
Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

MODEL-VALUE INCONSISTENCY
AS A SIGNAL FOR EPISTEMIC UNCERTAINTY

Angelos Filos∗1 Eszter Vértes∗2 Zita Marinho∗2 Gregory Farquhar2 Diana Borsa2
Abram Friesen2 Feryal Behbahani2 Tom Schaul2 André Barreto2 Simon Osindero2

1University of Oxford 2DeepMind ∗Equal Contribution

ABSTRACT

Using a model of the environment and a value function, an agent can construct
many estimates of a state’s value, by unrolling the model for different lengths and
bootstrapping with its value function. Our key insight is that one can treat this set
of value estimates as a type of ensemble, which we call an implicit value ensemble
(IVE). Consequently, the discrepancy between these estimates can be used as a
proxy for the agent’s epistemic uncertainty; we term this signal model-value incon-
sistency or self-inconsistency for short. Unlike prior work which estimates uncer-
tainty by training an ensemble of many models and/or value functions, this approach
requires only the single model and value function which are already being learned
in most model-based reinforcement learning algorithms. We provide empirical
evidence in both tabular and function approximation settings from pixels that self-
inconsistency is useful (i) as a signal for exploration, (ii) for acting safely under dis-
tribution shifts, and (iii) for robustifying value-based planning with a learned model.

1 INTRODUCTION

Agents that employ learning to improve their decision making should be equipped with mech-
anisms for representing and using their acquired knowledge effectively. Learned models of the
environment (Sutton, 1991) and value functions (Sutton, 1988) are explicit ways that reinforcement
learning (RL, Sutton & Barto, 2018) agents use to represent their knowledge about the environment.

s v̂ v̂0m̂(s)

s Tm̂ v̂ v̂1m̂(s)

s Tm̂ Tm̂ v̂ v̂2m̂(s)

s Tm̂ · · · Tm̂ v̂ v̂km̂(s)

(a) Implicit Value Ensemble

s

v(s)

(b) At initialisation

s

v(s)

s

v(s)

(c) After training

Figure 1: Implicit value ensemble (IVE) esti-
mated from a single learned model m̂ and value
function v̂. (a) Computation graph. The model-
induced Bellman operator Tm̂ is repeatedly
applied k times on the approximate value func-
tion v̂, i.e., v̂km̂(s) ≜ (Tm̂)kv̂(s). (b-c) Didactic
example with 1D state space: Value predictions
(in blue) for different values of k, i.e., {v̂km̂}10k=0,
along with the ensemble mean µ-IVE(10)
and standard deviation σ-IVE(10) (in orange),
before (b) and after (c) training with value
targets (black circles). The ensemble standard
deviation is non-trivial at out-of-distribution
(OOD) states and zero at in-distribution states.

Equally important is the agents’ ability to reason
about their ignorance (i.e., epistemic uncertainty,
Strens, 2000) and factor it in their decisions (Mil-
nor, 1951). In tabular settings, exact Bayesian infer-
ence can be used for quantifying the agents’ uncer-
tainty in both model-free (Dearden et al., 1998) and
model-based (Dearden et al., 1999) RL approaches.
However, in complex RL problems, since exact
Bayesian inference is intractable, proxy signals are
often used instead, including predicted model er-
ror (Lopes et al., 2012; Pathak et al., 2017), ap-
proximate state visitation counts (Bellemare et al.,
2016) and disagreement of samples from either
approximate posterior distributions over learned pa-
rameters (Blundell et al., 2015; Gal et al., 2016) or
explicit ensembles of value functions (Osband et al.,
2016) or dynamics models (Chua et al., 2018).

In this work, we introduce a novel signal for cap-
turing RL agents’ ignorance, termed model-value
inconsistency or self-inconsistency for short. A
k-step self-inconsistency signal is constructed
by applying the model-induced Bellman operator
Tm̂ to learned value function v̂, k times. This
produces k + 1 different estimates of the state

1

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

s

v̂n
· · ·

{v̂i(s)}ni=1

v̂1

(a) Value Ensemble (EVE)

s

Tm̂n

· · · v̂

{Tm̂i
v̂(s)}ni=1

Tm̂1

(b) Model Ensemble (EMVE)

s

Tm̂

v̂

Tm̂

v̂

Tm̂

v̂

{(Tm̂)iv̂(s)}ni=1

(c) Implicit Value Ensemble (IVE)

Figure 2: Value computation in scalable epistemic uncertainty-aware RL agents. (a-b) Explicit en-
semble of value functions (Osband et al., 2016) and world models (Chua et al., 2018), approximating
samples from p(v|B) and p(m|B), respectively. The number of parameters grows linearly with the
ensemble size. (c) Implicit value ensemble (IVE) make ensemble value predictions using a single
learned value function and world model by exploiting the model-induced Bellman operator Tm̂
and the Bellman consistency of the “true” model m∗ and value function v, keeping the number of
parameters constant. Best viewed in colour.

value: {v̂, Tm̂v̂, (Tm̂)2v̂, . . . , (Tm̂)kv̂}, as illustrated in Figures 1 and 2c. Our key insight is that
these can be thought of as predictions from an ensemble of value functions, which we call the implicit
value ensemble (IVE).

Consequently, the disagreement of these predictions can tell us about the agent’s uncertainty in the
value of a state. The intuition behind this is based on the fact that the true model and value are by
definition Bellman-consistent. As a result, for regions of the state space where the learned model and
value are accurate, we expect the self-inconsistency to be low. Conversely, high self-inconsistency
can signal that the learned model-value pair is inaccurate.

In contrast to prior work that requires explicit ensembles of learned value functions (Osband et al.,
2016; Lowrey et al., 2018) or ensembles of world models (Chua et al., 2018; Sekar et al., 2020),
self-inconsistency can be efficiently calculated by any RL agent that has a learned (approximate)
model of the environment and value function, see Figure 2. Moreover, unlike model-ensembles,
self-inconsistency captures the agents’ ignorance about behaviourally-relevant quantities, i.e., rewards
and values, and hence is robust to irrelevant information for control noise (Schmidhuber, 2010).

We provide empirical evidence that self-inconsistency provides a proxy of epistemic uncertainty
(Section 4.1), and that this information can be used to guide exploration or act safely (Section 4.2),
and to robustify planning (Section 4.3).

2 BACKGROUND

We model the agent’s interaction with the environment as a Markov decision process (MDP, Puterman,
2014), i.e.,M ≜ (S,A, p, r). At any discrete time step t ≥ 0, the agent is in state st ∈ S, takes an
action at ∈ A, according to a policy π : S → ∆(A), then receives reward Rt+1 ∼ r(·|st, at) ∈ R
and transitions to the state St+1 ∼ p(·|st, at). For brevity, the “true” model is denoted by m∗ ≜ (p, r)
and we write St+1, Rt+1 ∼ m∗(·, ·|st, at). The agent’s goal is to find the policy that maximises
the value of each state, for a discount factor γ ∈ [0, 1), vπ(s) ≜ Eπ,m∗ [

∑
t≥0 γ

tRt|S0 = s],
where Eπ,m∗ [·] denotes the expectation1 over the trajectories induced by running policy π in the
environment m∗, starting from state s.

The computation of the value of a policy π, i.e., vπ , is termed policy evaluation and can be concisely
formulated using Bellman evaluation operators (Bellman, 1957). Next, we define the one-step
Bellman evaluation operator, applied on a state-(to-scalar) function v ∈ V ≜ {f : S → R}.
Definition 1 (Bellman evaluation operator). Given the model m∗ and policy π the one-step Bellman
evaluation operator T π : V→ V is induced, and its application on a state-function v ∈ V, for all

1In this work, we only construct estimates of the mean of the returns distribution (a.k.a value distribution
Bellemare et al., 2017) and hence environment and policy stochasticity is integrated out.

2

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

s ∈ S, is given by

T πv(s) ≜ Eπ,m∗ [R1 + γv(S1) | S0 = s] . (1)

The k-times repeated application of an one-step Bellman operator gives rise to the k-steps Bellman
operator,

(T π)kv ≜ T π · · · T π

k-times
v. (2)

The Bellman evaluation operator, T π , is a contraction mapping (Puterman, 2014), and its fixed point
is the value of the policy π, i.e., limn→∞(T π)nv = vπ , for any v ∈ V.

2.1 MODEL-BASED REINFORCEMENT LEARNING

In the general RL formulation, it is assumed that the environment model m∗ is unknown to the
agent (Sutton & Barto, 2018) which thus cannot directly compute Eqn. (1). Model-free RL agents
resolve this by estimating these expectations through sampling. Model-based RL agents, the focus
of this paper, learn an approximate model m̂ ≈ m∗, possibly together with a learned value function
v̂ ≈ vπ (Sutton, 1991), and use them to compute an estimate of the value, by replacing model and
function m∗, v with m̂, v̂ in Eqn. (1).

Model-induced Bellman operator. A model m̂ and policy π induce a Bellman evaluation operator
T π
m̂ with a fixed point vπm̂. Similar to Eqn. (2), a k-steps model-induced Bellman operator is given by

(T π
m̂)kv = T π

m̂ · · · T π
m̂

k-times

v.

Model learning principles. The agent interacts with the environment, generating a sequence of
states, actions and rewards, which we denote with B ≜ {(st, at, rt)}t≥0.

Maximum likelihood estimation (MLE, Kumar & Varaiya, 2015; Sutton, 1991) can be used for
learning the model parameters, given experience tuples (s, a, r′, s′) ∼ B,

m̂MLE = argmax
m

EB [logm(r′, s′ | s, a)] . (3)

Action-conditioned hidden Markov models have been used to scale MLE methods to high-dimensional
environments (Watter et al., 2015), e.g., with pixel observations.

Value equivalence (VE, Grimm et al., 2021) is an alternative principle for model learning. It selects the
model that induces the “best” approximation to the k-th order Bellman operator of the environment,
applied on state-functions V , policies Π and state s, trained via samples (s, a, r′, s′) ∼ B,

m̂VE = argmin
m

EB
∑

π∈Π,v∈V

∣∣(T π
m)kv(s)− (T π)kv(s)

∣∣ . (4)

2.2 EPISTEMIC-UNCERTAINTY-AWARE AGENTS

We refer to learning agents that can quantify their uncertainty about their learned components, e.g.,
value function or model, as epistemic uncertainty-aware (a.k.a. ignorance-aware) agents. While
aleatoric uncertainty captures the inherent and irreducible stochasticity of the agents’ environment,
epistemic uncertainty is agent-centric (i.e., subjective, Savage, 1972) and reducible (Hutter, 2004).

Bayesian agents. A principled approach to quantifying epistemic uncertainty is by treating learned
quantities as random variables and perform Bayesian inference given the observed data. Bayesian RL
agents maintain beliefs over value functions (Dearden et al., 1998) or world models (Dearden et al.,
1999), which are updated upon interactions with the environment. Exact inference is intractable for
most interesting problems and thus ensemble-based approximations are used instead (Lu et al., 2021).

Explicit ensemble methods. In deep RL, neural networks (NNs) are used to approximate the value
function (Mnih et al., 2013) or the model (Watter et al., 2015). A popular approach to epistemic
uncertainty quantification for NNs is deep ensembles (Lakshminarayanan et al., 2016). Under certain

3

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

visited unvisited

(a) Dataset (b) σ-IVE(1) (c) σ-IVE(2) (d) σ-IVE(20) (e) σ-EVE(20) (f) σ-EMVE(20)

Figure 3: Model-value inconsistency (σ-IVE, see Section 3.2) as the standard deviation across the
implicit value ensemble (IVE, see Section 3.1) for different numbers of ensemble components n. (a)
The top left state of the gridworld is excluded from the data used to train the model m̂ and value
function v̂. (b-e) The disagreement between the IVE predictions diffuse for (b) 1-step; (c) 2-steps
and (d) 20-steps model unrolls. The same disagreement across explicit ensembles (e) σ-EVE and
(f) σ-EMVE built from different initialisation parameters. The standard deviation σ is normalised
in range [0, 1] per figure.

assumptions (Pearce et al., 2020), the ensemble components can be seen as samples from the posterior
distribution over NN parameters. It has been argued that the diversity (i.e., de-correlation) of the
ensemble components is important for better capturing epistemic uncertainty (Wilson & Izmailov,
2020) and various methods have been used to achieve this, all of which inject noise into the learning
algorithm, such as: (i) data bootstrapping (Tibshirani, 1996; Osband et al., 2016); (ii) different loss
function (iii) function form (Wenzel et al., 2020) or (iv) structured noise per ensemble component (e.g.,
priors, Osband et al., 2018).

RL agents with an ensemble of value functions or models have been used to quantify their epistemic
uncertainty e.g. (Osband et al., 2016; Kurutach et al., 2018), see Figure 2a and 2b, respectively. We
call these methods explicit ensemble methods and their number of parameters grows linearly with
the ensemble size. In contrast, implicit ensembles escape this linear scaling by sharing parameters
between the ensemble members but without sacrificing diversity.

3 YOUR MODEL-BASED AGENT IS SECRETLY AN ENSEMBLE OF VALUES

We now present a proxy signal for epistemic uncertainty, computable by any model-based RL agent
with a single (point) estimate of a world model and a value function2.

3.1 IMPLICIT VALUE ENSEMBLE

A key component of our method is the value estimated by a k-step application of the model-induced
Bellman operator on the learned value function, which we call k-steps model-predicted value3

(k-MPV), given by

v̂km̂ ≜ (T π
m̂)kv̂. (5)

The k-MPV is a value estimator that interpolates between (i) a model-free value estimator, i.e.,
k = 0 and (ii) a purely model-based value estimator, i.e., k →∞.

k-MPV and n-step returns. The k-MPV should not be confused with the n-step returns used in
temporal difference (TD, Sutton, 1988) learning. The former is an agent’s estimate about its value,
i.e., v̂km̂ ≈ vπ that uses both the learned value function and model. The latter is a stochastic estimate
of the environment’s n-step Bellman operator that can be used for constructing value target estimators
in TD learning with reduced bias.

2In this section, we define everything in terms of the Bellman evaluation operator and an approximate
on-policy value function. The Bellman optimality operator and an approximate optimal value function could be
used instead. For completeness, see Appendix D.

3Similar quantities have been used in prior work, e.g., k-preturn (Silver et al., 2017) and MVE (Feinberg
et al., 2018). We discuss them and their differences in more detail in Section A.

4

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

An ensemble of k-MPV predictions can be made by varying k. We call this an implicit value
ensemble4 (IVE), depicted in Figure 1a and 2c and denoted by

{v̂im̂}ni=0 ≜ {v̂, T π
m̂ v̂, . . . , (T π

m̂)nv̂}
n+1 value estimates

. (6)

Any agent with a model and value function is, in effect, also equipped with an ensemble of
value functions.

3.2 MODEL-VALUE INCONSISTENCY

We term the disagreement of the IVE components as model-value inconsistency or just self-
inconsistency, for short, since it quantifies the Bellman-inconsistency (Farquhar et al., 2021) of
the learned model and value function.

As our learned model and value function better approximate their “true” counterparts, the self-
inconsistency reduces since the “true” model and value function are Bellman consistent, i.e.,
(T π

m∗)nvπ = (T π
m∗)lvπ,∀n, l ∈ N. If the true model and value function are contained in the

hypothesis classes of our approximators and the respective learning algorithms converge to the “true”
solutions, then the self-inconsistency reduces to zero.

In regions of state space where the learned model and value function are accurate, they are
also self-consistent. With high self-inconsistency the learned model or/and value should be
inaccurate.

Various metrics can be used to quantify the disagreement between the IVE components. Since the
k-MPVs are scalars, we can use any measure of disagreement of its components, e.g., the standard
deviation across the IVE members, denoted by σ-IVE(n) for n members. Similarly, we define
µ-IVE(n) as the value prediction, given by the ensemble mean, and µ+ β · σ-IVE(n) as the weighted
sum of the IVE mean and standard deviation, where β ∈ R. We can induce a self-inconsistency-
(i) seeking; (ii) averse or (iii) neutral policy when β > 0, β < 0 and β = 0, respectively.

3.3 PRACTICAL IMPLEMENTATION

We use parametric function approximators, in particular neural networks, to approximate the model
and value function: θ are the model and ϕ are the value function parameters, from hypotheses classes
Θ and Φ, respectively, i.e., m̂(·, ·|s, a; θ) ≈ m∗(·, ·|s, a) and v̂(s;ϕ) ≈ v̂(s).

With small tabular models, such as the ones used for the gridworld in Figure 3, we can calculate
the k-MPVs exactly. With neural network models, the calculation of the expectation in Eqn. (1) is
generally intractable and hence we can only approximate it, e.g., in the case of stochastic models, via
Monte Carlo (MC) sampling. An MC sample of the k-MPV of state s ∈ S is given by:

v̂k
m̂(s) =

k−1∑
i=1

γi−1ri+1
m̂ + γkv̂(skm̂), (7)

where s0m̂ = s and the samples from the model and policy are in bold and subscripted with m̂ and π,
i.e., ri+1

m̂ , si+1
m̂ ∼ m̂(·, ·|sim̂,aiπ) and aiπ ∼ π(·|sim̂).

In practice, to minimise the number of samples required to calculate an IVE prediction, we reuse the
samples used for estimating the different components of the ensemble. In particular, for every MC
sample v̂n

m̂(s), we use the sampled rewards, states and actions trajectories {(ri+1
m̂ , si+1

m̂ ,aiπ)}n−1
i=0

to also estimate the “preceeding” ensemble components {v̂i
m̂(s)}n−1

i=0 . This makes the computa-
tion of IVE no more expensive than online sample-based planning methods (Hafner et al., 2019b;
Schrittwieser et al., 2020).

4Non-successive values of k can be used in the construction of an IVE, e.g., k ∈ {1, 7, 13}, but in practice
this is less computationally efficient, see Section 3.3.

5

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Expectation models. Deterministic multi-step expectation models, e.g., the MuZero/Muesli
model (Schrittwieser et al., 2020), are especially well-suited for calculating IVEs in stochastic
environments: they learn to predict expected rewards and values conditioned on a sequence of
actions, thereby implicitly averaging over stochastic state transitions. To estimate the k-MPV in
Eqn. (7), only policy samples are needed. Empirically, in Appendix E, we found after an ablation
that one sample from the policy sufficed.

3.4 DIVERSITY IN THE IMPLICIT VALUE ENSEMBLE

The components of the IVE form a heterogeneous ensemble (Wichard et al., 2003) since they differ
in (i) functional form, and (ii) learning algorithm. Next, we elaborate on how these can impact the
diversity of the IVE predictions.

Functional form. While the ensemble components share the same model and value parameters, θ
and ϕ, respectively, they make predictions by composing these parameters differently. For k = 0, only
the parameters of the value functions are used for making predictions. As k grows, the contribution
of the model parameters to the prediction increases. For instance, the 1-MPV and 5-MPV, i.e., v̂1m̂
and v̂5m̂, are both functions parametrised by θ and ϕ but their functional dependence on θ and ϕ is
generally different. This introduces diversity in the ensemble since different functions will have
different generalisation properties and their predictions in out-of-distribution states are expected to
differ, for an illustration, see Figure 1 and Appendix B for an exposition.

Variability between IVE members is also introduced by the training procedure. The exact details
depend on the algorithm used to learning algorithm. Next, we analyse the Muesli model and value
learning algorithms (Hessel et al., 2021) and their impact on the diversity on the IVE members.

Muesli learning algorithm. In training from a sequence of interactions, the deterministic expectation
model is unrolled from each state for K steps, following the actions that were taken in the environment.
The bootstrap target used to update the i’th resulting value estimate v̂(st+i), i ∈ {0, . . . ,K} uses the
environment samples from t+ i to t+ i+ n. This receding horizon means that each value estimate,
and therefore each member of the IVE, is regressed against a different target, furthering the diversity
among their predictions. See Appendix F for more details.

4 EXPERIMENTS

We conduct a series of tabular and deep RL experiments to determine how effective model-value
inconsistency is as a signal for epistemic uncertainty. Our goal is not to show that the IVE is better
than explicit ensembles. Instead, since IVE is present in any model-based RL agent, we want to
empirically study its properties and validate its usefulness.

Baselines. In the tabular experiments, we learn value functions with expected SARSA (Van Seijen
et al., 2009) and use maximum likelihood estimation for model learning (see Section 2). The explicit
ensemble components are trained independently, using exactly the same data. The only sources of
variability are random initialisation of parameters and stochastic gradient descent.

In the deep RL experiments, we built on the following model-based agents, that use either the MLE
or VE model learning principles, described in Section 2: (i) Muesli (Hessel et al., 2021) is a policy
optimisation method with a learned multi-step expectation model. Muesli also learns a state-value
function, using Retrace (Munos et al., 2016) to correct for the off-policiness of the replayed
experience. The learned model is used for representation learning and for constructing action-value
estimates, by one-step model unroll, used for policy improvement. The model parameters are trained
to predict reward and value k-steps into the future (corresponding to the individual terms in the
k-MPV); (ii) Dreamer (Hafner et al., 2019a) is a policy optimisation method with an MLE model.
The model is an action-conditioned hidden Markov model, trained to maximise (a lower bound on)
the likelihood of the reward and observation sequences. Dreamer learns a value function using only
rollouts from the learned model and its parameters are learned such that the learned value function
becomes (self-)consistent with the model; (iii) VPN (Oh et al., 2017) is a value-based planning
method with a multi-step expectation model. The action-value function and model are trained
simultaneously with n-steps Q-learning (Watkins & Dayan, 1992). In this case, the k-MPV is the

6

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

chaser climber coinrun fruitbot jumper

0

0.3

0.6

0.9

M
ea

n
no

rm
al

ise
d

re
tu

rn

(a) Training

chaser climber coinrun fruitbot jumper

0

0.1

0.2

0.3

0.4

-IV
E

#levels
10
100 Train
500
10
100 Test
500

(b) Evaluation

Figure 4: (a) Normalised training and test performance for a Muesli agent evaluated on both training
and unseen test levels of 5 procgen games after 100M environment frames, for different numbers
of unique levels seen during training. Values are normalised by the min and max scores for each
game. (b) σ-IVE(5) computed using the model of the Muesli agent while evaluating on both training
and unseen test levels, for different numbers of unique levels seen during training. Bars, error-bars
show mean and standard error across 3 seeds, respectively.

value estimate after applying k times the model-induced Bellman optimality operator on the learned
value function (see Appendix D for a formal exposition).

Environments. In the tabular experiments, we use an empty 5× 5 gridworld, and collect data
by rolling out a uniformly random policy, initialised at the bottom right cell. We exclude from the
dataset any transitions to the top left cell, as illustrated in Figure 3a, in order to control for visited
(in-distribution) and unvisited (out-of-distribution) states.

In the deep RL experiments, we use a selection of 5 tasks from the procgen suite (Cobbe et al.,
2019) to (i) control the number of distinct levels used for training the agent (i.e., #levels) and
(ii) hold out a set of test levels that are not seen during training. We also use a modification of the
walker walk task from the DeepMind Control suite (Tunyasuvunakool et al., 2020). The original
walker task has a per-step reward rt bounded in [0, 1] which is computed based on the agent’s torso
height and forward velocity. To parameterise exploration difficulty, we modify the reward function
to set any reward less than η to zero: r̃t = H(rt − η)rt, where H is the Heaviside step function.
For large η, agents that rely on naive exploration methods will struggle to find rewards and solve
the task. Lastly, we use the original minatar (Young & Tian, 2019) suite for fast experimentation
with value-based agents (Mnih et al., 2013).

4.1 DETECTING OUT-OF-DISTRIBUTION REGIMES WITH SELF-INCONSISTENCY

Based on the proposed role of self-inconsistency as a signal for epistemic uncertainty, and how
epistemic uncertainty changes between in- and out-of-distribution regimes, we expect the following
hypotheses to hold. H1: Self-inconsistency is low in in-distribution regions of the state-action space.
H2: Self-inconsistency is high in out-of-distribution (OOD) regions. H3: Self-inconsistency in an
OOD test distribution is reduced by bringing the training distribution closer to it.

Tabular. Figures 3b-3d show the self-inconsistency, measured as σ-IVE(n) for different values of
n, in the tabular gridworld. As n grows from 1 to 20, the standard deviation across the IVE
is qualitatively similar to the explicit value ensemble’s (EVE) in Figure 3e. We observe that the
self-inconsistency is lower for visited states (H1) than unvisited (OOD) ones (H2).

Deep RL. Figure 4 shows the Muesli agent’s performance (left) and its self-inconsistency (right)—
calculated after training as the σ-IVE(5)—for the different procgen tasks and for varying training
#levels, after 100M environment steps. The self-inconsistency for the training (in-distribution) lev-
els is always low, regardless of the #levels used for training the agent (H1). We also observe that
the self-inconsistency in the test (OOD) levels is higher than the train ones (H2). Importantly, as the
number of training levels increases the self-inconsistency on the test levels decreases, which confirms
H3. Also as expected, this reduced self-inconsistency correlates with improved test performance.

7

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

4.2 OPTIMISM AND PESSIMISM IN THE FACE OF SELF-INCONSISTENCY

Epistemic uncertainty has been (i) sought to drive exploration and (ii) avoided for acting safely. This
section addresses two hypotheses. H4: Self-inconsistency is an effective signal for exploration. H5:
Avoiding self-inconsistency leads to robustness to distribution shifts.

σ-IVE(5) (ours)
σ-EVE(5)

σ-EMVE(5)
Greedy Q

Uniform Random

0 50 100 150
Number of steps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

 re
ac

hi
ng

an
 O

OD
 st

at
e

(a) Optimism

0 50 100 150
Number of steps

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ilit

y
of

 re
ac

hi
ng

an
 O

OD
 st

at
e

(b) Pessimism

Figure 5: Probability of reaching the out-of-
distribution state in a tabular gridworld,
starting from the bottom right cell (Figure 3a)
by (a) seeking or (b) avoiding self-inconsistency
(σ-IVE, see Section 3.2) or explicit value or model
ensemble (EVE, EMVE) standard deviation. Error
bars show standard error over 100 seeds.

Tabular. Figure 5a shows the probability of
reaching the novel state in gridworld when
a self-inconsistency-seeking policy is followed
(+σ-IVE). Seeking self-inconsistency improves
upon a uniformly random or greedy policy and
is on par with an explicit ensemble of val-
ues (EVE) method (H4). For the experiment
in Figure 5b, a distribution shift is performed
by raising the environment stochasticity from
δ = 0.1 to δ = 0.5, and the probability of a self-
inconsistency-avoiding policy (-σ-IVE) is illus-
trated. We observe that the self-inconsistency-
avoiding policy is robust to the drift of the envi-
ronment dynamics (H5).

Deep RL. Table 1 gives the performance of the
Dreamer agent and variants that use the model
for online planning (Ma et al., 2020) as we
increase reward sparsity for the walker task,
e.g., η = 0 is the original task and η = 0.5 sets
rewards below 0.5 to zero. We used the mean of
IVE components in place of the learned policy
for acting (µ-IVE(5)), and combined the mean
with the self-inconsistency signal for acting optimistically in the face of uncertainty (µ+ σ-IVE(5)).
The self-inconsistency-seeking Dreamer-variant, i.e., µ+ σ-IVE(5), is performing well for η = 0.3
and η = 0.5 while the base agent fails, corroborating H4. Similar to the tabular experiment results,
the IVE is on par with the the explicit value ensemble (EVE, Figure 2a) and outperforms the explicit
model value ensemble (EMVE, Figure 2b).

4.3 PLANNING WITH AVERAGED MODEL-PREDICTED VALUES

Figure 6: Value-based planning experiments on
minatar tasks, testing the impact of planning with
the IVE ensembled mean. The original VPN(5) is the
same with our µ-IVE(5). Non-ensembled value targets
(v̂1m̂, v̂5m̂) lead to significant deterioration in final perfor-
mance. We report mean and standard error of episodic
returns over 3 runs after 2M steps, higher-is-better. The
best performing method, per-task, is in bold.

Methods Asterix Breakout Freeway Seaquest S. Inv.

DQN 14.7±0.4 12.1±1.2 49.6±0.3 2.3±0.6 47.2±1.3
VPN+v̂1m̂ 15.1±0.6 13.8±0.8 49.1±0.7 4.7±0.9 53.9±1.8
VPN+v̂5m̂ 7.1±2.3 4.2±2.3 24.3±4.2 1.2±1.4 28.6±8.3
µ-IVE(5) 18.3±0.2 22.0±0.7 49.4±0.5 8.6±0.3 97.3±9.6

Bayesian model averaging (BMA), i.e., in-
tegrating over epistemic uncertainty for
making predictions, has been used to boost
performance (Wilson & Izmailov, 2020).
The interpretation of the IVE as an en-
semble allows to justify prior methods in
the literature that have argued for aver-
aging MPVs (Oh et al., 2017; Byravan
et al., 2020) in order to robustify value-
based planning, casting them as approx-
imate BMA methods. This section ad-
dresses one hypothesis: H6: Ensemble av-
eraging of the IVE members is in general
more robust for value prediction than any
component individually.

Deep RL. Table 6 shows the final performance of a VPN(5) agent that uses µ-IVE(5) value targets
and its v̂1m̂ and v̂5m̂ variants’ on the minatar tasks. The ensembled µ-IVE(5) value predictor is
consistently better than the single value predictors, supporting H6.

8

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Table 1: Pixel-based continuous control experiments. Results for the Dreamer agent and IVE variants
on a modified version of the Walker Walk task with varying degrees of reward sparsity controlled by η,
where higher η corresponds to harder exploration. A “♢” indicates methods that use online-planning
for acting. We report mean and standard error of episodic returns (rounded to the nearest tenth) over
3 runs after 1M steps. Higher-is-better.The best performing method, per-task, is in bold.

Methods η = 0.0 η = 0.2 η = 0.3 η = 0.5

Dreamer 1000±00 720±10 570±60 80±50
µ-IVE(5)♢ 1000±00 860±40 690±70 210±60
µ+ σ-EVE(5)♢ 1000±00 1000±00 980±10 280±50
µ+ σ-EMVE(5)♢ 1000±00 910±20 730±40 210±60
µ+ σ-IVE(5)♢ 1000±00 1000±00 1000±00 330±70

5 DISCUSSION

We have introduced model-value self-inconsistency as a signal for capturing RL agents’ epistemic
uncertainty. Our key insight is that a single (point) estimate of a world model and value function
can be used to generate multiple estimates of the state value, which can be combined to form an
implicit value ensemble (IVE). We showed empirically that self-inconsistency of the IVE—i.e.,
the disagreement amongst its members— is an effective signal for epistemic uncertainty in tabular
and pixel-based deep RL settings. We then demonstrated that self-inconsistency can be used to
guide exploration, increase an agent’s ability to handle distribution shifts, and robustify value-based
planning methods.

Future work. We want to explore ways to: (i) Modify the model, value-learning algorithms, or
network architecture to increase diversity in the IVE while keeping the model size unchanged, such as
using different sub-samples of the data to train each IVE member or injecting k-dependent structured
noise (Osband et al., 2018). (ii) Integrate the self-inconsistency signal into more complex online
planning methods (e.g., MCTS, Coulom, 2006) since they already compute some “modification” of
the IVE components.

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale
machine learning. In 12th {USENIX} symposium on operating systems design and implementation
({OSDI} 16), pp. 265–283, 2016.

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In International Conference on Machine Learning, pp. 104–114. PMLR,
2020.

Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-dqn: Variance reduction and stabilization
for deep reinforcement learning. In International conference on machine learning, pp. 176–185.
PMLR, 2017.

Javier Antorán, James Urquhart Allingham, and José Miguel Hernández-Lobato. Depth uncertainty
in neural networks. arXiv preprint arXiv:2006.08437, 2020.

Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter Buchlovsky, David
Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Claudio Fantacci, Jonathan Godwin, Chris Jones,
Tom Hennigan, Matteo Hessel, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King,
Lena Martens, Vladimir Mikulik, Tamara Norman, John Quan, George Papamakarios, Roman Ring,
Francisco Ruiz, Alvaro Sanchez, Rosalia Schneider, Eren Sezener, Stephen Spencer, Srivatsan
Srinivasan, Wojciech Stokowiec, and Fabio Viola. The DeepMind JAX Ecosystem, 2020.

9

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://arxiv.org/abs/1907.04543
https://arxiv.org/abs/1907.04543
https://arxiv.org/abs/1611.01929
https://arxiv.org/abs/1611.01929
https://arxiv.org/abs/2006.08437
https://arxiv.org/abs/2006.08437
http://github.com/deepmind

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Philip Ball, Jack Parker-Holder, Aldo Pacchiano, Krzysztof Choromanski, and Stephen Roberts.
Ready policy one: World building through active learning. In International Conference on Machine
Learning, pp. 591–601. PMLR, 2020.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information
processing systems, 29:1471–1479, 2016.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, pp. 449–458. PMLR, 2017.

Richard Bellman. A Markovian decision process. Journal of mathematics and mechanics, 6(5):
679–684, 1957.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural network. In International Conference on Machine Learning, pp. 1613–1622. PMLR, 2015.

Ondřej Bojar and Aleš Tamchyna. Improving translation model by monolingual data. In Proceedings
of the Sixth Workshop on Statistical Machine Translation, pp. 330–336, 2011.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang.
JAX: composable transformations of Python+NumPy programs, 2018.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-efficient
reinforcement learning with stochastic ensemble value expansion. arXiv preprint arXiv:1807.01675,
2018.

Arunkumar Byravan, Jost Tobias Springenberg, Abbas Abdolmaleki, Roland Hafner, Michael Neunert,
Thomas Lampe, Noah Siegel, Nicolas Heess, and Martin Riedmiller. Imagined value gradients:
Model-based policy optimization with tranferable latent dynamics models. In Conference on Robot
Learning, pp. 566–589. PMLR, 2020.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. arXiv preprint arXiv:1805.12114,
2018.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging Procedural Generation
to Benchmark Reinforcement Learning. CoRR, abs/1912.01588, 2019.

Rémi Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search. In International
conference on computers and games, pp. 72–83. Springer, 2006.

Will Dabney, André Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G Bellemare, and
David Silver. The value-improvement path: Towards better representations for reinforcement
learning. arXiv preprint arXiv:2006.02243, 2020.

Richard Dearden, Nir Friedman, and Stuart Russell. Bayesian Q-learning. In Aaai/iaai, pp. 761–768,
1998.

Richard Dearden, Nir Friedman, and David Andre. Model-based Bayesian exploration. arXiv preprint
arXiv:1301.6690, 1999.

Michael Dusenberry, Ghassen Jerfel, Yeming Wen, Yian Ma, Jasper Snoek, Katherine Heller, Balaji
Lakshminarayanan, and Dustin Tran. Efficient and scalable bayesian neural nets with rank-1
factors. In International conference on machine learning, pp. 2782–2792. PMLR, 2020.

Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-translation at
scale. arXiv preprint arXiv:1808.09381, 2018.

10

https://arxiv.org/abs/1606.01868
https://arxiv.org/abs/1707.06887
https://arxiv.org/abs/1707.06887
https://www.jstor.org/stable/24900506
https://arxiv.org/abs/1505.05424
https://arxiv.org/abs/1505.05424
https://aclanthology.org/W11-2138/
https://github.com/google/jax
https://arxiv.org/abs/1807.01675
https://arxiv.org/abs/1807.01675
https://arxiv.org/abs/1910.04142
https://arxiv.org/abs/1910.04142
https://arxiv.org/abs/1805.12114
https://arxiv.org/abs/1805.12114
https://arxiv.org/abs/1511.07289
https://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1912.01588
http://arxiv.org/abs/1912.01588
https://hal.inria.fr/inria-00116992/document
https://arxiv.org/abs/2006.02243
https://arxiv.org/abs/2006.02243
https://www.aaai.org/Papers/AAAI/1998/AAAI98-108.pdf
https://arxiv.org/abs/1301.6690
https://arxiv.org/abs/2005.07186
https://arxiv.org/abs/2005.07186
https://arxiv.org/abs/1808.09381
https://arxiv.org/abs/1808.09381

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Gregory Farquhar, Tim Rocktäschel, Maximilian Igl, and Shimon Whiteson. Treeqn and atreec: Differ-
entiable tree-structured models for deep reinforcement learning. arXiv preprint arXiv:1710.11417,
2017.

Gregory Farquhar, Kate Baumli, Zita Marinho, Angelos Filos, Matteo Hessel, Hado van Hasselt, and
David Silver. Self-consistent models and values. arXiv preprint arXiv:2110.12840, 2021.

Stefan Faußer and Friedhelm Schwenker. Neural network ensembles in reinforcement learning.
Neural Processing Letters, 41(1):55–69, 2015.

William Fedus, Carles Gelada, Yoshua Bengio, Marc G Bellemare, and Hugo Larochelle. Hyperbolic
discounting and learning over multiple horizons. arXiv preprint arXiv:1902.06865, 2019.

Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez, and Sergey Levine.
Model-based value expansion for efficient model-free reinforcement learning. In Proceedings of
the 35th International Conference on Machine Learning (ICML 2018), 2018.

Angelos Filos, Clare Lyle, Yarin Gal, Sergey Levine, Natasha Jaques, and Gregory Farquhar. PsiPhi-
Learning: Reinforcement Learning with Demonstrations using Successor Features and Inverse
Temporal Difference Learning. arXiv preprint arXiv:2102.12560, 2021.

Sebastian Flennerhag, Jane X Wang, Pablo Sprechmann, Francesco Visin, Alexandre Galashov, Steven
Kapturowski, Diana L Borsa, Nicolas Heess, Andre Barreto, and Razvan Pascanu. Temporal
Difference Uncertainties as a Signal for Exploration. arXiv preprint arXiv:2010.02255, 2020.

Yarin Gal, Rowan McAllister, and Carl Edward Rasmussen. Improving PILCO with Bayesian neural
network dynamics models. In Data-Efficient Machine Learning workshop, ICML, volume 4, pp.
25, 2016.

Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control: Theory and
practice—A survey. Automatica, 25(3):335–348, 1989.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated
curriculum learning for neural networks. In international conference on machine learning, pp.
1311–1320. PMLR, 2017.

Karol Gregor, Danilo Jimenez Rezende, Frederic Besse, Yan Wu, Hamza Merzic, and Aaron
van den Oord. Shaping belief states with generative environment models for rl. arXiv preprint
arXiv:1906.09237, 2019.

Christopher Grimm, André Barreto, Gregory Farquhar, David Silver, and Satinder Singh. Proper
Value Equivalence. arXiv preprint arXiv:2106.10316, 2021.

Arthur Guez, Fabio Viola, Théophane Weber, Lars Buesing, Steven Kapturowski, Doina Pre-
cup, David Silver, and Nicolas Heess. Value-driven hindsight modelling. arXiv preprint
arXiv:2002.08329, 2020.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning, pp. 2555–2565. PMLR, 2019b.

Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent Sifre, Theo-
phane Weber, David Silver, and Hado van Hasselt. Muesli: Combining improvements in policy
optimization. arXiv preprint arXiv:2104.06159, 2021.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In European conference on computer vision, pp. 646–661. Springer, 2016.

11

https://arxiv.org/abs/1710.11417
https://arxiv.org/abs/1710.11417
https://arxiv.org/abs/2110.12840
https://link.springer.com/content/pdf/10.1007/s11063-013-9334-5.pdf
https://arxiv.org/abs/1902.06865
https://arxiv.org/abs/1902.06865
https://arxiv.org/abs/1803.00101
https://arxiv.org/abs/2102.12560
https://arxiv.org/abs/2102.12560
https://arxiv.org/abs/2102.12560
https://arxiv.org/abs/2010.02255
https://arxiv.org/abs/2010.02255
http://mlg.eng.cam.ac.uk/yarin/website/PDFs/DeepPILCO.pdf
http://mlg.eng.cam.ac.uk/yarin/website/PDFs/DeepPILCO.pdf
https://www.researchgate.net/profile/Mohamed-Mourad-Lafifi/post/Is_there_any_good_and_easy_to_understand_set_of_lectrues_or_a_good_reference_for_someone_who_wants_to_learn_optimal_control_theory/attachment/5a758d464cde266d58886cc7/AS%3A589894925692933%401517653318888/download/Model+Predictive+Control+_+Theory+and+Practice+a+Survey+Garca1989.pdf
https://www.researchgate.net/profile/Mohamed-Mourad-Lafifi/post/Is_there_any_good_and_easy_to_understand_set_of_lectrues_or_a_good_reference_for_someone_who_wants_to_learn_optimal_control_theory/attachment/5a758d464cde266d58886cc7/AS%3A589894925692933%401517653318888/download/Model+Predictive+Control+_+Theory+and+Practice+a+Survey+Garca1989.pdf
https://arxiv.org/abs/1704.03003
https://arxiv.org/abs/1704.03003
https://arxiv.org/abs/1906.09237
https://arxiv.org/abs/2106.10316
https://arxiv.org/abs/2106.10316
https://arxiv.org/abs/2002.08329
https://arxiv.org/abs/1912.01603
https://arxiv.org/abs/1912.01603
https://arxiv.org/abs/1811.04551
https://arxiv.org/abs/2104.06159
https://arxiv.org/abs/2104.06159
https://www.bioinf.jku.at/publications/older/2604.pdf
https://arxiv.org/abs/1603.09382
https://arxiv.org/abs/1603.09382

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Weinberger.
Snapshot ensembles: Train 1, get m for free. arXiv preprint arXiv:1704.00109, 2017.

John D Hunter. Matplotlib: A 2D graphics environment. IEEE Annals of the History of Computing, 9
(03):90–95, 2007.

Marcus Hutter. Universal artificial intelligence: Sequential decisions based on algorithmic probabil-
ity. Springer Science & Business Media, 2004.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In International
Conference on Machine Learning, pp. 4940–4950. PMLR, 2021.

Gabriel Kalweit and Joschka Boedecker. Uncertainty-driven imagination for continuous deep
reinforcement learning. In Conference on Robot Learning, pp. 195–206. PMLR, 2017.

Zachary Kenton, Angelos Filos, Owain Evans, and Yarin Gal. Generalizing from a few environments
in safety-critical reinforcement learning. arXiv preprint arXiv:1907.01475, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Panqanamala Ramana Kumar and Pravin Varaiya. Stochastic systems: Estimation, identification, and
adaptive control. SIAM, 2015.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. arXiv preprint arXiv:1802.10592, 2018.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. arXiv preprint arXiv:1612.01474, 2016.

Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic:
Deep reinforcement learning with a latent variable model. arXiv preprint arXiv:1907.00953, 2019.

Manuel Lopes, Tobias Lang, Marc Toussaint, and Pierre-Yves Oudeyer. Exploration in model-
based reinforcement learning by empirically estimating learning progress. In Neural Information
Processing Systems (NIPS), 2012.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan
online, learn offline: Efficient learning and exploration via model-based control. arXiv preprint
arXiv:1811.01848, 2018.

Xiuyuan Lu, Benjamin Van Roy, Vikranth Dwaracherla, Morteza Ibrahimi, Ian Osband, and Zheng
Wen. Reinforcement Learning, Bit by Bit. arXiv preprint arXiv:2103.04047, 2021.

Clare Lyle, Mark Rowland, Georg Ostrovski, and Will Dabney. On The Effect of Auxiliary Tasks on
Representation Dynamics. In International Conference on Artificial Intelligence and Statistics, pp.
1–9. PMLR, 2021.

Xiao Ma, Siwei Chen, David Hsu, and Wee Sun Lee. Contrastive variational model-based reinforce-
ment learning for complex observations. arXiv e-prints, pp. arXiv–2008, 2020.

Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon Wilson.
A simple baseline for bayesian uncertainty in deep learning. Advances in Neural Information
Processing Systems, 32:13153–13164, 2019.

John Milnor. Games against nature. Technical report, RAND Project Air Force Santa Monica CA,
1951.

12

https://arxiv.org/abs/1704.00109
https://ieeexplore.ieee.org/iel5/4160243/4160244/04160265.pdf?casa_token=z4juTDjMUu4AAAAA:4wX75cc11iYBafTwM2zz5VFZ5zkvtqZdtCefxxJrstv5ltdiEOREcMh_MxDUjXvxxEJxpVodi6kh
http://www.hutter1.net/ai/suaibook.pdf
http://www.hutter1.net/ai/suaibook.pdf
https://arxiv.org/abs/1611.05397
https://arxiv.org/abs/2010.03934
http://proceedings.mlr.press/v78/kalweit17a/kalweit17a.pdf
http://proceedings.mlr.press/v78/kalweit17a/kalweit17a.pdf
https://arxiv.org/abs/1907.01475
https://arxiv.org/abs/1907.01475
https://arxiv.org/abs/1412.6980
https://epubs.siam.org/doi/book/10.1137/1.9781611974263
https://epubs.siam.org/doi/book/10.1137/1.9781611974263
https://arxiv.org/abs/1802.10592
https://arxiv.org/abs/1802.10592
https://arxiv.org/abs/1612.01474
https://arxiv.org/abs/1612.01474
https://arxiv.org/abs/1907.00953
https://arxiv.org/abs/1907.00953
https://hal.inria.fr/file/index/docid/755248/filename/nips.pdf
https://hal.inria.fr/file/index/docid/755248/filename/nips.pdf
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1811.01848
https://arxiv.org/abs/1811.01848
https://arxiv.org/abs/2103.04047
http://proceedings.mlr.press/v130/lyle21a/lyle21a.pdf
http://proceedings.mlr.press/v130/lyle21a/lyle21a.pdf
https://arxiv.org/abs/2008.02430
https://arxiv.org/abs/2008.02430
https://proceedings.neurips.cc/paper/2019/file/118921efba23fc329e6560b27861f0c2-Paper.pdf
https://apps.dtic.mil/sti/pdfs/ADA596133.pdf

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc G Bellemare. Safe and efficient off-policy
reinforcement learning. arXiv preprint arXiv:1606.02647, 2016.

Evgenii Nikishin, Romina Abachi, Rishabh Agarwal, and Pierre-Luc Bacon. Control-Oriented Model-
Based Reinforcement Learning with Implicit Differentiation. arXiv preprint arXiv:2106.03273,
2021.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. arXiv preprint
arXiv:1707.03497, 2017.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped DQN. Advances in neural information processing systems, 29:4026–4034, 2016.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. arXiv preprint arXiv:1806.03335, 2018.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In International conference on machine learning, pp. 5062–5071. PMLR, 2019.

Tim Pearce, Felix Leibfried, and Alexandra Brintrup. Uncertainty in neural networks: Approximately
bayesian ensembling. In International conference on artificial intelligence and statistics, pp.
234–244. PMLR, 2020.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Roberta Raileanu and Tim Rocktäschel. RIDE: Rewarding impact-driven exploration for procedurally-
generated environments. arXiv preprint arXiv:2002.12292, 2020.

Jacques Richalet, André Rault, JL Testud, and J Papon. Model predictive heuristic control. Automatica
(journal of IFAC), 14(5):413–428, 1978.

Leonard J Savage. The foundations of statistics. Courier Corporation, 1972.

Jürgen Schmidhuber. An on-line algorithm for dynamic reinforcement learning and planning in
reactive environments. In 1990 IJCNN international joint conference on neural networks, pp.
253–258. IEEE, 1990.

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE
Transactions on Autonomous Mental Development, 2(3):230–247, 2010.

Simon Schmitt, Matteo Hessel, and Karen Simonyan. Off-policy actor-critic with shared experience
replay. In International Conference on Machine Learning, pp. 8545–8554. PMLR, 2020.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In International Conference on Machine
Learning, pp. 8583–8592. PMLR, 2020.

Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration. In
International conference on machine learning, pp. 5779–5788. PMLR, 2019.

13

https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1606.02647
https://arxiv.org/abs/1606.02647
https://arxiv.org/abs/2106.03273
https://arxiv.org/abs/2106.03273
https://arxiv.org/abs/1707.03497
https://arxiv.org/abs/1602.04621
https://arxiv.org/abs/1602.04621
https://arxiv.org/abs/1806.03335
https://arxiv.org/abs/1806.03335
https://arxiv.org/abs/1705.05363
https://arxiv.org/abs/1705.05363
http://arxiv.org/abs/1906.04161
http://proceedings.mlr.press/v108/pearce20a/pearce20a.pdf
http://proceedings.mlr.press/v108/pearce20a/pearce20a.pdf
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470316887
https://arxiv.org/abs/2002.12292
https://arxiv.org/abs/2002.12292
https://www.sciencedirect.com/science/article/abs/pii/0005109878900018
https://philpapers.org/rec/SAVTFO-2
https://mediatum.ub.tum.de/doc/814960/file.pdf
https://mediatum.ub.tum.de/doc/814960/file.pdf
https://people.idsia.ch/~juergen/ieeecreative.pdf
http://proceedings.mlr.press/v119/schmitt20a/schmitt20a.pdf
http://proceedings.mlr.press/v119/schmitt20a/schmitt20a.pdf
https://www.nature.com/articles/s41586-020-03051-4
https://www.nature.com/articles/s41586-020-03051-4
https://arxiv.org/abs/2005.05960
https://arxiv.org/abs/1810.12162

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

David Silver, Hado Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel Dulac-
Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, et al. The predictron: End-to-end
learning and planning. In International Conference on Machine Learning, pp. 3191–3199. PMLR,
2017.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Malcolm Strens. A Bayesian framework for reinforcement learning. In ICML, volume 2000, pp.
943–950, 2000.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3
(1):9–44, 1988.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Robert Tibshirani. A comparison of some error estimates for neural network models. Neural
Computation, 8(1):152–163, 1996.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020.

Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor Wiskunde en
Informatica Amsterdam, 1995.

Harm Van Seijen, Hado Van Hasselt, Shimon Whiteson, and Marco Wiering. A theoretical and
empirical analysis of Expected Sarsa. In 2009 ieee symposium on adaptive dynamic programming
and reinforcement learning, pp. 177–184. IEEE, 2009.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to
control: A locally linear latent dynamics model for control from raw images. arXiv preprint
arXiv:1506.07365, 2015.

Florian Wenzel, Jasper Snoek, Dustin Tran, and Rodolphe Jenatton. Hyperparameter ensembles for
robustness and uncertainty quantification. arXiv preprint arXiv:2006.13570, 2020.

Paul J Werbos. Learning how the world works: Specifications for predictive networks in robots and
brains. In Proceedings of IEEE International Conference on Systems, Man and Cybernetics, NY,
1987.

Jörg Wichard, Christian Merkwirth, and Maciej Ogorzalek. Building ensembles with heterogeneous
models, 2003.

Andrew Gordon Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective
of generalization. arXiv preprint arXiv:2002.08791, 2020.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

Tao Yu, Cuiling Lan, Wenjun Zeng, Mingxiao Feng, and Zhibo Chen. PlayVirtual: Augmenting Cycle-
Consistent Virtual Trajectories for Reinforcement Learning. arXiv preprint arXiv:2106.04152,
2021.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223–2232, 2017.

14

https://arxiv.org/abs/1612.08810
https://arxiv.org/abs/1612.08810
https://arxiv.org/abs/1507.00814
https://arxiv.org/abs/1507.00814
https://www.ece.uvic.ca/~bctill/papers/learning/Strens_2000.pdf
https://link.springer.com/content/pdf/10.1007/BF00115009.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.6005&rep=rep1&type=pdf
http://incompleteideas.net/book/the-book-2nd.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.1022&rep=rep1&type=pdf
https://arxiv.org/abs/2006.12983
https://arxiv.org/abs/2006.12983
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/gwydion-1/OldFiles/OldFiles/python/Doc/ref.ps
https://ieeexplore.ieee.org/document/4927542
https://ieeexplore.ieee.org/document/4927542
https://link.springer.com/article/10.1007/BF00992698
https://arxiv.org/abs/1506.07365
https://arxiv.org/abs/1506.07365
https://arxiv.org/abs/2006.13570
https://arxiv.org/abs/2006.13570
https://bibbase.org/network/publication/werbos-learninghowtheworldworksspecificationsforpredictivenetworksinrobotsandbrains-1987
https://bibbase.org/network/publication/werbos-learninghowtheworldworksspecificationsforpredictivenetworksinrobotsandbrains-1987
http://www.j-wichard.de/publications/salerno_lncs_2003.pdf
http://www.j-wichard.de/publications/salerno_lncs_2003.pdf
https://arxiv.org/abs/2002.08791
https://arxiv.org/abs/2002.08791
https://arxiv.org/abs/1903.03176
https://arxiv.org/abs/1903.03176
https://arxiv.org/abs/2106.04152
https://arxiv.org/abs/2106.04152
https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1703.10593

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

A RELATED WORK

Ensemble RL methods. Ensembles of deep neural networks have been used in value and
model-based online RL methods for (i) stabilising learning (Faußer & Schwenker, 2015; Anschel
et al., 2017; Kalweit & Boedecker, 2017; Kurutach et al., 2018; Chua et al., 2018); (ii) exploration
by seeking epistemic uncertainty (Osband et al., 2016; Shyam et al., 2019; Pathak et al., 2019;
Flennerhag et al., 2020; Ball et al., 2020; Sekar et al., 2020); (iii) tackling distribution shifts (Lowrey
et al., 2018; Kenton et al., 2019; Agarwal et al., 2020) and (iv) representation learning (Fedus et al.,
2019; Dabney et al., 2020; Lyle et al., 2021). All of the above consider explicit ensemble methods
(see Section 2) which can be graphically represented by Figures 2a and 2b or some combination
of them. In contrast, IVE is an implicit ensemble method that does not rely on an ensemble of either
value functions or models but uses a single (point) estimate. IVE could be combined with explicit
ensembles, this would break the correlation between its ensemble components since parameters
would not be shared, at the expense of growing the model size.

Model-based RL. Learned models can be useful to RL agents in various ways, such as: (i) action
selection via planning (Richalet et al., 1978; Hafner et al., 2019b); (ii) representation learning (Schmid-
huber, 1990; Jaderberg et al., 2016; Lee et al., 2019; Guez et al., 2020; Hessel et al., 2021); (iii)
planning for policy optimisation or value learning (Werbos, 1987; Sutton, 1991; Hafner et al., 2019b;
Byravan et al., 2020); or (iv) a combination of all of them (Schrittwieser et al., 2020). In this work, we
use the learned model-induced Bellman operator and value function to construct an ensemble of value
estimators and interpret the disagreement of their predictions as a proxy of epistemic uncertainty.

Model-value expansion. Alternative methods predict values by unrolling the learned model for k-
steps and bootstrapping from the model-free learned value function, see Figures 1a and 2c. Feinberg
et al. (2018); Buckman et al. (2018); Byravan et al. (2020) follow a two-steps process: (i) they learn a
model by maximum likelihood (Section 2.1) and then (ii) learn the value function by regressing it to
MPV predictions/targets. Oh et al. (2017); Silver et al. (2017); Farquhar et al. (2017); Gregor et al.
(2019); Schrittwieser et al. (2020); Nikishin et al. (2021) train the model and value function jointly,
with a direct regression loss on the MPV. Both the IVE and self-inconsistency signal are compatible
with these learning approaches.

Adapting k. With varying k, MPV interpolates between the learned model and value function. In
particular, for (i) k = 0 the value predictions are based only on the learned value function and for
(ii) k → ∞ only the learned model contributes to the value predictions. The λ-predictron (Silver
et al., 2017) uses a learned and adaptive mechanism for mixing the predictions for different ks.
STEVE (Buckman et al., 2018) is an epistemic-uncertainty-informed mechanism for weighting the
different MPVs. It learns an explicit ensemble of models and value functions and weights the MPV
using an inverse variance weighting of the means, calculated across the explicit ensemble. This
should not be confused with our σ-IVE(n) signal, which is the variance across the MPVs and cannot
be used for selecting the “best” k-th element but quantifies the model-value disagreement.

Novelty signals. Non-explicit ensemble methods have been proposed for estimating the model
prediction error and use this as a proxy signal for novelty. Most of these methods make novelty
predictions for a state st, after observing a transition st

at−→ st+1 (Stadie et al., 2015; Pathak et al.,
2017; Raileanu & Rocktäschel, 2020) and therefore are termed retrospective novelty predictors in
the literature (Sekar et al., 2020). Lopes et al. (2012) assume that the agent’s learning progress is a
predictable process and fit a model to it. While (st, at, st+1) triplets are necessary for training the
novelty predictor, after training, the signal can be calculated before observing st+1 and hence can be
used for planning purposes, which we term a plannable novelty predictor. The σ-IVE signal can be
interpreted as a model-based prediction error estimate that quantifies how the learned value function
and model disagree in their predictions and hence we can use it as a plannable novelty signal.

Self-consistency regularisation. Silver et al. (2017) and Farquhar et al. (2021) regularised their
learned value and model pairs to be self-consistent for prediction and control tasks, respectively.
Self-consistency regularisation has been used for learned world models by matching the predictions of
a forward dynamics model with a backward dynamics model (Yu et al., 2021). Similar regularisation
ideas have been used in other areas of machine learning, including offline multi-task inverse

15

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

RL (Filos et al., 2021), natural language processing (Bojar & Tamchyna, 2011; Edunov et al., 2018)
and generative modelling (Zhu et al., 2017). All prior work directly “forces” self-consistency on
modelled quantities as a form of regularisation, e.g., applied on imagined data (Farquhar et al., 2021).
Instead, we treat self-inconsistency as a proxy for epistemic uncertainty and, e.g., indirectly promote
self-consistency by actively guiding data collection/exploration with a self-inconsistency-seeking
policy (see Section 4.2). Consequently, this avoids degenerate but self-consistent solutions since
the learned model and value functions are trained on real data (i.e., external consistency).

Implicit NN ensembles. Ensembles from a single NN have been proposed and successfully used
in supervised learning but they require modifications to the learning algorithm (Huang et al., 2017;
Maddox et al., 2019; Antorán et al., 2020) or architecture (Huang et al., 2016; Dusenberry et al.,
2020). In contrast, IVE relies on the structure of the RL problem and leverages the Bellman
consistency (Farquhar et al., 2021) that the “true” model and value function satisfy and hence their
learned counterparts should also do.

Curriculum learning. Jiang et al. (2021) used temporal difference (TD) error as a signal for
selecting the task with the highest learning potential out of a set of tasks, giving rise to an automated
curriculum (Graves et al., 2017). In Section 4.2 we showed that the self-consistency can be used for
prioritising experience collection (i.e., driving exploration). Self-inconsistency could potentially be
used for constructing an automated curriculum by model-based estimates of the TD error.

16

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

B EXPERIMENTAL DETAILS

In this section, we describe the environments used in our experiments (see Section 4) and the
experiment design.

B.1 ENVIRONMENTS

In this section, we provide details on the specification of each task used in our experiments.

B.1.1 TABULAR ENVIRONMENT

We use an empty 5×5 gridworld (gridworld) environment for our tabular
experiments. The task is specified by:

1. State space, S: A finite discrete state space, i.e., s ∈
{0, 1, . . . , 24}.

2. Action space, A: A finite discrete action space for moving
the agent in the four cardinal directions (N, W, S, E), i.e., s ∈
{0, 1, 2, 3}.

3. Reward function, r(s, a): The zero function, i.e., r(s, a) =
0,∀(s, a) ∈ S ×A.

4. Transition dynamics, p(s′|s, a): We consider the episodic setting,
i.e., episode length = 20, and the dynamics are (optionally)
stochastic. In particular, we use a single parameter that controls the
stochasticity, called wind prob ∈ [0, 1] and implement stochastic
dynamics as actuator noise, i.e., there is a wind prob probability
that the agent action is ignores and an other action is applied to the
environment by sampling randomly from the action space.

visited unvisited

Figure 7:
gridworld

B.1.2 PROCGEN (COBBE ET AL., 2019)

We used 5 tasks from the Procgen (procgen, Cobbe et al., 2019) suite, shown at Figure 8. We used
the default settings for the environments and we only varied the number of training levels used for
learning, which we term #levels. The tasks are generally partially-observed (POMDPs) specified
by:

1. Observation space, O: The original 64 × 64 RGB pixel-observations, i.e., ot ∈
[0, 1]

64×64×3.
2. Action space, A: The original 15 discrete actions, i.e., at ∈ {0, . . . , 14}.

(a) chaser (b) climber (c) coinrun (d) fruitbot (e) jumper

Figure 8: procgen tasks.

B.1.3 MINATAR (YOUNG & TIAN, 2019)

We used all 5 tasks from the MinAtar (minatar, Young & Tian, 2019) suite, shown in Figure 9,
with the default settings. The tasks are fully-observed and specified by:

1. State space, S: The original 10 × 10 × n channels symbolic observations, i.e., st ∈
[0, 1]

10×10×n channels, where n channels varies between tasks, from 4 to 10.
2. Action space, A: The original 6 discrete (non-minimal) actions, i.e., at ∈ {0, . . . , 5}.

17

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

3. Transition dynamics, p(s′|s, a): The default 0.1 probability for sticky actions is used.

(a) asterix (b) breakout (c) freeway (d) seaquest
(e)
space invaders

Figure 9: minatar environments.

B.1.4 DEEPMIND CONTINUOUS CONTROL (TUNYASUVUNAKOOL ET AL., 2020)

We use the walkerwalk task from the DeepMind Continuous Control (Tun-
yasuvunakool et al., 2020) suite and modified its reward function. Pixel-
observations are used, and the problem is generally partially-observed. The
task is specified by:

1. Observation space, S: A 64× 64 RGB pixel-observation, where
the robot body is in the centre of the frame, i.e., ot ∈ [0, 1]

64×64×3.
2. Action space, A: A six-dimensional continuous action, i.e., at ∈

[−1,+1]
6.

3. Reward function, r(s, a): Originally, the reward is bounded in
[0, 1], i.e., rt ∈ [0, 1], which is computed based on the robot’s
torso height and forward velocity. We modify the original per-step
reward, by setting to zero any reward below a parameter η, i.e.,
r̃t = H(rt − η)rt, where H is the Heaviside step function. For
η = 0, we recover the original reward, and for η > 0 we obtain an
increasingly more difficult, in terms of exploration, walker task.

Figure 10: walker

B.2 EXPERIMENTS

In this section, we provide details on the experimental protocol we follow for each experiment.

B.2.1 FIGURES 1 AND 11

We focus on the prediction problem (Sutton & Barto, 2018), modelled as a Markov reward process
(MRP) with an one-dimensional state space, i.e., s ∈ S = [−3,+3] and a discount factor γ = 0.9. We
are provided with state-value target pairs, i.e., {(si, v̄i)}Ni=1 with N = 10 and learn (i) a representation
function ĥ(s;ω), (ii) a value function v̂(z;ϕ) and (iii) a model m̂(·, ·|z; θ) ≜ (r̂(z; θ), p̂(z; θ)),
represented as neural networks with parameters, ω, ϕ and θ, respectively. In particular:

ĥω(s) = ĥ(s;ω) = tanh(MLPω(s)) ≜ z ∈ [−1,+1]32 (8)

v̂ϕ(z) = v̂(z;ϕ) = MLPϕ(z) ≜ v ∈ R (9)

p̂θ(z) = p̂(z; θ) = LSTMθ(z,0) ≜ z1 ∈ [−1,+1]32 (10)

r̂θ(z) = r̂(z; θ) = MLPθ(z) ≜ r1 ∈ R, (11)

where all the multi-layer percepetrons (MLPs) have one hidden layer of 32 units with an ELU (Clevert
et al., 2015) non-linearity and zk is the (latent) state after taking k steps with the model m̂, starting
from state z0 ≜ z (Silver et al., 2017).

We make value prediction by repeatedly applying the m̂ model-induced Bellman operator Tm̂ on the
value function v̂, i.e., constructing different k-steps model predicted values (k-MPVs, Eqn. (5)). In

18

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

μ±3σ-IVE(10) { ̂vkm̂}10k=0 targets

−2 0 2
0

100

s

v(s)

(a) At initialisation (i.e., prior)

−2 0 2

0

5

s

v(s)

(b) Value targets (i.e., data)

−2 0 2

0

5

s

v(s)

s

v(s)

(c) After training (i.e., posterior)

Figure 11: Expanded version of Figure 1. A value prediction problem of an implicit policy, modelled
as a Markov reward process (MRP, Sutton & Barto, 2018) with an one-dimensional state space, i.e.,
s ∈ S = [−3, 3]. We learn a model m̂ and a value function v̂ and construct a k-steps model predicted
value (k-MPV, Eqn. (5)) by applying the model induced Bellman operator Tm̂ repeatedly k times on
the learned value function v̂, i.e., v̂km̂(s) ≜ (Tm̂)kv̂(s). We visualise the k-MPVs, a.k.a components
of the implicit value ensemble (IVE, Eqn. (6)) for k ∈ {0, . . . , 10} (in blue) along with the ensemble
mean and standard deviation (in orange), constructed from a single (point) estimate of the value
function and model. (a) The predictions at initialisation, i.e., before training. (b) The data, i.e., state
and value target pairs. (c) The predictions after training every IVE member towards the value targets
in (b), i.e., minm,v

∑
i

∑
k ∥v̂km̂(si)− vi∥22. We observe in (c) that the ensemble components fit the

value targets and their standard deviation is zero at and around the observed (in-distribution) data
but it is non-zero otherwise (out-of-distribution points). Therefore the IVE members’ disagreement
can be used as a signal for epistemic uncertainty. In this example, the variability between the IVE
members’ predictions is only due to their different functional forms.

particular, the predictions are given by:

v̂0m̂(s) = (Tm̂θ
)0v̂ϕ(ĥω(s)) = v̂ϕ(ĥω(s)) = v̂ϕ ◦ ĥω(s) (12)

v̂1m̂(s) = (Tm̂θ
)1v̂ϕ(ĥω(s)) = (r̂θ + γv̂ϕ) ◦ p̂θ ◦ ĥω(s) (13)

v̂2m̂(s) = (Tm̂θ
)2v̂ϕ(ĥω(s)) = (r̂θ + γ(r̂θ + γv̂ϕ) ◦ p̂θ) ◦ p̂θ ◦ ĥω(s) (14)

...

v̂km̂(s) = (Tm̂θ
)kv̂ϕ(ĥω(s)) =

k−1∑
j=1

γj−1r̂θ ◦ (p̂θ ◦ · · · ◦ p̂θ)
j-times

+ γkv̂ϕ ◦ (p̂θ ◦ · · · ◦ p̂θ)
k-times

 ◦ ĥω(s)

(15)

where ◦ denotes function composition. Obviously, the k-MPVs with different k have different
functional forms, as the predictions at initialisation suggest at Figures 1b and 11a, too. Note that
we do not use the bold notation introduced in Eqn. (7) to highlight that there is no Monte Carlo
sampling—the learned model is deterministic and the policy is implicit.

We learn the neural network parameters ω, ϕ and θ using the ADAM (Kingma & Ba, 2014) optimiser
with decoupled weight decay (Loshchilov & Hutter, 2017) to minimise the empirical squared value
prediction error for all k ∈ {0, . . . , 10}, i.e.,

min
ω,θ,ϕ

N∑
i=1

K∑
k=0

∥v̂km̂(si)− vi∥22. (16)

The only source of variability between the k-MPVs (implicit value ensemble (IVE) members) is their
functional form, induced by different compositions of the learned parametric networks v̂ϕ, p̂θ and r̂θ
as Eqns. (12-15) show.

B.2.2 FIGURE 3

Data. We collect experience/data B by running a uniformly random policy πuniform for 500 steps (i.e.,
25 episodes). We exclude transitions from and to the top left cell, which we call the out-of-distribution
(OOD) or unvisited state.

19

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Value learning. We learn a tabular action-value function q̂ ≈ qπuniform using expected
SARSA (Van Seijen et al., 2009) and then we induce a (state-)value function, i.e., v̂(s) ≜
Ea∼πuniform [q̂(s, a)],∀(s, a) ∈ S ×A.

Model learning. Maximum-likelihood estimation (MLE, see Section 2) with data B is used for
learning the tabular model of the environment m̂ ≈ m∗.

Visualisations. The mean and standard deviations are normalised in [0, 1], i.e., for given quantity
xs for state s and xmin (xmax the minimum (maximum) quantity across all states, we plot x̄s =
(xs − xmin)/(xmax − xmin). We report the results for a single repetition of the experiment since it is a
qualitative observation.

IVE(n). We calculate the MPVs exactly, according to Eqn. (5). We vary the parameter n, i.e.,
maximum number of applications of the model-induced Bellman operator Tm̂ on the learned value
function v̂.

EVE(n) and EMVE(n). The explicit value ensemble (EVE, Figure 2a) and explicit model value
ensemble (EMVE, Figure 2b) are also trained on the same data using the same value and model
learning algorithms. The ensemble components different only in their (random) initialisation and
seed used in stochastic gradient descent.

B.2.3 TABLE 1

We use the walker task and train Dreamer (Hafner et al., 2019a) for 1M steps. An action repeat of 2
is used thus 0.5M agent-environment interaction steps are made per run. We repeat each experiment
3 times, varying the random seed in each one. We report the episodic returns (rounded to the nearest
tenth) at the end of training by setting the agents in “evaluation” mode and average their performance
across 10 episodes.

B.2.4 FIGURE 4

We train Muesli (without any modification to its acting strategy or learning algorithm) for 100M
environment frames. Figure 4 (left) reports the final performance of the agent evaluated on an
additional 10M frames on the train and test levels. Mean episode returns are normalised as: R̃ =
(R−Rmin)/(Rmax −Rmin), using min and max scores for each game (Cobbe et al., 2019).

The model-value self-inconsistency, reported in Figure 4 (right), is computed by unrolling the model
for 5 steps using actions sampled from the policy and taking the standard deviation over the IVE:

k-MVP(s) = v̂k
m̂(s)

(7)
=

k−1∑
i=1

γi−1ri+1
m̂ + γkv̂(skm̂) (17)

σ-IVE(s) = stdk[k-MVP(s)], for k = 1, . . . , 5 (18)

where the “bold” notation refers to reward and value predictions given a single action sequence
sampled from the policy π, as described in Eqn. (7).

B.2.5 FIGURE 5

For training the values and model and calculating IVE and EVE, we follow the same protocol as in
Figure 3. In this experiment, we use the learned action-value functions instead of the state-values,
see Section D.2 for a formal discussion. We denote with σ-IVE(5) and σ-EVE(5) the standard
deviation across the 5 ensemble members of the implicit and explicit ensembles of the action-values,
respectively. Also, σ-IVE(5) ∈ RS×A and σ-IVE(5)[s, a] is the standard deviation of the implicit
value ensemble at the state s for action a. We use the standard deviation across the ensemble of
action-values for inducing policies that are novelty- seeking or avoiding:

• In Figure 5a, the action that maximises the standard deviation across the value ensemble
is selected, per-state, i.e., πseeking(s) = argmaxa∈A σ-XVE(5)[s, a], where XVE ∈ {IVE,
EVE}. These are the novelty-seeking policies that their probability of reaching the novel
state is higher than a uniformly random policy.

20

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

• In Figure 5b, the action that minimises the standard deviation across the value ensemble
is selected, per-state, i.e., πavoiding(s) = argmina∈A σ-XVE(5)[s, a], where XVE ∈ {IVE,
EVE}. These are the novelty-avoiding policies that their probability of reaching the novel
state is lower than a uniformly random policy.

We calculate the probabilities by constructing a Markov chain, induced by the coupling of the policy
under consideration π and the “true” environment model, m∗. The Markov chain’s transition kernel
is given by pπm∗(s′|s) ≜

∑
a∈A pm∗(s′|s, a)π(a|s). We can write the transition kernel as a matrix

Pπ
m∗ ∈ RS×S , such that Pπ

m∗ [i, j] = pπm∗(j|i). The (i, j) entry of the transition matrix, i.e., Pπ
m∗ [i, j]

is the probability of reaching the state j after one-step when starting from state i and following policy
π in the environment with model m∗. The (i, j) entry of the l-th power of the transition matrix,
i.e., (Pπ

m∗)l[i, j] is the probability of reaching the state j after l-steps when starting from state i and
following policy π in the environment with model m∗.

In Figure 5, we start from the bottom right cell, i.e., i = bottom right and plot the probability of
reaching the top left cell, i.e., j = top right after l-steps, and we vary l from 1 to 150. We repeat
each experiment 100 times, varying the random seed in each one.

B.3 TABLE 6

We use the minatar tasks and train VPN (Oh et al., 2017) and some variants of it for 2M steps. The
only modification to the original VPN(5) is the way value estimates are constructed:

• v̂1m̂ is VPN variant that uses the 1-MPV for value estimation.
• v̂5m̂ is VPN variant that uses the 5-MPV for value estimation.
• µ-IVE(5) is the original VPN(5) agent that uses the mean over the implicit value ensemble

with n = 5 for value estimation.

The estimated values are used for value-based planning, as discussed in (Oh et al., 2017, Eqn. (1)
& Appendix D.).

21

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

C IMPLEMENTATION DETAILS

For our experiments we used Python (Van Rossum & Drake Jr, 1995). We used JAX (Bradbury et al.,
2018; Babuschkin et al., 2020) as the core computational library for implementing Muesli (Hessel
et al., 2021) and VPN (Oh et al., 2017). We used the official TensorFlow (Abadi et al., 2016)
implementation of Dreamer (Hafner et al., 2019a). We also used Matplotlib (Hunter, 2007) for the
visualisations.

C.1 TABULAR METHODS

We initialise the rewards, transition logits and action-values by sampling from a normal distribution
with mean 0 and standard deviation 1. The ADAM (Kingma & Ba, 2014) optimiser with learning rate
5e-5 is used, and all losses converge after 10, 000 epochs of stochastic gradient descent with batch
size 128.

C.2 DREAMER (HAFNER ET AL., 2019A)

We use the Dreamer agent’s default hyperparameters, as introduced by (Hafner et al., 2019a). For the
self-inconsistency-seeking variant, i.e., µ+ σ-IVE(5), we used a scalar weighting factor β = 0.1 to
balance the mean and standard deviation across the ensemble members, tuned with grid search in
{0.05, 0.1, 0.2, 1.0, 10.0}.

C.3 MUESLI (HESSEL ET AL., 2021)

We use the Muesli agent’s hyperparameters. In particular we use the ones from the large-scale Atari
experiments by Hessel et al. (2021). Nonetheless, we set the fraction of replay data in each batch
to 0.8 (instead of the original 0.95) to shorten training time. To encourage diversity in value and
reward predictions for unvisited states we have augmented the value and reward prediction heads
of the model with untrainable randomized prior networks (Osband et al., 2018), using a prior scale
of 5.0. Note that unlike in Osband et al. (2018), we did not introduce additional heads per prediction
or modify the training procedure.

C.4 VPN (OH ET AL., 2017)

We use the MinAtar DQN-torso (Young & Tian, 2019) and an LSTM (Hochreiter & Schmidhuber,
1997) with 128 hidden units and otherwise follow the original VPN(5) hyperparameters, as introduced
by Oh et al. (2017).

22

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

D EXTENSIONS

D.1 IVE WITH THE BELLMAN OPTIMALITY OPERATOR

In Section 3, we defined the k-steps model-predicted value (k-MPV) in terms of the model-induced
Bellman evaluation operator and a value function for a policy π, and constructed the implicit value
ensemble (IVE) accordingly. In this section. we provide a brief presentation of MPVs and IVE in
terms of the model-induced Bellman optimality operator and optimal value functions.
Definition 2 (Bellman optimality operator). Given the model m∗, the one-step Bellman optimality
operator T ∗ : V → V is induced, and its application on a state-function v ∈ V, for all s ∈ S, is
given by

T ∗v(s) ≜ max
a∈A

Em∗ [R0 + γv(S1) | S0 = s.A1 = a] . (19)

The k-times repeated application of an one-step Bellman optimality operator gives rise to the k-steps
Bellman optimality operator,

(T ∗)kv ≜ T ∗ . . . T ∗

k-times
v. (20)

The Bellman optimality operator, T ∗, is a contraction mapping (Puterman, 2014), and its fixed point
is the value of the optimal policy π∗, i.e., limn→∞(T ∗)nv = vπ

∗
≜ v∗, for any state-function

v ∈ V ≜ {f : S → R}.

Model-induced Bellman optimality operator. A model m̂ induces a Bellman optimality operator
T ∗
m̂ with a fixed point v∗m̂, i.e., the value of the optimal policy under the model (a.k.a. the solution of

the model. Similar to Eqn. (20), a k-steps model-induced Bellman optimality operator is given by
(T ∗

m̂)kv = T ∗
m̂ . . . T ∗

m̂

k-times

v.

Model-predicted values. The k-steps MPV, using the model-induced Bellman optimality operator
is given by

v̂km̂ ≜ (T ∗
m̂)kv̂ (21)

Implicit value ensemble. An ensemble of k-MPV predictions can be made by varying k, giving rise
to

{v̂im̂}ni=0 ≜ {v̂, T ∗
m̂v̂, . . . , (T ∗

m̂)nv̂}
n+1 value estimates

. (22)

The IVE with the Bellman optimality operator can be used for values learned with, e.g., Q-
learning (Watkins & Dayan, 1992), or with other value-based agents, e.g., VPN (Oh et al., 2017). We
use this idea in Appendix E.

D.2 MPV WITH ACTION-VALUE FUNCTIONS

In order to be able to modulate action selection using the self-inconsistency signal, we have computed
the k-MPV conditioned on both state and action:

k-MVP(s, a) = q̂k
m̂(s, a) =

k−1∑
i=0

γiri+1
m̂ + γkv̂(skm̂), (23)

where now reward and value predictions are computed after unrolling the model using action a for
one step, and actions sampled from the policy for the remaining k − 1 steps.

23

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

E ADDITIONAL EXPERIMENTS

E.1 MEASURING SELF-INCONSISTENCY IN OOD STATES

To complement our results in Figure 4, we have also evaluated self-inconsistency by computing the
IVE as an average over 100 action sequences sampled from the policy, see Figure 12. We observed
only minor quantitative differences compared to the results presented in Figure 4 (where we were
using a single action sequence to estimate the IVE).

chaser climber coinrun fruitbot jumper

0

0.1

0.2

0.3

0.4
-IV

E
#levels

10
100 Train
500
10
100 Test
500

Figure 12: σ-IVE(5) computed using the model of the Muesli agent while evaluating on both training
and unseen test levels, for different numbers of unique levels seen during training. To estimate the
IVE, we used 100 action sequences from the policy. Bars, error-bars show mean and standard error
across 3 seeds, respectively.

E.2 HOW TO USE THE IVE(5) SIGNAL?

In the following experiments we consider the self-inconsistency signal as an optimistic bonus to
encourage better exploration during training, hence generalising better during evaluation. We test
variants of the +σ-IVE(5) signal by mixing the policy with the self-inconsistency in probability
space +σ-IVE(5)≜ (1 − β)π + β · σ-IVE(5), and by mixing the signal with the policy logits:
z + σ-IVE(5)≜ softmax(zπ + β · σ-IVE(5)). We vary the number of MPV in the ensemble for
n = 5, 10. Use further test using a different metric for measuring the disagreement across the nMPVs
that considers different weighting averages over k:

dJS = JSDw(IVE(n)) = H

(∑
k

wkv̂
k
m̂

)
−
∑
k

wkH
(
v̂km̂
)

(24)

with three weighting schemes: a decreasing weight decJS : wk = rk/(
∑

j r
j) such that the weight

decreases to 1/3 over n, an increasing weight incJS with the inverse trend, and a uniform weight
uniJS that corresponds to the uniform mixing over n wk = 1/n.

In Figure 13b we observe that learning with an optimistic bonus helps with generalisation at
evaluation time. Figure13c we observe that mixing over probability space is less sensitive to
re-scaling β, but yields higher variance. We notice a trade-off between the weighting scheme used vs.
the size of the IVE, for higher ns the best performing metric has less weight on the larger k-MPVs.
For the decreasing metric the results remain more robust, suggesting that the inconsistencies are
higher for larger ks. We used β = 0.1 for mixing in probability and β = 1 for the logit case.

E.3 ABLATION ON PESSIMISM FOR EVALUATION

We evaluate in Figure 14 how sensitive the self-inconsistency signal is to different re-scaling param-
eters β when acting pessimistically at test time z − β d-σ-IVE(5) with an increasing weight. We
trained a vanilla Muesli agent using 10/100 levels over 150M frames and evaluated with a pessimistic
bonus for the consecutive 20M frames over 3 seeds.

E.4 DREAMER VARIANTS

24

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Vanilla Muesli Muesli, prior=5 +dJS-IVE(5) +dJS-EVE(5)
decJS incJS uniJS

0 50M 100M
0

4

8

12

Av
g.

 e
pi

so
de

 re
tu

rn

Train

Number of frames

(a) Train

0 50M 100M
0

3

6

9

Av
g.

 e
pi

so
de

 re
tu

rn

Test

Number of frames

(b) Test

+d
JS
-IV

E(
10

)

+d
JS
-IV

E(
5)

z
+
d J

S-I
VE

(5
)

0

100

200

300

AU
C

climber

(c) Variations

Figure 13: Model-value inconsistency (see Section 3.2) as the Jensen-Shannon divergence of the
implicit value ensemble (see Section 3.1) for different numbers of ensemble components n, trained
across 100 levels error bars show SE over 3 seeds. (a) Mean episode return during training with
100 levels, for Muesli baselines and for an agent trained with optimistic divergence over an explicit
ensemble dJS-EVE(5) and over IVE(5), both with an increasing Jensen-Shannon disagreement. (b)
Mean episode return for evaluation without the optimistic disagreement for the same methods. (c)
Ablation study over dJS-IVE of varying length n = 5, 10 and by mixing in logit space z+ d-IVE vs.
mixing in probability space +d-IVE.

β=0.0 β= -1.0 β= -10.0 β= -100.0 β= -1000.0

0.0
0.5
1.0
1.5
2.0

M
ea

n
Ep

iso
de

 R
et

ur
n chaser

0.0

0.5

1.0

1.5
climber

0

2

4

6
coinrun

−3

−2

−1

0
fruitbot

0.0

0.5

1.0

1.5

2.0
jumper

0

2

4

6

M
ea

n
Ep

iso
de

 R
et

ur
n chaser

0

2

4

6
climber

0

2

4

6

coinrun

0

5

10

15

fruitbot

0

1

2

jumper

Figure 14: Mean episode return evaluated with pessimism bonus −dJS-IVE with increasing weights
for each procgen environment on a trained vanilla Muesli using 10 levels (top) and 100 levels (bottom).
Error bars show 95% CI.

25

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

In Section 4.2, we modified the
Dreamer (Hafner et al., 2019a) agent to
improve its exploration without having to
learn an explicit ensemble of value functions.
We modify the behavioural policy used for
collecting data, using the mean and standard
deviation of the implicit value ensemble, i.e.,
µ-IVE(5) and σ-IVE(5), respectively. We use
the original Dreamer setup otherwise.

In particular, for each time-step t, we sample
action atπ from the learned policy π and then
calculate the IVE(5), similar to Eqn. (7). Then,
we can form the utility function

U = µ-IVE(5) + β · σ-IVE(5). (25)

We use online gradient-based or sample-based
planning, a.k.a. model-predictive control (MPC,
Garcia et al., 1989) for selecting an action.

We used β = 0.1, 10 gradient steps or 10 sam-
ples from the learned policy for guiding the
search in all of our experiments, shown in Ta-
ble 2.

Table 2: Results for the Dreamer agent and IVE
variants on a modified version of the walker task
with varying degrees of reward sparsity controlled
by η, where higher η corresponds to harder explo-
ration. A “♢” indicates methods that use gradient-
based trajectory optimisation, while “♣” indicates
methods that use sample-based trajectory optimisa-
tion. We report mean and standard error of episodic
returns (rounded to the nearest tenth) over 3 runs af-
ter 1M steps. Higher-is-better and the performance
is upper bounded by 1000. The best performing
method, per-task, is in bold.

Methods η = 0.0 η = 0.2 η = 0.3 η = 0.5

Dreamer 1000±00 720±10 570±60 80±50
Dreamer♢ 1000±00 540±30 240±50 40±30
µ-IVE(5)♢ 1000±00 860±40 690±70 210±60
µ+ σ-EVE(5)♢ 1000±00 1000±00 980±10 280±50
µ+ σ-EMVE(5)♢ 1000±00 910±20 730±40 210±60
µ+ σ-IVE(5)♢ 1000±00 1000±00 1000±00 330±70
µ+ σ-IVE(5)♣ 1000±00 1000±00 1000±00 280±40

26

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

E.5 QUALITATIVE ANALYSIS OF DIFFERENT VALUE ENSEMBLES

In Figure 15, we plot the standard deviation across different types of value ensembles, as illustrated
in Figure 2.

0.0 0.5 1.0

(a) σ-IVE(1) (b) σ-IVE(2) (c) σ-IVE(3) (d) σ-IVE(10) (e) σ-IVE(20)

(f) σ-EVE(2) (g) σ-EVE(3) (h) σ-EVE(4) (i) σ-EVE(10) (j) σ-EVE(20)

(k) σ-EMVE(2) (l) σ-EMVE(3) (m) σ-EMVE(4) (n) σ-EMVE(10) (o) σ-EMVE(20)

Figure 15: Standard deviation across value ensembles. (i) Explicit value ensembles (EVE), as
illustrated in Figure 2a; (ii) explicit model (value) ensembles (EMVE), as illustrated in Figure 2b and
(iii) implicit value ensembles (IVE), as illustrated in Figure 2c. All values are normalised per-figure
in range [0, 1].

27

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

F MUESLI AND ITS IMPLICIT VALUE ENSEMBLE

In this section, we provide an exposition of how the (i) functional form and (ii) learning algorithm
of the Muesli (Hessel et al., 2021) and MuZero (Schrittwieser et al., 2020) agents contribute to the
diversification of their implicit value ensemble (IVE) members. This is to complement our analysis
in Section 3.4.

F.1 FUNCTIONAL FORM

The Muesli agent (see Figure 10, Hessel et al., 2021) is comprised of (i) an representation func-
tion ĥ(s;ω), (ii) a (latent) state-value function v̂(z;ϕ) and (iii) an action-conditioned model
m̂(·, ·|z, a; θ) ≜ (r̂(z, a; θ), p̂(z, a; θ)), represented as neural networks with parameters ω, ϕ and θ,
respectively. We omit the parametrisation and learning of the policy head π̂(·|z) since it does not
impact our analysis. In summary, the neural network functions are given by:

ĥω(s) = ĥ(s;ω) ≜ z ∈ Z (26)

v̂ϕ(z) = v̂(z;ϕ) ≜ v ∈ R (27)

r̂θ(z, a) = r̂(z, a; θ) ≜ r1 ∈ R (28)

p̂θ(z, a) = p̂(z, a; θ) ≜ z1 ∈ Z. (29)
Note the similarity with Eqn. (8-11). The main difference is that the Muesli’s transition model and
reward function, i.e., p̂θ and r̂θ, are action-conditioned. We also use the bold notation introduced
in Eqn. (7). To ease the analysis, we define the state-to-state transition function and state-to-reward
function by coupling the policy π̂ with the transition function p̂θ and reward function r̂θ, respectively,
giving rise to a transition and reward kernel i.e.,

z1 ∼ p̂π̂θ (z) ≜ p̂θ(z, π̂(·|z)) (30)

r1 ∼ r̂π̂θ (z) ≜ r̂θ(z, π̂(·|z)). (31)

We construct the implicit value ensemble (IVE) by repeatedly applying the policy π̂ and m̂θ model-
induced Bellman operator T π̂

m̂θ
on the value function v̂ϕ, i.e., constructing different k-steps model

predicted values (k-MPVs, Eqn. (5)), given by

v̂0
m̂(s) = (T π̂

m̂θ
)0v̂ϕ(ĥω(s)) = v̂ϕ(ĥω(s)) = v̂ϕ ◦ ĥω(s) (32)

v̂1
m̂(s) = (T π̂

m̂θ
)1v̂ϕ(ĥω(s)) =

(
r̂π̂θ + γv̂ϕ

)
◦ p̂π̂θ ◦ ĥω(s) (33)

v̂2
m̂(s) = (T π̂

m̂θ
)2v̂ϕ(ĥω(s)) =

(
r̂θ + γ(r̂π̂θ + γv̂ϕ) ◦ p̂π̂θ

)
◦ p̂π̂θ ◦ ĥω(s) (34)

...

v̂k
m̂(s) = (T π̂

m̂θ
)kv̂ϕ(ĥω(s)) =

k−1∑
j=1

γj−1r̂π̂θ ◦ (p̂π̂θ ◦ · · · ◦ p̂π̂θ)
j-times

+ γkv̂ϕ ◦ (p̂π̂θ ◦ · · · ◦ p̂π̂θ)
k-times

 ◦ ĥω(s)

(35)
where ◦ denotes function composition. Obviously, the functional form of the k-MPVs with different
k is different since they compose differently m̂θ and v̂ϕ. For instance, v̂0

m̂(s) uses only v̂ϕ, while
v̂1
m̂(s) and v̂k

m̂(s) for k > 1 use both m̂θ and v̂ϕ but not in the same way. Instead, for k →∞, we
obtain a purely m̂θ-based prediction (a.k.a. the fixed point of T π̂

m̂θ
).

For a stochastic policy in Eqn. (31) we sample from the policy π̂(·|z). Hence we obtain stochastic
estimates of the k-MPV in Eqn. (35), similar to Eqn. (7). Nonetheless, note that the Muesli model is
a deterministic expectation model and hence we do not have to sample from it. Empirically, we found
that the impact of using a stochastic policy on the estimation of the IVE members was negligible, see
Appendix E. We illustrate the computational graph for the k-MPV in Figure 16.

F.2 LEARNING ALGORITHM

The value and model learning algorithms of Muesli further diversify the IVE member predictions. In
our analysis, we consider two distinct cases: (i) when the model and value are trained with on-policy

28

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

s ĥω z0 m̂θ z1 m̂θ z2 · · · m̂θ zk

a0 a1 ak−1

v̂ϕ

v0 v̂ϕ

γv1 v̂ϕ

γ2v2 v̂ϕ

γkvk

r1

γr2r1

γk−1rkr1 γr2

+

++

++ + · · · +

v̂0
m̂(s)

v̂1
m̂(s)

v̂2
m̂(s)

v̂k
m̂(s)

IVE

Figure 16: The computational graph of the implicit value ensemble (IVE) members for the
Muesli (Hessel et al., 2021) agent. The action nodes {ai}k−1

i=0 are stochastic nodes from which we
sample from the (latent-)state-conditioned policy ai ∼ π̂(·|zi).

trajectories from π̂ and (ii) when off-policy trajectories from behavioural policies πβ are used. Note
that the learning algorithm of the Muesli agent uses a mix of on- and off-policy trajectories, similar
to the LASER agent (Schmitt et al., 2020).

On-policy trajectories. Provided a sequence of states, actions and rewards, collected from running
policy π̂ in the true environment m∗, i.e., (st:t+T , at:t+T , rt:t+T) ∼ m∗

π̂ , we present the targets used
for the IVE members for the first state, i.e., {vk

m̂(st)}Kk=0, where in practice K = 5 (Hessel et al.,
2021). We use the notation from Figure 16. n-step bootstrap value estimates (Sutton, 1988) are
constructed using v̂ϕ and used as value targets vtarget

t:t+T−1, where

vtarget
t+i =

n−1∑
j=1

γj−1rt+i+j + γnv̂ϕ(st+i+n) (36)

and n = 5. Alternative methods for constructing value targets, e.g., TD(λ) (Sutton & Barto, 2018)
could be used, too. The “prediction-target” pairs for the different IVE members for state st and
actions at:t+T are then given by5

v̂0
m̂(st) = v0 ←− vtarget

t

v̂1
m̂(st) = r1 + γv1 ←− rt+1 + γvtarget

t+1

v̂k
m̂(st) =

∑k−1
i=1 γi−1rj + γkvk ←−

∑k−1
i=1 γi−1rt+j + γkvtarget

t+k ,

(37)

where the←− indicates that an objective function (e.g., L2 loss) is minimised that makes the two
sides of the arrow approximately equal. Importantly, Muesli and MuZero ground reward and value
predictions independently, or in other words, the k-MPV is trained by minimising the following loss:

L ≜ (r1 − rt+1)
2 + · · ·+ (rk−1 − rt+k−1)

2 + (vk − vtarget
t+k)2 =

k−1∑
i=1

(ri − rt+i)
2 + (vk − vtarget

t+k)2.

(38)
5We assume that T − 1 > K + n.

29

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Eqn. (37) highlight that while all the IVE members are trained to approximate the value of the policy
π̂, i.e., v̂0

m̂ ≈ v̂1
m̂ ≈ · · · ≈ v̂k

m̂ ≈ vπ̂, each one is regressed against a different target/estimate of
the value, further diversifying the ensemble.

Off-policy trajectories. Provided a sequence of states, actions and rewards, collected from a
behavioural policy πβ interacting with the true environment m∗, i.e., (st:t+T , at:t+T , rt:t+T) ∼ m∗

πβ
,

we construct off-policy corrected n-step bootstrap value target vtarget
t:t+T−1 with the Retrace (Munos

et al., 2016) algorithm, using v̂ϕ.

Next, we define the multi-step action-conditioned model-based reward and value estimates, i.e.,

r̂m̂(st, at, . . . , at+k−1) ≜ r̂m̂(st, at:t+k−1) and v̂m̂(st, at, . . . , at+k−1) ≜ v̂m̂(st, at:t+k−1),
(39)

where for on-policy actions, i.e., at:t+k−1 ∼ π̂, we note that v̂m̂(st, at:t+k−1) is the k-MPV of
Eqn. (35). As illustrated in Figure 16, the multi-step action-conditioned reward and value estimates
in Eqn. (39) are computed by setting the value of the nodes a0:k−1 to the replayed action sequence
at:t+k−1 from the behavioural policy πβ . The learning of the model and value function proceeds
as in the on-policy case, obtaining the following “prediction-target” pairs, analogous to Eqn. (37)

v̂m̂(st) ←− vtarget
t

r̂m̂(st, at) + γv̂m̂(st, at) ←− rt+1 + γvtarget
t+1∑k−1

i=1 γi−1r̂m̂(st, at:t+j−1) + γkv̂m̂(st, at:t+k−1) ←−
∑k−1

i=1 γi−1rt+j + γkvtarget
t+k ,

(40)

Eqn. (40) suggests that in the off-policy case, k-MPVs are not trained directly since the sampled
sequence of actions that conditions the reward and value predictions does not (necessarily) come
from π̂. Nonetheless, the multi-step action-conditioned reward and value predictors are the building
blocks for constructing the k-MPVs and hence we conjecture that the diversity induced by training
these with different targets will lead to diversity in the IVE members too.

Overall, the Muesli agent is trained with both on- and off-policy trajectories. In the case of on-policy
trajectories, we showed in Eqn. (37) that that different targets are used for training each IVE member.
When off-policy trajectories are used, instead of k-MPVs, model-based multi-step action-conditioned
reward and value predictors are trained to regress different reward and value targets for different k.
These predictors are used for constructing the IVE members at acting time and hence this diversity at
training time can impact the diversity of the IVE members too.

30

	Introduction
	Background
	Model-Based Reinforcement Learning
	Epistemic-Uncertainty-Aware Agents

	Your Model-Based Agent is Secretly an Ensemble of Values
	Implicit Value Ensemble
	Model-Value Inconsistency
	Practical Implementation
	Diversity in the Implicit Value Ensemble

	Experiments
	Detecting Out-Of-Distribution Regimes with Self-Inconsistency
	Optimism and Pessimism in the Face of Self-Inconsistency
	Planning with Averaged Model-Predicted Values

	Discussion
	Related Work
	Experimental Details
	Environments
	Tabular Environment
	Procgen procgen19
	MinAtar young2019minatar
	DeepMind Continuous Control tunyasuvunakool2020dmcontrol

	Experiments
	Figures 1 and 11
	Figure 3
	Table 1
	Figure 4
	Figure 5

	Table 6

	Implementation Details
	Tabular Methods
	Dreamer hafner2019dream
	Muesli hessel2021muesli
	VPN oh2017value

	Extensions
	IVE with the Bellman Optimality Operator
	MPV with Action-Value Functions

	Additional Experiments
	Measuring Self-Inconsistency in OOD States
	How to Use the IVE(5) Signal?
	Ablation on Pessimism for Evaluation
	Dreamer Variants
	Qualitative Analysis of Different Value Ensembles

	Muesli and its Implicit Value Ensemble
	Functional Form
	Learning Algorithm

