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ABSTRACT

We formalize and analyze the trade-off between backdoor-based watermarks and
adversarial defenses, framing it as an interactive protocol between a verifier and a
prover. While previous works have primarily focused on this trade-off, our anal-
ysis extends it by identifying transferable attacks as a third, counterintuitive but
necessary option. Our main result shows that for all learning tasks, at least one of
the three exists: a watermark, an adversarial defense, or a transferable attack. By
transferable attack, we refer to an efficient algorithm that generates queries indistin-
guishable from the data distribution and capable of fooling all efficient defenders.
Using cryptographic techniques, specifically fully homomorphic encryption, we
construct a transferable attack and prove its necessity in this trade-off. Furthermore,
we show that any task that satisfies our notion of a transferable attack implies a
cryptographic primitive, thus requiring the underlying task to be computationally
complex. Finally, we show that tasks of bounded VC-dimension allow adversarial
defenses against all attackers, while a subclass allows watermarks secure against
fast adversaries.

1 INTRODUCTION

An organization has invested significant resources into training a classifier f . Before releasing f as
open-source, they want to ensure that any unauthorized use can be detected in a black-box manner. In
other words, they want to embed a watermark into f (Adi et al., 2018; Zhang et al., 2018). Alice, an
employee, is assigned to this project.

Meanwhile, Bob, a member of an AI security team, has a different objective: he wants to make f
adversarially robust, meaning that it should be difficult to find queries that appear natural yet cause f
to misclassify (Madry et al., 2018; Raghunathan et al., 2018). However, both Alice and Bob encounter
fundamental challenges. After many attempts, Alice suspects that creating a black-box watermark
in f that cannot be removed might be inherently impossible (Goldwasser et al., 2024). Similarly,
Bob struggles to produce a defense that protects against all attacks—his best efforts result in an
ever-growing, “ugly” defense (Carlini, 2024).

One day, Alice and Bob discuss their respective struggles and realize that their goals are intimately
connected. Alice’s approach to watermarking involves planting a backdoor in f , creating fA, so that
she can later craft queries with a hidden trigger that activates the backdoor, causing fA to misclassify
while remaining indistinguishable from normal queries (Adi et al., 2018; Merrer et al., 2017). If
someone uses fA, she can detect it by sending such tailored queries and analyzing the responses.

∗Equal contribution.
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Alice verifies
if f was stolen

Bob proves
innocence
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y

learns f

(a)

A Watermark is an efficient algo-
rithm that computes a low-error clas-
sifier f and a set of queries x such
that (fast) defenders are unable to
find low-error answers y nor distin-
guish x from the data distribution.

Alice verifies
robustness

Bob proves
defense

x

f

b

learns f

(b)

An Adversarial Defense is an effi-
cient algorithm that computes a low-
error classifier f and a detection bit
b, such that (fast) adversaries are un-
able to find queries x, which look
indistinguishable from the data dis-
tribution and where f is incorrect.

Alice verifies
transferability

Bob proves
defendability

x

y

learns f

(c)

A Transferable Attack is an effi-
cient algorithm that computes queries
x that look indistinguishable from the
data distribution, and that fool all ef-
ficient defenders.

Figure 1: Schematic overview of the interaction structure, along with short, informal versions of
our definitions of (a) Watermark (Definition 3), (b) Adversarial Defense (Definition 4), and (c)
Transferable Attack (Definition 5), with (c) tied to cryptography (see Section 5).

Bob, on the other hand, is trying to make such an attack impossible. His strategy is to take f and
smooth its outputs to obtain fB , aiming for robustness (Cohen et al., 2019). However, he realizes
that this process also removes some of Alice’s watermarking techniques Goldwasser et al. (2022;
2024). Conversely, Alice notices that if a watermark is difficult to remove, then certain models must
be inherently difficult to make robust (Weng et al., 2020; Fowl et al., 2021).

At this point, Alice and Bob believe they have mapped the entire landscape: if one goal is impossible,
the other must be achievable. However, this assumption is incomplete. There exists a third, counterin-
tuitive but necessary alternative: some learning tasks allow neither a secure watermark nor a robust
defense, but instead support a completely different phenomenon—transferable attacks.

1.1 CONTRIBUTIONS

Motivated by empirical findings that adversarial defenses and backdoor-based watermarks are at a
trade-off, we initiate a formal study of this fundamental interplay. Our main result shows that:

For all learning tasks, at least one of the three must exist:
A Watermark, an Adversarial Defense, or a Transferable Attack.

To prove this, we formalize and extend existing definitions of watermarks and adversarial defenses,
and frame Alice and Bob’s dynamic as an interactive protocol. This protocol always has at least one
winner—either Alice can embed an unremovable watermark, Bob can construct a strong adversarial
defense, or a third option emerges: a transferable attack.

To understand transferable attacks, consider the following game. Alice interacts with a player who
claims to have a secure model for an instance of a learning task D, h, where D is the data distribution
and h is the ground truth. Alice sends queries and observes the responses. She wins if she can
generate queries that (i) cause significant errors and (ii) remain indistinguishable from samples drawn
from D. Whether she succeeds depends on the computational and data resources available to her and
the other player. If Alice can defeat any equally-resourced player, we call her queries a Transferable
Attack. Intuitively, the more challenging a query becomes, the easier it should be to detect—but
surprisingly, we show that transferable attacks do exist. Specifically, we prove:

• The existence of a Transferable Attack as defined above. Our construction uses cryp-
tographic techniques, particularly Fully Homomorphic Encryption (FHE) (Gentry, 2009).
This establishes that Transferable Attacks form the third fundamental option in the trade-off.
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• That any learning task supporting a Transferable Attack must be computationally complex.
More precisely, Transferable Attacks imply the existence of a cryptographic primitive.

Finally, we give examples of learning task classes that provably support Watermarks and Adversarial
Defenses thereby justifying our framework. Concretely: (1) We show that learning tasks with
bounded Vapnik–Chervonenkis (VC) dimension allow Adversarial Defenses against all (even
computationally unbounded) attackers, ruling out Transferable Attacks in these settings. (2) We
construct a Watermark for a class of learning tasks with bounded VC-dimension. Interestingly, in
this case, both a Watermark and an Adversarial Defense coexist.

Our findings reveal an inherent structure of the interplay between Watermarks, Adversarial Defenses,
and Transferable Attacks. Rather than being independent concepts, these three phenomena span the
entire space of possibilities—every learning task must allow for at least one of them.

2 MODELING

A key aspect of our formalization involves modeling Alice and Bob in a manner that takes computa-
tional resources into account. To achieve this we model the parties as families of circuits indexed by
a size parameter n. This is standard in computational complexity theory. However, circuits are less
standard, as compared to more loosely specified algorithms, in computational learning theory, but we
require this additional level of granularity to achieve our results.

2.1 LEARNING

Definition 1 (Learning Task (Informal)). Let {0, 1}n be an input space and let n ∈ N be a parameter.
A learning task L is defined as a sequence {Ln}n∈N, where each Ln is a fixed distribution over pairs
(Dn, hn). Concretely, for each n, we draw (Dn, hn) ∼ Ln, where Dn is a distribution with domain
{0, 1}n, and hn : {0, 1}n → {0, 1} is a ground truth labeling function.

To every model f : {0, 1}n → {0, 1}, we associate err(f) := Ex∼Dn [f(x) ̸= hn(x)]. And for
q ∈ N,x ∈ ({0, 1}n)q, and predictions y ∈ {0, 1}q , we define the empirical error to be: err(x,y) :=
1
q

∑
i∈[q] 1{hn(xi) ̸=yi}.

Definition 2 (Computationally Bounded Learnability (Informal)). Let ϵ, δ : N→ (0, 1) be functions
that specify the allowable error and confidence levels for each input size n, respectively. A learning
task L = {Ln}n∈N is said to be learnable to error ϵ(n) with confidence 1 − δ(n) and circuit
complexity S(n) if there exists a family of circuits {Cn}n∈N, where each circuit Cn has size at most
S(n), such that for every sufficiently large n, the following condition holds:

P(Dn,hn)∼Ln

[
errDn,hn

(fn) ≤ ϵ(n)
]
≥ 1− δ(n),

where fn : {0, 1}n → {0, 1} is the hypothesis computed by the circuit Cn when given sample access
to (Dn, hn), i.e., fn ← Cn. In other words, with probability at least 1 − δ(n) over the choice of
(Dn, hn) drawn from Ln, the circuit Cn successfully computes a function fn that achieves an error
rate of at most ϵ(n).

Definition 2 is very similar to the standard definition of efficient PAC learnability Kearns & Vazirani
(1994). The main difference is that instead of defining ‘efficient’ as polynomial in n (and 1/ϵ, 1/δ)
we define it as implementable by a circuit of size given by a fixed function S(n). The reason for this
increased generality is that we need finer control over sizes than, e.g., polynomial or exponential
(see Theorem 1 where the separation between two circuit families is S(n) versus

√
S(n)). A second

difference is that compared to the standard definition we bound the size of circuits Arora & Barak
(2009), not the running time. Assuming a processing unit without parallel execution the two notions
can be thought equivalent. Formal definitions and additional details can be found in Appendix C. In
the rest of the main part of the paper, we will often omit the parameter n when it is clear context.

Connections to Existing Models of Learning Definition 1 represents a learner’s prior knowledge
as a distribution over pairs (Dn, hn), where Dn is a distribution on the domain {0, 1}n and hn :
{0, 1}n → {0, 1} is the ground truth. This models a learning task as a distribution over both input
distributions and hypotheses, assuming a realizable scenario with a fixed ground truth.
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Our learning definition (Definition 2) is weaker than some standard notions yet stronger than other
learnability concepts. Instead of requiring learnability for every domain distribution, it allows
adaptation to a fixed distribution over (Dn, hn) pairs, effectively incorporating a prior on these pairs.
This is similar to the PAC-Bayes framework McAllester (1999), which uses a prior over hypotheses
to achieve strong generalization bounds where standard PAC may fail. Extensions that include priors
over distributions and sample sizes Rothfuss et al. (2020); Amit & Meir (2018) address meta- and
transfer learning.

Unlike distribution-specific or restricted family settings Kalai et al. (2008); Feldman et al. (2006), our
definition does not limit the underlying support. While standard PAC learning requires generalization
across all domain distributions, it often fails to explain the performance of complex models like
DNNs, as their rich hypothesis classes make standard PAC bounds ineffective Zhang et al. (2021);
Nagarajan & Kolter (2019). Our definition aims to bridge this gap by providing a formal framework
that aligns with contemporary practical learning scenarios.

2.2 INTERACTION

Alice and Bob will engage in interaction. To measure their computational resources, we require a
specification of how the model fn is transmitted between them. We assume that before the interaction
starts they agree on a family of function classes F = {Fn}n as well as an encoding of them into
messages of some length. This modeling implies that fn are sent white-box. One example of such a
family is the family of neural networks of a given architecture. See Appendix C for details.

2.3 COMPUTATIONAL INDISTINGUISHABILITY

A crucial property of interest will be the indistinguishability of distributions. For a pair of distributions
D0,D1 consider the following game between a sender and the distinguisher C: (1) The sender
samples a bit b ∼ U({0, 1}) and then draws a random sample x ∼ Db, (2) C receives x and outputs
b̂ := C(x) ∈ {0, 1}. C wins if b̂ = b. We define the advantage of C for distinguishing D0 from D1

as
Pb∼U({0,1}),x∼Db [C(x) = b] =

1

2
+ γ.

For a pair of families of distributions D0 = {D0
n}n,D1 = {D1

n}n, a function γ : N→ (0, 1), and a
size bound S : N→ N we say D0,D1 are γ-indistinguishable for circuits of size S if for every n,
every circuit C (also known as the distinguisher) of size S(n) the advantage of C for distinguishing
D0

n from D1
n is at most γ(n).

3 WATERMARKS, ADVERSARIAL DEFENSES AND TRANSFERABLE ATTACKS

We present interactive protocols between a verifier and a prover, each specifically designed to
address tasks such as Watermarking, Adversarial Defense, and Transferable Attacks. In our proto-
cols, Alice (A, verifier) and Bob (B, prover) engage in interactive communication, with distinct
roles depending on the specific task. Each protocol is defined with respect to a learning task L,
an error parameter ε ∈

(
0, 12

)
, and circuit size bounds SA and SB, which are functions of n. A

scheme is successful if the conditions of the protocols are satisfied. We denote the set of such
circuits by SCHEME(L, ε, SA(n), SB(n)), where SCHEME refers to WATERMARK, DEFENSE, or
TRANSFATTACK. For the formal version of the definitions and the protocols, please refer to Ap-
pendix D.
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Definition 3 (Watermark, informal).
A family of circuits {AWATERMARK

n }n of sizes {SA(n)}n, im-
plements a backdoor-based watermarking scheme for the
learning task L with error parameter ϵ > 0 if, for ev-
ery sufficiently large n, an interactive protocol in which
first (Dn, hn) ∼ Ln and then AWATERMARK

n computes a
classifier f : {0, 1}n → {0, 1} and a sequence of queries
x ∈ ({0, 1}n)q, and a prover Bn outputs y = Bn(f,x) ∈
{0, 1}q , satisfies the following properties:

Alice
(size SA(n))

Bob
(size SB(n))

x

f

y

learns f

Figure 2: Schematic overview of
the interaction between Alice and
Bob in Watermark (Definition 3).

1. Correctness: f has low error, i.e., err(f) ≤ ϵ.
2. Uniqueness: There exists a prover Bn of size
SA(n), which provides low-error answers, such
that err(x,y) ≤ 2ϵ.

3. Unremovability: For every prover Bn of size SB(n), it holds that err(x,y) > 2ϵ.
4. Undetectability: For every prover Bn of size SB(n), the advantage of Bn in distinguishing

the queries x generated by AWATERMARK
n from random queries sampled from Dq

n is small.

Note that, due to uniqueness, we require that any Bn (Bob), who did not use f and trained a model
fScratch using a specified procedure, must be accepted as a distinct model. This requirement is essential,
as it mirrors real-world scenarios where independent models could have been trained if given enough
resources.

Definition 4 (Adversarial Defense, informal).
A family of circuits{BDEFENSE

n }n of sizes {SB(n)}n, imple-
ments an adversarial defense for the learning task L with
error parameter ϵ > 0, if for every sufficiently large n, an
interactive protocol in which first (Dn, hn) ∼ Ln and then
BDEFENSE

n computes a classifier f : {0, 1}n → {0, 1}, while
An replies with x = An(f), where x ∈ {0, 1}nq, and
BDEFENSE

n outputs b = BDEFENSE
n (f,x) ∈ {0, 1}, satisfies the

following properties: Alice
(size SA(n))

Bob
(size SB(n))

x

f

b

learns f

Figure 3: Schematic overview of
the interaction between Alice and
Bob in Adversarial Defense (Defi-
nition 4).

1. Correctness: f has low error, i.e., err(f) ≤ ϵ.
2. Completeness: When x ∼ Dq

n, then b = 0.
3. Soundness: For every An of size SA(n),

we have err(x, f(x)) ≤ 7ϵ or b = 1.

The key requirement for a successful defense is the ability to detect when it is being tested. To bypass
the defense, an An (Alice) must provide samples that are both adversarial, causing the classifier to
make mistakes, and indistinguishable from samples drawn from the data distribution Dn.

Definition 5 (Transferable Attack, informal).
A family of circuits {ATRANSFATTACK

n }n of sizes {SA(n)}n,
implements a transferable attack for the learning task L
with error parameter ϵ > 0, if for every sufficiently large
n, an interactive protocol in which first (Dn, hn) ∼ Ln and
then ATRANSFATTACK

n computes x ∈ {0, 1}nq and Bn outputs
y = Bn(x) ∈ {0, 1}q satisfies the following properties:

Alice
(size SA(n))

Bob
(size SB(n))

x

y

learns f

Figure 4: Schematic overview of
the interaction between Alice and
Bob in Adversarial Defense (Defi-
nition 5).

1. Correctness: Size SB(n) is sufficient to learn a
classifier of low-error, err(f) ≤ ϵ.

2. Transferability: For every prover Bn of size
SA(n), we have err(x,y) > 2ϵ.

3. Undetectability: For every prover Bn of size
SB(n), the advantage of Bn in distinguishing
the queries x generated by ATRANSFATTACK

n from
random queries sampled from Dq

n is small.
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4 MAIN RESULT

We are ready to state an informal version of our main theorem. Please refer to Theorem 5 for the
details and full proof. The key idea is to define a zero-sum game between An (Alice) and Bn (Bob),
for every n, where the actions of each player are all possible circuits that can be realized with size
SA(n) and SB(n). Here, zero-sum games are not a modeling choice but a proof strategy, as they
allow us to analyze the complementary nature of attacks on watermarks and adversarial defenses
with clean mathematical guarantees. Notably, this game is finite, but there are exponentially many
such actions for each player. We rely on some key properties of such large zero-sum games (Lipton
& Young, 1994b) to argue about our main result. The formal statement and proof is deferred to
Appendix E.

Theorem 1 (Main Theorem, informal). For every ϵ ∈
(
0, 12

)
, S : N → N and learning task L

learnable to error ϵ with high confidence with circuit complexity S(n), at least one of these three
exists1:

WATERMARK

(
L, ϵ, S(n), o

( √
S(n)

log(S(n))

))
,

DEFENSE

(
L, ϵ, o

( √
S(n)

log(S(n))

)
, O(S(n))

)
,

TRANSFATTACK
(
L, ϵ, S(n), S(n)

)
.

Proof (Sketch). The intuition of the proof relies on the complementary nature of Definitions 3 and 4.
Specifically, every attempt to remove a fixed Watermark can be transformed to a potential Adversarial
Defense, and vice versa. We define a zero-sum game G between circuits for watermarking An and
circuits attempting to remove a watermark Bn. The set of (pure) strategies of each player are all
possible circuits that can be realized with size SA(n) and SB(n), and the payoff is determined by
the probability that the errors and rejections meet specific requirements. It is well known that this
two-player zero-sum game admits a Nash equilibrium (NE) and the value of the game is unique
v. Neumann (1928).

Let {ANASH
n }n and {BNASH

n }n be the NE strategies of Alice and Bob respectively. For each n ∈ N, a
careful analysis shows that depending on the value of the game, we have a Watermark, an Adversarial
Defense, or a Transferable Attack. In the first case, where the expected payoff at the Nash equilibrium
is greater than a threshold, we show there is an Adversarial Defense. As an illustration, consider
some n ∈ N, for which we define BDEFENSE

n as follows. BDEFENSE
n first learns a low-error classifier

f , then sends f to the party that is attacking the Defense, then receives queries x, and simulates
(y, b) = BNASH

n (f,x). The bit b = 1 if BNASH
n thinks it is attacked. Finally, BDEFENSE

n replies with
b′ = 1 if b = 1, and if b = 0 it replies with b′ = 1 if the fraction of queries on which f(x) and y
differ is high. Careful analysis shows BDEFENSE

n is an Adversarial Defense.

In the second case, where the expected payoff at the Nash equilibrium is below the threshold, we
have either a Watermark or a Transferable Attack. The reason that there are two cases is due to the
details of the definition of the payoffs. The full proof can be found in Appendix E.

5 TRANSFERABLE ATTACKS AND CRYPTOGRAPHY

In this section, we show that tasks with Transferable Attacks exist. To construct such examples, we
use cryptographic tools. But importantly, the fact that we use cryptography is not coincidental. As a
second result of this section, we show that every learning task with a Transferable Attack implies a
certain cryptographic primitive. One can interpret this as showing that Transferable Attacks exist
only for complex learning tasks, in the sense of computational complexity theory.

1We remark that formally the existence does not hold for all sufficiently large n but only with some
‘frequency’. See Theorem 5 for a formal statement.
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hw

hA

≈ ϵ
0. Learning Task Lcrypto samples a distributionDw = 1

2D
w
CLEAR +

1
2D

w
ENC.

1. x ∼ U({0, 1}n), b ∼ Ber(1/2), where U({0, 1}n) is uniform on the cir-
cle.

2. If b = 0, return (x, hw(x)).
3. Else, return (FHE.ENC(x), FHE.ENC(hw(x))).

Alice
(size SA ≈ 1/ϵ)

Bob
(size SB ≈ 1/ϵ2)

learns hA learns hB

x

y

Figure 5: The left part of the figure represents a Lines on Circle Learning Task L◦ with a ground truth
function denoted by hw. On the right, we define a cryptography-augmented learning task derived
from L◦. In its distribution, a “clear” or an “encrypted” sample is observed with equal probability.
Given their respective times, both A and B are able to learn a low-error classifier hA, hB respectively,
by learning only on the clear samples. A is able to compute a Transferable Attack by computing an
encryption of a point close to the decision boundary of her classifier hA.

5.1 A CRYPTOGRAPHY-BASED TASK WITH A TRANSFERABLE ATTACK

Next, we give an example of a cryptography-based learning task with a Transferable Attack. The
following is an informal statement of the formal version (Theorem 7) given in Appendix G.

Theorem 2 (Transferable Attack for a Cryptography-based Learning Task, informal). There exists a
learning task Lcrypto and A such that for all sufficiently small ϵ

A ∈ TRANSFATTACK

(
Lcrypto, ϵ, SA ≈

1

ϵ
, SB = Ω

(
1

ϵ2

))
.

Moreover, Lcrypto is such that for every ϵ, circuit size of approximately 1
ϵ (and O

(
1
ϵ

)
samples) is

enough, and Ω
(
1
ϵ

)
samples (and in particular circuit size) is necessary to learn a classifier of error

ϵ.

Notably, the parameters are set so that A (the party computing x) has a smaller circuit size than
B (the party computing y), specifically ≈ 1/ϵ compared to Ω(1/ϵ2). Furthermore, because of the
cryptography tools used, this is a setting where a single input maps to multiple outputs, which deviates
away from the setting of classification learning tasks considered in Theorem 1.

Proof (Sketch). We start with a definition of a learning task that will be later augmented with a
cryptographic tool to produce Lcrypto.

Lines on Circle Learning Task L◦ (Figure 5). We associate the input space {0, 1}n with vertices
of a 2n regular polygon inscribed in {x ∈ R2 | ∥x∥2 = 1}. Let H := {hw | w ∈ R2, ∥w∥2 = 1},
where hw(x) := sgn(⟨w, x⟩). Let L◦ be a distribution corresponding to the following process: sample
hw ∼ U(H), return (U({0, 1}n), hw). Additionally, let Bw(α) := {x ∈ {0, 1}n | |∡(x,w)| ≤ α}
denote the set of points within an angular distance up to α to w.

Fully Homomorphic Encryption (FHE) (Appendix F). FHE (Gentry, 2009) allows for computa-
tion on encrypted data without decrypting it. An FHE scheme allows to encrypt x via an efficient
procedure ex = FHE.ENC(x), so that later, for any algorithm C, it is possible to run C on x ho-
momorphically. More concretely, it is possible to produce an encryption of the result of running C
on x, i.e., eC,x := FHE.EVAL(C, ex). Finally, there is a procedure FHE.DEC that, when given a
secret key sk, can decrypt eC,x, i.e., y := FHE.DEC(sk, eC,x), where y is the result of running C on
x. Crucially, encryptions of any two messages are indistinguishable for all efficient adversaries.

7



Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Alice

B
o
b

Bob

A
lic
e

Alice

B
o
b

Figure 6: Overview of the taxonomy of learning tasks, illustrating the presence of Watermarks,
Adversarial Defenses, and Transferable Attacks for learning tasks of bounded VC dimension. The
axes represent the size bound for the parties in the corresponding schemes. The blue regions depict
positive results, the red negative, and the gray regimes of parameters which are not of interest. See
Lemma 3 and 4 for details about blue regions. The curved line represents a potential application of
Theorem 1, which says that at least one of the three points should be blue.

Cryptography-based Learning Task Lcrypto (Figure 5). Lcrypto is derived from Lines on Circle
Learning Task L◦. Lcrypto corresponds to the following process: w ∼ U({w ∈ R2 | ∥w∥2 = 1}),
return the distributionDw, which is an equal mixture of two partsDw = 1

2D
w
CLEAR +

1
2D

w
ENC. The first

part, i.e., Dw
CLEAR, is equal to x ∼ U({0, 1}n) with the correct label y = hw(x). The second part, i.e.,

Dw
ENC, is equal to x′ ∼ U({0, 1}n), y′ = hw(x

′), (x, y) = (FHE.ENC(x′), FHE.ENC(y′)),2 which
can be thought of as Dw

CLEAR under an encryption. See Figure 5 for a visual representation. Note that
we omitted the size parameter n for simplicity.

Transferable Attack (Figure 5). Consider the following attack strategy A. First, A collects
O(1/ϵ) samples from the distribution Dw

CLEAR and learns a classifier hAw′ ∈ H that is consistent with
these samples. Since the VC-dimension ofH is 2, the hypothesis hAw′ has error at most ϵ with high
probability.3 Next, A samples a point xBND uniformly at random from a region close to the decision
boundary of hAw′ , i.e., xBND ∼ U(Bw′(ϵ)). Finally, with equal probability, A sets as an attack x either
FHE.ENC(xBND) or a uniformly random point Dw

CLEAR = U({0, 1}n). We claim4 that x satisfies the
properties of a Transferable Attack.

Since hAw′ has a low error with high probability, xBND is a uniformly random point from an arc
containing the boundary of hw (see Figure 5). The circuit size of B is upper-bounded by Ω(1/ϵ2),
meaning it can only learn a classifier with error ⪆ 10ϵ2 (see Lemma 1 for details). B’s can only
learn (Lemma 1) a classifier of error, ⪆ 10ϵ2. Taking these two facts together, we expect B to
misclassify x′ with probability ≈ 1

2 ·
10ϵ2

ϵ = 5ϵ > 2ϵ, where the factor 1
2 takes into account that we

send an encrypted sample only half of the time. This implies transferability. Note that x is encrypted
with the same probability as in the original distribution because we send FHE.ENC(xBND) and a
uniformly random x ∼ Dw

CLEAR = U({0, 1}n) with equal probability. Crucially, FHE.ENC(xBND)
is indistinguishable, for efficient adversaries, from FHE.ENC(x) for any other x ∈ {0, 1}n. This
follows from the security of the FHE scheme. Consequently, undetectability holds.
Next, we show that a Transferable Attack for any task implies a cryptographic primitive.

5.2 TASKS WITH TRANSFERABLE ATTACKS IMPLY CRYPTOGRAPHY

EFID Pairs. In cryptography, an EFID pair (Goldreich, 1990) is a pair of ensembles of distributions
D0,D1, that are Efficiently samplable, statistically Far, and computationally Indistinguishable. By

2Note that because FHE encryption is probabilistic there are many valid answers for a given x.
3A can also evaluate hA

w′ homomorphically (i.e., run FHE.EVAL) on FHE.ENC(x) to obtain FHE.ENC(y)
of error ϵ on Dw

ENC also. This means that A is able to learn a low-error classifier on Dw.
4In this proof sketch, we set q = 1, i.e., A sends only one x to B. This is not true for the formal scheme.
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a seminal result (Goldreich, 1990), we know that the existence of EFID pairs is equivalent to the
existence of Pseudorandom Generators (PRG), which can be used for tasks including encryption
and key generation (Goldreich, 1990), which makes EFID pairs a useful primitive. We consider a
slight modification of the standard definition of EFID pairs, where instead of defining security to hold
against polynomial time adversaries we do it for a fixed size bound function. More concretely, for two
size bounds S, S′ : N→ N we call a pair of ensembles of distributions (D0,D1) an (S, S′)-EFID
pair if for every n (i) D0

n,D1
n are samplable by circuits of size S(n), (ii) D0

n,D1
n are statistically far,

(iii) D0
n,D1

n are indistinguishable for circuits of size S′(n).

Tasks with Transferable Attacks imply EFID Pairs. The second result of this section shows that
any task with a Transferable Attack implies the existence of a type of EFID pair. This guarantees
that any learning task with a Transferable Attack has to be computationally complex. The proof is
deferred to Appendix H.

Theorem 3 (Tasks with Transferable Attacks imply EFID pairs, informal). For every ϵ ∈
(0, 1), SA, SB : N → N, SA ≤ SB, every learning task L learnable to error ϵ with high confi-
dence and circuit complexity SA if there exists TRANSATTACK(L, ϵ, SA, SB) then there exists an
(SA, SB)-EFID pair.

We note that it is unclear if the existence of EFID-pairs guaranteed by Theorem 3 implies PRGs
because the sampling of D0,D1 requires oracle access to L. Therefore, the standard construction of
PRGs from EFID pairs does not automatically transfer.

6 TASKS WITH WATERMARKS AND ADVERSARIAL DEFENSES

As the final pair of results we give examples of tasks with Watermarks and Adversarial Defenses.
In the first example, we show that hypothesis classes of polynomially bounded VC-dimension have
polynomial-sized Adversarial Defenses against all attackers. The second example is a learning task of
polynomially bounded VC-dimension that has a Watermark, which is secure against fast adversaries.
These lemmas illustrate why the upper bounds on the sizes of A and B are crucial parameters. See
also Figure 6 for a visual representation of these results. Lemmas are formally stated and proven in
the Appendix I and Appendix J.

7 BEYOND CLASSIFICATION

Inspired by Theorem 2, we conjecture a possibility of generalizing our results to generative learning
tasks. Instead of a ground truth function, one could consider a ground truth quality oracle Q, which
measures the quality of every input and output pair. This model introduces new phenomena not
present in the case of classification. For example, the task of generation, i.e., producing a high-quality
output y on input x, is decoupled from the task of verification, i.e., evaluating the quality of y as
output for x. By decoupled, we mean that there is no clear formal reduction from one task to the
other. Conversely, for classification, where the space of possible outputs is small, the two tasks are
equivalent. Without going into details, this decoupling is the reason why the proof of Theorem 1 does
not automatically transfer to the generative case.

This decoupling introduces new complexities, but it also suggests that considering new definitions
may be beneficial. For example, because generation and verification are equivalent for classification
tasks, we allowed neither A nor B access to h, as it would trivialize the definitions. However, a
modification of the Definition 8 (Watermark), where access to Q is given to B could be investigated
in the generative case. Interestingly, such a setting was considered in (Zhang et al., 2023), where
access to Q was crucial for mounting a provable attack on “all” strong watermarks. As we alluded to
earlier, Theorem 2 can be seen as an example of a task, where generation is easy but verification is
hard – the opposite to what Zhang et al. (2023) posits. We hope that careful formalizations of the
interaction and capabilities of all parties might give insights into not only the schemes considered
in this work, but also problems like weak-to-strong generalization (Burns et al., 2024) or scalable
oversight (Brown-Cohen et al., 2023).
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IMPACT STATEMENT

In contrast to years of adversarial robustness research (Carlini, 2024), we conjecture that for learning
tasks encountered in safety-critical regimes, an Adversarial Defense will exist in the future. Three
pieces of evidence support this contrarian belief. (i) Theorem 1, (ii) in the security-critical scenarios
for Watermarks, the security should hold even against strong defenders. Formally this suggests
SB should approach SA ensuring that watermark verification remains effective despite adversarial
attempts to remove it. (iii) Transferable Attacks imply cryptographic primitives (Theorem 8), which
suggests that the existence of highly transferable adversarial examples may be constrained by practical
cryptographic limitations. While our work advances the theoretical understanding of the trade-off
between adversarial robustness and backdoor-based watermarks, it also raises fundamental questions
about the limits of these techniques. How much robustness can be achieved while maintaining
verifiability? Conversely, to what extent can backdoor-based watermarks remain effective without
introducing exploitable vulnerabilities? Addressing these questions will be crucial for ensuring the
security and reliability of machine learning models in high-stakes applications.
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A RELATED WORK

This paper lies at the intersection of computational learning theory, interactive proof systems, and
cryptography, while also drawing from empirical studies on adversarial robustness and backdoor-
based watermarks. We review both theoretical and empirical advances that closely align with our
research.

A.1 BACKDOOR ATTACKS AND ADVERSARIAL ROBUSTNESS

Backdoor attacks and adversarial robustness are closely related: the former embeds hidden behaviors
triggered by subtle input changes, while the latter aims to ensure prediction stability against worst-
case perturbations. Adversarial robustness research includes techniques like adversarial training
(Madry et al., 2018), which improves resilience via adversarial examples, and certified defenses
(Raghunathan et al., 2018), which provide provable guarantees within perturbation bounds. Methods
such as randomized smoothing (Cohen et al., 2019) extend these guarantees. Theoretical work has
shown robust learning is feasible for VC classes but only in the improper learning setup (Montasser
et al., 2019).

Recent empirical works (Weng et al., 2020; Sun et al., 2020; Niu et al., 2024; Fowl et al., 2021; Tao
et al., 2024) have explored trade-offs between adversarial robustness and backdoor attacks, primarily
from an empirical perspective. Our work formalizes these trade-offs, introducing a theoretical
framework that establishes the existence of at least one of three schemes—adversarial defenses,
backdoor-based watermarks, or transferable attacks—for all learning tasks.

A.2 BACKDOOR-BASED WATERMARKS

In black-box settings, where model auditors lack access to internal parameters, watermarking methods
often involve embedding backdoors during training. Techniques by Adi et al. (2018) and Zhang et al.
(2018) use crafted input patterns as triggers linked to specific outputs, enabling ownership verification
by querying the model with these specific inputs. Advanced methods by Merrer et al. (2017) utilize
adversarial examples, which are perturbed inputs that yield predefined outputs. Further enhancements
by Namba & Sakuma (2019) focus on the robustness of watermarks, ensuring the watermark remains
detectable despite model alterations or attacks.

In the domain of Natural Language Processing (NLP), backdoor-based watermarks have been studied
for Pre-trained Language Models (PLMs)5, as exemplified by works such as (Gu et al., 2022; Peng
et al., 2023) and (Li et al., 2023). These approaches embed backdoors using rare or common word
triggers, ensuring watermark robustness across downstream tasks and resistance to removal techniques
like fine-tuning or pruning.

A.3 UNDETECTABLE BACKDOORS

A key related work by Goldwasser et al. (2022) shows how a learner can plant undetectable backdoors
in any classifier. The authors propose two frameworks: one employing digital signature schemes
(Goldwasser et al., 1985) to make backdoored models indistinguishable from the original to any
computationally-bounded observer, and another using Random Fourier Features (RFF) (Rahimi &
Recht, 2007), which remains undetectable even with full visibility of the model and training data.

In a concurrent and independent work, Christiano et al. (2024) introduce a defendability framework
that formalizes the interaction between an attacker planting a backdoor and a defender tasked with
detecting it. A major difference from our work, is that in their approach, the attacker chooses the
distribution, whereas we keep the distribution fixed. This makes defendability in their model harder
since the attacker has more control. However, in their framework, the backdoor trigger x∗ is sampled
from D, so the attacker does not influence it. In contrast, our model allows the attacker to choose
specific x’s, making defendability in their model easier in this regard. Thus, the definitions are a

5We refer readers to Section 7, where we discuss the challenges and opportunities of applying our framework
to self-supervised learning, highlighting how phenomena like the decoupling of generation and verification differ
fundamentally from classification tasks.
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priori incomparable. Another major difference is that our main result holds for all learning tasks,
while their contributions hold only for restricted classes.

However, there are many interesting connections. They show that computationally unbounded
defendability is equivalent to PAC learnability, while we, in a similar spirit, show an Adversarial
Defense for all tasks with bounded VC-dimension. Using cryptographic tools, they show that the
class of polynomial-size circuits is not efficiently defendable, while we use different cryptographic
tools to give a Transferable Attack, which rules out a Defense.

A.4 INTERACTIVE PROOF SYSTEMS IN MACHINE LEARNING

Interactive Proof Systems (Goldwasser & Sipser, 1986) have recently gained considerable attention in
machine learning for their ability to formalize and verify complex interactions between agents, models,
or even human participants. A key advancement in this area is the introduction of Prover-Verifier
Games (PVGs) (Anil et al., 2021), which employ a game-theoretic approach to guide learning agents
towards decision-making with verifiable outcomes. Building on PVGs, Kirchner et al. (2024) enhance
this framework to improve the legibility of Large Language Models (LLMs) outputs, making them
more accessible for human evaluation. Similarly, Wäldchen et al. (2024) apply the prover-verifier
setup to offer interpretability guarantees for classifiers. Extending these concepts, self-proving models
Amit et al. (2024) introduce generative models that not only produce outputs but also generate proof
transcripts to validate their correctness. In the context of AI safety, scalable debate protocols (Condon
et al., 1993; Irving et al., 2018; Brown-Cohen et al., 2023) leverage interactive proof systems to
enable complex decision processes to be broken down into verifiable components, ensuring reliability
even under adversarial conditions.

B ADDITIONAL METHODS IN RELATED WORK

This section provides further practical details on the key areas relevant to our work—namely, water-
marking techniques, adversarial defenses, and transferable attacks on Deep Neural Networks (DNNs).
The discussion here emphasizes implementation nuances and empirical findings, complementing the
broader overview provided earlier.

B.1 WATERMARKING

Watermarking techniques are essential for protecting the intellectual property of machine learning
models. We briefly review practical watermarking schemes for both discriminative and generative
models, focusing on aspects that extend beyond the theoretical presentations.

B.1.1 WATERMARKING SCHEMES FOR DISCRIMINATIVE MODELS

Discriminative models, which categorize input data into predefined classes, have been a primary
focus of watermarking research. In practice, the approaches fall into two settings:

Black-Box Setting. In the black-box setting, the model owner can only query the model to observe
outputs. Frameworks such as those proposed by Adi et al. (2018) and Zhang et al. (2018) embed
watermarks using specifically crafted input data with predefined outcomes. These inputs serve as
triggers whose responses verify the watermark. Other methods, like that of Merrer et al. (2017),
use adversarial examples to induce backdoor behaviors, while Namba & Sakuma (2019) further
enhance robustness against model modifications and attacks. Although Goldwasser et al. (2022)
achieved provable undetectability, practical observations indicate that some of these watermarks can
be removed by mechanisms akin to randomized smoothing (Cohen et al., 2019). The practical appeal
of black-box watermarking lies in its applicability to scenarios where models are deployed as APIs or
services—a setting our work builds upon.

White-Box Setting. When full access to model parameters is available, watermarking can be
integrated directly into the model’s weights. Early approaches by Uchida et al. (2017) and Nagai
et al. (2018) laid the groundwork for embedding watermarks that can be verified through internal
examination. An improved method by Darvish Rouhani et al. (2019) embeds an N -bit watermark that
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is both data- and model-dependent, requiring specific inputs for activation. Since our work focuses
on backdoor-like techniques in black-box settings, we only briefly review these for contrast.

B.1.2 WATERMARKING SCHEMES FOR GENERATIVE MODELS

Watermarking techniques for generative models have gained attention with the rise of advanced
architectures, such as Large Language Models (LLMs). In practice, these methods must address
modality-specific challenges.

Backdoor-Based Watermarking for Pre-trained Language Models. Backdoor-based watermark-
ing in Pre-trained Language Models (PLMs) (e.g., (Gu et al., 2022; Li et al., 2023)) leverages rare or
common word triggers to embed watermarks. These empirical approaches ensure that the watermark
remains robust across downstream tasks and resistant to removal techniques like fine-tuning or
pruning.

Watermarking the Output of LLMs. Watermarking generated text is critical for mitigating
potential harms. For instance, Kirchenbauer et al. (2023) propose a framework that embeds subtle
signals into the text—using a randomized set of “green” tokens—that are imperceptible to humans
but detectable algorithmically. Complementary approaches by Kuditipudi et al. (2023) and Zhao et al.
(2023a) ensure distortion-free, robust watermarks, even as Zhang et al. (2023) highlight vulnerabilities
that need to be addressed.

Image Generation Models. Watermarking techniques for image generation have also been de-
veloped to meet ethical and legal challenges. Fernandez et al. (2023) combine watermarking with
Latent Diffusion Models to embed invisible marks robust to modifications like cropping, while
Wen et al. (2023b) introduce Tree-Ring Watermarking that embeds a pattern into the initial noise
vector. Works by Jiang et al. (2023) and Zhao et al. (2023c) further examine both the robustness and
limitations of these approaches. Additionally, Zhao et al. (2023b) shows that invisible watermarks
may be vulnerable to regeneration attacks, suggesting that semantically similar watermarks could
offer improved resilience.

Audio Generation Models. Watermarking techniques for audio generators have been developed
for robustness against various attacks. Erfani et al. (2017) introduced a spikegram-based method,
embedding watermarks in high-amplitude kernels, robust against MP3 compression and other attacks
while preserving quality. Liu et al. (2023) proposed DeAR, a deep-learning-based approach resistant
to audio re-recording (AR) distortions.

B.2 ADVERSARIAL DEFENSE

Adversarial defenses are crucial for ensuring the reliability of machine learning models against
carefully crafted perturbations. In practice, techniques such as adversarial training (Madry et al.,
2018), certified defenses (Raghunathan et al., 2018), and randomized smoothing (Cohen et al.,
2019) have been successfully implemented. Notably, the work of Goldwasser et al. (2020) explores
alternative models for generating adversarial examples, providing insights that are relevant to the
robustness of watermarking techniques. Additionally, in the context of LLMs, research on adversarial
examples (Zou et al., 2023; Carlini et al., 2023; Wen et al., 2023a) and jailbreaking (Andriushchenko
et al., 2024; Chao et al., 2023; Mehrotra et al., 2024; Wei et al., 2023) continues to highlight the
practical challenges in this area.

B.3 TRANSFERABLE ATTACKS AND TRANSDUCTIVE LEARNING

Transferable attacks refer to adversarial examples that are effective across multiple models. Moreover,
transductive learning has been explored as a means to enhance adversarial robustness, and since our
Definition 5 captures some notion of transductive learning in the context of Transferable Attacks, we
highlight significant contributions in these areas.

Adversarial Robustness via Transductive Learning. Transductive learning (Gammerman et al.,
1998) has shown promise in improving the robustness of models by utilizing both training and test
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data during the learning process. This approach aims to make models more resilient to adversarial
perturbations encountered at test time.

One significant contribution is by Goldwasser et al. (2020), which explores learning guarantees in the
presence of arbitrary adversarial test examples, providing a foundational framework for transductive
robustness. Another notable study by Chen et al. (2021) formalizes transductive robustness and
proposes a bilevel attack objective to challenge transductive defenses, presenting both theoretical and
empirical support for transductive learning’s utility.

Additionally, Montasser et al. (2022) introduce a transductive learning model that adapts to pertur-
bation complexity, achieving a robust error rate proportional to the VC dimension. The method by
Wu et al. (2020) improves robustness by dynamically adjusting the network during runtime to mask
gradients and cleanse non-robust features, validated through experimental results. Lastly, Tramer
et al. (2020) critique the standard of adaptive attacks, demonstrating the need for specific tuning to
effectively evaluate and enhance adversarial defenses.

Transferable Attacks on DNNs. Transferable attacks exploit the vulnerability of models to adver-
sarial examples that generalize across different models. For discriminative models, significant works
include Liu et al. (2016), which investigates the transferability of adversarial examples and their
effectiveness in black-box attack scenarios, (Xie et al., 2018), who propose input diversity techniques
to enhance the transferability of adversarial examples across different models, and (Dong et al.,
2019), which presents translation-invariant attacks to evade defenses and improve the effectiveness of
transferable adversarial examples.

In the context of generative models, including LLMs and other advanced generative architectures,
relevant research is rapidly emerging, focusing on the transferability of adversarial attacks. This
area is crucial as it aims to understand and mitigate the risks associated with adversarial examples in
these powerful models. Notably, Zou et al. (2023) explored universal and transferable adversarial
attacks on aligned language models, highlighting the potential vulnerabilities and the need for robust
defenses in these systems.

Undetectability Unremovability Uniqueness

Goldwasser et al. (2022) " robust to some
smoothing attacks "(E)

C
la

ss
ifi

ca
tio

n

Adi et al. (2018); Zhang et al. (2018) "(E) % "(E)

Merrer et al. (2017) "(E) robust to fine tunning
attacks "(E)

Christ et al. (2023); Kuditipudi et al. (2023) " % "
Zhao et al. (2023a) % robust to edit

distance attacks only "

L
L

M
s

Tiffany Hsu (2023) "(E) % "

Kirchenbauer et al. (2023) % % "

Table 1: Overview of properties across various watermarking schemes. The symbol " denotes
properties with formal guarantees or where proof is plausible, whereas % indicates the absence
of such guarantees. Entries marked with "(E) represent properties observed empirically; these
lack formal proof in the corresponding literature, suggesting that deriving such proof may present
substantial challenges. The LLM watermarking schemes refer to those applied to text generated by
these models.
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C PRELIMINARIES

For n ∈ N we define [n] := {1, . . . , n}. We say a boolean sequence a : N → {0, 1} is true with
frequency α ∈ [0, 1] if

lim inf
n→∞

∑
i∈[n] a(i)

n
≥ α.

For two sequences a, b : N→ R we say they agree with frequency at least α ∈ [0, 1] if the sequence
(a

?
= b) : N→ {0, 1}, i.e. (a ?

= b)(n) = 1a(n)=b(n), is true with frequency α.

Learning. For a set Ω, we write ∆(Ω) to denote the set of all probability measures defined on
the measurable space (Ω,F), where F is some fixed σ-algebra that is implicitly understood. For
a parameter n, we denote by {0, 1}n the input space and by {0, 1} the output space. A model is a
function f : {0, 1}n → {0, 1}.
Definition 6 (Learning Task). A learning task L is a family {Ln}n∈N, where for every n, Ln is an
element of ∆

(
∆({0, 1}n)× {0, 1}{0,1}

n
)

.

For a distribution Dn ∈ ∆({0, 1}n) and a ground truth hn : {0, 1}n → {0, 1}, we define an error of
f as errDn,hn

(f) := Ex∼Dn
[f(x) ̸= h(x)], where the index of err will often be understood implicitly

and omitted in notation. For Dn ∈ ∆({0, 1}n), hn : {0, 1}n → {0, 1} we define an example oracle
Ex(Dn, hn) as an oracle that samples x ∼ Dn and returns (x, hn(x)).

Interaction. When Ex(D, h) generates (x, h(x)) it is encoded as an n + 1 bit-string, because
x ∈ {0, 1}n and the label space is {0, 1}. For a message spaceM = {Mn}n = {{0, 1}m(n)}n a
representation class is a collection of mappings {Rn}n, where for every n,Rn :Mn → {0, 1}{0,1}

n

.
Thus, there is a function class corresponding to a representation, i.e., for every n there is a function
class Fn, which is an image ofRn. Note that hn (which is the ground truth) may or may not be in Fn.
All function classes considered in this work have an implicit representation class and an underlying
message space.

Computation. We work with the collection of Boolean circuits over the standard basis B2, the set
of all two-bit Boolean functions. The size of a circuit C is measured by its number of gates; let |C|
denote the size of C. For a circuit family C = {Cn}n we say it has a circuit complexity S(n) if for
every n, |Cn| ≤ S(n).
For a distribution Dn over {0, 1}n, and a ground truth hn : {0, 1}n → {0, 1} we denote by
CEx(Dn,hn) a circuit with some6 number of specified input gates that are initialized with samples
(x, h(x)) sampled from x ∼ Dn. We will also by interested in interaction between circuits. When
messages are exchanged between circuits we assume that there are specified input (output) gates that
correspond to outgoing (ingoing) messages. Also, when a circuit is randomized we assume there are
designated input gates that are initialized with random bits.

Definition 7 (Computationally Bounded Learnability). For ϵ, δ : N→ (0, 1) we say that a learning
task L = {Ln}n∈N is learnable to error ϵ with confidence 1 − δ and with circuit complexity
S : N → N by a function class F = {Fn}n∈N (with a corresponding representation class R), or
(ϵ, δ, S,F)-learnable in short, if there exists a circuit family C = {Cn}n∈N with complexity S(n)
such that for every sufficiently large n, with probability 1 − δ over the choice of (Dn, hn) ∼ Ln,
C

Ex(Dn,hn)
n computes an m(n) bit message mfn ∈Mn such thatRn(mfn) ∈ Fn has error at most

ϵ, i.e. for every sufficiently large n

P
(Dn,hn)∼Ln,mfn←C

Ex(Dn,hn)
n

[
errDn,hn

(Rn(mfn)) ≤ ϵ(n)
]
≥ 1− δ(n).

We often abuse the notation and use fn to denote both mfn as well as Rn(mfn).

6We will not specify the sample complexity explicitly. In this paper, we focus only on circuit complexity.
The sample complexity is an important parameter to analyze and we leave it for future work. We emphasize that
the circuit complexity is an upper bound on the sample complexity.
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D FORMAL DEFINITIONS

Definition 8 (Watermark). Let L = {Ln}n be a learning task, and F = {Fn}n a function class.
Let SA, SB, q : N→ N, ϵ ∈

(
0, 12

)
, l, c, s ∈ (0, 1), s < c, where SB(n) bounds the circuit size of

Bn, and SA(n) the circuit size of An, q(n) the number of queries, ϵ the risk level, c probability
that uniqueness holds, s probability that unremovability and undetectability holds, l the learning
probability.

We say that a family of circuits AWATERMARK = {AWATERMARK
n }n with complexity SA(n) implements

a watermarking scheme for L with frequency α, denoted by

AWATERMARK ∈α WATERMARK (L,F , ϵ, q, SA, SB, l, c, s) ,

if the following is true with frequency α over parameter n. An interactive protocol in which first
(Dn, hn) ∼ Ln and then AWATERMARK

n computes (f,x), f : {0, 1}n → {0, 1},x ∈ ({0, 1}n)q(n), and
Bn outputs y = Bn(f,x),y ∈ {0, 1}q(n), where f is sent using the representationRn, satisfies the
following

• Correctness (f has low error). With probability at least l

err(f) ≤ ϵ.

• Uniqueness (models trained from scratch give low-error answers). There exists a circuit
Bn of size SA(n) such that with probability at least c

err(x,y) ≤ 2ϵ.

• Unremovability (fast Bn give high-error answers). For every circuit Bn of size at most
SB(n) we have that with probability at most s

err(x,y) ≤ 2ϵ.

• Undetectability (fast Bn cannot detect that they are tested). On average over (Dn, hn) ∼
Ln, distributions Dq(n)

n and x ∼ AWATERMARK
n

n are s
2 -indistinguishable for a class of circuits

Bn of size at most SB(n), i.e., for every circuit Bn of size at most SB(n) returning one bit,∣∣∣P(Dn,hn)∼Ln,x′∼Dq(n)
n ,(f,x)←AWATERMARK

n
[B(f,x′) = 0]−P(Dn,hn)∼L,(f,x)←AWATERMARK

n
[B(f,x) = 0]

∣∣∣ ≤ s

2
.

Definition 9 (Adversarial Defense). Let L = {Ln}n be a learning task, and F = {Fn}n a function
class. Let SA, SB, q : N → N, ϵ ∈

(
0, 12

)
, l, c, s ∈ (0, 1), with s < c, where SA(n) bounds

the circuit size of An, and SB(n) the circuit size of Bn, q(n) the number of queries, ϵ the error
parameter, c the completeness, s the soundness, and l the learning probability.

We say that a family of circuits BDEFENSE = {BDEFENSE
n }n with complexity SA(n) implements an

adversarial defense for L with frequency α, denoted by

BDEFENSE ∈α DEFENSE (L,F , ϵ, q, SA, SB, l, c, s) ,

if the following is true with frequency α over parameter n. An interactive protocol in which
first (Dn, hn) ∼ Ln, BDEFENSE

n computes f : {0, 1}n → {0, 1}, An replies with x = An(fn),
x ∈ ({0, 1}n)q(n), and BDEFENSE

n outputs b = BDEFENSE
n (f,x), b ∈ {0, 1}, satisfies the following:

• Correctness (fn has low error). With probability at least l

err(f) ≤ ϵ.

• Completeness (natural inputs are not flagged as adversarial). When x ∼ Dq(n)
n , with

probability at least c
b = 0.

• Soundness (adversarial inputs are detected). For every circuit An of size at most SA(n),
with probability at most s

err(x, f(x)) > 7ϵ and b = 0.
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Definition 10 (Transferable Attack). Let L = {Ln}n be a learning task and F = {Fn}n a function
class. Let SA, SB, q : N→ N, ϵ ∈

(
0, 12

)
, and c, s ∈ (0, 1), with s < c, where SA(n) bounds the

circuit size of An, and SB the circuit size of Bn, q(n) the number of queries, ϵ the error parameter, c
the transferability probability, and s the undetectability probability.

We say that a family of circuits ATRANSFATTACK = {ATRANSFATTACK
n } with complexity SA(n) imple-

ments a transferable attack for L with frequency α, denoted by

ATRANSFATTACK ∈α DEFENSE (L,F , ϵ, q, SA, SB, l, c, s) ,

if the following is true with frequency α over parameter n. An interactive protocol in which
first (Dn, hn) ∼ Ln, ATRANSFATTACK

n computes x ∈ ({0, 1}n)q(n), and Bn outputs y = Bn(x),
y ∈ ({0, 1})q(n), satisfies the following:

• Transferability (fast provers return high-error answers). For every circuit Bn of size at
most SB(n), with probability at least c

err(x,y) > 2ϵ.

• Undetectability (fast provers cannot detect that they are tested). On average over
(Dn, hn) ∼ Ln, distributions x ∼ Dq(n)

n and x := ATRANSFATTACK
n are s

2 -indistinguishable
for every circuit Bn of size at most SB(n), i.e.,∣∣∣P(Dn,hn)∼Ln,x′∼Dq(n)

n
[Bn(x

′) = 0]− P(Dn,hn)∼Ln
[Bn(x) = 0]

∣∣∣ ≤ s

2
.

E MAIN THEOREM

Before proving our main theorem we recall a result from Lipton & Young (1994a) about simple
strategies for large zero-sum games.

Game theory. A two-player zero-sum game is specified by a payoff matrix G. G is an r × c matrix.
MIN, the row player, chooses a probability distribution p1 over the rows. MAX, the column player,
chooses a probability distribution p2 over the columns. A row i and a column j are drawn from
p1 and p2 and MIN pays Gij to MAX. MIN tries to minimize the expected payment; MAX tries to
maximize it.

By the Min-Max Theorem, there exist optimal strategies for both MIN and MAX. Optimal means that
playing first and revealing one’s mixed strategy is not a disadvantage. Such a pair of strategies is also
known as a Nash equilibrium. The expected payoff when both players play optimally is known as the
value of the game and is denoted by V(G).
We will use the following theorem from Lipton & Young (1994a), which says that optimal strategies
can be approximated by uniform distributions over sets of pure strategies of size O(log(c)).

Theorem 4 (Lipton & Young (1994a)). Let G be an r × c payoff matrix for a two-player zero-sum
game. For any η ∈ (0, 1) and k ≥ log(c)

2η2 there exists a multiset of pure strategies for the MIN (row
player) of size k such that a mixed strategy p1 that samples uniformly from this multiset satisfies

max
j

∑
i

p1(i)Gij ≤ V(G) + η(Gmax − Gmin),

where Gmax,Gmin denote the maximum and minimum entry of G respectively. The symmetric result
holds for the MAX player.

We are ready to prove our main theorem.

Theorem 5. Let ϵ ∈
(
0, 12

)
, δ ∈

(
0, 1

48

)
, S : N → N. For every learning task L = {Ln}n

learnable to error ϵ with confidence 1− δ and circuit complexity O
( √

S(n)

log(S(n))

)
and for every family

of function classes F = {Fn}n, every query bound q(n) such that
√

S(n)

log(S(n)) = Ω(m(n) + q(n) · n)
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at least one of the three

WATERMARK

(
L,F , ϵ, q, S(n), o

( √
S(n)

log(S(n))

)
, l =

10

24
, c =

21

24
, s =

19

24

)
,

DEFENSE

(
L,F , ϵ, q, o

( √
S(n)

log(S(n))

)
, O(S(n)), l = 1− 1

48
, c =

13

24
, s =

11

24

)
,

TRANSFATTACK

(
L,F , ϵ, q, S(n), S(n), c = 3

24
, s =

19

24

)
exists with frequency 1

3 .

Proof. Let ϵ ∈ (0, 12 ) and q : N→ N be a query bound. Let L be a learning task learnable to error ϵ
with confidence 1− δ and complexity S(n).

We will consider every n separately and show that for every n, one of the three schemes exists. This
automatically implies that one of the schemes exists with frequency at least 1

3 .

Let s(n) = Θ

( √
S(n)

log(S(n))

)
, where the exact constants will be determined later. Let CandidateW(n)

be a set of s(n)-sized circuits computing (f,x). Recall that the execution of a An ∈ CW(n) proceeds
by first sampling from Ex(Dn, hn) and providing these samples as inputs to An and then running
An to obtain m+ q · n bits. The first m bits are interpreted as a representation of f (according to
Rn), and the following consecutive blocks of n bits each are interpreted as q elements of {0, 1}n.
Similarly, let CD(n) be a set of s(n)-sized circuits accepting as input (f,x) and outputting (y, b),
where y ∈ {0, 1}q, b ∈ {0, 1}. Formally, this is a set of circuits with up to s(n) input gates and q + 1
output gates. We interpret CW(n) as candidate algorithms for a watermark, and CD(n) as candidate
algorithms for attacks on watermarks.

For every n define a zero-sum game Gn between An ∈ CW(n),Bn ∈ CD(n). The payoff is given by

Gn(An,Bn) =
1

2
P
(Dn,hn)∼Ln,(f,x):=A

Ex(Dn,hn)
n ,(y,b):=B

Ex(Dn,hn)
n

[
err(f) > ϵ or err(x,y) ≤ 2ϵ or b = 1

]
+

1

2
P
(Dn,hn)∼Ln,f :=A

Ex(Dn,hn)
n ,x∼Dq(n)

n ,(y,b):=B
Ex(Dn,hn)
n

[
err(f) > ϵ or

(
err(x,y) ≤ 2ϵ and b = 0

)]
,

where An tries to minimize and Bn maximize the payoff.

Then the number of possible circuits is bounded by
|CW| ≤ (3s(n)2)s(n) ≤ 23s(n) log(s(n)),

because every internal gate of a circuit is one of AND, OR, and NOT, and is connected to 2 gates out
of at most s(n) choices.

Applying Theorem 4 to Gn with η = 2−5 we get two probability distributions, p over a multiset of
pure strategies in CW and r over a multiset of pure strategies in CD that lead to a 2−5-approximate
Nash equilibrium. The size k(n) of the multisets is bounded

k(n) ≤ 26 log (|CW|)
≤ O(s(n) log(s(n))). (1)

Next, observe that the mixed strategy corresponding to the distribution p can be represented by a
circuit of size

k(n) · s(n) ·O(log(k(n)))

≤ O(s2(n) · log3(s(n))) By equation (1)
≤ S(n),

because we can create a circuit that is a collection of k(n) circuits corresponding to the multiset of p,
where each one is of size s(n) with additional gadgets of size O(log(k)) activating the corresponding
gate depending on the randomness determining a strategy. This implies that p can be implemented by
a S(n)-sized circuit. The same holds for r. Let’s call the strategy corresponding to p, An

Nash, and the
strategy corresponding to r, Bn

Nash.

Consider cases:
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Case G(ANASH
n ,BNASH

n ) ≥ 19
24 . Define BDEFENSE

n to work as follows:

1. Simulate the circuit of size O
( √

S(n)

log(S(n))

)
Ln that learns f , such that

P (Dn,hn)∼Ln,

f←LEx(Dn,hn)
n

[
err(f) ≤ ϵ

]
≥ 1− 1

48
.

2. Send f to An.

3. Receive x from An.

4. Simulate (y, b) := BNASH
n (f,x).

5. Return b′ = 1 if b = 1 or d(f(x),y) > 3ϵ · q(n) and b′ = 0 otherwise,

where d(·, ·) is the Hamming distance. BDEFENSE
n can be implemented by circuit of size O(S(n)),

because it simulates a circuit of size O
( √

S(n)

log(S(n))

)
, then simulating BNASH

n of size S(n), and

computing a predicate d(f(x),y) > 3ϵq, which can be done in size log(q(n)).

We claim that

DEFENSE

(
Ln,Fn, ϵ, q(n), o

( √
S(n)

log(S(n))

)
, O(S(n)), l = 1− 1

48
, c =

13

24
, s =

11

24

)
. (2)

Assume towards contradiction that completeness or soundness of BDEFENSE
n as defined in Definition 9

does not hold.

If completeness of BDEFENSE
n does not hold, then

P(Dn,hn)∼Ln,x∼Dq
n

[
b′ = 0

]
<

13

24
. (3)

Let us compute the payoff of An, which first runs f ← L
Ex(Dn,hn)
n (where Ln is the learning circuit)

and sets x ∼ Dq , in the game Gn, when playing against BNASH
n

G(An,B
NASH
n )

=
1

2
P (Dn,hn)∼Ln,

(f,x)←AEx(Dn,hn)
n

[
err(f) > ϵ or err(x,y) ≤ 2ϵ or b′ = 1

]
+

1

2
P (Dn,hn)∼Ln,

f←AEx(Dn,hn)
n ,
x∼Dq

n

[
err(f) > ϵ or

(
err(x,y) ≤ 2ϵ and b′ = 0

)]

≤ δ + 1

2
P (Dn,hn)∼Ln,

f←LEx(Dn,hn)
n ,
x∼Dq

n

[
err(x,y) ≤ 2ϵ or b′ = 1

]

+
1

2
P (Dn,hn)∼Ln,

f←LEx(Dn,hn)
n ,
x∼Dq

n

[
err(x,y) ≤ 2ϵ and b′ = 0

]
Def. of An,B

DEFENSE
n , P

[
err(f) ≤ ϵ

]
≥ 47

48

<
1

48
+

1

2
+

13
24

2
By equation (3)

=
38

48

≤ G(ANASH
n ,BNASH

n ),  

where the contradiction is with the properties of Nash equilibria.
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Assume that An breaks the soundness of BDEFENSE
n , which translates to

P(Dn,hn)∼Ln,
x←An(f)

[
err(x, f(x)) > 7ϵ and b = 0 and d(f(x),y)) > 3ϵq

]
>

11

24
. (4)

Let A′n first simulate f ← L
Ex(Dn,hn)
n , then runs x← An(f), and returns (f,x). We have

G(A′n,BNASH
n )

=
1

2
P(Dn,hn)∼Ln,

(f,x)←A′
n

[
err(f) > ϵ or err(x,y) ≤ 2ϵ or b′ = 1

]
+

1

2
P(Dn,hn)∼Ln,

f←A′
n,

x∼Dq
n

[
err(f) > ϵ or

(
err(x,y) ≤ 2ϵ and b′ = 0

)]

=
1

2
P (Dn,hn)∼Ln,

f←LEx(Dn,hn)
n ,

x=An(f)

[
err(f) > ϵ or err(x,y) ≤ 2ϵ or b′ = 1

]

+
1

2
P (Dn,hn)∼Ln,

f←LEx(Dn,hn)
n ,
x∼Dq

n

[
err(f) > ϵ or

(
err(x,y) ≤ 2ϵ and b′ = 0

)]
By def. of A′n

<
1

2
+

1− 11
24

2
By equation (4)

=
37

48

≤ Gn(ANASH
n ,BNASH

n ),  

where the contradiction is with the properties of Nash equilibria. Thus equation (2) holds.

Case Gn(ANASH
n ,BNASH

n ) < 19
24 . Consider Bn that returns (f(x), b) for a uniformly random b. We

have

Gn(ANASH
n ,Bn) ≥

(
1− P(Dn,hn)∼Ln,

f←ANASH
n

[
err(f) ≤ ϵ

])
+ P(Dn,hn)∼Ln,

f←ANash
n

[
err(f) ≤ ϵ

]
· 1
2
,

because when x ∼ Dq
n and err(f) ≤ ϵ the probability that err(x,y) ≤ 2ϵ and b = 0 is 1

2 , and
similarly when x ← ANASH

n then the probability that b = 1 is equal 1
2 . The assumption that

Gn(ANash
n ,Bn) <

19
24 and properties of Nash equilibria imply that P(Dn,hn)∼Ln,

f←ANash
n

[err(f) ≤ ϵ] ≥ 10
24 .

This implies that correctness holds for ANash
n with l = 10

24 .

Next, assume towards contradiction that unremovability of ANASH
n does not hold, i.e., there is Bn

running in time o
(√

S(n)/ log(S(n))
)

such that P
[
err(x,y) ≤ 2ϵ

]
> 19

24 . Consider B′n that on

input (f,x) returns (Bn(f,x), 0). Then by definition of Gn, Gn(ANASH,B
′
n) >

19
24 , which is a

contradiction  .

Next, assume towards contradiction that undetectability of ANASH
n does not hold, i.e., there exists

Bn such that it distinguishes x ∼ Dq
n from x← ANASH

n with probability higher than 19
24 . Consider

B′n that on input (f,x) returns (f(x),Bn(f,x)).7 Then by definition of Gn, Gn(ANASH
n ,B′n) >

19
24 ,

which is a contradiction  .

There are two further subcases. If ANASH
n satisfies uniqueness then

ANASH
n ∈ WATERMARK

(
Ln,Fn, ϵ, q(n), S(n), o

( √
S(n)

log(S(n))

)
, l =

10

24
, c =

21

24
, s =

19

24

)
.

7Formally Bn receives as input (f,x) and not only x.
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If ANASH
n does not satisfy uniqueness, then, by definition, every succinctly representable circuit Bn

of size o
(√

S(n)/ log(S(n))
)

satisfies err(x,y) ≤ 2ϵ with probability at most 21
24 . Consider the

following An. It computes (f,x)← ANash
n , ignores f and sends x to Bn. By the assumption that

uniqueness is not satisfied for ANASH
n we have that transferability of Definition 5 holds for An with

c = 3
24 . Note that Bn in the transferable attack does not receive f but it makes it no easier for it to

satisfy the properties. Note that undetectability still holds with the same parameter. Thus

ANASH
n ∈ TRANSFATTACK

(
Ln,Fn, ϵ, q(n), S(n), S(n), c =

3

24
, s =

19

24

)
.

F FULLY HOMOMORPHIC ENCRYPTION (FHE)

We include a definition of fully homomorphic encryption based on the definition from Goldwasser
et al. (2013). The notion of fully homomorphic encryption was first proposed by Rivest, Adleman and
Dertouzos Rivest et al. (1978) in 1978. The first fully homomorphic encryption scheme was proposed
in a breakthrough work by Gentry in 2009 Gentry (2009). A history and recent developments on fully
homomorphic encryption is surveyed in (Vaikuntanathan, 2011).

F.1 PRELIMINARIES

We say that a function f is negligible in an input parameter λ, if for all d > 0, there exists K such
that for all λ > K, f(λ) < λ−d. For brevity, we write: for all sufficiently large λ, f(λ) = negl(λ).
We say that a function f is polynomial in an input parameter λ, if there exists a polynomial p such
that for all λ, f(λ) ≤ p(λ). We write f(λ) = poly(λ). A similar definition holds for polylog(λ). For
two polynomials p, q, we say p ≤ q if for every λ ∈ N, p(λ) ≤ q(λ).
When saying that a Turing machine A is p.p.t. we mean that A is a non-uniform probabilistic
polynomial-time machine.

F.2 DEFINITIONS

Definition 11 (Goldwasser et al. (2013)). A homomorphic (public-key) encryption scheme FHE is a
quadruple of polynomial time algorithms (FHE.KEYGEN, FHE.ENC, FHE.DEC, FHE.EVAL) as
follows:

• FHE.KEYGEN(1λ) is a probabilistic algorithm that takes as input the security parameter 1λ
and outputs a public key pk and a secret key sk.

• FHE.ENC(pk, x ∈ {0, 1}) is a probabilistic algorithm that takes as input the public key pk
and an input bit x and outputs a ciphertext ψ.

• FHE.DEC(sk, ψ) is a deterministic algorithm that takes as input the secret key sk and a
ciphertext ψ and outputs a message x∗ ∈ {0, 1}.

• FHE.EVAL(pk, C, ψ1, ψ2, . . . , ψn) is a deterministic algorithm that takes as input the public
key pk, some circuit C that takes n bits as input and outputs one bit, as well as n ciphertexts
ψ1, . . . , ψn. It outputs a ciphertext ψC .

Compactness: For all security parameters λ, there exists a polynomial p(·) such that for all input
sizes n, for all x1, . . . , xn, for all C, the output length of FHE.EVAL is at most p(n) bits long.
Definition 12 (C-homomorphism, Goldwasser et al. (2013)). Let C = {Cn}n∈N be a class of
boolean circuits, where Cn is a set of boolean circuits taking n bits as input. A scheme FHE is
C-homomorphic if for every polynomial n(·), for every sufficiently large security parameter λ, for
every circuit C ∈ Cn, and for every input bit sequence x1, . . . , xn, where n = n(λ),

P

 (pk, sk)← FHE.KEYGEN(1λ);
ψi ← FHE.ENC(pk, xi) for i = 1 . . . n;
ψ ← FHE.EVAL(pk,C, ψ1, . . . , ψn) :

FHE.DEC(sk, ψ) ̸= C(x1, . . . , xn)

 = negl(λ),
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where the probability is over the coin tosses of FHE.KEYGEN and FHE.ENC.
Definition 13 (Fully homomorphic encryption). A scheme FHE is fully homomorphic if it is
homomorphic for the class of all arithmetic circuits over GF(2).
Definition 14 (Leveled fully homomorphic encryption). A leveled fully homomorphic encryption
scheme is a homomorphic scheme where FHE.KEYGEN receives an additional input 1d and the
resulting scheme is homomorphic for all depth-d arithmetic circuits over GF(2).
Definition 15 (IND-CPA security). A scheme FHE is IND-CPA secure if for any p.p.t. adversary A,∣∣∣ P [(pk, sk)← FHE.KEYGEN(1λ) : A(pk, FHE.ENC(pk, 0)) = 1

]
+

− P
[
(pk, sk)← FHE.KEYGEN(1λ) : A(pk, FHE.ENC(pk, 1)) = 1

] ∣∣∣ = negl(λ).

We now state the result of Brakerski, Gentry, and Vaikuntanathan (Brakerski et al., 2012) that shows
a leveled fully homomorphic encryption scheme based on a standard assumption in cryptography
called Learning with Errors (Regev, 2005):
Theorem 6 (Fully Homomorphic Encryption, definition from Goldwasser et al. (2013)). Assume
that there is a constant 0 < ϵ < 1 such that for every sufficiently large ℓ, the approximate shortest
vector problem gapSVP in ℓ dimensions is hard to approximate to within a 2O(ℓϵ) factor in the
worst case. Then, for every n and every polynomial d = d(n), there is an IND-CPA secure d-
leveled fully homomorphic encryption scheme where encrypting n bits produces ciphertexts of length
poly(n, λ, d1/ϵ), the size of the circuit for homomorphic evaluation of a function f is size(Cf ) ·
poly(n, λ, d1/ϵ) and its depth is depth(Cf ) · poly(log n, log d).

G EXISTENCE OF TRANSFERABLE ATTACKS

Learning Theory Preliminaries. For the next lemma, we will consider a slight generalization of
learning tasks to the case where there are many valid outputs for a given input. This can be understood
as the case of generative tasks. More concretely, we assume that for the input space Xn the output
space is Yn instead of {0, 1}. It will always be the case that Xn and Yn are equal to {0, 1}p(n) for
some polynomial p. For a distribution Dn over Xn we call a function h : Xn ×Yn → {0, 1} an error
oracle if the error of a function f : Xn → Yn is defined as

err(f) := Ex∼D[h(x, f(x))],

where the randomness of expectation includes the potential randomness of f . The example oracle
Ex provides access to samples (x, y) ∈ Xn × Yn, where x ∼ Dn and y ∈ Yn is some y such that
h(x, y) = 0.

The following learning task will be crucial for our construction.
Definition 16 (Lines on a Circle Learning Task L◦). We define L◦ = {L◦n}n. For every n we define
Xn = {0, 1}n and associate Xn with vertices of a 2n regular polygon inscribed in the unit circle
{x ∈ R2 | ∥x∥2 = 1}. The output space is {−1,+1} for all n. LetH := {hw | w ∈ R2, ∥w∥2 = 1},
where hw(x) := sgn(⟨w, x⟩). For every n, let L◦n be the distribution corresponding to the following
process: sample hw ∼ U(H), return (U(Xn), hw). Note thatH has VC-dimension equal to 2 so L
is learnable to error ϵ with O( 1ϵ ) samples for every n and every ϵ.

Moreover, for n ∈ N define Bw
n (α) := {x ∈ Xn | |∡(x,w)| ≤ α}.

Lemma 1 (Learning lower bound for L◦). Let n ∈ N. Let Ln be a learning algorithm for L◦n
(Definition 16) that uses K samples and returns a classifier f : Xn → {−1,+1}. Then

P(Dn,hn)∼L◦
n,f←LEx(Dn,hn)

[
Px∼Dn

[f(x) ̸= hw(x)] ≤
1

2K

]
≤ 3

100
.

Proof. Let n ∈ N. Consider the following algorithm A. It first simulates Ln on K samples to
compute f . Next, it performs a smoothing of f , i.e., computes

fη(x) :=

{
+1, if Px′∼U(Bx

n(2πη))
[f(x′) = +1] > Px′∼U(Bx

n(2πη))
[f(x′) = −1]

−1, otherwise.
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Note that if err(f) ≤ η for a ground truth hw then for every x ∈ Xn \ Bx
n(2πη) we have fη(x) =

hw(x). This implies that A can be adapted to an algorithm that with probability 1 finds w′ such that
|∡(w,w′)| ≤ err(f).

Assuming towards contradiction that the statement of the lemma does not hold it means that there is
an algorithm using K samples that with probability 3

100 locates w up to angle 1
2K .

Consider any algorithm A using K samples. Probability that A does not see any sample in Bw
n (2πη)

is at least

(1− 4η)
K ≥

(
(1− 4η)

1
4η

)4ηK
≥
(

1

2e

)4ηK

,

which is bigger than 1− 3
100 if we set η = 1

2K . But note that if there is no sample in Bw
n (2πη) then

A cannot locate w up to η with certainty. This proves the lemma.

Lemma 2 (Boosting for L◦). Let η, ν ∈ (0, 14 ), n ∈ N, Ln be a learning algorithm for L◦n that uses
K samples and outputs f : Xn → {−1,+1} such that with probability δ

Pw∼U(H),x∼U(Bw
n (2πη))[f(x) ̸= hw(x)] ≤ ν, (5)

whereH is as defined earlier {hw | w ∈ R2, ∥w∥2 = 1}. Then there exists a learning algorithm L′n

for L◦n that uses max
(
K, 9η

)
samples such that with probability δ − 1

1000 returns f ′ such that

Pw∼U(H),x∼U(Xn)[f
′(x) ̸= hw(x)] ≤ 4ην.

Proof. Let n ∈ N. L′n first draws max
(
K, 9η

)
samples Q and defines g : Xn → {−1,+1,⊥} as

follows, g maps to −1 the smallest continuous interval containing all samples from Q with label
−1. Similarly g maps to +1 the smallest continuous interval containing all samples from Q with
label +1. The intervals are disjoined by construction. Unmapped points are mapped to ⊥. Next, L′n
simulates Ln with K samples and gets a classifier f that with probability δ satisfies the assumption
of the lemma. Finally, it returns

f ′(x) :=

{
g(x), if g(x) ̸=⊥
f(x), otherwise.

Consider 4 arcs defined as the 2 arcs constituting Bw
n (2πη) divided into 2 parts each by the line

{x ∈ R2 | ⟨w, x⟩ = 0}. Let E be the event that some of these intervals do not contain a sample from
Q. Observe that

P[E] ≤ 4(1− η)
9
η ≤ 1

1000
.

By the union bound with probability δ − 1
1000 , f satisfies equation (5) and E does not happen. By

definition of f ′ this gives the statement of the lemma.

Theorem 7 (Transferable Attack for a Cryptography based Learning Task). There exists a learning
task L = {Lλ}λ and a function class F = {Fλ}λ such that for every ϵ : N → N where 1/ϵ(λ)
is lower-bounded by a sufficiently large polynomial and upper-bounded by some polynomial the
following holds.

1. L is
(
ϵ, δ = 1

10 , S = 103

ϵ1.3 ,F
)

-learnable.

2. L is not
(
ϵ, δ = 1

10 , S = 1
ϵ ,F

)
-learnable

3. There exists a circuit family A = {Aλ}λ such that

A ∈1 TRANSFATTACK

(
L,F , ϵ(λ), q(λ) = 16

ϵ(λ)
, SA(λ) =

103

ϵ1.3(λ)
, SB(λ) =

1

102ϵ2(λ)
, c =

9

10
, s = negl(λ)

)
.

Proof. The learning task is based on L◦ = {L◦n}n from Definition 16.
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Setting of Parameters for FHE. Observe that by assumption of the lemma p ≤ 1/ϵ ≤ r, for
some polynomial r, and a polynomial p that we will define later. Let FHE be a fully homomorphic
encryption scheme from Theorem 6. We will use the scheme for constant leveled circuits d = O(1).
Let s(n, λ, d) be the polynomial bounding the size of the encryption of inputs of length n with λ
security as well as bounding the size of the circuit for homomorphic evaluation, which is guaranteed
to exist by Theorem 6. Let β ∈ (0, 1) and p be a polynomial such that

s
(
nβ , λ, d

)
≤ (n · p(λ))0.1, (6)

which exist because s is a polynomial.

We define n(λ) := ⌊p1/β(λ)⌋8 for the length of inputs in the FHE scheme. Observe that for every λ

s(n(λ), λ, d) ≤ (p(λ) · p(λ))0.1 By equation (6)

≤ 1

ϵ(λ)0.2
By ϵ(λ) ∈

(
1

r(λ)
,

1

p(λ)

)
. (7)

Learning Task. The learning task will be parametrized by λ, i.e. L = {Lλ}λ.

Let λ ∈ N. We define Dλ := {D(pk,sk)
λ }(pk,sk),Hλ := {h(pk,sk,w)

λ }(pk,sk,w) (for D(pk,sk)
λ and h(pk,sk,w)

λ
to be defined later), where they are indexed by valid public/secret key pairs of the FHE and w ∈
{x ∈ R2 | ∥x∥2 = 1}. Let Lλ be defined as corresponding to the following process: sample
(pk,sk, w) ∼ FHE.KEYGEN(1λ)× U({x ∈ R2 | ∥x∥2 = 1}), return

(
D(pk,sk)

λ , h(pk,sk,w)
λ

)
.

For a valid (pk,sk) pair we define D(pk,sk) as the result of the following process: x ∼ U({0, 1}n(λ)),
with probability 1

2 return (0, x, pk) and with probability 1
2 return (1, FHE.ENC(pk, x), pk), where

the first element of the triple describes if the x is encrypted or not. Formally, in the case that the first
element of the triple is 0 one needs to add a padding of size s(n(λ), λ, d)− n(λ) so that descriptions
have the same size in both cases.9

For a valid (pk,sk) pair and w ∈ {x ∈ R2 | ∥x∥2 = 1} we define h(pk,sk,w)((b, x, pk), y) as a result of
the following algorithm: if b = 0 return 1hw(x)=y , otherwise let xDEC ← FHE.DEC(sk, x), yDEC ←
FHE.DEC(sk, y) and if xDEC, yDEC ̸=⊥ (decryption is succesful) return 1hw(xDEC)=yDEC

and return 1
otherwise.

Note 1 (Ω( 1ϵ )-sample learning lower bound.). By construction any learner using K samples for
Lλ (for any λ) can be transformed (potentially computationally inefficiently) into a learner using
K samples for L◦n(λ) (Defnition 16) that returns a classifier of the same error. This, together with a
lower bound for learning from Lemma 1 proves point 2 of the lemma.

Definition of A (Algorithm 1). Aλ draws N(λ) samples Q = {((bi, xi, pk), yi)}i∈[N ] for
N(λ) := 900

ϵ(λ) .

Next, Aλ chooses a subset QCLEAR ⊆ Q of samples for which bi = 0. It trains a classifier fw′(·) :=
sgn(⟨w′, ·⟩) on QCLEAR by returning any fw′ consistent with QCLEAR. This can be done in time

N(λ) · n(λ) ≤ 900

ϵ(λ)
· p1/β(λ) ≤ 900

ϵ1.1(λ)
(8)

by keeping track of the smallest interval containing all samples in QCLEAR labeled with +1 and then
returning any fw′ consistent with this interval.

Note 2 (O( 1
ϵ1.3 )-time learning upper bound.). First note that Aλ learns well, i.e., with probability at

least 1− 2
(
1− ϵ(λ)

100

) 900
ϵ(λ) ≥ 1− 1

1000 we have that

|∡(w,w′)| ≤ 2πϵ(λ)

100
(9)

8Note that this setting allows to represent points in {x ∈ R2 | ∥x∥2 = 1} up to 2−p1/β(λ) precision and this
precision is better than 1

r(λ)
for every polynomial r for sufficiently large λ. This implies that this precision is

enough to allow for learning up to error ϵ, because of the setting ϵ(λ) ≥ 1
r(λ)

.
9Note that the domain of the distributions is not {0, 1}λ, i.e. Xλ ̸= {0, 1}λ.
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Algorithm 1 TRANSFATTACK(Ex(Dλ, hλ), ϵ, λ)

1: Input: Access to the example oracle Ex(Dλ, hλ), where (Dλ, hλ) ∼ Lλ, error level ϵ : N→ N,
and the security parameter λ.

2: N := 900/ϵ(λ), q := 16/ϵ(λ)
3: Q = {((bi, xi, pk), yi)}i∈[N ] ∼ (Dλ)

N(λ) ▷ N(λ) i.i.d. samples from Dλ

4: QCLEAR = {((b, x, pk), y) ∈ Q : b = 0} ▷ QCLEAR ⊆ Q of unencrypted x’s
5: fw′(·) := sgn(⟨w′, ·⟩)← a line consistent with samples from QCLEAR ▷ fw′ : Xn → {−1,+1}
6: {x′i}i∈[q(λ)] ∼ U

((
Xn(λ)

)q(λ))
7: S ∼ U(2[q(λ)]) ▷ S ⊆ [q(λ)] a uniformly random subset
8: EBND; = ∅
9: for i ∈ [q(λ)− |S|] do

10: xBND ∼ U(Bw′

n(λ)(2π(ϵ(λ) +
ϵ(λ)
100 ))) ▷ xBND is close to the decision boundary of fw′

11: EBND := EBND ∪ {FHE.ENC(pk, xBND)}
12: end for
13: x := {(0, x′i, pk) | i ∈ [q(λ)] \ S} ∪ {(1, x′, pk) | x′ ∈ EBND}

14: Return x

Moreover, fw′(x) can be implemented by a circuit Cfw′ that compares x with the endpoints of the
interval. This can be done by a constant leveled circuit. Moreover Cfw′ can be evaluated with
FHE.EVAL in time

size(Cfw′ )s(n(λ), λ, d) ≤ 10n · s(n(λ), λ, d) ≤ 10p1/β(λ)s(n(λ), λ, d) ≤ 10

ϵ0.3(λ)
,

where the last inequality follows from equation (7). This proves point 1 of the lemma.

Next, Aλ prepares x as follows. It samples q(λ) = 16
ϵ(λ) points {x′i}i∈[q] from {0, 1}n(λ) uniformly

at random. It chooses a uniformly random subset S ⊆ [q(λ)]. Next, Aλ generates q(λ)− |S| inputs
using the following process: xBND ∼ U(Bw′

n(λ)(2π(ϵ(λ) +
ϵ(λ)
100 ))) (xBND is close to the decision

boundary of fw′ ), return FHE.ENC(pk, xBND). Call the set of q(λ)− |S| points EBND. Aλ defines:

x := {(0, x′i, pk) | i ∈ [q] \ S} ∪ {(1, x′, pk) | x′ ∈ EBND}.

The running time of this phase is dominated by evaluations of FHE.EVAL, which takes

q(λ) · s(n(λ), λ, d) ≤ 16

ϵ(λ)
· 1

ϵ0.2(λ)
≤ 16

ϵ1.2(λ)
, (10)

where the first inequality follows from equation (7). Taking the sum of equation (8) and equation (10)
we get that Aλ can be implemented by a circuit of size 103

ϵ1.3(λ) .

Aλ Constitutes a Transferable Attack. Now, consider Bλ of size SB(λ) = 1
ϵ2(λ) . By the

assumption SB(λ) ≤ r(λ), which implies that the security guarantees of FHE hold for Bλ.

We claim that x is indistinguishable fromD(pk,sk)
λ for Bλ. Observe that by construction the distribution

of ratio of encrypted and not encrypted x’s in x is identical to that of D(pk,sk)
λ . Moreover, the

distribution of unencrypted x’s is identical to that ofD(pk,sk)
λ by construction. Finally, by the IND-CPA

security10 of FHE and the fact that the size of Bλ is bounded by some polynomial in λ we have
that FHE.ENC(pk, xBND) is distinguishable from x ∼ Xn, FHE.ENC(pk, x) with advantage at most
negl(λ). Thus undetectability holds with near perfect soundness s = 1

2 + negl(λ).

Next, we claim that Bλ can’t return low-error answers on x.

10Note that we need security of FHE in the nonuniform model of computation.

30



Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Assume towards contradiction that with probability 5
100

Pw∼U({z∈R2 | ∥z∥2=1}),
x∼U(Bw

n(λ)(2πϵ(λ)))

[f(x) ̸= hw(x)] ≤ 10ϵ(λ). (11)

We can apply Lemma 2 to get that there exists a learner using 1
100ϵ2(λ) +

9
ϵ(λ) ≤

1
90ϵ2(λ) samples that

with probability 4
100 returns f ′ such that

Pw∼U({z∈R2 | ∥z∥2=1}),
x∼U({0,1}n(λ))

[f ′(x) ̸= hw(x)] ≤ 40ϵ2(λ). (12)

Applying Lemma 1 to equation (12) we know that

40ϵ2 ≥ 1

2( 1
90ϵ2(λ) )

,

which is a contradiction. Thus equation (11) does not hold and in consequence using equation (9) we
have that with probability 1− 6

100

P w∼U({z∈R2 | ∥z∥2=1}),
x∼U(Bw′

n(λ)(2π(ϵ(λ)+
ϵ(λ)
10 ))

[f(x) ̸= hw(x)] ≥
10

14
· 10ϵ(λ) ≥ 7ϵ(λ), (13)

where crucially x is sampled from U(Bw′

n(λ)) and not U(Bw
n(λ)). By Fact 1 we know that |S| ≥ q(λ)

3

with probability at least

1− 2e−
q(λ)
72 = 1− 2e−

1
8ϵ(λ) ≥ 1− 1

1000
.

Using the setting of q(λ) = 16
ϵ(λ) and applying the Chernoff bound and the union bound we get from

equation (13) that with probability at least 1− 1
10 the error err(x,y) is larger than 2ϵ(λ).

Note 3. We want to emphasize that it is crucial (for our construction) that the distribution has both
an encrypted and an unencrypted part.

As mentioned before, if there was no DCLEAR then Aλ would see only samples of the form

(FHE.ENC(x), FHE.ENC(y))

and would not know which of them lie close to the boundary of hw, and so it would not be able to
choose tricky samples. Aλ would be able to learn a low-error classifier, but only under the encryption.
More concretely, Aλ would be able to homomorphically evaluate a circuit that, given a training set
and a test point, learns a good classifier and classifies the test point with it. However, it would not be
able to, with high probability, generate FHE.ENC(x), for x close to the boundary as it would not
know (in the clear) where the decision boundary is.

If there was noDENC then everything would happen in the clear and so B would be able to distinguish
x’s that appear too close to the boundary.

Fact 1 (Chernoff-Hoeffding). Let X1, . . . , Xk be independent Bernoulli variables with parameter p.
Then for every 0 < ϵ < 1

P

[∣∣∣∣∣1k
k∑

i=1

Xi − p

∣∣∣∣∣ > ϵ

]
≤ 2e−

ϵ2k
2

and

P

[
1

k

k∑
i=1

Xi ≤ (1− ϵ)p

]
≤ e−

ϵ2kp
2 .

Also for every δ > 0

P

[
1

k

k∑
i=1

Xi > (1 + δ)p

]
≤ e−

δ2kp
2+δ
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H TRANSFERABLE ATTACKS IMPLY CRYPTOGRAPHY

H.1 EFID PAIRS

The typical way in which security of EFID pairs is defined, e.g., in (Goldreich, 1990), is that they
should be secure against all polynomial-time algorithms. However, for the case of pseudorandom
generators (PRGs), which are known to be equivalent (in the standard definition) to EFIDs pairs,
more granular notions of security were considered. For instance, in (Nisan, 1990) the existence of
PRGs secure against adversaries running in time bounded by a fixed, in contrast to all, polynomial,
was studied. In a similar spirit, we consider EFID pairs that are secure against adversaries with fixed
circuit complexity bounds.
Definition 17 (Total Variation). For two distrbutions D0,D1 over a finite domain {0, 1}n we define
their total variation distance as

△(D0,D1) :=
∑

x∈{0,1}n

1

2
|D0(x)−D1(x)|.

Definition 18 (EFID pairs). For parameters η, δ : N → (0, 1) and circuit complexity bounds
S, S′ : N → N we call a pair of ensembles of distributions (D0 = {D0

n}n,D1 = {D1
n}n) over

domain X = {Xn}n an (S, S′, η, δ)-EFID pair if for every n

1. The circuit complexity of sampling D0 and D1 is at most S,

2. For every n we have that△(D0
n,D1

n) ≥ η(n),

3. For every n we have that D0
n,D1

n are δ(n)-indistinguishable for circuits with complexity
S′(n).

Observe that Definition 18 is a generalization of the standard definition. Indeed, for every EFID pair
(D0,D1) according to the standard definition there exists an inverse polynomial function η and a
polynomial S such that for all polynomials S′ there exists a negligible function δ such that (D0,D1)
is an (S, S′, η, δ)-EFID pair.

H.2 TRANSFERABLE ATTACKS IMPLY EFID PAIRS

Theorem 8 (Tasks with Transferable Attacks Imply EFID pairs). For every ϵ ∈ (0, 1), q ∈
N, SA, SB : N→ N such that SA ≤ SB, every learning task L learnable to error ϵ with confidence
p and circuit complexity SA, every c, s ∈ (0, 1) if

TRANSFATTACK
(
L, ϵ, q, SA, SB, c, s

)
exists with frequency 1

3 then there exist S′A, S
′
B : N→ N that agree with SA and SB respectively

with frequency 1
3 and there exists(

S′A, S
′
B,

1

2

(
p+ c− 1− e−

ϵq
3

)
,
s

2

)
− EFID pair.

Proof. Let ϵ, SA, SB, q, c, s, p,L be as in the assumption of the theorem. Additionally let A =
{An}n be a family of circuits certifying that a Transferable Attack exists with frequency 1

3 for L.

For every n, define D0
n := Dq

n, where we recall that q is the number of samples An sends in the
attack. Define D1

n to be the distribution of x := An. Note that x ∈ (Xn)
q .

Let a : N→ {0, 1} be a sequence certifying that a Transferable Attack exists with frequency 1
3 . Let

n be such that a(n) = 1. Observe that D0
n,D1

n are samplable with circuit complexity SA(n) because
An complexity is bounded by SA(n). Secondly, D0

n,D1
n are s

2 -indistinguishable for SB(n)-sized
adversaries by undetectability of An. Finally, the fact that D0

n,D1
n are statistically far follows from

transferability. Indeed, the following procedure accepting input x ∈ ({0, 1}n)q is a distinguisher:

1. Run the learner (the existence of which is guaranteed by the assumption of the theorem) to
obtain f .
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2. y := f(x).

3. If err(x,y) ≤ 2ϵ return 0, otherwise return 1.

If x ∼ D0 = Dq then err(f) ≤ ϵ with probability p. By Fact 1 and the union bound we also know
that err(x,y) ≤ 2ϵ with probability p− e−

ϵq
3 and so, the distinguisher will return 0 with probability

p − e−
ϵq
3 . On the other hand, if x ∼ D1 = A we know from transferability of An that every

algorithm running in time SB(n) will return y such that err(x,y) > 2ϵ with probability at least c.
By the assumption that SB(n) ≥ SA(n) we know that err(x, f(x)) > 2ϵ with probability at least
c also. Consequently, the distinguisher will return 1 with probability at least c in this case. By the
properties of total variation this implies that△(D0

n,D1
n) ≥ 1

2 (p+ c− 1− e−
ϵq
3 ).

We define a pair of families of distributions D̂0, D̂1 and functions S′A, S
′
B as follows. For every

n such that a(n) = 1 we define D̂0
n = D0

n, D̂1 = D1
n, S

′
A(n) = SA(n), S′B(n) = SB(n). For

every n sich that a(n) = 0 we define D̂0
n = D0

k for the smallest k > n such that a(k) = 1, and
S′A(n) = SA(k) And analogously for D̂1

n and S′B.

Simple verification yields that D̂0
n, D̂1

n is an (S′A, S
′
B,

1
2 (p+ c− 1− e−

ϵq
3 ), s2 )-EFID pair.

Note 4 (Setting of parameters). Observe that if p ≈ 1, i.e., it is possible to almost surely learn f in
time SA such that err(f) ≤ ϵ, c is a constant, q = Ω( 1ϵ ) then η in the parameters for the EFID is a
constant and so△(D0,D1) is a constant.

Note 5. We want to emphasize that our distinguisher crucially uses the error oracle in its last step.
So it is possible that it is not implementable for all circuit complexity bounds!

I ADVERSARIAL DEFENSES EXIST

Our result is based on (Goldwasser et al., 2020). Before we state and prove our result we give an
overview of the learning model considered in (Goldwasser et al., 2020). The authors give a defense
against arbitrary examples in a transductive model with rejections. In contrast, our model does not
allow rejections, but we do require indistinguishability.

I.1 TRANSDUCTIVE LEARNING WITH REJECTIONS.

In (Goldwasser et al., 2020) the authors consider a model, where a learner L receives a training set
of labeled samples from the original distribution (xD,yD = h(xD)),x ∼ DN ,yD ∈ {−1,+1}N ,
where h is the ground truth, together with a test set xT ∈ ({0, 1}n)q. Next, L uses (xD,yD,xT )
to compute yT ∈ {−1,+1,⊔⊓}q, where ⊔⊓ represents that L abstains (rejects) from classifying the
corresponding x.

Before we define when learning is successful, we will need some notation. For q ∈ N,x ∈
{0, 1}nq

,y ∈ {−1,+1,⊔⊓}q we define

err(x,y) :=
1

q

∑
i∈[q]

1{
h(xi )̸=yi,yi ̸=⊔⊓,h(xi) ̸=⊥

}, ⊔⊓(y) := 1

q

∣∣∣{i ∈ [q] : yi = ⊔⊓
}∣∣∣ ,

which means that we count (x, y) ∈ {0, 1}n × {−1,+1,⊔⊓} as an error if h is well defined on x, y is
not an abstantion and h(x) ̸= y.

Learning is successful if it satisfies two properties.

• If xT ∼ Dq then with high probability err(xT ,yT ) and ⊔⊓(yT ) are small.

• For every xT ∈ {0, 1}nq with high probability err(xT ,yT ) is small.11

11Note that, crucially, in this case ⊔⊓(yT ) might be very high, e.g., equal to 1.
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The formal guarantee of a result from Goldwasser et al. (2020) are given in Theorem 9. Let us call
this model Transductive Learning with Rejections (TLR).

Note the differences between TLR and our definition of Adversarial Defenses. To compare the two
models we associate the learner L from TLR with B in our setup, and the party producing xT with
A in our definition. First, in TLR, B does not send f to A. Secondly, and most importantly, we do
not allow B to reply with rejections (⊔⊓) but instead require that B can “distinguish” that it is being
tested (see soundness of Definition 9). Finally, there are no apriori time bounds on either A or B in
TLR. The models are similar but a priori incomparable and any result for TLR needs to be carefully
analyzed before being used to prove that it is an Adversarial Defense.

I.2 FORMAL GUARANTEE FOR TRANSDUCTIVE LEARNING WITH REJECTIONS (TLR)

Theorem 5.3 from Goldwasser et al. (2020) adapted to our notation reads.
Theorem 9 (TLR guarantee (Goldwasser et al. (2020))). For any N ∈ N, ϵ ∈ (0, 1), h ∈ H and
distribution D over {0, 1}n:

PxD,x′
D∼DN

[
∀ xT ∈ {0, 1}nN

: err(xT , f(xT )) ≤ ϵ∗ ∧ ⊔⊓ (f (x′D)) ≤ ϵ∗
]
≥ 1− ϵ,

where ϵ∗ =
√

2d
N log (2N) + 1

N log
(
1
ϵ

)
and f = REJECTRON(xD, h(xD),xT , ϵ

∗), where f :

{0, 1}n → {−1,+1,⊔⊓} and d denotes the VC-dimension on H. REJECTRON is defined in Fig-
ure 2. in (Goldwasser et al., 2020).

REJECTRON is an algorithm that accepts a labeled training set (xD, h(xD)) and a test set xT and
returns a classifier f , which might reject some inputs. The learning is successful if with a high
probability f rejects a small fraction of DN and for every xT ∈ {0, 1}nN the error on labeled x’s in
xT is small.

I.3 ADVERSARIAL DEFENSE FOR BOUNDED VC-DIMENSION

We are ready to state the main result of this section.
Lemma 3 (Adversarial Defense for bounded VC-dimension). Let {Hn}n be a family of hypothesis
classes such that there exists a polynomial p such that for every n,Hn has a VC-dimension bounded
by p(n). There exists a family of circuits B = {Bn}n such that for every L satisfying for every n
that the support of the marginal of Ln is contained inHn, i.e., the ground truth sampled from L are
always inH, such that

B ∈1 DEFENSE

(
L, ϵ, q =

poly(n)

ϵ3
, SA =∞, SB = poly

(n
ϵ

)
, l = 1− ϵ, c = 1− ϵ, s = ϵ

)
.

Note that, by the PAC learning bound, this is a setting of parameters, where B has enough time to
learn a classifier of error ϵ. By slightly abusing the notation, we write SA = ∞, meaning that the
defense is secure against all adversaries regardless of their running time.

Proof. The proof is based on an algorithm from Goldwasser et al. (2020).

Construction of B. Let ϵ ∈ (0, 1), n ∈ N , d(n) be the VC-dimension ofHn and

N :=
d log2(d)

ϵ3
.

Let q := N . First, B, draws N labeled samples (xFRESH, h(xFRESH)). Next, it finds f ∈ H consistent
with them and sends f to A. Importantly this computation is the same as the first step of REJECTRON.

Next, B receives as input x ∈ {0, 1}nq from A. B. Let ϵ∗ :=
√

2d
N log (2N) + 1

N log
(
1
ϵ

)
. Next

B runs f ′ = REJECTRON(xFRESH, h(xFRESH),x, ϵ
∗), where REJECTRON is starting from the second

step of the algorithm (Figure 2 (Goldwasser et al., 2020)). Importantly, for every x ∈ {0, 1}n, if
f ′(x) ̸= ⊔⊓ then f(x) = f ′(x). In words, f ′ is equal to f everywhere where f ′ does not reject.

Finally B returns 1 if ⊔⊓(f ′(x)) > 2
3ϵ, and returns 0 otherwise.
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B is a Defense. First, by the standard PAC theorem we have that with probability at least 1 − ϵ,
err(f) ≤ ϵ

2 . This means that correctness holds with probability l = 1− ϵ.
Note that with our setting of N , we have that

ϵ∗ ≤ ϵ

2
.

Theorem 9 guarantees that

• if x ∈ Dq then with probability at least 1− ϵ we have that

⊔⊓(f ′(x)) ≤
ϵ

2
.

which in turn implies that with the same probability B returns b = 0. This implies that
completeness holds with probability 1− ϵ.

• for every x ∈ ({0, 1}n)q with probability at least 1− ϵ we have that

err(x, f ′(x)) ≤ ϵ

2
.

To compute soundness we want to upper bound the probability that err(x, f(x)) > 2ϵ12

and b = 0. By construction of B if b = 0 then ⊔⊓(f ′(x)) ≤ 2ϵ
3 , which means that with

probability at least 1− ϵ

err(x,y) ≤ 2ϵ

3
+
ϵ

2
< 2ϵ or b = 1.

This translates to soundness holding with s = ϵ.

REJECTRON can be implemented by a circuit of size polynomial in N and makes O( 1ϵ ) calls to an
Empirical Risk Minimizer onH (that we assume can be implemented by a circuit of size polynomial
in d), which implies the promised circuit complexity.

J WATERMARKS EXIST

Lemma 4 (Watermark for bounded VC-dimension against fast adversaries). There exists a family of
hypothesis classes {Hd}d such that for every d,Hd has VC-dimension d and a family of distributions
{Dd}d such that for every ϵ ∈

(
10000

d , 18
)

there exists a family of circuits A = {Ad}d and a family
of function classes F for which the following conditions hold. For every learning L = {Ld}d that for
every d samples Dd always and hd ∈ Hd we have that

A ∈1 WATERMARK

(
L,F , ϵ, q = O

(
1

ϵ

)
, SA = O

(
d

ϵ

)
, SB =

d

100
, l = 1− 1

100
, c = 1− 2

100
, s =

56

100

)
.

Note that the setting of parameters is such that A can learn (with high probability) a classifier of error
ϵ, but B is not able to learn a low-error classifier within its allotted circuit size SB. This contrasts
with Lemma 3, where B has a sufficiently large circuit size to learn. This is the regime of interest for
Watermarks, where the scheme is expected to be secure against B with limited circuit complexity.

Proof. Let D be the uniform distribution over [N ] for N = 100d2, where recall that [N ] =
{1, . . . , N}. Let H be the concept class of functions that have exactly d +1’s in [N ]. Note that H
has VC-dimension d. Let h ∈ H be the ground truth.

12Note that we measure the error of f not f ′.
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Construction of A. A works as follows. It draws n = O
(
d
ϵ

)
samples from D labeled with h.

Let’s call them xTRAIN. Let
A := {x ∈ [N ] : xTRAIN, h(x) = +1}, B := {x ∈ [N ] : x ∈ xTRAIN, h(x) = −1}.

A takes a uniformly random subset Aw ⊆ A of size q. It defines sets
A′ := A \Aw, B

′ := B ∪Aw.

A computes f consistent with the training set {(x,+1) : x ∈ A′} ∪ {(x,−1) : x ∈ B′}. A samples
S ∼ Dq . It defines the watermark to be x := Aw with probability 1

2 and x := S with probability 1
2 .

A sends (f,x) to B. A can be implemented with circuit complexity O
(
d
ϵ

)
.

A is a Watermark. We claim that (f,x) constitutes a watermark.

It is possible to construct a watermark of prescribed size, i.e., find a subset Aw of a given size, only
if |A| ≥ q. The probability that a single sample from D is labeled +1 is d

N , so by the Chernoff
bound (Fact 1) |A|, |B| > dn

2N ≥ q with probability 1− 1
100 , where we used that n = O

(
d
ϵ

)
, N =

100d2, q = O( 1ϵ ).

Correctness. Let h′(x) := h(x) if x ∈ [N ] \Aw and h′(x) := −h(x) otherwise. Note that h′ has
exactly d− q +1’s in [N ]. By construction, f is a classifier consistent with h′. By the PAC theorem
we know that with probability 1 − 1

100 , f has an error at most ϵ wrt to h′ (because the hypothesis
class of functions with at most d +1’s has a VC dimension of O(d)). h′ differs from h on q points, so

err(f) ≤ ϵ+ q/N = O

(
ϵ+

1

ϵd2

)
= O(ϵ). (14)

with probability 1− 1
100 , which implies that correctness is satisfied with l = 1− 1

100 .

Distinguishing of x and Dq. Note that the distribution of Aw is the same as the distribution of a
uniformly random subset of [N ] of size q (when taking into account the randomness of the choice of
h ∼ U(H)). Observe that the probability that drawing q i.i.d. samples from U([N ]) we encounter
repetitions is at most

1

N
+

2

N
+ · · ·+ q

N
≤ 3q2

N
≤ 1

100
,

because q < d
100 <

√
N

10 . This means that 1
100 is an information-theoretic upper bound on the

distinguishing advantage between x = Aw and Dq .

Moreover, B has access to at most t samples and the probability that the set of samples B draws
from Dt and Aw have empty intersection is at least 1− 1

100 . It is because it is at least (1− t
N )t ≥

(1− 1√
N
)
√

N/10 ≥ 1− 1
100 , where we used that t <

√
N

10 .13

Note that by construction f maps all elements of Aw to −1. The probability over the choice of
F ∼ Dq that F ⊆ h−1({−1}), i.e., all elements of F have true label −1, is at least(

1− d

N

)q

≥ 1− 1

100
.

The three above observations and the union bound imply that the distinguishing advantage for
distinguishing x from Dq of B is at most 4

100 and so the undetectability holds with s = 8
100 .

Unremovability. Assume, towards contradiction with unremovability, that B can find y that with
probability s′ = 1

2 + 6
100 satisfies err(x,y) ≤ 2ϵ. Notice, that err(Aw, f(Aw)) = 1 by construction.

Consider an algorithm A for distinguishing Aw from Dq. Upon receiving (f,x) it first runs y =
B(f,x) and returns 1 iff d(y, f(x)) ≥ q

2 . We know that the distinguishing advantage is at most
1
2 + 4

100 , so
1

2
Px:=Aw

[A(f,x) = 1] +
1

2
Px∼Dq [A(f,x) = 0] ≤ 1

2
+

4

100
.

13If the sets were not disjoint then B could see it as suspicious because f makes mistakes on all of Aw.
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But also note that

s′ ≤ Px∼A[err(x,y) ≤ 2ϵ]

≤ 1

2
Px:=Aw

[d(y, f(x)) ≥ (1− 2ϵ)q] +
1

2
Px∼Dq [d(y, f(x)) ≤ (2ϵ+ err(f))q]

≤ 1

2
Px:=Aw

[d(y, f(x)) ≥ q/2] + 1

2
Px∼Dq [d(y, f(x)) ≤ q/2] + 1

100

≤ 1

2
Px:=Aw

[A(f,x) = 1] +
1

2
Px∼Dq [A(f,x) = 0] +

1

100
.

Combining the two above equations we get a contradiction and thus the unremovability holds with
s′ = 1

2 + 6
100 .

Uniqueness. The following B certifies uniqueness. It draws O
(
d
ϵ

)
samples from D, let’s call

them x′TRAIN and trains f ′ consistent with it. By the PAC theorem err(f ′) ≤ ϵ with probability
at least 1 − 1

100 . Next upon receiving x ∈ {0, 1}nq
= [N ]q it returns y = f ′(x). By the fact

that x is a random subset of [N ] of size q by the Chernoff bound, the union bound we know that
err(x,y) = err(x, f ′(x)) ≤ 2ϵ with probability at least 1 − 2

100 over the choice of h. This proves
uniqueness.
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