

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PATCH REBIRTH: TOWARD FAST AND TRANSFERABLE MODEL INVERSION OF VISION TRANSFORMERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Model inversion is a widely adopted technique in data-free learning that reconstructs synthetic inputs from a pretrained model through iterative optimization, without access to original training data. Unfortunately, its application to state-of-the-art Vision Transformers (ViTs) poses a major computational challenge, due to their expensive self-attention mechanisms. To address this, *Sparse Model Inversion* (SMI) was proposed to improve efficiency by pruning and discarding seemingly unimportant patches, which were even claimed to be obstacles to knowledge transfer. However, our empirical findings suggest the opposite: even randomly selected patches can eventually acquire transferable knowledge through continued inversion. This reveals that discarding any prematurely inverted patches is inefficient, as it suppresses the extraction of class-agnostic features essential for knowledge transfer, along with class-specific features. In this paper, we propose *Patch Rebirth Inversion* (PRI), a novel approach that incrementally detaches the most important patches during the inversion process to construct sparse synthetic images, while allowing the remaining patches to continue evolving for future selection. This progressive strategy not only improves efficiency, but also encourages initially less informative patches to gradually accumulate more class-relevant knowledge, a phenomenon we refer to as the *Re-Birth* effect, thereby effectively balancing class-agnostic and class-specific knowledge. Experimental results show that PRI achieves up to 10 \times faster inversion than standard *Dense Model Inversion* (DMI) and 2 \times faster than SMI, while consistently outperforming SMI in accuracy and matching the performance of DMI.

1 INTRODUCTION

Model inversion (Fredrikson et al., 2015; Mahendran & Vedaldi, 2015; Yin et al., 2020) is a prominent technique in data-free learning, aiming to reconstruct synthetic inputs from a pretrained model via iterative optimization, without using any original inputs. In data-constrained scenarios where the original dataset is unavailable (e.g., due to privacy concerns), the synthesized inputs generated by model inversion can serve as carriers of the model’s pretrained knowledge, which can then be transferred into any target model for training. One of the predominant applications is data-free model compression, such as quantization and distillation without using original samples, where training or fine-tuning the compressed model is essential to recover performance degradation. While earlier studies on model inversion have primarily focused on convolutional neural networks (CNNs), the recent rise of Vision Transformers (ViTs) (Dosovitskiy et al., 2021) motivates the development of new approaches that exploit their architectural strengths.

However, a major drawback of model inversion is its high computational overhead, to the extent that generating only a few hundred synthetic images can take several hours even on a high-end GPU¹. This inefficiency becomes more exacerbated in ViTs, whose complexity substantially increases with the number of tokens, generally exceeding the computational cost of CNNs (He et al., 2016; Krizhevsky et al., 2012). To address this, *Sparse Model Inversion* (SMI) (Hu et al., 2024) was recently introduced, inspired by token pruning (Liang et al., 2022; Rao et al., 2021) that aims to accelerate ViT inference by discarding unimportant tokens. SMI applies a *reversed* strategy by removing less informative

¹On an RTX A6000, it takes about 1 hour to invert just 128 images of 224 \times 224 with DeiT-Base.

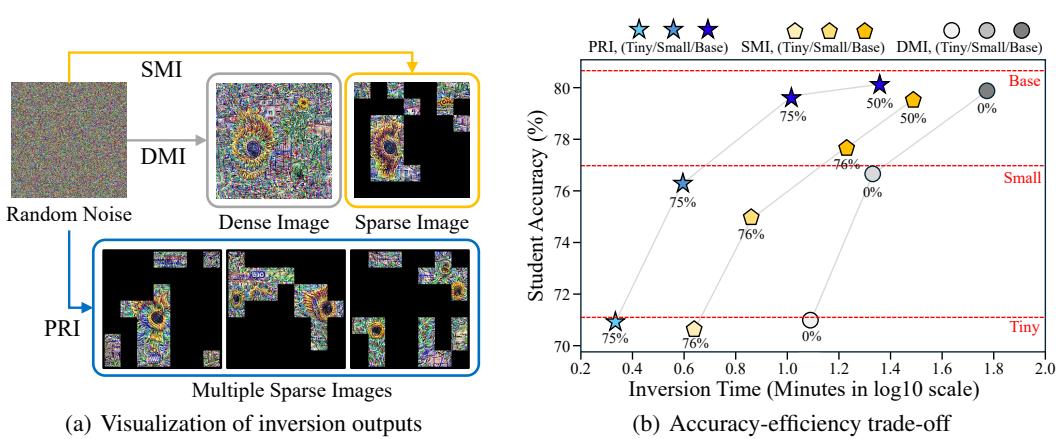


Figure 1: Comparison of DMI (Yin et al., 2020), SMI (Hu et al., 2024), and PRI (ours) on CIFAR-100. (a) Visualization illustrating the differences among the three inversion methods. (b) Student accuracy distilled from the same teacher, DeiT-Tiny/Small/Base; denoted as (T)/(S)/(B), with GPU time (in \log_{10} minutes) measured for inverting 128 samples per batch. Red dashed lines indicate teacher accuracy, and percentages denote image sparsity.

patches during inversion, instead of inference, based on its core hypothesis that these patches are not only redundant but may also hinder effective knowledge transfer.

In this paper, we revisit the core assumption of SMI and argue that retaining all patches during model inversion is indeed more effective, particularly for conveying transferable knowledge in data-free learning. Our first empirical observation is that: unlike token pruning on real images, pruning inverted patches does not strongly depend on patch importance estimated in the initial phase. In our study (see Table 1), even randomly selected patches achieved comparable performance to those selected based on importance by the end of the inversion process. This leads to our key insight: *regardless of their initial importance, any selected patches can ultimately embed highly transferable knowledge through iterative inversion*. From this perspective, SMI’s strategy of discarding unimportant patches is not only ineffective for knowledge transfer but ironically also inefficient in terms of inversion time. Once pruned, patches are permanently excluded from synthesis, regardless of any useful knowledge they may have acquired. This further causes the inversion region to gradually shrink, thereby limiting the diversity of synthesized features. To be revealed in our empirical analysis, this behavior leads to overfitting to *class-specific* features, while suppressing *class-agnostic* information, which is crucial for generalizable knowledge transfer in data-free settings.

Based on our findings above, we propose a more efficient yet more effective model inversion method for data-free knowledge transfer, called *Patch Rebirth Inversion* (PRI). Rather than generating a single sparse image through gradual patch pruning, PRI makes full use of the inverted knowledge throughout the inversion process by producing a sequence of sparse images (see Figure 1(a)). Each sparse image is constructed by isolating the most important patches at a specific point of the inversion process. Thus, these sparse images are not generated all at once, but rather progressively separated from the full image over the iterations. Interestingly, we discover that isolating important patches encourages the remaining ones to start synthesizing more meaningful features, a phenomenon we refer to as the *Re-Birth* effect. Some of these *reborn* features eventually become informative enough to form another sparse image at subsequent iterations. This progressive mechanism not only allows the generation of multiple sparse images but also increases the diversity of knowledge embedded in the synthesized images. As a result, under the same computational budget, PRI accelerates the inversion process by enabling the production of more synthetic samples. Furthermore, since each image is extracted at a different point along the inversion trajectory, they jointly capture both class-specific and class-agnostic features, leading to improved transferability.

As summarized in Figure 1(b), PRI consistently lies on the *Pareto-optimal curve* of the accuracy-efficiency trade-off, clearly achieving the most favorable balance among all compared methods. In our detailed experimental results (see Table 2), PRI achieves up to $10\times$ faster inversion than *Dense*

108 *Model Inversion* (DMI) (Yin et al., 2020), a standard method without any sparsification, and up
 109 to $2\times$ faster than SMI, while consistently delivering higher accuracy than SMI and maintaining
 110 performance close to DMI despite the substantial speedup. We attribute this superiority to PRI’s
 111 ability to effectively embed both class-agnostic and class-specific knowledge into the inverted patches,
 112 as further supported by our in-depth empirical analysis.
 113

114 2 RELATED WORK 115

116 Model inversion has long been studied across a range of contexts, from privacy attacks (Fredrikson
 117 et al., 2015; He et al., 2019; Wang et al., 2015; Yang et al., 2019) to the analysis of deep feature
 118 representations (Mahendran & Vedaldi, 2015; 2016), commonly aiming to understand and exploit
 119 various pretrained models. More recently, it has become a central component in data-free learning, a
 120 popular technique that extracts synthetic inputs from a pretrained model, without accessing original
 121 training data. Earlier works focus on convolutional neural networks (CNNs), applying model inversion
 122 to generate synthetic data for data-free quantization (Cai et al., 2020; Choi et al., 2021; Nagel et al.,
 123 2019; Xu et al., 2020; Zhang et al., 2021; Zhong et al., 2022) and knowledge distillation (Binici et al.,
 124 2022; Chen et al., 2019; Fang et al., 2019; 2021; Lopes et al., 2017; Shin & Choi, 2024; Yin et al.,
 125 2020). These approaches typically utilize convolutional features and batch normalization statistics to
 126 enhance the performance.
 127

128 **Model Inversion in ViTs.** With the popularity of Vision Transformers (ViTs), which lack batch
 129 normalization and exhibit unique architectural properties, alternative model inversion strategies
 130 have been proposed to exploit their patch-wise and self-attention mechanism. Among various
 131 attempts (Choi et al., 2025; Li et al., 2022; 2024; Ramachandran et al., 2024) to adapt model inversion
 132 to ViTs, PSAQ-ViT (Li et al., 2022) first introduced a patch similarity-aware strategy for data-free
 133 quantization by leveraging self-attention scores to identify redundant tokens and guide quantization
 134 accordingly. MimiQ (Choi et al., 2025) further explored data-free quantization for ViTs, observing
 135 that alignment of attention maps between teacher and student models significantly enhances recovery
 136 of the performance in the quantized model. Despite these efforts, they all adopt dense inversion
 137 strategies that optimize every patch simultaneously during the entire process and therefore suffer
 138 from substantial computational cost, due to the high computational complexity with respect to the
 139 number of patches.
 140

141 **Sparse Model Inversion.** To address this inefficiency, sparse model inversion (SMI) (Hu et al., 2024)
 142 was recently introduced, inspired by token pruning strategies (Kim et al., 2022; Liang et al., 2022;
 143 Rao et al., 2021; Wang et al., 2021). Instead of updating all patches, SMI selectively inverts only a
 144 subset of important patches to reduce computational overhead. This patch selection process assumes
 145 that tokens with low attention contribute little to knowledge transfer, and should be discarded as early
 146 as possible. While this may offer some efficiency gains, it overlooks a key opportunity: previously
 147 inverted patches, even if initially deemed unimportant, may still carry transferable features. According
 148 to our empirical study, discarding these patches limits the representational diversity of synthetic
 149 images. In contrast, allowing all patches to remain involved throughout the inversion, regardless
 150 of their initial importance, enables the gradual emergence of both class-specific and class-agnostic
 151 features that are essential for effective knowledge transfer.
 152

153 3 PRELIMINARIES 154

155 This section provides a formal definition of model inversion in the context of ViTs, along with a
 156 description of the attention-based token selection mechanism adopted in both SMI (Hu et al., 2024)
 157 and our proposed method.
 158

159 **Formulation.** Given a pretrained classification model f , model inversion aims to synthesize input
 160 images that reflect the knowledge learned by the model, without access to the original training data.
 161 Formally, for a target label $y \in \{1, \dots, c\}$ and a randomly initialized image $\hat{\mathbf{X}} \in \mathbb{R}^{H \times W \times C}$ (where
 162 H , W , and C denote height, width, and the number of channels, respectively), $\hat{\mathbf{X}}$ is iteratively
 163 updated by minimizing the following inversion loss:
 164

$$\mathcal{L}_{\text{inv}}(\hat{\mathbf{X}}, y; f) = \mathcal{L}_{\text{cls}}(f(\hat{\mathbf{X}}), y) + \lambda \mathcal{L}_{\text{reg}}(\hat{\mathbf{X}}), \quad (1)$$

162 where \mathcal{L}_{cls} is a classification loss that encourages the image to be predicted as class y , and \mathcal{L}_{reg} is a
 163 regularization term to enhance visual plausibility. As adopted by many existing works (Braun et al.,
 164 2024; Hatamizadeh et al., 2022; Hu et al., 2024; Yin et al., 2020), we use cross-entropy for \mathcal{L}_{cls} and
 165 total variation (TV) regularization for \mathcal{L}_{reg} .
 166

167 **ViT Inversion.** In the context of ViTs, an image $\hat{\mathbf{X}}$ needs to be divided and flattened into a
 168 sequence of N disjoint patches, denoted by $\{\mathbf{x}_j\}_{j=1}^N$, where each patch \mathbf{x}_j is of size $P \times P$ (i.e.,
 169 $\mathbf{x}_j \in \mathbb{R}^{P \times P \times C}$), and consequently $N = \frac{H \times W}{P^2}$. These patches are then linearly projected into patch
 170 embeddings, augmenting with positional encodings (to capture their spatial relationships) and a
 171 `[CLS]` token (a special token for class prediction). This augmented sequence of patches are passed
 172 through L transformer encoder layers. Each encoder layer consists of multi-head self-attention
 173 (MHSA) and feed-forward networks (FFNs), where MHSA computes scaled dot-product attention,
 174 expressed as:
 175

$$\text{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{Softmax} \left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d}} \right) \mathbf{V}, \quad (2)$$

176 where queries (\mathbf{Q}), keys (\mathbf{K}), and values (\mathbf{V}) are linear projections of input embeddings, and d
 177 is the embedding dimension. The computational complexities of MHSA and FFN are given by
 178 $\mathcal{O}(SA) = 4Nd^2 + 2N^2d$ and $\mathcal{O}(FFN) = 8Nd^2$ (Chen et al., 2023b), respectively. Since the
 179 inversion process involves repeated forward and backward passes to minimize Eq. (1), the total
 180 computational cost of ViT inversion over T iterations and I images across L layers is represented as:
 181

$$\begin{aligned} \mathcal{C}_{\text{DMI}}^{\text{SA}} &= L \cdot (4Nd^2 + 2N^2d) \cdot I \cdot T, \\ \mathcal{C}_{\text{DMI}}^{\text{FFN}} &= L \cdot 8Nd^2 \cdot I \cdot T. \end{aligned}$$

182 where $\mathcal{C}_{\text{DMI}}^{\text{SA}}$ and $\mathcal{C}_{\text{DMI}}^{\text{FFN}}$ represent the total costs of MHSA and FFN layers, respectively. Therefore,
 183 minimizing the number of patches is crucial for improving the overall efficiency of ViT inversion.
 184

185 **Patch Selection via Attention Scores.** To improve the efficiency of ViT-based methods, token (or
 186 patch) selection has become a common strategy, based on token importance. A standard practice for
 187 estimating importance is to leverage attention scores, which are derived from the matrix $\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d}}$ in
 188 Eq. (2), and to take the average over the scores from the `[CLS]` token to all other tokens, considering
 189 how much each patch contributes to the model’s prediction. Prior works such as SMI leverage
 190 these importance scores to discard less important tokens, thereby reducing computational overhead.
 191 Particularly in SMI, inverted patches that are deemed unimportant are removed early from the
 192 optimization process, with the goal of accelerating inversion while preserving essential information.
 193 In contrast, our PRI method also employs attention scores to identify important patches but does not
 194 discard unimportant ones; instead, it retains them for subsequent inversion iterations.
 195

200 4 METHODOLOGY

201 In this section, we present our proposed method, Patch Rebirth Inversion (PRI), designed to improve
 202 both the efficiency and effectiveness of ViT-based model inversion.
 203

204 4.1 REVISITING PATCH PRUNING IN MODEL INVERSION

205 We begin by revisiting the fundamental assumption underlying the Sparse Model Inversion (SMI)
 206 approach (Hu et al., 2024), particularly the claim that early removal of low-importance patches
 207 not only accelerates inversion process but also benefits the effectiveness of knowledge transfer.
 208 Through our empirical studies, we uncover two key observations that challenge this assumption:
 209 (1) the diminishing impact of patch selection as inversion progresses, and (2) the late emergence of
 210 meaningful features from initially unimportant patches, a phenomenon we call the *Re-Birth* effect.
 211

212 **Limited Impact of Selection Criterion.** Our first investigation is about how strongly the choice of
 213 patch selection criterion affects inversion effectiveness. In addition to high-attention selection, we
 214 evaluate several seemingly ineffective strategies, namely low-attention, random, and fixed-region
 215 (top) patch selection, where the selected patches remain unpruned until the end of the inversion

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Table 1: Knowledge distillation performance under different patch selection strategies in SMI: high-attention, low-attention, random, and fixed-region (top), where DeiT-Base is fine-tuned on 32 inverted CIFAR-10 images with 76% sparsity for 120 epochs.

Dataset: CIFAR-10 (Teacher: DeiT-Base, Acc: 95.4)				
Patch Selection Sparsity	High	Low	Random	Top
Model DeiT-Base	92.52	92.75	92.74	92.74

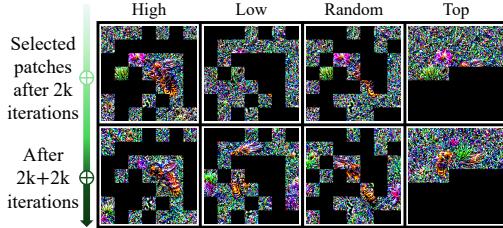


Figure 2: Illustration of the Re-Birth effect: inverted images produced by four different patch selection strategies, shown after 2k iterations (top) and 4k iterations (bottom).

process. Unlike our expectation of noticeable differences in downstream performance, our empirical results in Table 1 indicate that, given the same number of inverted images, all selection strategies yield nearly identical performance. This unexpected outcome reveals that the impact of patch selection becomes saturated as the inversion process continues, to the extent that even randomly selected patches can lead to competitive performance.

Re-Birth Effect. The counter-intuitive result above naturally raises the following question: *how can initially less important patches achieve performance nearly identical to those selected based on high importance?* By thoroughly visualizing intermediate inverted images, we discover an interesting phenomenon that initially uninformative patches undergo significant transformation when inversion continues beyond the early selection phase. As shown in Figure 2, the high-attention case exhibits little change over time (the bee was already visible after 2k iterations). In contrast, the fixed-region (top) selection approach, which initially lacked recognizable content, regenerates clear bee semantics in the remaining patches. Even low-attention and random selection approaches recover semantic details across disorganized patches. We term this phenomenon the *Re-Birth Effect*, where prolonged inversion allows previously low-importance patches to gradually accumulate meaningful class-relevant features.

These empirical findings demonstrate that the main strategy of SMI, stopping inversion early and discarding unimportant patches, must be revisited in terms of both efficiency and effectiveness. By prematurely stopping inversion for certain patches, SMI prunes valuable semantic knowledge that these patches could accumulate over additional iterations. Furthermore, this restrictive pruning biases the synthesized images towards predominantly class-specific features, while neglecting class-agnostic features essential for robust knowledge transfer, as revealed by our empirical study.

4.2 PATCH REBIRTH INVERSION

Motivated by the discoveries above, we propose a fundamentally different approach, PRI, which *enables patch rebirth* throughout the inversion process, where even initially unimportant patches are given the opportunity to be *reborn* through continued inversion iterations. To this end, our method alternates between two operations during the inversion process: (1) detachment of most important patches to be stored as independent sparse images, and (2) continued inversion on the remaining patches, allowing them to evolve and eventually qualify for detachment in future iterations.

Detachment of Important Patches. As opposed to SMI (Hu et al., 2024), which discards unimportant patches from their process, PRI detaches the most important patches at specific points of the inversion process, thereby stopping their optimization in subsequent iterations. These detached patches are then stored separately to form an independent sparse image as one of the final outputs of the inversion process. More specifically, as illustrated in Figure 3, consider the first detachment point t_1 and its corresponding sequence of inverted patches, $\{\mathbf{x}_j^{(t_1)}\}_{j=1}^N$. At this point, we compute patch-wise importance scores using the attention-based metric. We then identify the top- K patches with the highest importance, where $K < N$ is a parameter that determines the target sparsity and is set according to our detachment scheduling policy (detailed below). These top- K patches are detached from the full patch set to form an independent sparse synthetic image, denoted as $\hat{\mathbf{X}}_{t_1}$. The same procedure is applied at subsequent detachment points t_2, t_3, \dots , yielding non-overlapping

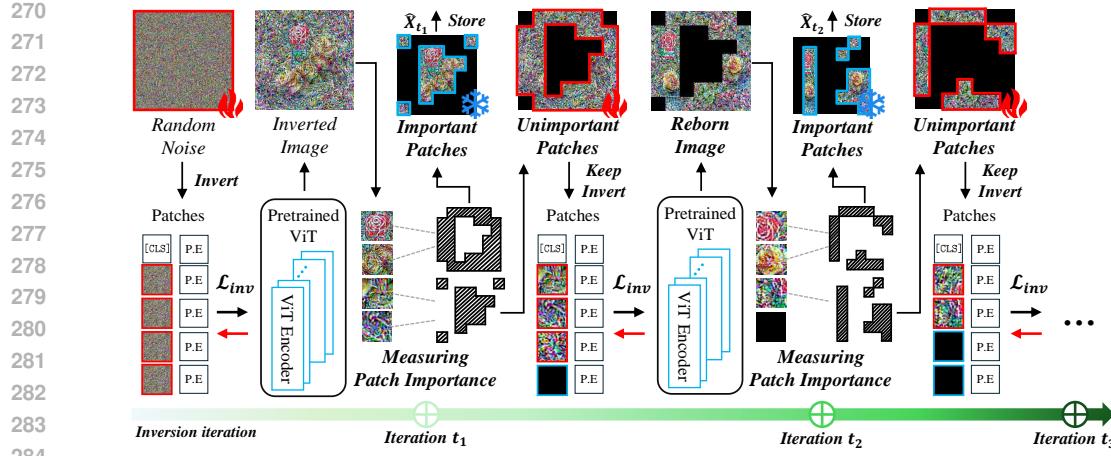


Figure 3: Overview of patch rebirth inversion. At each iteration t_i , we store blue framed important patches and mask them out (black) while the remaining red framed patches continue inversion, progressively embedding class-specific features. All stored sparse view compose the final synthesized dataset, which is used for data-free downstream tasks.

sparse images $\hat{\mathbf{X}}_{t_2}, \hat{\mathbf{X}}_{t_3}, \dots$. Notably, since these images are synthesized at different stages of the inversion process, they are expected to capture varying levels of class-agnostic features (e.g., shared background elements) and class-specific features (e.g., distinct object regions). Nonetheless, as each image consists of the most important patches at its corresponding detachment point, all are expected to contain meaningful knowledge for downstream tasks.

Inversion of Remaining Patches. At each detachment point t_k , after the top- K important patches are removed, the remaining patches, which have been deemed less important until the point, continue to be optimized in the subsequent iterations. For instance, in Figure 3, after t_1 , the remaining $N - K$ patches undergo continued inversion until t_2 , at which point another top- K subset is detached to form $\hat{\mathbf{X}}_{t_2}$. This process will be repeated from t_2 to t_3 , where another remaining set of $N - 2K$ patches will continue to get forward pass for further inversion. Note that these remaining patches after t_2 are likely to be more class-specific at t_3 , even if they start with less informative features than those of selected at t_2 . As a result, this progressive inversion strategy substantially diversifies and enriches all the generated output images, not only within each instance (as examined by Figure 4) but also across different images, making them highly effective for downstream knowledge transfer.

Sparsity Control. To control the number of patch detachments, we define a division factor v , which determines into how many partitions a full-size image will be split. Thus, v is not a hyperparameter, but a control parameter adjusting the target sparsity (i.e., $sparsity = 1 - \frac{1}{v}$). For instance, for PRI to achieve 75% sparsity, we need to set $v = 4$. Specifically, given the total number of inversion iterations T , we define the detachment points as:

$$t_k = k \cdot \left\lfloor \frac{T}{v} \right\rfloor, \quad \text{for } k \in \{1, 2, \dots, v\}.$$

According to this policy, v also specifies how many sparse images will be generated during progressive inversion, where each sparse image has the same sparsity level equally containing K patches (as mentioned above), leading to $K = \lfloor \frac{N}{v} \rfloor$ except for the final point t_v that will return all $N - K(v - 1)$ remaining patches. Over T iterations, v sparse images are sequentially generated, each representing the most informative content synthesized at different inversion points.

4.3 THEORETICAL ANALYSIS ON INVERSION COST

We finally provide a theoretical analysis that supports the computational efficiency of PRI, by comparing its cost against those of DMI and SMI. To this end, we adopt the standard complexity formulations of the MHSA and FFN layers in ViTs, $\mathcal{O}(SA) = 4Nd^2 + 2N^2d$ and $\mathcal{O}(FFN) = 8Nd^2$, respectively (Chen et al., 2023b), and express the total complexity of each inversion method over

T iterations and *I* images across *L* layers. For simplicity, we consider an idealized version of SMI, denoted as SMI*, which assumes that inversion starts directly with a reduced set of patches, without gradual pruning over iterations. Even under this optimistic assumption, the following theorem shows that PRI incurs the lowest computational cost in both MHSA and FFN layers.

Theorem 1. (Inversion cost ordering). *Given $\mathcal{O}(SA) = 4Nd^2 + 2N^2d$ and $\mathcal{O}(FFN) = 8Nd^2$ in ViTs, where N is the number of all patches and d is the embedding dimension, for the overall forward-backward costs under three inversion methods, denoted by \mathcal{C}^{SA} and \mathcal{C}^{FFN} , it holds that:*

- (a) **SA modules.** $\mathcal{C}_{PRI}^{SA} < \mathcal{C}_{SMI^*}^{SA} < \mathcal{C}_{DMI}^{SA}$ whenever $\frac{N}{d} < 3$, i.e., PRI achieves the lowest cost under the practical condition $N < 3d$ satisfied by standard ViT architectures.
- (b) **FFN modules.** $\mathcal{C}_{PRI}^{FFN} < \mathcal{C}_{SMI^*}^{FFN} < \mathcal{C}_{DMI}^{FFN}$, where the relative gain of PRI over SMI* increases with the division factor v and asymptotically approaches $2\times$.

Proof. See Appendix for detailed derivations. \square

5 EXPERIMENTS

In this section, we empirically validate the performance of our PRI method by exploring the following three questions: (1) how much PRI improves inversion efficiency, compared to standard dense inversion (DMI) as well as its faster state-of-the-art variant, SMI (Hu et al., 2024); (2) whether the synthetic images inverted by PRI lead to better knowledge transfer in two prominent data-free learning tasks, namely quantization and distillation; and finally (3) how and why PRI extracts more transferable knowledge through its progressive inversion process.

Experimental Setup. Adopting the existing setup (Hu et al., 2024), we use DeiT (Touvron et al., 2021) models with a patch size of 16 from the `timm` library (Wightman, 2019) as the backbone models for inversion. All images are inverted using Adam for 4,000 iterations with a learning rate of 0.25. The hyperparameter λ for the inversion loss in Eq. (1) is set to 10^{-4} , following standard practice (Yin et al., 2020). For the default sparsity of inverted images, we also follow the original SMI setting (i.e., 76%) by applying pruning at iterations 50, 100, 200, and 300 with the same ratio of 0.3. To match this 76% sparsity in PRI, we set $v = 4$, which yields 75% sparsity according to our detachment policy. All experiments were conducted on a single NVIDIA RTX A6000 GPU. Full details are provided in the Appendix.

5.1 INVERSION EFFICIENCY

In Table 2, we report the inversion throughput (i.e., the number of iterations per second), computational cost (FLOPs), and GPU memory consumption of different inversion methods using DeiT architectures when synthesizing 128 images per batch. As theoretically proved in Theorem 1, PRI achieves up to $2\times$ faster inversion than SMI and $10\times$ faster inversion than DMI as the division factor v increases. PRI also reduces FLOPs by up to 50% and GPU memory usage by up to 60% compared to SMI. Importantly, the efficiency gains of PRI become more notable at higher sparsity levels, yielding increasingly larger margins over SMI. Overall, these empirical results demonstrate that PRI is significantly more efficient than both DMI and the state-of-the-art SMI method.

5.2 EFFECTIVENESS IN DATA-FREE KNOWLEDGE TRANSFER

Given the superior efficiency of PRI shown in Table 2, we now evaluate how effectively the inverted images convey pretrained knowledge in two prominent data-free knowledge transfer tasks, quantization and knowledge distillation.

Quantization. Table 3(a) presents the resulting accuracy of *quantization-aware training* (QAT), where 10k inverted images from DeiT-Base are used to fine-tune quantized models for 100 epochs with a learning rate of 0.001. Specifically, we adopt *learned step size quantization* (LSQ) (Esser et al., 2020) for fine-tuning, using only inverted images without access to the original training data. Despite limited room for improving over the original model accuracy, PRI even outperforms DMI at 50% sparsity and thus achieving faster inversion, and shows only a minor accuracy drop at 86%

378
 379 Table 2: Inversion efficiency on DeiT-Base across various sparsity levels. Throughput is the inversion
 380 speed, measuring inversion iterations per second. The changes in **red** and **blue** refer to the comparison
 381 with each sparsity level of SMI. v is division factor. More results are included in the Appendix.

Method Sparsity	DMI	SMI			PRI		
	0%	50%	76%	86%	50% ($v = 2$)	75% ($v = 4$)	86% ($v = 7$)
Throughput (its/s) \uparrow	1.10	2.20	3.92	5.58	2.88 (+30.9%)	6.40 (+63.3%)	11.81 (+111.6%)
FLOPs (T) \downarrow	13.43	6.74	3.45	2.13	5.02 (-25.5%)	2.09 (-39.4%)	1.07 (-49.8%)
GPU Memory (GB) \downarrow	23.42	10.77	6.26	4.61	8.99 (-16.5%)	4.28 (-31.6%)	2.68 (-41.9%)

382
 383
 384 Table 3: Downstream task results on data-free quantization and knowledge distillation using DMI,
 385 SMI, and PRI across various sparsity levels. (a) Quantization results on ImageNet-1k, where W4/A8
 386 refers to the bit precision for weight and activation quantization, respectively. (b) Knowledge
 387 distillation results on CIFAR-100. The changes in **red** refer to the comparison with each sparsity level
 388 of SMI. v is division factor. More results are included in the Appendix.

(a) Quantization Results – ImageNet-1k (Original: DeiT-Base (32 bits), Acc: 81.7%)							
Method Sparsity	DMI	SMI			PRI		
	0%	50%	76%	86%	50% ($v = 2$)	75% ($v = 4$)	86% ($v = 7$)
Quantized	W4/A8	80.19	80.29	79.77	79.20	80.36 (+0.07)	80.13 (+0.46)
Accuracy (%)	W8/A8	80.73	80.77	80.33	79.85	80.78 (+0.01)	80.70 (+0.37)

(b) Knowledge Distillation Results – CIFAR-100 (Teacher: DeiT-Base, Acc: 80.6%)							
Method Sparsity	DMI	SMI			PRI		
	0%	50%	76%	86%	50% ($v = 2$)	75% ($v = 4$)	86% ($v = 7$)
Student	DeiT-Tiny	54.90	48.34	24.31	3.55	54.57 (+6.23)	43.32 (+19.01)
Accuracy (%)	DeiT-Small	67.62	62.55	45.05	11.25	67.70 (+5.15)	62.93 (+17.87)
	DeiT-Base	79.76	79.41	77.55	70.22	79.98 (+0.57)	79.57 (+1.98)

404
 405 sparsity, where PRI achieves a $10\times$ speedup over DMI in Table 2. Compared to SMI, PRI consistently
 406 maintains larger accuracy margins, especially as the sparsity level increases.

407
 408 **Distillation.** Table 3(b) presents the results of knowledge distillation, where 128 images per batch
 409 are inverted to construct a synthetic training set for student models. Each batch is used only once,
 410 and no access to original training data is allowed. The teacher model is DeiT-Base pretrained on
 411 ImageNet (Deng et al., 2009) yet fine-tuned on CIFAR-100 (Krizhevsky & Hinton, 2009), while
 412 the student models are DeiT models pretrained only on ImageNet. Aligning with the QAT results
 413 in Table 3(a), PRI even outperforms DMI at 50% sparsity and achieves comparable performance at
 414 higher sparsity levels when distilling into the DeiT-Base student. In contrast, when distilling into
 415 smaller student models, such as DeiT-Tiny, using highly sparse inverted images (i.e., 75% and 86%
 416 sparsity) becomes more challenging, as DMI clearly outperforms both SMI and PRI at 86% sparsity.
 417 Nevertheless, PRI still manages to achieve performance close to DMI at 50% sparsity even with the
 418 DeiT-Tiny student, and consistently surpasses SMI by a large margin in all cases. SMI, in particular,
 419 abruptly fails to transfer knowledge to smaller architectures at higher sparsity levels, showing a sharp
 420 degradation in performance.

421 In summary, PRI enables highly effective data-free knowledge transfer, consistently outperforming
 422 SMI and matching or exceeding DMI across both quantization and distillation tasks, even under high
 423 sparsity and thus faster inversion.

424 5.3 TRANSFERABILITY ANALYSIS OF PRI

425 To further understand how and why PRI extracts more transferable knowledge through its progressive
 426 inversion process, we investigate its ability to preserve class-agnostic information and support
 427 generalized knowledge transfer beyond class-specific reconstruction.

428
 429 **One-Class Distillation.** We first examine whether PRI can effectively transfer class-agnostic
 430 knowledge. To this end, we design an extreme scenario, called *one-class distillation*, where knowledge
 431 distillation is performed using inverted images, all corresponding to a single class (airplane in
 432 CIFAR-10). Somewhat surprisingly, as shown in Figure 4, the student trained on only “airplane”

432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	
Airplane	336	382	231	0	0	14	15	0	22	0	Airplane	85	69	1	380	0
Auto	234	349	57	5	0	40	0	0	290	25	Auto	205	125	4	16	18
Bird	28	504	417	0	2	13	0	0	34	2	Bird	38	4	5	22	3
Cat	75	760	56	14	5	12	1	1	24	52	Cat	70	20	0	27	43
Deer	20	825	84	0	8	24	0	1	34	4	Deer	151	0	1	162	119
Dog	96	687	83	2	1	54	7	0	18	52	Dog	102	7	1	4	112
Frog	111	690	107	0	26	23	27	0	6	10	Frog	15	0	0	32	1
Horse	170	713	43	0	2	7	0	0	36	29	Horse	244	11	3	84	147
Ship	282	325	84	0	0	112	4	0	179	14	Ship	50	84	6	174	1
Truck	351	329	216	11	1	13	0	0	76	3	Truck	212	102	21	16	4

DMI

SMI

PRI

Figure 4: Confusion matrices of student models trained exclusively on inverted images from a single class, “airplane”, in CIFAR-10, using different inversion methods. The architecture of both teacher and student is DeiT-Base. While students trained with DMI and SMI fail to generalize beyond the target class, the student trained with PRI-inverted images exhibits broad generalization across all classes.

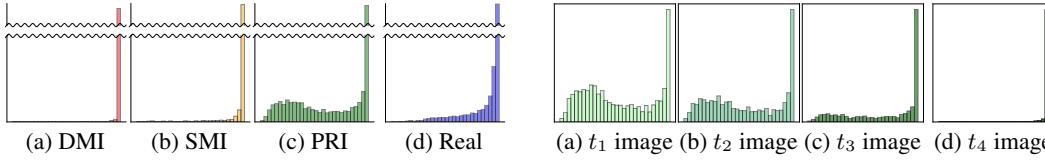


Figure 5: Distribution of pretrained teacher model’s confidence for 10k synthetic and real images on CIFAR-10. X-axis is confidence and Y-axis is frequency.

images inverted via PRI achieves reasonably strong performance across all 10 classes. In contrast, as intuitively expected, both DMI and SMI fail to capture generalized knowledge across classes, probably due to the fact that their inverted images predominantly encode class-specific features. These results suggest that PRI can extract knowledge that is not only class-agnostic but also transferable even through single-class inversion.

Confidence Analysis. Next, generating 10k inverted images evenly across all 10 classes in CIFAR-10, we also report the distributions of the maximum class probabilities (i.e., confidences) predicted by the teacher model. As shown in Figure 5, only PRI exhibits a wide and smooth confidence distribution, showing a level of smoothness comparable to that observed in real images. In contrast, both DMI and SMI yield overly confident predictions, with most values concentrated near 1.0. This also confirms that their inverted images predominantly encode class-specific features while overlooking class-agnostic information.

Progressive Shift from General to Specific. Finally, we analyze how PRI gradually transitions from capturing general, class-agnostic knowledge to more specific, class-dependent features during its progressive inversion process. With a division factor $v = 4$, we extract 2.5k inverted images at each of four detachment points, t_1, \dots, t_4 , and present the confidence distributions of the images corresponding to each detachment point. As shown in Figure 6, the confidence distributions gradually shift from the smooth and broad at t_1 to the sharp and peaked at t_4 , reflecting accumulation of class-specific features. This progressive transition enables PRI to retain a broader spectrum of features throughout inversion, in contrast to SMI, which focuses only on class-dependent information.

6 CONCLUSION

Motivated by our empirical finding that patches initially considered unimportant can become informative through continued inversion, we proposed Patch Rebirth Inversion (PRI), a method that efficiently synthesizes multiple sparse images capturing both class-agnostic and class-specific features. Extensive experiments demonstrated that PRI significantly accelerates inversion while consistently achieving strong performance across data-free quantization and knowledge distillation tasks.

486 REPRODUCIBILITY STATEMENT
487

488 We have taken several measures to ensure the reproducibility of our results. All implementation details,
489 including model architectures, training procedures, and hyperparameter configurations, are described
490 in Section 5 of the main text and Appendix D. We provide a complete description of the overall
491 pipeline in Figure 3. To further facilitate reproducibility, we will provide an anonymized GitHub link:
492 <https://anonymous.4open.science/r/PRI-4C56>. Additionally, all baseline methods
493 are implemented using publicly available codes and hyperparameters are carefully tuned following
494 the guidelines in their original papers. Finally, proof of the theoretical claim is included in Appendix
495 F.

496 REFERENCES
497

498 Kuluhan Binici, Shivam Aggarwal, Nam Trung Pham, Karianto Leman, and Tulika Mitra. Robust
499 and resource-efficient data-free knowledge distillation by generative pseudo replay. In *Thirty-Sixth
500 AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative
501 Applications of Artificial Intelligence, IAAI 2022, The Twelfth Symposium on Educational Advances
502 in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022*, pp. 6089–6096.
503 AAAI Press, 2022.

504 Steven Braun, Martin Mundt, and Kristian Kersting. Deep classifier mimicry without data access. In
505 Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li (eds.), *International Conference on Artificial
506 Intelligence and Statistics, 2-4 May 2024, Palau de Congressos, Valencia, Spain*, volume 238 of
507 *Proceedings of Machine Learning Research*, pp. 4762–4770. PMLR, 2024.

508 Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer. Zeroq:
509 A novel zero shot quantization framework. In *2020 IEEE/CVF Conference on Computer Vision
510 and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020*, pp. 13166–13175.
511 Computer Vision Foundation / IEEE, 2020.

512 Hanting Chen, Yunhe Wang, Chang Xu, Zhaohui Yang, Chuanjian Liu, Boxin Shi, Chunjing Xu,
513 Chao Xu, and Qi Tian. Data-free learning of student networks. In *2019 IEEE/CVF International
514 Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2,
515 2019*, pp. 3513–3521. IEEE, 2019.

516 Jiacheng Chen, Bin-Bin Gao, Zongqing Lu, Jing-Hao Xue, Chengjie Wang, and Qingmin Liao.
517 Apanet: Adaptive prototypes alignment network for few-shot semantic segmentation. *IEEE Trans.
518 Multim.*, 25:4361–4373, 2023a.

519 Mengzhao Chen, Mingbao Lin, Ke Li, Yunhang Shen, Yongjian Wu, Fei Chao, and Rongrong Ji.
520 Cf-vit: A general coarse-to-fine method for vision transformer. In Brian Williams, Yiling Chen,
521 and Jennifer Neville (eds.), *Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023,
522 Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth
523 Symposium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA,
524 February 7-14, 2023*, pp. 7042–7052. AAAI Press, 2023b.

525 Kanghyun Choi, Deokki Hong, Noseong Park, Youngsok Kim, and Jinho Lee. Qimera: Data-
526 free quantization with synthetic boundary supporting samples. In Marc’Aurelio Ranzato, Alina
527 Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), *Advances in
528 Neural Information Processing Systems 34: Annual Conference on Neural Information Processing
529 Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*, pp. 14835–14847, 2021.

530 Kanghyun Choi, Hyeyoon Lee, Dain Kwon, Sunjong Park, Kyuyeun Kim, Noseong Park, Jonghyun
531 Choi, and Jinho Lee. Mimiq: Low-bit data-free quantization of vision transformers with encourag-
532 ing inter-head attention similarity. In Toby Walsh, Julie Shah, and Zico Kolter (eds.), *AAAI-25,
533 Sponsored by the Association for the Advancement of Artificial Intelligence, February 25 - March
534 4, 2025, Philadelphia, PA, USA*, pp. 16037–16045. AAAI Press, 2025.

535 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
536 hierarchical image database. In *2009 IEEE Computer Society Conference on Computer Vision and
537 Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA*, pp. 248–255. IEEE
538 Computer Society, 2009.

540 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 541 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 542 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
 543 In *9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,*
 544 *May 3-7, 2021*. OpenReview.net, 2021.

545 Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dhar-
 546 mendra S. Modha. Learned step size quantization. In *8th International Conference on Learning*
 547 *Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020*. OpenReview.net, 2020.

548

549 Gongfan Fang, Jie Song, Chengchao Shen, Xinchao Wang, Da Chen, and Mingli Song. Data-free
 550 adversarial distillation. *CoRR*, abs/1912.11006, 2019.

551

552 Gongfan Fang, Jie Song, Xinchao Wang, Chengchao Shen, Xingen Wang, and Mingli Song. Con-
 553 trastive model inversion for data-free knowledge distillation. *CoRR*, abs/2105.08584, 2021.

554

555 Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence
 556 information and basic countermeasures. In Indrajit Ray, Ninghui Li, and Christopher Kruegel
 557 (eds.), *Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications*
 558 *Security, Denver, CO, USA, October 12-16, 2015*, pp. 1322–1333. ACM, 2015.

559

560 Yifan Hao, Huiping Cao, K. Selcuk Candan, Jiefei Liu, Huiying Chen, and Ziwei Ma. Class-specific
 561 attention (CSA) for time-series classification. *CoRR*, abs/2211.10609, 2022.

562

563 Ali Hatamizadeh, Hongxu Yin, Holger Roth, Wenqi Li, Jan Kautz, Daguang Xu, and Pavlo Molchanov.
 564 Gradvit: Gradient inversion of vision transformers. In *IEEE/CVF Conference on Computer Vision*
 565 *and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022*, pp. 10011–10020.
 566 IEEE, 2022.

567

568 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 569 recognition. In *2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,*
 570 *Las Vegas, NV, USA, June 27-30, 2016*, pp. 770–778. IEEE Computer Society, 2016.

571

572 Zecheng He, Tianwei Zhang, and Ruby B. Lee. Model inversion attacks against collaborative
 573 inference. In David M. Balenson (ed.), *Proceedings of the 35th Annual Computer Security*
 574 *Applications Conference, ACSAC 2019, San Juan, PR, USA, December 09-13, 2019*, pp. 148–162.
 575 ACM, 2019.

576

577 Zixuan Hu, Yongxian Wei, Li Shen, Zhenyi Wang, Lei Li, Chun Yuan, and Dacheng Tao. Sparse
 578 model inversion: Efficient inversion of vision transformers for data-free applications. In *Forty-first*
 579 *International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*.
 580 OpenReview.net, 2024.

581

582 Sehoon Kim, Sheng Shen, David Thorsley, Amir Gholami, Woosuk Kwon, Joseph Hassoun, and
 583 Kurt Keutzer. Learned token pruning for transformers. In Aidong Zhang and Huzeifa Rangwala
 584 (eds.), *KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,*
 585 *Washington, DC, USA, August 14 - 18, 2022*, pp. 784–794. ACM, 2022.

586

587 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
 588 Technical report, University of Toronto, 2009. Technical Report.

589

590 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolu-
 591 tional neural networks. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges, Léon
 592 Bottou, and Kilian Q. Weinberger (eds.), *Advances in Neural Information Processing Systems*
 593 *25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a*
meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States, pp. 1106–1114, 2012.

594

595 Zhikai Li, Liping Ma, Mengjuan Chen, Junrui Xiao, and Qingyi Gu. Patch similarity aware data-
 596 free quantization for vision transformers. In Shai Avidan, Gabriel J. Brostow, Moustapha Cissé,
 597 Giovanni Maria Farinella, and Tal Hassner (eds.), *Computer Vision - ECCV 2022 - 17th European*
 598 *Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XI*, volume 13671 of *Lecture*
 599 *Notes in Computer Science*, pp. 154–170. Springer, 2022.

594 Zhikai Li, Mengjuan Chen, Junrui Xiao, and Qingyi Gu. Psaq-vit V2: toward accurate and general
 595 data-free quantization for vision transformers. *IEEE Trans. Neural Networks Learn. Syst.*, 35(12):
 596 17227–17238, 2024.

597 Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song, Jue Wang, and Pengtao Xie. Not all
 598 patches are what you need: Expediting vision transformers via token reorganizations. *CoRR*,
 599 abs/2202.07800, 2022.

600 Raphael Gontijo Lopes, Stefano Fenu, and Thad Starner. Data-free knowledge distillation for deep
 601 neural networks. *CoRR*, abs/1710.07535, 2017.

602 Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by inverting
 603 them. In *IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA,
 604 USA, June 7-12, 2015*, pp. 5188–5196. IEEE Computer Society, 2015.

605 Aravindh Mahendran and Andrea Vedaldi. Visualizing deep convolutional neural networks using
 606 natural pre-images. *Int. J. Comput. Vis.*, 120(3):233–255, 2016.

607 Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization
 608 through weight equalization and bias correction. In *2019 IEEE/CVF International Conference
 609 on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019*, pp.
 610 1325–1334. IEEE, 2019.

611 Akshat Ramachandran, Souvik Kundu, and Tushar Krishna. Clamp-vit: Contrastive data-free learning
 612 for adaptive post-training quantization of vit. In Ales Leonardis, Elisa Ricci, Stefan Roth, Olga
 613 Russakovsky, Torsten Sattler, and Gü̈l Varol (eds.), *Computer Vision - ECCV 2024 - 18th European
 614 Conference, Milan, Italy, September 29-October 4, 2024, Proceedings, Part LXVII*, volume 15125
 615 of *Lecture Notes in Computer Science*, pp. 307–325. Springer, 2024.

616 Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamievit:
 617 Efficient vision transformers with dynamic token sparsification. In Marc’Aurelio Ranzato, Alina
 618 Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), *Advances in
 619 Neural Information Processing Systems 34: Annual Conference on Neural Information Processing
 620 Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*, pp. 13937–13949, 2021.

621 Hyunjune Shin and Dong-Wan Choi. Teacher as a lenient expert: Teacher-agnostic data-free
 622 knowledge distillation. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (eds.),
 623 *Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on
 624 Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational
 625 Advances in Artificial Intelligence, EAAI 2024, February 20-27, 2024, Vancouver, Canada*, pp.
 626 14991–14999. AAAI Press, 2024.

627 Alexandros Stergiou, Ronald Poppe, and Remco C. Veltkamp. Learning class regularized features for
 628 action recognition. *CoRR*, abs/2002.02651, 2020.

629 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
 630 Jégou. Training data-efficient image transformers & distillation through attention. In Marina Meila
 631 and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning,
 632 ICML 2021, 18-24 July 2021, Virtual Event*, volume 139 of *Proceedings of Machine Learning
 633 Research*, pp. 10347–10357. PMLR, 2021.

634 Yue Wang, Cheng Si, and Xintao Wu. Regression model fitting under differential privacy and
 635 model inversion attack. In Qiang Yang and Michael J. Wooldridge (eds.), *Proceedings of the
 636 Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
 637 Argentina, July 25-31, 2015*, pp. 1003–1009. AAAI Press, 2015.

638 Yulin Wang, Rui Huang, Shiji Song, Zeyi Huang, and Gao Huang. Not all images are worth 16x16
 639 words: Dynamic vision transformers with adaptive sequence length. *CoRR*, abs/2105.15075, 2021.

640 Yongxian Wei, Zixuan Hu, Li Shen, Zhenyi Wang, Chun Yuan, and Dacheng Tao. Open-vocabulary
 641 customization from CLIP via data-free knowledge distillation. In *The Thirteenth International
 642 Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net,
 643 2025.

648 Ross Wightman. Pytorch image models. [https://github.com/rwightman/](https://github.com/rwightman/pytorch-image-models)
 649 pytorch-image-models, 2019. Accessed: 2025-07-26.
 650

651 Shoukai Xu, Haokun Li, Bohan Zhuang, Jing Liu, Jiezhang Cao, Chuangrun Liang, and Mingkui
 652 Tan. Generative low-bitwidth data free quantization. In Andrea Vedaldi, Horst Bischof, Thomas
 653 Brox, and Jan-Michael Frahm (eds.), *Computer Vision - ECCV 2020 - 16th European Conference,
 654 Glasgow, UK, August 23-28, 2020, Proceedings, Part XII*, volume 12357 of *Lecture Notes in
 Computer Science*, pp. 1–17. Springer, 2020.
 655

656 Ziqi Yang, Ee-Chien Chang, and Zhenkai Liang. Adversarial neural network inversion via auxiliary
 657 knowledge alignment. *CoRR*, abs/1902.08552, 2019.
 658

659 Hongxu Yin, Pavlo Molchanov, José M. Álvarez, Zhizhong Li, Arun Mallya, Derek Hoiem, Niraj K.
 660 Jha, and Jan Kautz. Dreaming to distill: Data-free knowledge transfer via deepinversion. In *2020
 661 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA,
 662 USA, June 13-19, 2020*, pp. 8712–8721. Computer Vision Foundation / IEEE, 2020.

663 Xiangguo Zhang, Haotong Qin, Yifu Ding, Ruihao Gong, Qinghua Yan, Renshuai Tao, Yuhang Li,
 664 Fengwei Yu, and Xianglong Liu. Diversifying sample generation for accurate data-free quantization.
 665 In *IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25,
 666 2021*, pp. 15658–15667. Computer Vision Foundation / IEEE, 2021.

667 Zilong Zhang, Zhibin Zhao, Deyu Meng, Xingwu Zhang, and Xuefeng Chen. CA2: class-agnostic
 668 adaptive feature adaptation for one-class classification. *CoRR*, abs/2309.01483, 2023.
 669

670 Yunshan Zhong, Mingbao Lin, Gongrui Nan, Jianzhuang Liu, Baochang Zhang, Yonghong Tian,
 671 and Rongrong Ji. Intraq: Learning synthetic images with intra-class heterogeneity for zero-shot
 672 network quantization. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition,
 673 CVPR 2022, New Orleans, LA, USA, June 18-24, 2022*, pp. 12329–12338. IEEE, 2022.
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 TECHNICAL APPENDICES
 703

704 PATCH REBIRTH: TOWARD FAST AND TRANSFERABLE MODEL INVERSION OF
 705 VISION TRANSFORMERS
 706

707 In this Appendix, we provide additional materials supporting our main paper. We begin by reviewing
 708 additional related work and offering a detailed explanation of the inversion loss introduced in Eq. (1).
 709 Next, we provide the pseudocode for our proposed patch rebirth inversion algorithm. Further
 710 experimental details, including experimental setups and hyperparameters, are elaborated. We present
 711 supplementary experimental results, encompassing analyses of image properties at each detachment
 712 point, t-SNE visualizations of inverted features, and extended quantitative evaluations. The proof for
 713 Theorem 1 is presented. Finally, we describe visualization methodologies, and provide additional
 714 visualizations demonstrating the re-birth effect.
 715

716 A MORE RELATED WORKS
 717

718 **Class-Specific and Class-Agnostic Features.** Recent works in representation learning have focused
 719 on disentangling class-agnostic and class-specific features to improve generalization and transferabil-
 720 ity across various tasks (Stergiou et al., 2020; Zhang et al., 2023). Class-specific features are typically
 721 aligned with discriminative information tightly coupled with a particular class, while class-agnostic
 722 features capture generic patterns such as texture, shape, and structure that are useful across classes. A
 723 class-specific attention mechanism was proposed to highlight discriminative temporal features and
 724 improve time-series classification performance across multiple classes (Hao et al., 2022). To mitigate
 725 biased classification in few-shot segmentation, an adaptive prototype alignment method was intro-
 726 duced, combining class-specific and class-agnostic prototypes to enhance feature comparisons and
 727 generalization (Chen et al., 2023a). While these works have explored class-aware and class-invariant
 728 representations in supervised settings, our work investigates how such distinctions naturally emerge
 729 in the process of model inversion. Unlike prior work that explicitly disentangles these two types via
 730 architectural designs or supervision, we show that different inversion sequences can implicitly control
 731 the balance of these features, which is especially important in data-free scenarios.
 732

733 B DETAILED EXPLANATION OF INVERSION LOSS
 734

735 In this section, we provide a detailed description of each loss component used for model inversion in
 736 Eq. (1), specifically the classification loss \mathcal{L}_{inv} and the regularization loss \mathcal{L}_{reg} .
 737

738 **Classification Loss.** Following prior inversion methods (Hu et al., 2024; Yin et al., 2020), we adopt
 739 the standard cross-entropy loss as our classification loss, defined as:

$$740 \mathcal{L}_{\text{cls}}(f(\hat{\mathbf{X}}), y) = - \sum_{i=1}^c \mathbb{I}[i = y] \cdot \log \left(\frac{\exp(f(\hat{\mathbf{X}}))}{\sum_{j=1}^c \exp(f_j(\hat{\mathbf{X}}))} \right),$$

741 where $f(\hat{\mathbf{X}}) \in \mathbb{R}^c$ represents the output logits from the pretrained classifier f , c is the total number
 742 of classes, and y denotes the target class for the inverted image. This loss encourages the synthesized
 743 image $\hat{\mathbf{X}}$ to be confidently classified as the target class y .
 744

745 **Regularization Loss.** For visual plausibility, we adopt total variation (TV) regularization, commonly
 746 utilized to encourage smoothness (Hatamizadeh et al., 2022). TV regularization is formally expressed
 747 as:
 748

$$749 \mathcal{L}_{\text{reg}}(\hat{\mathbf{X}}) = \sum_{i=2}^H \sum_{j=2}^W \left(\left\| \hat{\mathbf{X}}_{i,j} - \hat{\mathbf{X}}_{i-1,j} \right\|_2 + \left\| \hat{\mathbf{X}}_{i,j} - \hat{\mathbf{X}}_{i,j-1} \right\|_2 \right. \\ 750 \left. + \left\| \hat{\mathbf{X}}_{i,j} - \hat{\mathbf{X}}_{i-1,j-1} \right\|_2 \right) + \sum_{i=2}^H \sum_{j=1}^{W-1} \left\| \hat{\mathbf{X}}_{i,j} - \hat{\mathbf{X}}_{i-1,j+1} \right\|_2,$$

756 where $\hat{\mathbf{X}}_{i,j}$ denotes the pixel value at spatial coordinates (i, j) of the inverted image. By penalizing
 757 large intensity changes between adjacent pixels, this loss term significantly improves the naturalness
 758 and continuity of the generated images.

759 Combining these two terms with a balancing hyperparameter λ , we obtain the overall inversion loss
 760 used throughout our experiments:

$$762 \mathcal{L}_{\text{inv}}(\hat{\mathbf{X}}, y; f) = \mathcal{L}_{\text{cls}}(f(\hat{\mathbf{X}}), y) + \lambda \mathcal{L}_{\text{reg}}(\hat{\mathbf{X}}). \\ 763$$

764 As mentioned in the main paper, we set $\lambda = 10^{-4}$, following standard practice (Yin et al., 2020).
 765

766 C PSEUDOCODE OF PATCH REBIRTH INVERSION

767 To clearly present the implementation details of our approach, we provide the pseudocode of patch
 768 rebirth inversion in Algorithm 1. The algorithm describes how PRI progressively stores important
 769 patches as sparse images at each detachment point while continuing to invert the remaining unimpor-
 770 tant patches. The formulation follows the notation introduced in the preliminaries section and omits
 771 auxiliary regularization or architectural specifics for clarity.

774 Algorithm 1 Patch Rebirth Inversion (PRI)

775 **Input:** Pretrained model f , total iterations T , division factor v , random noise $\hat{\mathbf{X}}_{t_0}$, target label y
Output: Set of sparse synthetic images \mathcal{S}

776 1: Initialize: $\mathcal{S} \leftarrow \emptyset$, $\hat{\mathbf{X}} \leftarrow \hat{\mathbf{X}}_{t_0}$, $K \leftarrow \lfloor \frac{N}{v} \rfloor$, active patch set $\mathcal{P} \leftarrow \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$
 777 2: **for** $t \leftarrow 1$ **to** T **do**
 778 3: **if** $t = k \cdot \lfloor \frac{T}{v} \rfloor$ **for some** $k \in \{1, \dots, v - 1\}$ **then**
 779 4: Compute patch-wise importance over \mathcal{P} (see Preliminaries section)
 780 5: $\mathcal{P}_{\text{imp}} \leftarrow$ top- K most important patches in \mathcal{P}
 781 6: $\hat{\mathbf{X}}_k \leftarrow$ synthetic image composed of patches in \mathcal{P}_{imp}
 782 7: $\mathcal{S} \leftarrow \mathcal{S} \cup \{\hat{\mathbf{X}}_{t_k}\}$ ▷ Store current sparse image
 783 8: $\mathcal{P} \leftarrow \mathcal{P} \setminus \mathcal{P}_{\text{imp}}$ ▷ Detach important patches
 784 9: $\hat{\mathbf{X}} \leftarrow$ image composed of remaining patches in \mathcal{P}
 785 10: **end if**
 786 11: Compute $\mathcal{L}_{\text{inv}}(\hat{\mathbf{X}}, y; f)$ ▷ Eq. (1)
 787 12: Update $\hat{\mathbf{X}} \leftarrow \hat{\mathbf{X}} - \eta \cdot \nabla_{\hat{\mathbf{X}}} \mathcal{L}_{\text{inv}}$
 788 13: **end for**
 789 14: $\hat{\mathbf{X}}_{t_v} \leftarrow$ final synthetic image with remaining patches in \mathcal{P}
 790 15: $\mathcal{S} \leftarrow \mathcal{S} \cup \{\hat{\mathbf{X}}_{t_v}\}$ ▷ Store final sparse image
 791 16: **return** \mathcal{S}

792 Given a pretrained classifier f , an initial noise image $\hat{\mathbf{X}}_{t_0}$, and a target label y , PRI performs inversion
 793 over T iterations. The core idea is to progressively detach the most important patches, based on
 794 attention-derived importance scores, at regularly spaced detachment points determined by the division
 795 factor v . At each detachment point t_k (Line 3), the top- K patches (with $K = \lfloor \frac{N}{v} \rfloor$) are extracted to
 796 construct an intermediate sparse image $\hat{\mathbf{X}}_{t_k}$ (Lines 4-6), which is stored in the output set \mathcal{S} (Line
 797 7). The remaining patches continue to be inverted in subsequent iterations, allowing previously
 798 unimportant regions to accumulate more class-specific information (Lines 11-12). This process
 799 repeats until the final step $t = T$, where the last remaining patches are stored as the final sparse image
 800 $\hat{\mathbf{X}}_{t_v}$ (Lines 14-15).

801 D FULL EXPERIMENTAL DETAILS

802 To further evaluate inversion performance across various sparsity levels, we additionally consider
 803 the sparsity levels of 50% and 86%. In PRI, these correspond to division factors $v = 2$ and
 804 $v = 7$, respectively. For fair comparisons, we adjust the pruning ratios in SMI to match the target
 805 sparsity, setting them to (0.16, 0.16, 0.16, 0.16) for 50%, and (0.39, 0.39, 0.39, 0.39) for 86%, while

810 maintaining the same pruning iteration schedule fixed. For the downstream tasks in Tables 3(a) and
811 3(b), we employ Kullback-Leibler divergence, a standard objective function in knowledge transfer
812 literature.

813 In terms of implementation details, to synthesize 128 images with PRI, we invert 64 images for $v = 2$,
814 32 images for $v = 4$, and 18 images for $v = 7$. Since 128 is not exactly divided by 7, we generate 126
815 images per batch in the case of $v = 7$. While this yields a slight computational advantage in Table 2,
816 it results in a marginal disadvantage in Tables 3(a) and 3(b). We consider these small differences
817 negligible for the purpose of comparison.

818 In Table A3, we use 128 images per batch and conduct 120 batches for CIFAR-10 and 1,000 batches
819 for CIFAR-100 and Tiny-ImageNet to ensure sufficient training convergence. Although alternative
820 strategies exist (e.g., training over multiple epochs), we evaluate the quality of inversion by fine-tuning
821 the student model using each inverted image exactly once, isolating the impact of the inversion quality
822 itself on downstream performance.

823 For training the student model in data-free knowledge transfer experiments, we use SGD optimizer
824 with a learning rate of 0.1, weight decay of 1e-4, and momentum of 0.9. For data-free quantization
825 experiments, we also use SGD with a learning rate of 0.01, keeping the same weight decay and
826 momentum, and use batch size of 128 as same as knowledge transfer experiments. There is no
827 learning rate scheduling applied in both settings.

828 Following prior work, sparse model inversion (SMI) (Hu et al., 2024), we apply standard data
829 augmentations such as random horizontal flipping and normalization when processing inverted data.
830 For test data, only resizing and normalization are used. In Figures 5 and A1, we use only remaining
831 patches of SMI, not discarded. All experiments, including Table A1, are conducted with a fixed seed,
832 42 for reproducibility.

833 To ensure reproducibility and facilitate consistent comparison, we leverage publicly accessible
834 pretrained vision models from widely used libraries such as `timm`. Specifically, we select DeiT/16-
835 Tiny, Small, Base, and a CLIP-based ViT model² for visualization tasks. ViT-Base/32 model is
836 employed solely for visualization purposes.

837 E ADDITIONAL EXPERIMENTAL RESULTS

838 **Extended Results of Experiments.** Tables 2 and 3 in the main text summarize our core findings
839 regarding inversion efficiency, data-free quantization, and data-free knowledge distillation. Here, we
840 present comprehensive results across DeiT-Tiny, Small, and Base models with additional sparsity
841 levels, extending the analyses in Tables A1, A2 and A3.

842 **Additional Results on Inversion Efficiency.** In Table A1, we examine inversion efficiency across
843 various sparsity levels, highlighting PRI’s consistent superiority over SMI and DMI. PRI demonstrates
844 significantly improved throughput, reduced FLOPs, and lower GPU memory usage, particularly at
845 higher sparsity (86%). Specifically, PRI achieves up to 129% throughput improvement, 49% FLOPs
846 reduction, and 66% GPU memory savings compared to SMI. These empirical results strongly align
847 with our theoretical predictions, which anticipated greater efficiency gains with larger division factors
848 v .

849 **Additional Results on Data-Free Quantization.** Table A2 reports data-free quantization results
850 on ImageNet-1k for three DeiT backbones under two bit-width settings (W4/A8 and W8/A8). In
851 DeiT-Tiny, DMI outperforms both SMI and PRI, whereas in DeiT-Base, PRI surpasses DMI despite
852 being 10 \times faster. PRI consistently achieves superior or competitive accuracy compared to SMI across
853 various sparsity levels.

854 **Additional Results on Data-Free Knowledge Distillation.** Table A3 provides an extensive validation
855 of PRI’s effectiveness in data-free knowledge distillation across CIFAR-10, CIFAR-100, and
856 Tiny-ImageNet datasets. PRI consistently outperforms SMI across all sparsity settings, achieving
857 comparable or superior accuracy to DMI at moderate sparsity levels (50%). In particular, on the
858 CIFAR-10 dataset, PRI with 50% sparsity achieves higher knowledge distillation accuracy and faster

859 ²<https://huggingface.co/openai/clip-vit-base-patch32>

864
865 Table A1: Inversion efficiency on DeiT-Tiny, DeiT-Small, and DeiT-Base across various sparsity
866 levels. Throughput is the inversion speed, measuring to compute inversion iterations per second. The
867 changes in **red** and **blue** refer to the comparison with each sparsity level of SMI.

Model: DeiT-Tiny							
Method Sparsity	DMI 0%	50%	SMI 76%	86%	50% (<i>v</i> = 2)	75% (<i>v</i> = 4)	PRI 86% (<i>v</i> = 7)
Throughput (its/s) \uparrow	6.49	10.94	15.33	18.04	15.27 (+39.6%)	30.71 (+100.3%)	40.92 (+126.8%)
FLOPs (G) \downarrow	949.11	454.85	229.89	143.20	348.88 (-23.3%)	144.09 (-37.3%)	73.86 (-48.4%)
GPU Memory (GB) \downarrow	6.00	3.32	2.21	1.79	2.38 (-28.3%)	1.07 (-51.6%)	0.60 (-66.5%)
Model: DeiT-Small							
Method Sparsity	DMI 0%	50%	SMI 76%	86%	50% (<i>v</i> = 2)	75% (<i>v</i> = 4)	PRI 86% (<i>v</i> = 7)
Throughput (its/s) \uparrow	3.05	5.75	9.10	12.14	7.72 (+34.2%)	16.87 (+85.4%)	27.82 (+129.2%)
FLOPs (G) \downarrow	3524.20	1729.66	881.33	545.88	1300.98 (-24.8%)	539.85 (-38.7%)	277.23 (-49.2%)
GPU Memory (GB) \downarrow	11.66	5.67	3.43	2.62	4.47 (-21.2%)	2.01 (-41.4%)	1.17 (-55.3%)
Model: DeiT-Base							
Method Sparsity	DMI 0%	50%	SMI 76%	86%	50% (<i>v</i> = 2)	75% (<i>v</i> = 4)	PRI 86% (<i>v</i> = 7)
Throughput (its/s) \uparrow	1.10	2.20	3.92	5.58	2.88 (+30.0%)	6.40 (+63.3%)	11.81 (+111.6%)
FLOPs (T) \downarrow	13.43	6.74	3.45	2.13	5.02 (-25.5%)	2.09 (-39.4%)	1.07 (-49.8%)
GPU Memory (GB) \downarrow	23.42	10.77	6.26	4.61	8.99 (-16.5%)	4.28 (-31.6%)	2.68 (-41.9%)

883
884 Table A2: Data-free quantization results on ImageNet-1k using different inversion methods across
885 various sparsity levels. W4/A8 refers to the bit precision for weight and activation quantization,
886 respectively. The changes in **red** and **blue** refer to the comparison with each sparsity level of SMI.
887 Teacher model accuracies for DeiT-Tiny, Small, and Base are 71.5%, 79.4%, and 81.7%, respectively.

Dataset: ImageNet-1k								
Method Sparsity	DMI 0%	50%	SMI 76%	86%	50% (<i>v</i> = 2)	75% (<i>v</i> = 4)	PRI 86% (<i>v</i> = 7)	
DeiT-Tiny	W4/A8	68.03	67.39	66.65	66.55	67.64 (+0.25)	66.79 (+0.14)	66.44 (-0.11)
	W8/A8	69.45	68.94	68.57	68.38	69.20 (+0.26)	68.77 (+0.20)	68.40 (+0.02)
DeiT-Small	W4/A8	77.01	76.80	76.19	75.37	77.06 (+0.26)	76.40 (+0.21)	76.03 (+0.66)
	W8/A8	78.15	78.11	77.64	77.01	77.90 (-0.21)	77.72 (+0.08)	77.42 (+0.41)
DeiT-Base	W4/A8	80.19	80.29	79.77	79.20	80.36 (+0.07)	80.13 (+0.46)	80.07 (+0.87)
	W8/A8	80.73	80.77	80.33	79.85	80.78 (+0.01)	80.70 (+0.37)	80.57 (+0.72)

898 inversion speed compared to DMI. Remarkably, for DeiT-Tiny, the accuracy difference between
899 DMI and PRI exceeds 4%. Notably, as sparsity increases (to 75% and 86%), PRI significantly
900 widens its performance gap over SMI, further demonstrating its robustness and efficacy in generating
901 class-agnostic features that are essential for effective knowledge transfer in data-free settings.

902 **Additional Analyses of Progressive Shift from General to Specific.** We further investigate the
903 role of sparse images generated at different detachment points of PRI by conducting two analyses:
904 one-class distillation in Table A4 and data-free quantization in Table A5.

905 In the one-class distillation setting in Table A4, we use 2.5k sparse images generated at each of the
906 four detachment points, as well as the combined set denoted as “All” on CIFAR-10. For evaluation,
907 we report the classification accuracy and average KL-divergence loss with respect to the teacher
908 model logits, denoted as KL10 (all classes including airplane) and KL9 (excluding airplane). While
909 training on 2.5k sparse images from every detachment point leads to strong accuracy, we observe
910 that images from the 2nd detachment point achieve the best (i.e., minimum) KL-divergence scores,
911 especially on KL9, suggesting stronger class-agnostic properties. Similarly, the 3rd point images
912 also exhibit favorable generalization, whereas the 4th points show diminished performance but still
913 surpass DMI and SMI in Figure 4.

914 In the 8-bit data-free quantization experiments on ImageNet-1k in Table A5, we use 2.5k sparse
915 images from each detachment point and the combined set again. We find that images from the 1st
916 detachment point most effectively recover accuracy in quantized models, consistent with their rich
917 class-agnostic feature content. Using all detachment points together also yields strong performance.

918
919 Table A3: Data-free knowledge distillation results on CIFAR-10, CIFAR-100, and Tiny-ImageNet
920 different inversion methods across various sparsity levels. The changes in **red** refer to the comparison
921 with each sparsity level of SMI.

Dataset: CIFAR-10 (Teacher: DeiT-Base, Acc: 95.4)								
Method Sparsity		DMI 0%	SMI 50%	SMI 76%	SMI 86%	PRI		
Student Accuracy	DeiT-Tiny	76.67	69.94	55.22	26.69	81.21 (+11.27)	75.70 (+20.48)	57.96 (+31.27)
	DeiT-Small	86.72	87.44	82.74	58.91	88.60 (+1.16)	87.30 (+4.56)	81.21 (+22.3)
	DeiT-Base	95.00	95.01	94.49	88.38	95.13 (+0.12)	95.08 (+0.59)	94.56 (+6.18)
Dataset: CIFAR-100 (Teacher: DeiT-Base, Acc: 80.6)								
Method Sparsity		DMI 0%	SMI 50%	SMI 76%	SMI 86%	PRI		
Student Accuracy	DeiT-Tiny	54.90	48.34	24.31	3.55	54.57 (+6.23)	43.32 (+19.01)	21.27 (+17.72)
	DeiT-Small	67.62	62.55	45.05	11.25	67.70 (+5.15)	62.93 (+17.87)	45.59 (+34.34)
	DeiT-Base	79.76	79.41	77.55	70.22	79.98 (+0.57)	79.57 (+1.98)	78.46 (+8.24)
Dataset: Tiny-ImageNet (Teacher: DeiT-Base, Acc: 84.6)								
Method Sparsity		DMI 0%	SMI 50%	SMI 76%	SMI 86%	PRI		
Student Accuracy	DeiT-Tiny	53.98	44.96	14.01	1.97	53.55 (+8.59)	35.65 (+24.64)	12.37 (+10.4)
	DeiT-Small	73.42	67.21	42.51	7.60	73.52 (+6.31)	67.50 (+24.99)	46.51 (+38.91)
	DeiT-Base	83.95	83.51	80.62	71.55	83.85 (+0.34)	83.68 (+3.06)	82.47 (+10.92)

938 As in the one-class distillation setting, images from the 4th detachment point, which contain the most
939 class-specific features among all detachment points, yield the lowest quantization recovery accuracy.
940

941 These results highlight that earlier detachment point images, encoding more class-agnostic knowledge,
942 play a critical role in enhancing both generalization and robustness in data-free learning.

943 Table A4: One-class distillation results on CIFAR-
944 10 using sparse images inverted at each detach-
945 ment point of PRI. “All” denotes inverted images
946 using every detachment point.

947 Table A5: Data-free quantization performance on
948 ImageNet-1k using sparse images inverted at each
949 detachment point. “All” denotes inverted images
950 using every detachment point.

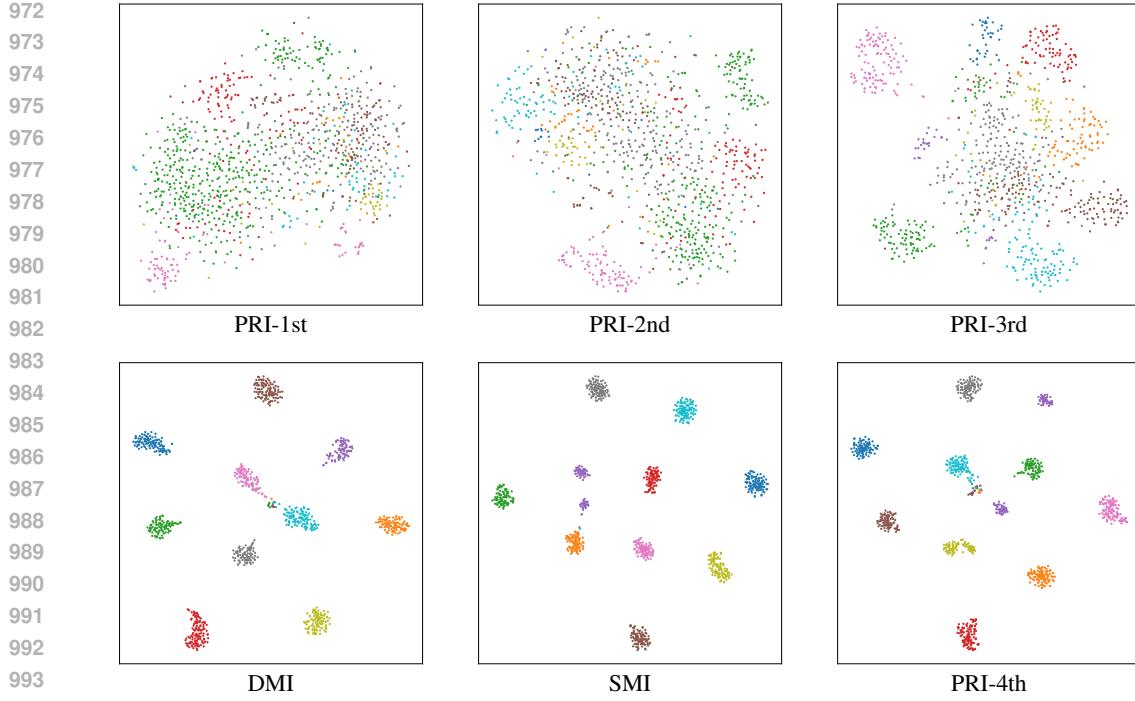
951 **t-SNE Visualization.** In Figure A1, we present t-SNE visualizations of the feature embeddings from
952 PRI-inverted images at each detachment point, using DeiT-Base on CIFAR-100. PRI-1st through
953 PRI-4th refer to the t-SNE visualizations of sparse images stored at each progressive detachment
954 stage during inversion.

955 Unlike class-conditioned visualizations, we assign each sample the label predicted by the teacher
956 model, rather than the originally targeted inversion class. This choice reflects that early point images
957 often exhibit low confidence, as shown in Figure 6(a), indicating that even the teacher struggles to
958 confidently identify them.

959 Interestingly, despite their low semantic certainty, PRI-1st samples still contribute meaningfully
960 to knowledge transfer, as demonstrated in our analytic results above. Furthermore, we observe a
961 point-wise difference of class separation: PRI-1st embeddings are relatively entangled, gradually
962 becoming more class-discriminative in PRI-2nd and PRI-3rd, and eventually resemble the tightly
963 clustered patterns seen in DMI and SMI at PRI-4th. This progression supports our interpretation that
964 PRI balances class-specific and class-agnostic features over time.

965 F PROOF OF THEOREM 1

966 In this section, we present the proof of Theorem 1, which theoretically demonstrates that PRI achieves
967 a lower computational cost compared to SMI and DMI in both self-attention (SA) and feed-forward



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Figure A1: t-SNE visualization of feature embeddings from DMI, SMI, and multiple detachment points of PRI on CIFAR-100. All embeddings are extracted using the pretrained DeiT-Base.

network (FFN) modules of ViT-based architectures. Specifically, we show that PRI is more efficient in the SA module under the condition $\frac{N}{d} < 3$, and strictly more efficient in the FFN module regardless of the $\frac{N}{d}$ ratio. This theoretical result aligns with our experimental results, where PRI consistently outperforms other inversion methods across various settings.

Proof. To compare the computational costs of different inversion strategies, we focus on the dominant components of the ViT architecture: the self-attention (SA) and feed-forward network (FFN) modules. The per-layer cost of SA is given by $4Nd^2 + 2N^2d$, and the per-layer cost of FFN is approximated as $8Nd^2$ (Chen et al., 2023b). Other components such as LayerNorm and residual connections are omitted as they contribute negligible overhead compared to the main computational terms and do not affect the asymptotic behavior of the comparison.

Dense Model Inversion (DMI). Let N be the number of patches per image, d the embedding dimension, I the number of images, T the number of inversion iterations, and L the number of layers. The total computational cost of DMI is:

$$\mathcal{C}_{\text{DMI}}^{\text{SA}} = L \cdot (4Nd^2 + 2N^2d) \cdot I \cdot T, \quad (3)$$

$$\mathcal{C}_{\text{DMI}}^{\text{FFN}} = L \cdot 8Nd^2 \cdot I \cdot T. \quad (4)$$

Sparse Model Inversion (SMI). Assuming that SMI produces the same sparsity level as PRI, the output of SMI contains $\frac{N}{v}$ patches, where $v > 1$ is the division factor of PRI. For a fair comparison, we consider an idealized version of SMI in which patch pruning occurs before the inversion process begins, even though the real SMI implementation gradually prunes unimportant patches in the early stages of inversion. By replacing N with $\frac{N}{v}$ in Eqs. equation 3 and equation 4, the computational cost becomes:

$$\mathcal{C}_{\text{SMI}^*}^{\text{SA}} = L \cdot \left(\frac{4Nd^2}{v} + \frac{2N^2d}{v^2} \right) \cdot I \cdot T,$$

$$\mathcal{C}_{\text{SMI}^*}^{\text{FFN}} = L \cdot \frac{8Nd^2}{v} \cdot I \cdot T.$$

1026 **Patch Rebirth Inversion (PRI).** PRI controls the number and timing of patch detachments using
 1027 a division factor v , with each stage running for $\frac{T}{v}$ iterations. Let N_k denote the number of active
 1028 patches in the k -th stage. Since each detachment step removes $\frac{N}{v}$ patches, we have:
 1029

$$1030 \quad N_k = N \cdot \left(1 - \frac{k-1}{v}\right), \quad k = 1, \dots, v. \\ 1031$$

1032 Moreover, since PRI generates a group of v sparse images within a single inversion trajectory
 1033 spanning T iterations, the effective per-image cost should be scaled by a factor of $\frac{1}{v}$. Accordingly,
 1034 for each stage, only $\frac{I}{v}$ images are effectively counted per synthetic image, and the cost aggregates
 1035 over all v detachment points through inversion iterations as follows:
 1036

$$1037 \quad \mathcal{C}_{\text{PRI}}^{\text{SA}} = \sum_{k=1}^v L \cdot (4N_k d^2 + 2N_k^2 d) \cdot \frac{I}{v} \cdot \frac{T}{v}, \\ 1038 \\ 1039 \quad \mathcal{C}_{\text{PRI}}^{\text{FFN}} = \sum_{k=1}^v L \cdot 8N_k d^2 \cdot \frac{I}{v} \cdot \frac{T}{v}. \\ 1040 \\ 1041$$

1042 Substituting N_k and simplifying yields:
 1043

$$1044 \quad \mathcal{C}_{\text{PRI}}^{\text{SA}} = \frac{LIT}{v^2} \sum_{k=1}^v \left[4Nd^2 \left(1 - \frac{k-1}{v}\right) + 2N^2 d \left(1 - \frac{k-1}{v}\right)^2 \right] \\ 1045 \\ 1046 \quad = \frac{LIT}{v^2} \left[4Nd^2 \sum_{k=1}^v \left(1 - \frac{k-1}{v}\right) + 2N^2 d \sum_{k=1}^v \left(1 - \frac{k-1}{v}\right)^2 \right] \\ 1047 \\ 1048 \quad = \frac{LIT}{v^2} \left[4Nd^2 \sum_{j=0}^{v-1} \left(1 - \frac{j}{v}\right) + 2N^2 d \sum_{j=0}^{v-1} \left(1 - \frac{j}{v}\right)^2 \right] \\ 1049 \\ 1050 \quad = \frac{LIT}{v^2} \left(\frac{4Nd^2}{v} \sum_{j=1}^v j + \frac{2N^2 d}{v^2} \sum_{j=1}^v j^2 \right) \\ 1051 \\ 1052 \quad = \frac{LIT}{v^2} \left[\frac{4Nd^2}{v} \cdot \frac{v(v+1)}{2} + \frac{2N^2 d}{v^2} \cdot \frac{v(v+1)(2v+1)}{6} \right] \\ 1053 \\ 1054 \quad = \frac{LIT}{v^2} \left[\frac{4Nd^2 \cdot v(v+1)}{2v} + \frac{2N^2 d \cdot v(v+1)(2v+1)}{6v^2} \right], \\ 1055 \\ 1056 \quad \mathcal{C}_{\text{PRI}}^{\text{FFN}} = \frac{LIT}{v^2} \cdot \frac{8Nd^2 \cdot v(v+1)}{2v}. \\ 1057 \\ 1058 \\ 1059 \\ 1060 \\ 1061 \\ 1062$$

1063 **Feed-Forward Network.** We now compare the computational cost of the feed-forward network
 1064 (FFN) modules. First, comparing the cost of FFN computations between DMI and SMI yields:
 1065

$$1066 \quad \mathcal{C}_{\text{DMI}}^{\text{FFN}} - \mathcal{C}_{\text{SMI}^*}^{\text{FFN}} = L \cdot 8Nd^2 \cdot I \cdot T \left(1 - \frac{1}{v}\right). \\ 1067$$

1068 Since $v > 1$, this difference is always positive, indicating that SMI reduces FFN cost compared to
 1069 DMI. Moreover, the speedup of SMI over DMI is exactly $v \times$, as shown below:
 1070

$$1071 \quad \frac{\mathcal{C}_{\text{DMI}}^{\text{FFN}}}{\mathcal{C}_{\text{SMI}^*}^{\text{FFN}}} = \frac{L \cdot 8Nd^2 \cdot I \cdot T}{L \cdot \frac{8Nd^2}{v} \cdot I \cdot T} = v. \\ 1072$$

1073 Next, we compare the cost of PRI against SMI:
 1074

$$1075 \quad \frac{\mathcal{C}_{\text{PRI}}^{\text{FFN}}}{\mathcal{C}_{\text{SMI}^*}^{\text{FFN}}} = \frac{\frac{L \cdot I \cdot T}{v^2} \cdot \frac{8N \cdot d^2 \cdot v(v+1)}{2v}}{L \cdot \frac{8Nd^2}{v} \cdot I \cdot T} = \frac{v+1}{2v} = \frac{1}{2} + \frac{1}{2v}. \\ 1076 \\ 1077$$

1078 For the smallest value $v = 2$, PRI is 25% more efficient than SMI in terms of FFN cost. As v
 1079 increases, this ratio converges to $\frac{1}{2}$, indicating that PRI can become up to 2 \times more efficient than SMI
 in the limit.

1080 These highlight a key advantage of PRI: it consistently achieves lower computational cost than
 1081 both SMI and DMI for FFN computations, independent of the total number of patches and model
 1082 scalability.

1083 Summarizing:

$$1085 \mathcal{C}_{\text{PRI}}^{\text{FFN}} < \mathcal{C}_{\text{SMI}^*}^{\text{FFN}} < \mathcal{C}_{\text{DMI}}^{\text{FFN}}.$$

1087 **Self-Attention.** We now turn to analyzing the computational costs of self-attention (SA) modules in
 1088 DMI and SMI. The difference is given by: $\mathcal{C}_{\text{DMI}}^{\text{SA}}$ and $\mathcal{C}_{\text{SMI}^*}^{\text{SA}}$:

$$1090 \mathcal{C}_{\text{DMI}}^{\text{SA}} - \mathcal{C}_{\text{SMI}^*}^{\text{SA}} = L \cdot I \cdot T \cdot \left[4Nd^2 \cdot \left(1 - \frac{1}{v} \right) + 2N^2d \cdot \left(1 - \frac{1}{v^2} \right) \right].$$

1092 Since $v > 1$, both terms inside the brackets are strictly positive, which confirms that $\mathcal{C}_{\text{DMI}}^{\text{SA}} > \mathcal{C}_{\text{SMI}^*}^{\text{SA}}$
 1093 always holds, regardless of model size or patch dimension.

1094 Next, comparing PRI and SMI:

$$1096 \mathcal{C}_{\text{PRI}}^{\text{SA}} - \mathcal{C}_{\text{SMI}^*}^{\text{SA}} = L \cdot I \cdot T \cdot \left[\frac{2N^2d}{6v^3} (2v^2 - 3v + 1) - \frac{4Nd^2}{2v^2} (v - 1) \right].$$

1099 Solving the inequality for PRI to be more efficient than SMI gives:

$$1100 N < \frac{6v(v - 1)}{2v^2 - 3v + 1} \cdot d.$$

1102 This bound decreases monotonically with v : for $v = 2$, the bound is $N < 4d$; for $v = 3$, it becomes
 1103 $N < 3.6d$; and as $v \rightarrow \infty$, it approaches $N < 3d$. Therefore, in practical regimes where ViTs
 1104 typically satisfy $N < 3d$, PRI achieves lower self-attention cost compared to both SMI and DMI.
 1105 This ratio condition $\frac{N}{d} < 3$ is satisfied by most of the standard ViT architectures, including DeiT-Tiny,
 1106 Small, and Base, where $N = 197$ and $d = 192, 384$, and 768 , respectively. It also holds for larger
 1107 models such as ViT-Large ($N = 197$ and $d = 1024$) and ViT-Huge ($N = 257$ and $d = 1280$).

1108 Summarizing:

$$1110 \mathcal{C}_{\text{PRI}}^{\text{SA}} < \mathcal{C}_{\text{SMI}^*}^{\text{SA}} < \mathcal{C}_{\text{DMI}}^{\text{SA}} \quad (\text{when } \frac{N}{d} < 3).$$

1111 \square

1114 G VISUALIZATION DETAILS

1116 Our visualization strategies of model inversion are based on the prior work (Hu et al., 2024). All
 1117 images shown in Figures 1(a), 2, 3, and A2 are inverted using the CLIP-based ViT/32-Base
 1118 model as its features have been found to align more closely with human perception due to large-
 1119 scale pretraining (Hu et al., 2024). For improved visual clarity, we follow the approach of prior
 1120 work (Hatamizadeh et al., 2022) and incorporate batch normalization borrowed from convolutional
 1121 neural networks (CNNs). All visualization images are from the CIFAR-100 dataset.

1122 In our empirical observations, fine-tuning the entire model improves the quantitative performance of
 1123 the pretrained teacher, but does not lead to noticeable improvements in visual quality from a human
 1124 perception perspective. Instead, we find that fine-tuning only the classifier head yields the best results
 1125 for visualization purposes. All other experimental settings remain consistent with those used in the
 1126 knowledge transfer inversion experiments.

1128 H VISUALIZATIONS OF THE RE-BIRTH EFFECT

1130 Figure A2 illustrates the re-birth effect across 12 classes on CIFAR-100. The images are arranged
 1131 in a 4×3 grid, with rows ordered from left-to-right, top-to-bottom by class: *pear, rose, apple,*
 1132 *orange, orchid, lion, sunflower, aquarium fish, bus, bee, poppy, and boy*. The emergence of semantic
 1133 structure in the right column highlights PRI's ability to transform initially uninformative regions into
 meaningful content through progressive optimization.

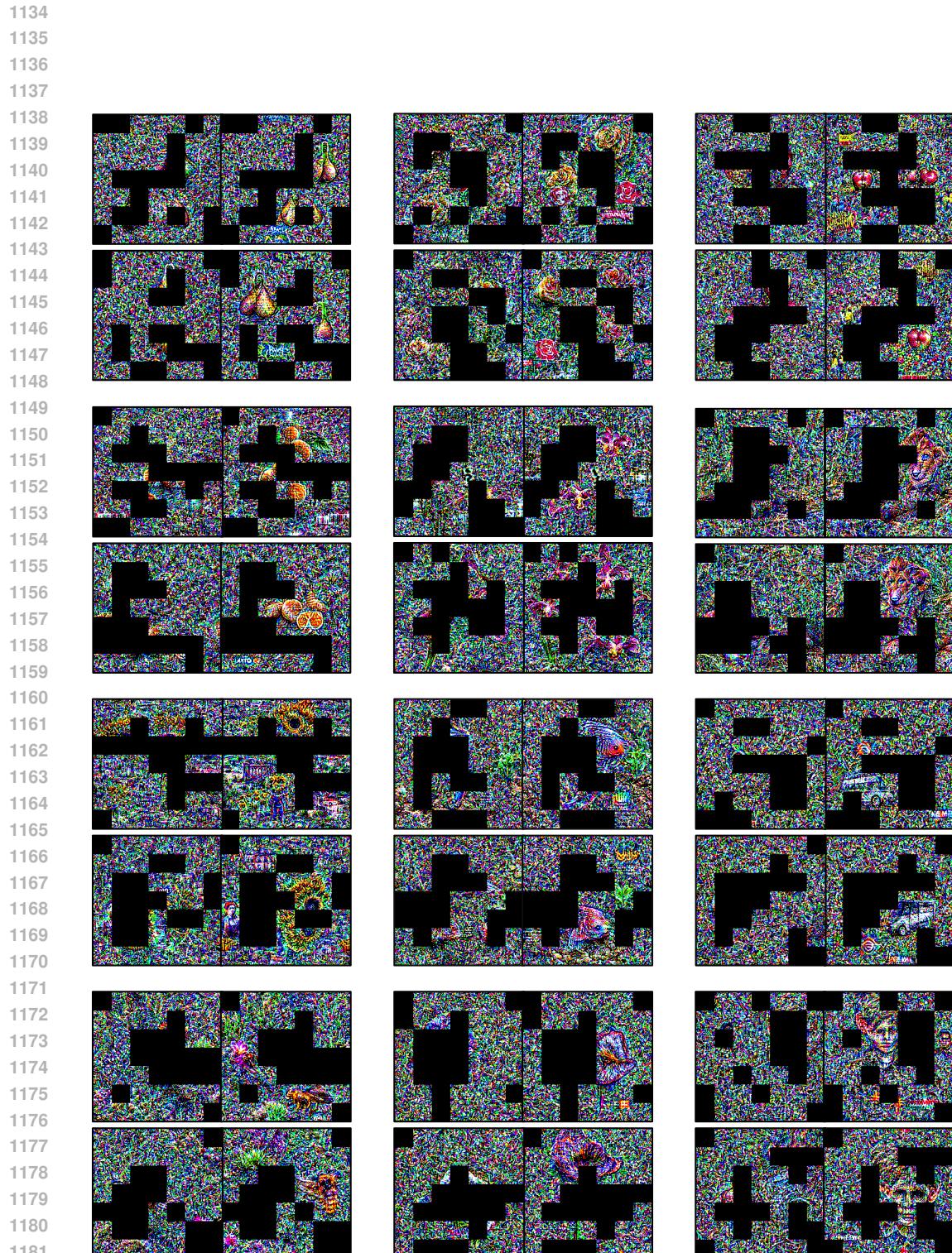


Figure A2: Re-birth visualizations. For each class, the left image shows the initially regarded as unimportant patches, while the right image shows the same patches after further inversion.

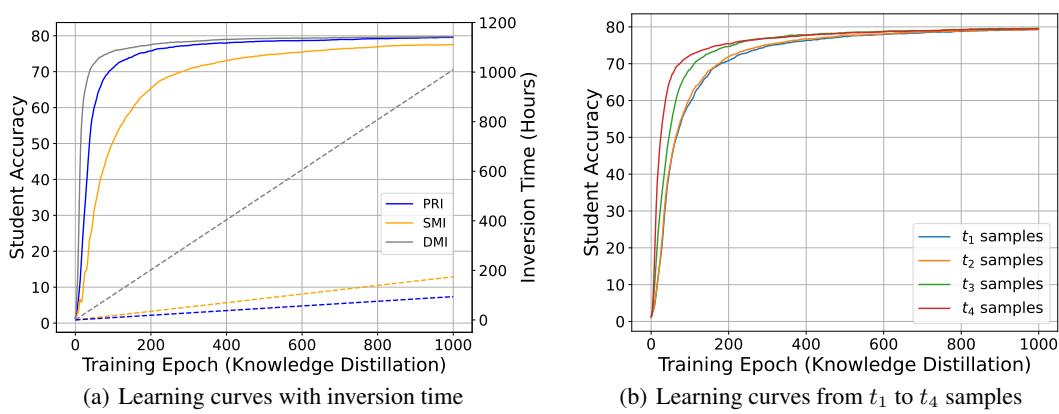


Figure A3: Learning curves on CIFAR-100 using a DeiT-Base teacher and a DeiT-Base student. (a) Comparison of learning curves with inversion time among three inversion methods (PRI with 75% sparsity, SMI with 76% sparsity and DMI). (b) Learning curves using samples generated at different detachment points from t_1 to t_4 .

I LEARNING DYNAMICS OF KNOWLEDGE TRANSFERRING

Figure A3 presents a unified analysis of the convergence behavior of PRI, SMI, and DMI, as well as the influence of samples generated at different stages of PRI.

Convergence Behavior of PRI, SMI, and DMI. In Figure A3(a), we plot the learning curves of the three methods using the DeiT-Base teacher–student pair on CIFAR-100 (as in Table 3(b)), along with the associated inversion-time requirements. PRI not only converges substantially faster than SMI, but also maintains a clear performance gap even after both methods reach their converged regimes. As expected, DMI achieves the strongest performance throughout the entire trajectory; however, this comes at an extremely high inversion cost (approximately 1,000 hours in this experiment). Overall, the relative ordering remains stable, i.e., $DMI \gtrsim PRI > SMI$, and the gaps do not diminish over time. This suggests that the differences among the sparsification strategies are not transient optimization artifacts, but rather persist throughout the full training horizon.

Unified Convergence across Detachment Points. Figure A3(b) presents the learning curves obtained from samples at four detachment points, t_1 through t_4 , under PRI with division factor $v = 4$. As in Figure A3(a), we use the DeiT-Base teacher–student pair on CIFAR-100. The samples detached at earlier stages (t_1 and t_2) exhibit nearly identical trajectories, while those from the latest stage (t_4) converge more quickly. Nevertheless, all four cases eventually achieve similar final accuracy.

At a glance, this may seem to imply that the later-stage, more class-specific t_4 samples are universally advantageous. However, Tables A4 and A5 show that relying solely on t_4 samples yields noticeably poorer performance in other settings. This contrast suggests that different detachment points capture complementary properties: early-stage samples retain class-agnostic structures beneficial for stability and robustness, whereas later-stage samples provide class-specific details. Therefore, leveraging samples across multiple detachment points is essential for consistently strong performance in downstream tasks.

J THEORETICAL VIEW ON PERFORMANCE DIFFERENCES

To better interpret the performance differences observed among PRI, SMI, and DMI across all experiments, we draw on a recent theoretical analysis from Wei et al. (2025), restated in Theorem A1 below.

Theorem A1. (Wei et al. (2025)) *Given the original dataset $\mathcal{D} = \{\mathbf{x}_i, y_i\}_{i \in [m]}$ with m i.i.d. samples and the synthetic dataset $\mathcal{S} = \{\hat{\mathbf{x}}_j, \hat{y}_j\}_{j \in [s]}$. Assume the hypothesis function is λ^η -Lipschitz continuous, the loss function $\ell(\mathbf{x}, y)$ is λ^ℓ -Lipschitz continuous for all y , and is bounded by L , with*

1242 $\ell(\hat{\mathbf{x}}_j, \hat{y}_j; \boldsymbol{\theta}) = 0$ for all $j \in [s]$. If the dataset \mathcal{S} is a δ -cover of \mathcal{D} , with probability at least $1 - \gamma$, the
1243 bound holds:

1244

$$1245 \left| \frac{1}{m} \sum_{i \in [m]} \ell(\mathbf{x}_i, y_i; \boldsymbol{\theta}) - \frac{1}{s} \sum_{j \in [s]} \ell(\hat{\mathbf{x}}_j, \hat{y}_j; \boldsymbol{\theta}) \right| \leq \frac{\lambda^\ell + \lambda^\eta LC}{\delta_{div}} + \sqrt{\frac{\log |\boldsymbol{\Theta}| + \log \frac{1}{\gamma}}{2m}},$$

1246

1247

1248 where C is the number of classes, and $\boldsymbol{\theta} \in \boldsymbol{\Theta}$ is the optimized student model.

1249

1250 The theorem states that the generalization error between the true dataset \mathcal{D} and the synthetic dataset
1251 \mathcal{S} is fundamentally governed by the diversity of \mathcal{S} , quantified by δ_{div} . A larger δ_{div} (corresponding
1252 to greater synthetic-data diversity) tightens the bound and thereby improves the downstream
1253 generalization performance of the student model.

1254 A direct implication for our setting is that the performance differences among PRI, SMI, and DMI
1255 can be attributed to how diverse their synthesized datasets are. PRI yields synthetic samples with
1256 substantially higher diversity due to its progressive sparse reconstruction, leading to a larger δ_{div}
1257 and thus a tighter generalization bound. In contrast, SMI produces less diverse samples because
1258 a significant portion of information is removed early in the process, resulting in a looser bound.
1259 DMI attains high diversity but only at an impractically high inversion cost, making such diversity
1260 unattainable under realistic compute budgets. This diversity-based perspective explains the consistent
1261 performance ordering observed across our experiments. Also, this observation is aligned with the
1262 qualitative evidence presented in Figures 5 and 6, where PRI consistently produces more diverse
1263 synthetic images and smoother, less overconfident confidence distributions than SMI, indirectly
1264 reflecting its larger δ_{div} .

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295