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ABSTRACT

Model inversion is a widely adopted technique in data-free learning that recon-
structs synthetic inputs from a pretrained model through iterative optimization,
without access to original training data. Unfortunately, its application to state-of-
the-art Vision Transformers (ViTs) poses a major computational challenge, due to
their expensive self-attention mechanisms. To address this, Sparse Model Inversion
(SMI) was proposed to improve efficiency by pruning and discarding seemingly
unimportant patches, which were even claimed to be obstacles to knowledge trans-
fer. However, our empirical findings suggest the opposite: even randomly selected
patches can eventually acquire transferable knowledge through continued inversion.
This reveals that discarding any prematurely inverted patches is inefficient, as it
suppresses the extraction of class-agnostic features essential for knowledge transfer,
along with class-specific features. In this paper, we propose Patch Rebirth Inversion
(PRI), a novel approach that incrementally detaches the most important patches
during the inversion process to construct sparse synthetic images, while allowing
the remaining patches to continue evolving for future selection. This progressive
strategy not only improves efficiency, but also encourages initially less informative
patches to gradually accumulate more class-relevant knowledge, a phenomenon
we refer to as the Re-Birth effect, thereby effectively balancing class-agnostic
and class-specific knowledge. Experimental results show that PRI achieves up to
10× faster inversion than standard Dense Model Inversion (DMI) and 2× faster
than SMI, while consistently outperforming SMI in accuracy and matching the
performance of DMI.

1 INTRODUCTION

Model inversion (Fredrikson et al., 2015; Mahendran & Vedaldi, 2015; Yin et al., 2020) is a prominent
technique in data-free learning, aiming to reconstruct synthetic inputs from a pretrained model via
iterative optimization, without using any original inputs. In data-constrained scenarios where the
original dataset is unavailable (e.g., due to privacy concerns), the synthesized inputs generated
by model inversion can serve as carriers of the model’s pretrained knowledge, which can then be
transferred into any target model for training. One of the predominant applications is data-free model
compression, such as quantization and distillation without using original samples, where training
or fine-tuning the compressed model is essential to recover performance degradation. While earlier
studies on model inversion have primarily focused on convolutional neural networks (CNNs), the
recent rise of Vision Transformers (ViTs) (Dosovitskiy et al., 2021) motivates the development of
new approaches that exploit their architectural strengths.

However, a major drawback of model inversion is its high computational overhead, to the extent that
generating only a few hundred synthetic images can take several hours even on a high-end GPU1. This
inefficiency becomes more exacerbated in ViTs, whose complexity substantially increases with the
number of tokens, generally exceeding the computational cost of CNNs (He et al., 2016; Krizhevsky
et al., 2012). To address this, Sparse Model Inversion (SMI) (Hu et al., 2024) was recently introduced,
inspired by token pruning (Liang et al., 2022; Rao et al., 2021) that aims to accelerate ViT inference
by discarding unimportant tokens. SMI applies a reversed strategy by removing less informative

1On an RTX A6000, it takes about 1 hour to invert just 128 images of 224×224 with DeiT-Base.
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Figure 1: Comparison of DMI (Yin et al., 2020), SMI (Hu et al., 2024), and PRI (ours) on CIFAR-100.
(a) Visualization illustrating the differences among the three inversion methods. (b) Student accuracy
distilled from the same teacher, DeiT-Tiny/Small/Base; denoted as (T)/(S)/(B), with GPU time (in
log10 minutes) measured for inverting 128 samples per batch. Red dashed lines indicate teacher
accuracy, and percentages denote image sparsity.

patches during inversion, instead of inference, based on its core hypothesis that these patches are not
only redundant but may also hinder effective knowledge transfer.

In this paper, we revisit the core assumption of SMI and argue that retaining all patches during model
inversion is indeed more effective, particularly for conveying transferable knowledge in data-free
learning. Our first empirical observation is that: unlike token pruning on real images, pruning inverted
patches does not strongly depend on patch importance estimated in the initial phase. In our study
(see Table 1), even randomly selected patches achieved comparable performance to those selected
based on importance by the end of the inversion process. This leads to our key insight: regardless of
their initial importance, any selected patches can ultimately embed highly transferable knowledge
through iterative inversion. From this perspective, SMI’s strategy of discarding unimportant patches
is not only ineffective for knowledge transfer but ironically also inefficient in terms of inversion time.
Once pruned, patches are permanently excluded from synthesis, regardless of any useful knowledge
they may have acquired. This further causes the inversion region to gradually shrink, thereby limiting
the diversity of synthesized features. To be revealed in our empirical analysis, this behavior leads to
overfitting to class-specific features, while suppressing class-agnostic information, which is crucial
for generalizable knowledge transfer in data-free settings.

Based on our findings above, we propose a more efficient yet more effective model inversion method
for data-free knowledge transfer, called Patch Rebirth Inversion (PRI). Rather than generating a single
sparse image through gradual patch pruning, PRI makes full use of the inverted knowledge throughout
the inversion process by producing a sequence of sparse images (see Figure 1(a)). Each sparse image
is constructed by isolating the most important patches at a specific point of the inversion process.
Thus, these sparse images are not generated all at once, but rather progressively separated from the
full image over the iterations. Interestingly, we discover that isolating important patches encourages
the remaining ones to start synthesizing more meaningful features, a phenomenon we refer to as
the Re-Birth effect. Some of these reborn features eventually become informative enough to form
another sparse image at subsequent iterations. This progressive mechanism not only allows the
generation of multiple sparse images but also increases the diversity of knowledge embedded in the
synthesized images. As a result, under the same computational budget, PRI accelerates the inversion
process by enabling the production of more synthetic samples. Furthermore, since each image is
extracted at a different point along the inversion trajectory, they jointly capture both class-specific
and class-agnostic features, leading to improved transferability.

As summarized in Figure 1(b), PRI consistently lies on the Pareto-optimal curve of the accuracy-
efficiency trade-off, clearly achieving the most favorable balance among all compared methods. In
our detailed experimental results (see Table 2), PRI achieves up to 10× faster inversion than Dense
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Model Inversion (DMI) (Yin et al., 2020), a standard method without any sparsification, and up
to 2× faster than SMI, while consistently delivering higher accuracy than SMI and maintaining
performance close to DMI despite the substantial speedup. We attribute this superiority to PRI’s
ability to effectively embed both class-agnostic and class-specific knowledge into the inverted patches,
as further supported by our in-depth empirical analysis.

2 RELATED WORK

Model inversion has long been studied across a range of contexts, from privacy attacks (Fredrikson
et al., 2015; He et al., 2019; Wang et al., 2015; Yang et al., 2019) to the analysis of deep feature
representations (Mahendran & Vedaldi, 2015; 2016), commonly aiming to understand and exploit
various pretrained models. More recently, it has become a central component in data-free learning, a
popular technique that extracts synthetic inputs from a pretrained model, without accessing original
training data. Earlier works focus on convolutional neural networks (CNNs), applying model inversion
to generate synthetic data for data-free quantization (Cai et al., 2020; Choi et al., 2021; Nagel et al.,
2019; Xu et al., 2020; Zhang et al., 2021; Zhong et al., 2022) and knowledge distillation (Binici et al.,
2022; Chen et al., 2019; Fang et al., 2019; 2021; Lopes et al., 2017; Shin & Choi, 2024; Yin et al.,
2020). These approaches typically utilize convolutional features and batch normalization statistics to
enhance the performance.

Model Inversion in ViTs. With the popularity of Vision Transformers (ViTs), which lack batch
normalization and exhibit unique architectural properties, alternative model inversion strategies
have been proposed to exploit their patch-wise and self-attention mechanism. Among various
attempts (Choi et al., 2025; Li et al., 2022; 2024; Ramachandran et al., 2024) to adapt model inversion
to ViTs, PSAQ-ViT (Li et al., 2022) first introduced a patch similarity-aware strategy for data-free
quantization by leveraging self-attention scores to identify redundant tokens and guide quantization
accordingly. MimiQ (Choi et al., 2025) further explored data-free quantization for ViTs, observing
that alignment of attention maps between teacher and student models significantly enhances recovery
of the performance in the quantized model. Despite these efforts, they all adopt dense inversion
strategies that optimize every patch simultaneously during the entire process and therefore suffer
from substantial computational cost, due to the high computational complexity with respect to the
number of patches.

Sparse Model Inversion. To address this inefficiency, sparse model inversion (SMI) (Hu et al., 2024)
was recently introduced, inspired by token pruning strategies (Kim et al., 2022; Liang et al., 2022;
Rao et al., 2021; Wang et al., 2021). Instead of updating all patches, SMI selectively inverts only a
subset of important patches to reduce computational overhead. This patch selection process assumes
that tokens with low attention contribute little to knowledge transfer, and should be discarded as early
as possible. While this may offer some efficiency gains, it overlooks a key opportunity: previously
inverted patches, even if initially deemed unimportant, may still carry transferable features. According
to our empirical study, discarding these patches limits the representational diversity of synthetic
images. In contrast, allowing all patches to remain involved throughout the inversion, regardless
of their initial importance, enables the gradual emergence of both class-specific and class-agnostic
features that are essential for effective knowledge transfer.

3 PRELIMINARIES

This section provides a formal definition of model inversion in the context of ViTs, along with a
description of the attention-based token selection mechanism adopted in both SMI (Hu et al., 2024)
and our proposed method.

Formulation. Given a pretrained classification model f , model inversion aims to synthesize input
images that reflect the knowledge learned by the model, without access to the original training data.
Formally, for a target label y ∈ {1, . . . , c} and a randomly initialized image X̂ ∈ RH×W×C (where
H , W , and C denote height, width, and the number of channels, respectively), X̂ is iteratively
updated by minimizing the following inversion loss:

Linv(X̂, y; f) = Lcls(f(X̂), y) + λLreg(X̂), (1)

3
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where Lcls is a classification loss that encourages the image to be predicted as class y, and Lreg is a
regularization term to enhance visual plausibility. As adopted by many existing works (Braun et al.,
2024; Hatamizadeh et al., 2022; Hu et al., 2024; Yin et al., 2020), we use cross-entropy for Lcls and
total variation (TV) regularization for Lreg.

ViT Inversion. In the context of ViTs, an image X̂ needs to be divided and flattened into a
sequence of N disjoint patches, denoted by {xj}Nj=1, where each patch xj is of size P × P (i.e.,
xj ∈ RP×P×C), and consequently N = H×W

P 2 . These patches are then linearly projected into patch
embeddings, augmenting with positional encodings (to capture their spatial relationships) and a
[CLS] token (a special token for class prediction). This augmented sequence of patches are passed
through L transformer encoder layers. Each encoder layer consists of multi-head self-attention
(MHSA) and feed-forward networks (FFNs), where MHSA computes scaled dot-product attention,
expressed as:

Attention(Q,K,V) = Softmax
(
QKT

√
d

)
V, (2)

where queries (Q), keys (K), and values (V) are linear projections of input embeddings, and d
is the embedding dimension. The computational complexities of MHSA and FFN are given by
O(SA) = 4Nd2 + 2N2d and O(FFN) = 8Nd2 (Chen et al., 2023b), respectively. Since the
inversion process involves repeated forward and backward passes to minimize Eq. (1), the total
computational cost of ViT inversion over T iterations and I images across L layers is represented as:

CSA
DMI = L · (4Nd2 + 2N2d) · I · T,
CFFN

DMI = L · 8Nd2 · I · T.

where CSA
DMI and CFFN

DMI represent the total costs of MHSA and FFN layers, respectively. Therefore,
minimizing the number of patches is crucial for improving the overall efficiency of ViT inversion.

Patch Selection via Attention Scores. To improve the efficiency of ViT-based methods, token (or
patch) selection has become a common strategy, based on token importance. A standard practice for
estimating importance is to leverage attention scores, which are derived from the matrix QKT

√
d

in
Eq. (2), and to take the average over the scores from the [CLS] token to all other tokens, considering
how much each patch contributes to the model’s prediction. Prior works such as SMI leverage
these importance scores to discard less important tokens, thereby reducing computational overhead.
Particularly in SMI, inverted patches that are deemed unimportant are removed early from the
optimization process, with the goal of accelerating inversion while preserving essential information.
In contrast, our PRI method also employs attention scores to identify important patches but does not
discard unimportant ones; instead, it retains them for subsequent inversion iterations.

4 METHODOLOGY

In this section, we present our proposed method, Patch Rebirth Inversion (PRI), designed to improve
both the efficiency and effectiveness of ViT-based model inversion.

4.1 REVISITING PATCH PRUNING IN MODEL INVERSION

We begin by revisiting the fundamental assumption underlying the Sparse Model Inversion (SMI)
approach (Hu et al., 2024), particularly the claim that early removal of low-importance patches
not only accelerates inversion process but also benefits the effectiveness of knowledge transfer.
Through our empirical studies, we uncover two key observations that challenge this assumption:
(1) the diminishing impact of patch selection as inversion progresses, and (2) the late emergence of
meaningful features from initially unimportant patches, a phenomenon we call the Re-Birth effect.

Limited Impact of Selection Criterion. Our first investigation is about how strongly the choice of
patch selection criterion affects inversion effectiveness. In addition to high-attention selection, we
evaluate several seemingly ineffective strategies, namely low-attention, random, and fixed-region
(top) patch selection, where the selected patches remain unpruned until the end of the inversion

4
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Table 1: Knowledge distillation performance un-
der different patch selection strategies in SMI:
high-attention, low-attention, random, and fixed-
region (top), where DeiT-Base is fine-tuned on
32 inverted CIFAR-10 images with 76% sparsity
for 120 epochs.

Dataset: CIFAR-10 (Teacher: DeiT-Base, Acc: 95.4)

Patch Selection High Low Random Top
Sparsity 76% 76% 76% 76%

Model DeiT-Base 92.52 92.75 92.74 92.74

High Low Random Top

Selected

patches

after 2k

iterations

After

2k+2k
iterations

Figure 2: Illustration of the Re-Birth effect: in-
verted images produced by four different patch
selection strategies, shown after 2k iterations (top)
and 4k iterations (bottom).

process. Unlike our expectation of noticeable differences in downstream performance, our empirical
results in Table 1 indicate that, given the same number of inverted images, all selection strategies yield
nearly identical performance. This unexpected outcome reveals that the impact of patch selection
becomes saturated as the inversion process continues, to the extent that even randomly selected
patches can lead to competitive performance.

Re-Birth Effect. The counter-intuitive result above naturally raises the following question: how
can initially less important patches achieve performance nearly identical to those selected based
on high importance? By thoroughly visualizing intermediate inverted images, we discover an
interesting phenomenon that initially uninformative patches undergo significant transformation when
inversion continues beyond the early selection phase. As shown in Figure 2, the high-attention case
exhibits little change over time (the bee was already visible after 2k iterations). In contrast, the
fixed-region (top) selection approach, which initially lacked recognizable content, regenerates clear
bee semantics in the remaining patches. Even low-attention and random selection approaches recover
semantic details across disorganized patches. We term this phenomenon the Re-Birth Effect, where
prolonged inversion allows previously low-importance patches to gradually accumulate meaningful
class-relevant features.

These empirical findings demonstrate that the main strategy of SMI, stopping inversion early and
discarding unimportant patches, must be revisited in terms of both efficiency and effectiveness. By
prematurely stopping inversion for certain patches, SMI prunes valuable semantic knowledge that
these patches could accumulate over additional iterations. Furthermore, this restrictive pruning biases
the synthesized images towards predominantly class-specific features, while neglecting class-agnostic
features essential for robust knowledge transfer, as revealed by our empirical study.

4.2 PATCH REBIRTH INVERSION

Motivated by the discoveries above, we propose a fundamentally different approach, PRI, which
enables patch rebirth throughout the inversion process, where even initially unimportant patches are
given the opportunity to be reborn through continued inversion iterations. To this end, our method
alternates between two operations during the inversion process: (1) detachment of most important
patches to be stored as independent sparse images, and (2) continued inversion on the remaining
patches, allowing them to evolve and eventually qualify for detachment in future iterations.

Detachment of Important Patches. As opposed to SMI (Hu et al., 2024), which discards unim-
portant patches from their process, PRI detaches the most important patches at specific points of
the inversion process, thereby stopping their optimization in subsequent iterations. These detached
patches are then stored separately to form an independent sparse image as one of the final outputs
of the inversion process. More specifically, as illustrated in Figure 3, consider the first detachment
point t1 and its corresponding sequence of inverted patches, {x(t1)

j }Nj=1. At this point, we compute
patch-wise importance scores using the attention-based metric. We then identify the top-K patches
with the highest importance, where K < N is a parameter that determines the target sparsity and
is set according to our detachment scheduling policy (detailed below). These top-K patches are
detached from the full patch set to form an independent sparse synthetic image, denoted as X̂t1 .
The same procedure is applied at subsequent detachment points t2, t3, . . . , yielding non-overlapping

5
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Figure 3: Overview of patch rebirth inversion. At each iteration ti, we store blue framed important
patches and mask them out (black) while the remaining red framed patches continue inversion,
progressively embedding class-specific features. All stored sparse view compose the final synthesized
dataset, which is used for data-free downstream tasks.

sparse images X̂t2 , X̂t3 , . . . . Notably, since these images are synthesized at different stages of the
inversion process, they are expected to capture varying levels of class-agnostic features (e.g., shared
background elements) and class-specific features (e.g., distinct object regions). Nonetheless, as each
image consists of the most important patches at its corresponding detachment point, all are expected
to contain meaningful knowledge for downstream tasks.

Inversion of Remaining Patches. At each detachment point tk, after the top-K important patches
are removed, the remaining patches, which have been deemed less important until the point, continue
to be optimized in the subsequent iterations. For instance, in Figure 3, after t1, the remaining N −K
patches undergo continued inversion until t2, at which point another top-K subset is detached to form
X̂t2 . This process will be repeated from t2 to t3, where another remaining set of N − 2K patches
will continue to get forward pass for further inversion. Note that these remaining patches after t2 are
likely to be more class-specific at t3, even if they start with less informative features than those of
selected at t2. As a result, this progressive inversion strategy substantially diversifies and enriches all
the generated output images, not only within each instance (as examined by Figure 4) but also across
different images, making them highly effective for downstream knowledge transfer.

Sparsity Control. To control the number of patch detachments, we define a division factor v, which
determines into how many partitions a full-size image will be split. Thus, v is not a hyperparameter,
but a control parameter adjusting the target sparsity (i.e., sparsity = 1− 1

v ). For instance, for PRI
to achieve 75% sparsity, we need to set v = 4. Specifically, given the total number of inversion
iterations T , we define the detachment points as:

tk = k ·
⌊
T

v

⌋
, for k ∈ {1, 2, . . . , v}.

According to this policy, v also specifies how many sparse images will be generated during progressive
inversion, where each sparse image has the same sparsity level equally containing K patches (as
mentioned above), leading to K = ⌊Nv ⌋ except for the final point tv that will return all N −K(v− 1)
remaining patches. Over T iterations, v sparse images are sequentially generated, each representing
the most informative content synthesized at different inversion points.

4.3 THEORETICAL ANALYSIS ON INVERSION COST

We finally provide a theoretical analysis that supports the computational efficiency of PRI, by
comparing its cost against those of DMI and SMI. To this end, we adopt the standard complexity
formulations of the MHSA and FFN layers in ViTs,O(SA) = 4Nd2+2N2d andO(FFN) = 8Nd2,
respectively (Chen et al., 2023b), and express the total complexity of each inversion method over
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T iterations and I images across L layers. For simplicity, we consider an idealized version of SMI,
denoted as SMI∗, which assumes that inversion starts directly with a reduced set of patches, without
gradual pruning over iterations. Even under this optimistic assumption, the following theorem shows
that PRI incurs the lowest computational cost in both MHSA and FFN layers.

Theorem 1. (Inversion cost ordering). Given O(SA) = 4Nd2 + 2N2d and O(FFN) = 8Nd2

in ViTs, where N is the number of all patches and d is the embedding dimension, for the overall
forward–backward costs under three inversion methods, denoted by CSA and CFFN, it holds that:

(a) SA modules. CSAPRI < CSASMI∗ < CSADMI whenever N
d < 3, i.e., PRI achieves the lowest

cost under the practical condition N < 3d satisfied by standard ViT architectures.

(b) FFN modules. CFFNPRI < CFFNSMI∗ < CFFNDMI , where the relative gain of PRI over SMI∗
increases with the division factor v and asymptotically approaches 2×.

Proof. See Appendix for detailed derivations.

5 EXPERIMENTS

In this section, we empirically validate the performance of our PRI method by exploring the following
three questions: (1) how much PRI improves inversion efficiency, compared to standard dense
inversion (DMI) as well as its faster state-of-the-art variant, SMI (Hu et al., 2024); (2) whether
the synthetic images inverted by PRI lead to better knowledge transfer in two prominent data-free
learning tasks, namely quantization and distillation; and finally (3) how and why PRI extracts more
transferable knowledge through its progressive inversion process.

Experimental Setup. Adopting the existing setup (Hu et al., 2024), we use DeiT (Touvron et al.,
2021) models with a patch size of 16 from the timm library (Wightman, 2019) as the backbone
models for inversion. All images are inverted using Adam for 4,000 iterations with a learning rate
of 0.25. The hyperparameter λ for the inversion loss in Eq. (1) is set to 10−4, following standard
practice (Yin et al., 2020). For the default sparsity of inverted images, we also follow the original
SMI setting (i.e., 76%) by applying pruning at iterations 50, 100, 200, and 300 with the same ratio of
0.3. To match this 76% sparsity in PRI, we set v = 4, which yields 75% sparsity according to our
detachment policy. All experiments were conducted on a single NVIDIA RTX A6000 GPU. Full
details are provided in the Appendix.

5.1 INVERSION EFFICIENCY

In Table 2, we report the inversion throughput (i.e., the number of iterations per second), computational
cost (FLOPs), and GPU memory consumption of different inversion methods using DeiT architectures
when synthesizing 128 images per batch. As theoretically proved in Theorem 1, PRI achieves up to
2× faster inversion than SMI and 10× faster inversion than DMI as the division factor v increases.
PRI also reduces FLOPs by up to 50% and GPU memory usage by up to 60% compared to SMI.
Importantly, the efficiency gains of PRI become more notable at higher sparsity levels, yielding
increasingly larger margins over SMI. Overall, these empirical results demonstrate that PRI is
significantly more efficient than both DMI and the state-of-the-art SMI method.

5.2 EFFECTIVENESS IN DATA-FREE KNOWLEDGE TRANSFER

Given the superior efficiency of PRI shown in Table 2, we now evaluate how effectively the in-
verted images convey pretrained knowledge in two prominent data-free knowledge transfer tasks,
quantization and knowledge distillation.

Quantization. Table 3(a) presents the resulting accuracy of quantization-aware training (QAT),
where 10k inverted images from DeiT-Base are used to fine-tune quantized models for 100 epochs
with a learning rate of 0.001. Specifically, we adopt learned step size quantization (LSQ) (Esser
et al., 2020) for fine-tuning, using only inverted images without access to the original training data.
Despite limited room for improving over the original model accuracy, PRI even outperforms DMI
at 50% sparsity and thus achieving faster inversion, and shows only a minor accuracy drop at 86%

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Inversion efficiency on DeiT-Base across various sparsity levels. Throughput is the inversion
speed, measuring inversion iterations per second. The changes in red and blue refer to the comparison
with each sparsity level of SMI. v is division factor. More results are included in the Appendix.

Method DMI SMI PRI
Sparsity 0% 50% 76% 86% 50% (v = 2) 75% (v = 4) 86% (v = 7)

Throughput (its/s) ↑ 1.10 2.20 3.92 5.58 2.88 (+30.9%) 6.40 (+63.3%) 11.81 (+111.6%)
FLOPs (T) ↓ 13.43 6.74 3.45 2.13 5.02 (-25.5%) 2.09 (-39.4%) 1.07 (-49.8%)

GPU Memory (GB) ↓ 23.42 10.77 6.26 4.61 8.99 (-16.5%) 4.28 (-31.6%) 2.68 (-41.9%)

Table 3: Downstream task results on data-free quantization and knowledge distillation using DMI,
SMI, and PRI across various sparsity levels. (a) Quantization results on ImageNet-1k, where W4/A8
refers to the bit precision for weight and activation quantization, respectively. (b) Knowledge
distillation results on CIFAR-100. The changes in red refer to the comparison with each sparsity level
of SMI. v is division factor. More results are included in the Appendix.

(a) Quantization Results – ImageNet-1k (Original: DeiT-Base (32 bits), Acc: 81.7%)

Method DMI SMI PRI
Sparsity 0% 50% 76% 86% 50% (v = 2) 75% (v = 4) 86% (v = 7)

Quantized
Accuracy (%)

W4/A8 80.19 80.29 79.77 79.20 80.36 (+0.07) 80.13 (+0.46) 80.07 (+0.87)
W8/A8 80.73 80.77 80.33 79.85 80.78 (+0.01) 80.70 (+0.37) 80.57 (+0.72)

(b) Knowledge Distillation Results – CIFAR-100 (Teacher: DeiT-Base, Acc: 80.6%)

Method DMI SMI PRI
Sparsity 0% 50% 76% 86% 50% (v = 2) 75% (v = 4) 86% (v = 7)

Student
Accuracy (%)

DeiT-Tiny 54.90 48.34 24.31 3.55 54.57 (+6.23) 43.32 (+19.01) 21.27 (+17.72)
DeiT-Small 67.62 62.55 45.05 11.25 67.70 (+5.15) 62.93 (+17.87) 45.59 (+34.34)
DeiT-Base 79.76 79.41 77.55 70.22 79.98 (+0.57) 79.57 (+1.98) 78.46 (+8.24)

sparsity, where PRI achieves a 10× speedup over DMI in Table 2. Compared to SMI, PRI consistently
maintains larger accuracy margins, especially as the sparsity level increases.

Distillation. Table 3(b) presents the results of knowledge distillation, where 128 images per batch
are inverted to construct a synthetic training set for student models. Each batch is used only once,
and no access to original training data is allowed. The teacher model is DeiT-Base pretrained on
ImageNet (Deng et al., 2009) yet fine-tuned on CIFAR-100 (Krizhevsky & Hinton, 2009), while
the student models are DeiT models pretrained only on ImageNet. Aligning with the QAT results
in Table 3(a), PRI even outperforms DMI at 50% sparsity and achieves comparable performance at
higher sparsity levels when distilling into the DeiT-Base student. In contrast, when distilling into
smaller student models, such as DeiT-Tiny, using highly sparse inverted images (i.e., 75% and 86%
sparsity) becomes more challenging, as DMI clearly outperforms both SMI and PRI at 86% sparsity.
Nevertheless, PRI still manages to achieve performance close to DMI at 50% sparsity even with the
DeiT-Tiny student, and consistently surpasses SMI by a large margin in all cases. SMI, in particular,
abruptly fails to transfer knowledge to smaller architectures at higher sparsity levels, showing a sharp
degradation in performance.

In summary, PRI enables highly effective data-free knowledge transfer, consistently outperforming
SMI and matching or exceeding DMI across both quantization and distillation tasks, even under high
sparsity and thus faster inversion.

5.3 TRANSFERABILITY ANALYSIS OF PRI

To further understand how and why PRI extracts more transferable knowledge through its progressive
inversion process, we investigate its ability to preserve class-agnostic information and support
generalized knowledge transfer beyond class-specific reconstruction.

One-Class Distillation. We first examine whether PRI can effectively transfer class-agnostic
knowledge. To this end, we design an extreme scenario, called one-class distillation, where knowledge
distillation is performed using inverted images, all corresponding to a single class (airplane in
CIFAR-10). Somewhat surprisingly, as shown in Figure 4, the student trained on only “airplane”
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PRI
Figure 4: Confusion matrices of student models trained exclusively on inverted images from a single
class, “airplane”, in CIFAR-10, using different inversion methods. The architecture of both teacher
and student is DeiT-Base. While students trained with DMI and SMI fail to generalize beyond the
target class, the student trained with PRI-inverted images exhibits broad generalization across all
classes.

(a) DMI (b) SMI (c) PRI (d) Real

Figure 5: Distribution of pretrained teacher
model’s confidence for 10k synthetic and real
images on CIFAR-10. X-axis is confidence and
Y-axis is frequency.

(a) t1 image (b) t2 image (c) t3 image (d) t4 image

Figure 6: Distribution of pretrained teacher
model’s confidence for 2.5k sparse images of
PRI across detachment points t1 to t4. X-axis is
confidence and Y-axis is frequency.

images inverted via PRI achieves reasonably strong performance across all 10 classes. In contrast,
as intuitively expected, both DMI and SMI fail to capture generalized knowledge across classes,
probably due to the fact that their inverted images predominantly encode class-specific features. These
results suggest that PRI can extract knowledge that is not only class-agnostic but also transferable
even through single-class inversion.

Confidence Analysis. Next, generating 10k inverted images evenly across all 10 classes in CIFAR-
10, we also report the distributions of the maximum class probabilities (i.e., confidences) predicted by
the teacher model. As shown in Figure 5, only PRI exhibits a wide and smooth confidence distribution,
showing a level of smoothness comparable to that observed in real images. In contrast, both DMI
and SMI yield overly confident predictions, with most values concentrated near 1.0. This also
confirms that their inverted images predominantly encode class-specific features while overlooking
class-agnostic information.

Progressive Shift from General to Specific. Finally, we analyze how PRI gradually transitions
from capturing general, class-agnostic knowledge to more specific, class-dependent features during
its progressive inversion process. With a division factor v = 4, we extract 2.5k inverted images
at each of four detachment points, t1, ..., t4, and present the confidence distributions of the images
corresponding to each detachment point. As shown in Figure 6, the confidence distributions gradually
shift from the smooth and broad at t1 to the sharp and peaked at t4, reflecting accumulation of class-
specific features. This progressive transition enables PRI to retain a broader spectrum of features
throughout inversion, in contrast to SMI, which focuses only on class-dependent information.

6 CONCLUSION

Motivated by our empirical finding that patches initially considered unimportant can become in-
formative through continued inversion, we proposed Patch Rebirth Inversion (PRI), a method that
efficiently synthesizes multiple sparse images capturing both class-agnostic and class-specific features.
Extensive experiments demonstrated that PRI significantly accelerates inversion while consistently
achieving strong performance across data-free quantization and knowledge distillation tasks.
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REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our results. All implementation details,
including model architectures, training procedures, and hyperparameter configurations, are described
in Section 5 of the main text and Appendix D. We provide a complete description of the overall
pipeline in Figure 3. To further facilitate reproducibility, we will provide an anonymized GitHub link:
https://anonymous.4open.science/r/PRI-4C56. Additionally, all baseline methods
are implemented using publicly available codes and hyperparameters are carefully tuned following
the guidelines in their original papers. Finally, proof of the theoretical claim is included in Appendix
F.
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TECHNICAL APPENDICES

PATCH REBIRTH: TOWARD FAST AND TRANSFERABLE MODEL INVERSION OF
VISION TRANSFORMERS

In this Appendix, we provide additional materials supporting our main paper. We begin by reviewing
additional related work and offering a detailed explanation of the inversion loss introduced in Eq. (1).
Next, we provide the pseudocode for our proposed patch rebirth inversion algorithm. Further
experimental details, including experimental setups and hyperparameters, are elaborated. We present
supplementary experimental results, encompassing analyses of image properties at each detachment
point, t-SNE visualizations of inverted features, and extended quantitative evaluations. The proof for
Theorem 1 is presented. Finally, we describe visualization methodologies, and provide additional
visualizations demonstrating the re-birth effect.

A MORE RELATED WORKS

Class-Specific and Class-Agnostic Features. Recent works in representation learning have focused
on disentangling class-agnostic and class-specific features to improve generalization and transferabil-
ity across various tasks (Stergiou et al., 2020; Zhang et al., 2023). Class-specific features are typically
aligned with discriminative information tightly coupled with a particular class, while class-agnostic
features capture generic patterns such as texture, shape, and structure that are useful across classes. A
class-specific attention mechanism was proposed to highlight discriminative temporal features and
improve time-series classification performance across multiple classes (Hao et al., 2022). To mitigate
biased classification in few-shot segmentation, an adaptive prototype alignment method was intro-
duced, combining class-specific and class-agnostic prototypes to enhance feature comparisons and
generalization (Chen et al., 2023a). While these works have explored class-aware and class-invariant
representations in supervised settings, our work investigates how such distinctions naturally emerge
in the process of model inversion. Unlike prior work that explicitly disentangles these two types via
architectural designs or supervision, we show that different inversion sequences can implicitly control
the balance of these features, which is especially important in data-free scenarios.

B DETAILED EXPLANATION OF INVERSION LOSS

In this section, we provide a detailed description of each loss component used for model inversion in
Eq. (1), specifically the classification loss Linv and the regularization loss Lreg.

Classification Loss. Following prior inversion methods (Hu et al., 2024; Yin et al., 2020), we adopt
the standard cross-entropy loss as our classification loss, defined as:

Lcls(f(X̂), y) = −
c∑

i=1

I[i = y] · log

(
exp(f(X̂))∑c

j=1 exp(fj(X̂))

)
,

where f(X̂) ∈ Rc represents the output logits from the pretrained classifier f , c is the total number
of classes, and y denotes the target class for the inverted image. This loss encourages the synthesized
image X̂ to be confidently classified as the target class y.

Regularization Loss. For visual plausibility, we adopt total variation (TV) regularization, commonly
utilized to encourage smoothness (Hatamizadeh et al., 2022). TV regularization is formally expressed
as:

Lreg(X̂) =

H∑
i=2

W∑
j=2

(∥∥∥X̂i,j − X̂i−1,j

∥∥∥
2
+
∥∥∥X̂i,j − X̂i,j−1

∥∥∥
2

+
∥∥∥X̂i,j − X̂i−1,j−1

∥∥∥
2

)
+

H∑
i=2

W−1∑
j=1

∥∥∥X̂i,j − X̂i−1,j+1

∥∥∥
2
,
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where X̂i,j denotes the pixel value at spatial coordinates (i, j) of the inverted image. By penalizing
large intensity changes between adjacent pixels, this loss term significantly improves the naturalness
and continuity of the generated images.

Combining these two terms with a balancing hyperparameter λ, we obtain the overall inversion loss
used throughout our experiments:

Linv(X̂, y; f) = Lcls(f(X̂), y) + λLreg(X̂).

As mentioned in the main paper, we set λ = 10−4, following standard practice (Yin et al., 2020).

C PSEUDOCODE OF PATCH REBIRTH INVERSION

To clearly present the implementation details of our approach, we provide the pseudocode of patch
rebirth inversion in Algorithm 1. The algorithm describes how PRI progressively stores important
patches as sparse images at each detachment point while continuing to invert the remaining unimpor-
tant patches. The formulation follows the notation introduced in the preliminaries section and omits
auxiliary regularization or architectural specifics for clarity.

Algorithm 1 Patch Rebirth Inversion (PRI)

Input: Pretrained model f , total iterations T , division factor v, random noise X̂t0 , target label y
Output: Set of sparse synthetic images S

1: Initialize: S ← ∅, X̂← X̂t0 , K ← ⌊Nv ⌋, active patch set P ← {x1, . . . ,xN}
2: for t← 1 to T do
3: if t = k · ⌊Tv ⌋ for some k ∈ {1, . . . , v − 1} then
4: Compute patch-wise importance over P (see Preliminaries section)
5: Pimp ← top-K most important patches in P
6: X̂k ← synthetic image composed of patches in Pimp

7: S ← S ∪ {X̂tk} ▷ Store current sparse image
8: P ← P \ Pimp ▷ Detach important patches
9: X̂← image composed of remaining patches in P

10: end if
11: Compute Linv(X̂, y; f) ▷ Eq. (1)
12: Update X̂← X̂− η · ∇X̂Linv
13: end for
14: X̂tv ← final synthetic image with remaining patches in P
15: S ← S ∪ {X̂tv} ▷ Store final sparse image
16: return S

Given a pretrained classifier f , an initial noise image X̂t0 , and a target label y, PRI performs inversion
over T iterations. The core idea is to progressively detach the most important patches, based on
attention-derived importance scores, at regularly spaced detachment points determined by the division
factor v. At each detachment point tk (Line 3), the top-K patches (with K = ⌊Nv ⌋) are extracted to
construct an intermediate sparse image X̂tk (Lines 4-6), which is stored in the output set S (Line
7). The remaining patches continue to be inverted in subsequent iterations, allowing previously
unimportant regions to accumulate more class-specific information (Lines 11-12). This process
repeats until the final step t = T , where the last remaining patches are stored as the final sparse image
X̂tv (Lines 14-15).

D FULL EXPERIMENTAL DETAILS

To further evaluate inversion performance across various sparsity levels, we additionally consider
the sparsity levels of 50% and 86%. In PRI, these correspond to division factors v = 2 and
v = 7, respectively. For fair comparisons, we adjust the pruning ratios in SMI to match the target
sparsity, setting them to (0.16, 0.16, 0.16, 0.16) for 50%, and (0.39, 0.39, 0.39, 0.39) for 86%, while
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maintaining the same pruning iteration schedule fixed. For the downstream tasks in Tables 3(a) and
3(b), we employ Kullback-Leibler divergence, a standard objective function in knowledge transfer
literature.

In terms of implementation details, to synthesize 128 images with PRI, we invert 64 images for v = 2,
32 images for v = 4, and 18 images for v = 7. Since 128 is not exactly divided by 7, we generate 126
images per batch in the case of v = 7. While this yields a slight computational advantage in Table 2,
it results in a marginal disadvantage in Tables 3(a) and 3(b). We consider these small differences
negligible for the purpose of comparison.

In Table A3, we use 128 images per batch and conduct 120 batches for CIFAR-10 and 1,000 batches
for CIFAR-100 and Tiny-ImageNet to ensure sufficient training convergence. Although alternative
strategies exist (e.g., training over multiple epochs), we evaluate the quality of inversion by fine-tuning
the student model using each inverted image exactly once, isolating the impact of the inversion quality
itself on downstream performance.

For training the student model in data-free knowledge transfer experiments, we use SGD optimizer
with a learning rate of 0.1, weight decay of 1e-4, and momentum of 0.9. For data-free quantization
experiments, we also use SGD with a learning rate of 0.01, keeping the same weight decay and
momentum, and use batch size of 128 as same as knowledge transfer experiments. There is no
learning rate scheduling applied in both settings.

Following prior work, sparse model inversion (SMI) (Hu et al., 2024), we apply standard data
augmentations such as random horizontal flipping and normalization when processing inverted data.
For test data, only resizing and normalization are used. In Figures 5 and A1, we use only remaining
patches of SMI, not discarded. All experiments, including Table A1, are conducted with a fixed seed,
42 for reproducibility.

To ensure reproducibility and facilitate consistent comparison, we leverage publicly accessible
pretrained vision models from widely used libraries such as timm. Specifically, we select DeiT/16-
Tiny, Small, Base, and a CLIP-based ViT model2 for visualization tasks. ViT-Base/32 model is
employed solely for visualization purposes.

E ADDITIONAL EXPERIMENTAL RESULTS

Extended Results of Experiments. Tables 2 and 3 in the main text summarize our core findings
regarding inversion efficiency, data-free quantization, and data-free knowledge distillation. Here, we
present comprehensive results across DeiT-Tiny, Small, and Base models with additional sparsity
levels, extending the analyses in Tables A1, A2 and A3.

Additional Results on Inversion Efficiency. In Table A1, we examine inversion efficiency across
various sparsity levels, highlighting PRI’s consistent superiority over SMI and DMI. PRI demonstrates
significantly improved throughput, reduced FLOPs, and lower GPU memory usage, particularly at
higher sparsity (86%). Specifically, PRI achieves up to 129% throughput improvement, 49% FLOPs
reduction, and 66% GPU memory savings compared to SMI. These empirical results strongly align
with our theoretical predictions, which anticipated greater efficiency gains with larger division factors
v.

Additional Results on Data-Free Quantization. Table A2 reports data-free quantization results
on ImageNet-1k for three DeiT backbones under two bit-width settings (W4/A8 and W8/A8). In
DeiT-Tiny, DMI outperforms both SMI and PRI, whereas in DeiT-Base, PRI surpasses DMI despite
being 10× faster. PRI consistently achieves superior or competitive accuracy compared to SMI across
various sparsity levels.

Additional Results on Data-Free Knowledge Distillation. Table A3 provides an extensive valida-
tion of PRI’s effectiveness in data-free knowledge distillation across CIFAR-10, CIFAR-100, and
Tiny-ImageNet datasets. PRI consistently outperforms SMI across all sparsity settings, achieving
comparable or superior accuracy to DMI at moderate sparsity levels (50%). In particular, on the
CIFAR-10 dataset, PRI with 50% sparsity achieves higher knowledge distillation accuracy and faster

2https://huggingface.co/openai/clip-vit-base-patch32

https://huggingface.co/openai/clip-vit-base-patch32
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Table A1: Inversion efficiency on DeiT-Tiny, DeiT-Small, and DeiT-Base across various sparsity
levels. Throughput is the inversion speed, measuring to compute inversion iterations per second. The
changes in red and blue refer to the comparison with each sparsity level of SMI.

Model: DeiT-Tiny
Method DMI SMI PRI
Sparsity 0% 50% 76% 86% 50% (v = 2) 75% (v = 4) 86% (v = 7)

Throughput (its/s) ↑ 6.49 10.94 15.33 18.04 15.27 (+39.6%) 30.71 (+100.3%) 40.92 (+126.8%)
FLOPs (G) ↓ 949.11 454.85 229.89 143.20 348.88 (-23.3%) 144.09 (-37.3%) 73.86 (-48.4%)

GPU Memory (GB) ↓ 6.00 3.32 2.21 1.79 2.38 (-28.3%) 1.07 (-51.6%) 0.60 (-66.5%)

Model: DeiT-Small
Method DMI SMI PRI
Sparsity 0% 50% 76% 86% 50% (v = 2) 75% (v = 4) 86% (v = 7)

Throughput (its/s) ↑ 3.05 5.75 9.10 12.14 7.72 (+34.2%) 16.87 (+85.4%) 27.82 (+129.2%)
FLOPs (G) ↓ 3524.20 1729.66 881.33 545.88 1300.98 (-24.8%) 539.85 (-38.7%) 277.23 (-49.2%)

GPU Memory (GB) ↓ 11.66 5.67 3.43 2.62 4.47 (-21.2%) 2.01 (-41.4%) 1.17 (-55.3%)

Model: DeiT-Base
Method DMI SMI PRI
Sparsity 0% 50% 76% 86% 50% (v = 2) 75% (v = 4) 86% (v = 7)

Throughput (its/s) ↑ 1.10 2.20 3.92 5.58 2.88 (+30.9%) 6.40 (+63.3%) 11.81 (+111.6%)
FLOPs (T) ↓ 13.43 6.74 3.45 2.13 5.02 (-25.5%) 2.09 (-39.4%) 1.07 (-49.8%)

GPU Memory (GB) ↓ 23.42 10.77 6.26 4.61 8.99 (-16.5%) 4.28 (-31.6%) 2.68 (-41.9%)

Table A2: Data-free quantization results on ImageNet-1k using different inversion methods across
various sparsity levels. W4/A8 refers to the bit precision for weight and activation quantization,
respectively. The changes in red and blue refer to the comparison with each sparsity level of SMI.
Teacher model accuracies for DeiT-Tiny, Small, and Base are 71.5%, 79.4%, and 81.7%, respectively.

Dataset: ImageNet-1k
Method DMI SMI PRI
Sparsity 0% 50% 76% 86% 50% (v = 2) 75% (v = 4) 86% (v = 7)

DeiT-Tiny W4/A8 68.03 67.39 66.65 66.55 67.64 (+0.25) 66.79 (+0.14) 66.44 (-0.11)
W8/A8 69.45 68.94 68.57 68.38 69.20 (+0.26) 68.77 (+0.20) 68.40 (+0.02)

DeiT-Small W4/A8 77.01 76.80 76.19 75.37 77.06 (+0.26) 76.40 (+0.21) 76.03 (+0.66)
W8/A8 78.15 78.11 77.64 77.01 77.90 (-0.21) 77.72 (+0.08) 77.42 (+0.41)

DeiT-Base W4/A8 80.19 80.29 79.77 79.20 80.36 (+0.07) 80.13 (+0.46) 80.07 (+0.87)
W8/A8 80.73 80.77 80.33 79.85 80.78 (+0.01) 80.70 (+0.37) 80.57 (+0.72)

inversion speed compared to DMI. Remarkably, for DeiT-Tiny, the accuracy difference between
DMI and PRI exceeds 4%. Notably, as sparsity increases (to 75% and 86%), PRI significantly
widens its performance gap over SMI, further demonstrating its robustness and efficacy in generating
class-agnostic features that are essential for effective knowledge transfer in data-free settings.

Additional Analyses of Progressive Shift from General to Specific. We further investigate the
role of sparse images generated at different detachment points of PRI by conducting two analyses:
one-class distillation in Table A4 and data-free quantization in Table A5.

In the one-class distillation setting in Table A4, we use 2.5k sparse images generated at each of the
four detachment points, as well as the combined set denoted as “All” on CIFAR-10. For evaluation,
we report the classification accuracy and average KL-divergence loss with respect to the teacher
model logits, denoted as KL10 (all classes including airplane) and KL9 (excluding airplane). While
training on 2.5k sparse images from every detachment point leads to strong accuracy, we observe
that images from the 2nd detachment point achieve the best (i.e., minimum) KL-divergence scores,
especially on KL9, suggesting stronger class-agnostic properties. Similarly, the 3rd point images
also exhibit favorable generalization, whereas the 4th points show diminished performance but still
surpass DMI and SMI in Figure 4.

In the 8-bit data-free quantization experiments on ImageNet-1k in Table A5, we use 2.5k sparse
images from each detachment point and the combined set again. We find that images from the 1st
detachment point most effectively recover accuracy in quantized models, consistent with their rich
class-agnostic feature content. Using all detachment points together also yields strong performance.
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Table A3: Data-free knowledge distillation results on CIFAR-10, CIFAR-100, and Tiny-ImageNet
different inversion methods across various sparsity levels. The changes in red refer to the comparison
with each sparsity level of SMI.

Dataset: CIFAR-10 (Teacher: DeiT-Base, Acc: 95.4)

Method DMI SMI PRI
Sparsity 0% 50% 76% 86% 50% (v = 2) 75% (v = 4) 86% (v = 7)

Student
Accuracy

DeiT-Tiny 76.67 69.94 55.22 26.69 81.21 (+11.27) 75.70 (+20.48) 57.96 (+31.27)
DeiT-Small 86.72 87.44 82.74 58.91 88.60 (+1.16) 87.30 (+4.56) 81.21 (+22.3)
DeiT-Base 95.00 95.01 94.49 88.38 95.13 (+0.12) 95.08 (+0.59) 94.56 (+6.18)

Dataset: CIFAR-100 (Teacher: DeiT-Base, Acc: 80.6)

Method DMI SMI PRI
Sparsity 0% 50% 76% 86% 50% (v = 2) 75% (v = 4) 86% (v = 7)

Student
Accuracy

DeiT-Tiny 54.90 48.34 24.31 3.55 54.57 (+6.23) 43.32 (+19.01) 21.27 (+17.72)
DeiT-Small 67.62 62.55 45.05 11.25 67.70 (+5.15) 62.93 (+17.87) 45.59 (+34.34)
DeiT-Base 79.76 79.41 77.55 70.22 79.98 (+0.57) 79.57 (+1.98) 78.46 (+8.24)

Dataset: Tiny-ImageNet (Teacher: DeiT-Base, Acc: 84.6)

Method DMI SMI PRI
Sparsity 0% 50% 76% 86% 50% (v = 2) 75% (v = 4) 86% (v = 7)

Student
Accuracy

DeiT-Tiny 53.98 44.96 14.01 1.97 53.55 (+8.59) 35.65 (+24.64) 12.37 (+10.4)
DeiT-Small 73.42 67.21 42.51 7.60 73.52 (+6.31) 67.50 (+24.99) 46.51 (+38.91)
DeiT-Base 83.95 83.51 80.62 71.55 83.85 (+0.34) 83.68 (+3.06) 82.47 (+10.92)

As in the one-class distillation setting, images from the 4th detachment point, which contain the most
class-specific features among all detachment points, yield the lowest quantization recovery accuracy.

These results highlight that earlier detachment point images, encoding more class-agnostic knowledge,
play a critical role in enhancing both generalization and robustness in data-free learning.

Table A4: One-class distillation results on CIFAR-
10 using sparse images inverted at each detach-
ment point of PRI. “All” denotes inverted images
using every detachment point.

Dataset: CIFAR-10 (only “airplane” class)

Detachment Point All 1st 2nd 3rd 4th

Accuracy (%) ↑ 93.84 93.28 93.76 93.75 90.35
KL10 (×1e-6) ↓ 8097 8242 7765 7976 13602
KL9 (×1e-6) ↓ 9806 9993 9411 9668 16488

Table A5: Data-free quantization performance on
ImageNet-1k using sparse images inverted at each
detachment point. “All” denotes inverted images
using every detachment point.

Dataset: ImageNet-1k (W8/A8)

Detachment Point All 1st 2nd 3rd 4th

DeiT-Tiny 67.49 67.47 67.42 67.53 67.26
DeiT-Small 76.20 76.29 76.15 76.21 75.66
DeiT-Base 79.92 79.94 79.86 79.85 79.58

t-SNE Visualization. In Figure A1, we present t-SNE visualizations of the feature embeddings from
PRI-inverted images at each detachment point, using DeiT-Base on CIFAR-100. PRI-1st through
PRI-4th refer to the t-SNE visualizations of sparse images stored at each progressive detachment
stage during inversion.

Unlike class-conditioned visualizations, we assign each sample the label predicted by the teacher
model, rather than the originally targeted inversion class. This choice reflects that early point images
often exhibit low confidence, as shown in Figure 6(a), indicating that even the teacher struggles to
confidently identify them.

Interestingly, despite their low semantic certainty, PRI-1st samples still contribute meaningfully
to knowledge transfer, as demonstrated in our analytic results above. Furthermore, we observe a
point-wise difference of class separation: PRI-1st embeddings are relatively entangled, gradually
becoming more class-discriminative in PRI-2nd and PRI-3rd, and eventually resemble the tightly
clustered patterns seen in DMI and SMI at PRI-4th. This progression supports our interpretation that
PRI balances class-specific and class-agnostic features over time.

F PROOF OF THEOREM 1

In this section, we present the proof of Theorem 1, which theoretically demonstrates that PRI achieves
a lower computational cost compared to SMI and DMI in both self-attention (SA) and feed-forward
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Figure A1: t-SNE visualization of feature embeddings from DMI, SMI, and multiple detachment
points of PRI on CIFAR-100. All embeddings are extracted using the pretrained DeiT-Base.

network (FFN) modules of ViT-based architectures. Specifically, we show that PRI is more efficient in
the SA module under the condition N

d < 3, and strictly more efficient in the FFN module regardless
of the N

d ratio. This theoretical result aligns with our experimental results, where PRI consistently
outperforms other inversion methods across various settings.

Proof. To compare the computational costs of different inversion strategies, we focus on the dominant
components of the ViT architecture: the self-attention (SA) and feed-forward network (FFN) modules.
The per-layer cost of SA is given by 4Nd2 + 2N2d, and the per-layer cost of FFN is approximated
as 8Nd2 (Chen et al., 2023b). Other components such as LayerNorm and residual connections are
omitted as they contribute negligible overhead compared to the main computational terms and do not
affect the asymptotic behavior of the comparison.

Dense Model Inversion (DMI). Let N be the number of patches per image, d the embedding
dimension, I the number of images, T the number of inversion iterations, and L the number of layers.
The total computational cost of DMI is:

CSADMI = L · (4Nd2 + 2N2d) · I · T, (3)

CFFNDMI = L · 8Nd2 · I · T. (4)

Sparse Model Inversion (SMI). Assuming that SMI produces the same sparsity level as PRI, the
output of SMI contains N

v patches, where v > 1 is the division factor of PRI. For a fair comparison,
we consider an idealized version of SMI in which patch pruning occurs before the inversion process
begins, even though the real SMI implementation gradually prunes unimportant patches in the early
stages of inversion. By replacing N with N

v in Eqs. equation 3 and equation 4, the computational
cost becomes:

CSASMI∗ = L ·
(
4Nd2

v
+

2N2d

v2

)
· I · T,

CFFNSMI∗ = L · 8Nd2

v
· I · T.
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Patch Rebirth Inversion (PRI). PRI controls the number and timing of patch detachments using
a division factor v, with each stage running for T

v iterations. Let Nk denote the number of active
patches in the k-th stage. Since each detachment step removes N

v patches, we have:

Nk = N ·
(
1− k − 1

v

)
, k = 1, . . . , v.

Moreover, since PRI generates a group of v sparse images within a single inversion trajectory
spanning T iterations, the effective per-image cost should be scaled by a factor of 1

v . Accordingly,
for each stage, only I

v images are effectively counted per synthetic image, and the cost aggregates
over all v detachment points through inversion iterations as follows:

CSAPRI =

v∑
k=1

L ·
(
4Nkd

2 + 2N2
kd
)
· I
v
· T
v
,

CFFNPRI =

v∑
k=1

L · 8Nkd
2 · I

v
· T
v
.

Substituting Nk and simplifying yields:

CSAPRI =
LIT

v2

v∑
k=1

[
4Nd2

(
1− k − 1

v

)
+ 2N2d

(
1− k − 1

v

)2
]

=
LIT

v2

[
4Nd2

v∑
k=1

(
1− k − 1

v

)
+ 2N2d

v∑
k=1

(
1− k − 1

v

)2]

=
LIT

v2

4Nd2
v−1∑
j=0

(
1− j

v

)
+ 2N2d

v−1∑
j=0

(
1− j

v

)2
=

LIT

v2

(4Nd2

v

v∑
j=1

j +
2N2d

v2

v∑
j=1

j2
)

=
LIT

v2

[
4Nd2

v
· v(v + 1)

2
+

2N2d

v2
· v(v + 1)(2v + 1)

6

]
=

LIT

v2

[
4Nd2 · v(v + 1)

2v
+

2N2d · v(v + 1)(2v + 1)

6v2

]
,

CFFNPRI =
LIT

v2
· 8Nd2 · v(v + 1)

2v
.

Feed-Forward Network. We now compare the computational cost of the feed-forward network
(FFN) modules. First, comparing the cost of FFN computations between DMI and SMI yields:

CFFNDMI − CFFNSMI∗ = L · 8Nd2 · I · T
(
1− 1

v

)
.

Since v > 1, this difference is always positive, indicating that SMI reduces FFN cost compared to
DMI. Moreover, the speedup of SMI over DMI is exactly v×, as shown below:

CFFNDMI

CFFNSMI∗
=

L · 8Nd2 · I · T
L · 8Nd2

v · I · T
= v.

Next, we compare the cost of PRI against SMI:

CFFNPRI

CFFNSMI∗
=

L·I·T
v2 · 8N ·d2·v(v+1)

2v

L · 8Nd2

v · I · T
=

v + 1

2v
=

1

2
+

1

2v
.

For the smallest value v = 2, PRI is 25% more efficient than SMI in terms of FFN cost. As v
increases, this ratio converges to 1

2 , indicating that PRI can become up to 2× more efficient than SMI
in the limit.
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These highlight a key advantage of PRI: it consistently achieves lower computational cost than
both SMI and DMI for FFN computations, independent of the total number of patches and model
scalability.

Summarizing:

CFFNPRI < CFFNSMI∗ < CFFNDMI .

Self-Attention. We now turn to analyzing the computational costs of self-attention (SA) modules in
DMI and SMI. The difference is given by: CSADMI and CSASMI∗ :

CSADMI − CSASMI∗ = L · I · T ·
[
4Nd2 ·

(
1− 1

v

)
+ 2N2d ·

(
1− 1

v2

)]
.

Since v > 1, both terms inside the brackets are strictly positive, which confirms that CSADMI > CSASMI∗

always holds, regardless of model size or patch dimension.

Next, comparing PRI and SMI:

CSAPRI − CSASMI∗ = L · I · T ·
[
2N2d

6v3
(2v2 − 3v + 1)− 4Nd2

2v2
(v − 1)

]
.

Solving the inequality for PRI to be more efficient than SMI gives:

N <
6v(v − 1)

2v2 − 3v + 1
· d.

This bound decreases monotonically with v: for v = 2, the bound is N < 4d; for v = 3, it becomes
N < 3.6d; and as v → ∞, it approaches N < 3d. Therefore, in practical regimes where ViTs
typically satisfy N < 3d, PRI achieves lower self-attention cost compared to both SMI and DMI.
This ratio condition N

d < 3 is satisfied by most of the standard ViT architectures, including DeiT-Tiny,
Small, and Base, where N = 197 and d = 192, 384, and 768, respectively. It also holds for larger
models such as ViT-Large (N = 197 and d = 1024) and ViT-Huge (N = 257 and d = 1280).

Summarizing:

CSAPRI < CSASMI∗ < CSADMI (when N
d < 3).

G VISUALIZATION DETAILS

Our visualization strategies of model inversion are based on the prior work (Hu et al., 2024). All
images shown in Figures 1(a), 2, 3, and A2 are inverted using the CLIP-based ViT/32-Base
model as its features have been found to align more closely with human perception due to large-
scale pretraining (Hu et al., 2024). For improved visual clarity, we follow the approach of prior
work (Hatamizadeh et al., 2022) and incorporate batch normalization borrowed from convolutional
neural networks (CNNs). All visualization images are from the CIFAR-100 dataset.

In our empirical observations, fine-tuning the entire model improves the quantitative performance of
the pretrained teacher, but does not lead to noticeable improvements in visual quality from a human
perception perspective. Instead, we find that fine-tuning only the classifier head yields the best results
for visualization purposes. All other experimental settings remain consistent with those used in the
knowledge transfer inversion experiments.

H VISUALIZATIONS OF THE RE-BIRTH EFFECT

Figure A2 illustrates the re-birth effect across 12 classes on CIFAR-100. The images are arranged
in a 4×3 grid, with rows ordered from left-to-right, top-to-bottom by class: pear, rose, apple,
orange, orchid, lion, sunflower, aquarium fish, bus, bee, poppy, and boy. The emergence of semantic
structure in the right column highlights PRI’s ability to transform initially uninformative regions into
meaningful content through progressive optimization.
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Figure A2: Re-birth visualizations. For each class, the left image shows the initially regarded as
unimportant patches, while the right image shows the same patches after further inversion.
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(a) Learning curves with inversion time
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Figure A3: Learning curves on CIFAR-100 using a DeiT-Base teacher and a DeiT-Base student. (a)
Comparison of learning curves with inversion time among three inversion methods (PRI with 75%
sparsity, SMI with 76% sparsity and DMI). (b) Learning curves using samples generated at different
detachment points from t1 to t4.

I LEARNING DYNAMICS OF KNOWLEDGE TRANSFERRING

Figure A3 presents a unified analysis of the convergence behavior of PRI, SMI, and DMI, as well as
the influence of samples generated at different stages of PRI.

Convergence Behavior of PRI, SMI, and DMI. In Figure A3(a), we plot the learning curves of the
three methods using the DeiT-Base teacher–student pair on CIFAR-100 (as in Table 3(b)), along with
the associated inversion-time requirements. PRI not only converges substantially faster than SMI, but
also maintains a clear performance gap even after both methods reach their converged regimes. As
expected, DMI achieves the strongest performance throughout the entire trajectory; however, this
comes at an extremely high inversion cost (approximately 1,000 hours in this experiment). Overall,
the relative ordering remains stable, i.e., DMI ≳ PRI > SMI, and the gaps do not diminish over time.
This suggests that the differences among the sparsification strategies are not transient optimization
artifacts, but rather persist throughout the full training horizon.

Unified Convergence across Detachment Points. Figure A3(b) presents the learning curves
obtained from samples at four detachment points, t1 through t4, under PRI with division factor v = 4.
As in Figure A3(a), we use the DeiT-Base teacher–student pair on CIFAR-100. The samples detached
at earlier stages (t1 and t2) exhibit nearly identical trajectories, while those from the latest stage (t4)
converge more quickly. Nevertheless, all four cases eventually achieve similar final accuracy.

At a glance, this may seem to imply that the later-stage, more class-specific t4 samples are universally
advantageous. However, Tables A4 and A5 show that relying solely on t4 samples yields noticeably
poorer performance in other settings. This contrast suggests that different detachment points capture
complementary properties: early-stage samples retain class-agnostic structures beneficial for stability
and robustness, whereas later-stage samples provide class-specific details. Therefore, leveraging sam-
ples across multiple detachment points is essential for consistently strong performance in downstream
tasks.

J THEORETICAL VIEW ON PERFORMANCE DIFFERENCES

To better interpret the performance differences observed among PRI, SMI, and DMI across all
experiments, we draw on a recent theoretical analysis from Wei et al. (2025), restated in Theorem A1
below.

Theorem A1. (Wei et al. (2025)) Given the original dataset D = {xi, yi}i∈[m] with m i.i.d.
samples and the synthetic dataset S = {x̂j , ŷj}j∈[s]. Assume the hypothesis function is λη-Lipschitz
continuous, the loss function ℓ(x, y) is λℓ-Lipschitz continuous for all y, and is bounded by L, with
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ℓ(x̂j , ŷj ;θ) = 0 for all j ∈ [s]. If the dataset S is a δ-cover of D, with probability at least 1− γ, the
bound holds:∣∣∣∣∣∣ 1m

∑
i∈[m]

ℓ(xi, yi;θ)−
1

s

∑
j∈[s]

ℓ(x̂j , ŷj ;θ)

∣∣∣∣∣∣ ≤ λℓ + ληLC

δdiv
+

√
log |Θ|+ log 1

γ

2m
,

where C is the number of classes, and θ ∈ Θ is the optimized student model.

The theorem states that the generalization error between the true dataset D and the synthetic dataset
S is fundamentally governed by the diversity of S, quantified by δdiv. A larger δdiv (correspond-
ing to greater synthetic-data diversity) tightens the bound and thereby improves the downstream
generalization performance of the student model.

A direct implication for our setting is that the performance differences among PRI, SMI, and DMI
can be attributed to how diverse their synthesized datasets are. PRI yields synthetic samples with
substantially higher diversity due to its progressive sparse reconstruction, leading to a larger δdiv
and thus a tighter generalization bound. In contrast, SMI produces less diverse samples because
a significant portion of information is removed early in the process, resulting in a looser bound.
DMI attains high diversity but only at an impractically high inversion cost, making such diversity
unattainable under realistic compute budgets. This diversity-based perspective explains the consistent
performance ordering observed across our experiments. Also, this observation is aligned with the
qualitative evidence presented in Figures 5 and 6, where PRI consistently produces more diverse
synthetic images and smoother, less overconfident confidence distributions than SMI, indirectly
reflecting its larger δdiv .
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