate 18 different network backbones, rep-
resenting five major families of feature extraction methods. As shown in Fig. 7, ToRL consistently
outperforms all SOTA classifiers that relies on image features (Appendix A.2).

6 CONCLUSION

This paper presents ToRL, a novel topology-preserving representation learning model, that for the
first time explicitly captures complex object topology in the latent deformation space. In contrast to
existing deep neural networks that often overlook topological and geometric properties, ToRL is de-
signed to maintain topological integrity of image objects throughout the learning process. To achieve
this goal, our model directly learns transformation groups in the latent space of object deformations
derived from images. The decoder architecture features a novel smooth group composition mod-
ule in the deformation space, preserving topological properties during the network decoding phase.
More importantly, our model ToRL eliminates the impractical reliance on a reference image for pre-
dicting the representations of object deformations during inference, which is a limitation present in
current methods. Our future work includes extending ToRL to multimodal image datasets, explor-
ing alternative transformation groups beyond stationary velocity fields, and applying it to additional
downstream image analysis tasks, such as segmentation and object recognition and tracking.
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A APPENDIX

A.1 DATASET DESCRIPTIONS.

2D Synthetic shapes. We first randomly choose 20000 2D images from 40 distinct classes (500
images per class where the images are deformable within the class) from the Google Quickdraw
data repository Jongejan et al. (2016). All images underwent affine transformation and intensity
normalization with the size of 224× 224.

3D Brain MRIs. We include 800 public T1-weighted brain MRIs from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) Jack Jr et al. (2008). All subjects ranged in age from 50 to 100,
with 200 images each from cognitively normal (CN) and patients affected by Alzheimer’s disease
(AD). All MRIs were preprocessed to be the size of 104 × 128 × 120, 1mm3 isotropic voxels,
and underwent skull-stripping, intensity min-max normalization, bias-field correction, and affine
registration Reuter et al. (2012)

3D Adrenal CTs. We select 1584 left and right real 3D adrenal glands of 792 patients from
AdrenalMNIST3D data repository (Yang et al., 2023). This dataset is specifically collected to iden-
tify the presence of adrenal mass differentiating from normal adrenal glands. All images underwent
affine transformation and intensity normalization with the size of 64× 64× 64.

2D Face Expressions. We select 1884 real-world face images from CAS-PEAL data repository
(Gao et al., 2007). Focusing on capturing different facial expressions under various background
and lighting settings. We perform intensity normalization and affine transformation with the size
of 128 × 128. Performing expression recognition tasks, we follow an identical training and testing
evaluation protocol for fair comparison.

A.2 TOR: DOWNSTREAM TASKS

Fig. 7 presents the comparative analysis between standard intensity-based SOTA networks and
ToRL under various network backbones. For 2D experiments, we select different ResNet vari-
ants (ResNet18/50/101), Vision Transformers (Swin-tiny/small), ConvNext models (tiny/small),
MobileNets (V2/V3), and EfficientNet series (B0-B7). For 3D experiments, we employ ResNet,
DenseNet, EfficientNet, ResNext, SENet, and X3D. ToRL achieves consistent performance im-
provements over intensity-only models across all network backbones. While in 2D shape ex-
periments, the baseline intensity-only networks typically achieve accuracies between 82 − 90%,
ToRL consistently elevates performance above 90%, with improvements ranging from +5.47%
(ConvNext-small) to +11.55% (MobNetV2). This superior performance is further evident in real
3D adrenal and brain experiments, where ToRL demonstrates significant improvements across all
backbone architectures. These comprehensive experiments across diverse network backbones on
both 2D and 3D datasets validate that utilizing intensity and topological features yields superior
performance compared to conventional intensity-based approaches.

A.3 TORL: ROBUSTNESS TO INPUT PERTURBATIONS

We demonstrate the robustness of ToRL to variations in image intensity by performing a brief ex-
periment on all real-world datasets where we add different scales of universal adversarial noises
and compare ToRL with all baselines. Fig. 8 visualizes the accuracy comparison of three methods
(Geo-SIC, CondiT, and ToRL) under increasing adversarial noise (σ) across three diverse real-world
data, performing different binary and multiclass classification tasks. ToRL (green) consistently out-
performs the other methods, maintaining higher accuracy even as noise increases from 0 to 0.05,
particularly notable in facial expressions (a), brain MRIs (b), and adrenal CTs (c). All methods show
performance degradation with higher noise levels, but ToRL demonstrates superior robustness.

A.4 ABLATION STUDY: TORL COMPONENTS

We evaluate the effectiveness of individual ToRL components through (i) qualitative analysis of
transformed images and (ii) quantitative assessment of boosted classification tasks, specifically, val-
idating the impact of the transformation group module (TGM) and group composition (GC) across a
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Figure 7: Effectiveness of different variants of ToRL in multi-class classification tasks under eigh-
teen different network backbones on 2D shapes (top), 3D real adrenals (bottom left), and 3D real
brains (bottom right).

Figure 8: Classification comparison on increasing input image perturbations across all models, in-
cluding ToRL.
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wide variety of network backbones, ranging from lightweight networks (MobileNetV2/V3) to state-
of-the-art architectures (ResNet, Swin Transformer, ConvNext, and EfficientNet variants).

Fig. 9 visualizes the transformed images across different architectural variants, where ToRL rep-
resents the complete implementation with both TGM and GC modules. The comparative analysis
shows three implementations: ToRL (complete), ToRL (-GC; without Group Composition), and
ToRL (-TGM, GC; without both TGM and GC modules). The red bounding boxes highlight trans-
formation inconsistencies. These variations manifest as geometric distortions, suggesting that the
absence of GC and TGM impacts transformation fidelity. The original ToRL model, having both
of these components, demonstrates stable transformations, indicating that both TGM and GC com-
ponents play crucial roles in maintaining structural consistency and preserving topology during the
transformation process.

Figure 9: Ablation study on different components of ToRL based on the transformed images on 2D
shapes (top) and 3D real adrenals (bottom). Temp.: Template, (-TGM, GC): without transformation
group module and group composition.

Fig. 10 illustrates a boosted classification comparison between different ToRL variants with the
intensity-only models, considering different network backbones. The original ToRL implementation
(green), having both TGM and GC modules yields consistent 3 − 5% accuracy gains under all
network backbones. The ablation studies without GC (orange) and both TGM and GC (coral) show
intermediate performance gains, suggesting the cumulative benefits of these modules.
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Figure 10: Classification performance comparison of different variants of ToRL.
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