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ABSTRACT

Developing agents capable of navigating to a target location based on language
instructions and visual information, known as vision-language navigation (VLN),
has attracted widespread interest. Most research has focused on ground-based
agents, while Unmanned Aerial Vehicle (UAV)-based VLN remains relatively
underexplored. Recent efforts in UAV VLN predominantly adopt ground-based
VLN settings, relying on predefined discrete action spaces and neglecting the
inherent disparities in agent movement dynamics and the complexity of naviga-
tion tasks between ground and aerial environments. To address these disparities
and challenges, we propose solutions from three perspectives: platform, bench-
mark, and methodology. To enable realistic UAV trajectory simulation in VLN
tasks, we propose the TRAVEL platform, which features diverse environments,
realistic flight control, and extensive algorithmic support. We further construct a
target-oriented VLN dataset consisting of approximately 12k trajectories on this
platform, serving as the first dataset specifically designed for realistic UAV VLN
tasks. To tackle the challenges posed by complex aerial environments, we pro-
pose an assistant-guided UAV object search benchmark called UAV-Need-Help,
which provides varying levels of guidance information to help UAVs better ac-
complish realistic VLN tasks. We also propose a UAV navigation LLM that,
given multi-view images, task descriptions, and assistant instructions, leverages
the multimodal understanding capabilities of the MLLM to jointly process visual
and textual information, and performs hierarchical trajectory generation. The eval-
uation results of our method significantly outperform the baseline models, while
there remains a considerable gap between our results and those achieved by human
operators, underscoring the challenge presented by the UAV-Need-Help task.

1 INTRODUCTION

Constructing embodied agents capable of understanding human commands remains a long-term
objective in the field of artificial intelligence. Among these (Qi et al., 2020; Ku et al., 2020; Shridhar
et al., 2020; Shen et al., 2021), visual-language navigation (VLN)—navigating to a target location
based on language instructions and visual information—has garnered significant research interest.
Current research in VLN focuses primarily on ground-based agents (Krantz et al., 2020; Blukis
et al., 2018), while UAV-based VLN has received comparatively less attention. This area presents a
wealth of application scenarios, and due to the notable differences in action space and observations
between UAVs and ground-based agents, it represents a valuable area for research.

Recent UAV VLN benchmarks (Liu et al., 2023b; Fan et al., 2022; Lee et al., 2024) typically adopt
ground-based VLN settings, relying on a fixed set of discrete actions. However, we argue that a sig-
nificant gap exists between ground-based movement and UAV flight characteristics, along with the
distinct operational environments, making a direct transfer of ground-based approaches to UAVs in-
sufficient for precise aerial navigation. The primary differences and challenges are manifested in two
aspects: 1) Mismatch in agent movement dynamics. Ground-based agents (Anderson et al., 2018;
Yan et al., 2019; Shah & Levine, 2022) typically move along a horizontal plane, which makes it
straightforward to plan navigation using discrete actions such as horizontal movement and rotation.
In contrast, UAVs can operate freely in three-dimensional airspace. As shown in Fig. 1, traditional
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Figure 1: We propose a realistic UAV simulation platform and a novel UAV-Need-Help benchmark.
The TRAVEL platform focuses on realistic UAV VLN tasks, integrating diverse environmental com-
ponents, realistic flight simulations, and algorithmic support. The UAV-Need-Help benchmark in-
troduces an assistant-guided UAV object search task, where the UAV navigates to a target object
using object descriptions, environmental information, and guidance from assistants.

methods attempt to define UAV movement using fixed action sets, which incorporate basic directions
such as up, down, and horizontal movements. These approaches oversimplify UAV control and fail
to capture realistic flight dynamics, as UAVs often perform maneuvers like pitching up, diving, and
rolling simultaneously to achieve spatial movement. UAV trajectories are inherently continuous and
difficult to decompose into discrete actions, leading to unrealistic navigation when such simplifica-
tions are applied. 2) Disparity in navigation task complexity. UAVs frequently operate in diverse
outdoor, open environments, where navigation paths are often long and complex. Unlike ground-
based agents (Anderson et al., 2018) that navigate using well-defined descriptions of target objects,
UAVs must deal with obstructed views and shifting perspectives due to their high maneuverability.
Therefore, relying solely on target descriptions is inadequate for precise localization and navigation
in such complex, dynamic scenarios. To address these disparities and associated challenges, we
propose a UAV simulation platform TRAVEL, a target-oriented VLN dataset, a novel benchmark
UAV-Need-Help, along with a UAV navigation LLM to create a more realistic framework for UAV
vision-language navigation which supports continuous trajectories and complex scenarios.

To narrow the gap to realistic UAV VLN tasks, a crucial advancement lies in replacing fixed action
sequences with continuous flight trajectories. To facilitate this, we introduce TRAVEL, a simulation
platform Towards Realistic Aerial Vision and Exploratory Language navigation, offering realistic
environments, authentic flight simulation, and extensive algorithmic support. As shown in Fig. 1, we
utilize UE4’s realistic rendering capabilities, integrate 22 scenarios and 89 objects, and provide APIs
for object placement and scenario configuration. We integrate AirSim plugin to translate trajectory
sequences into continuous paths with realistic flight dynamics and support continuous flight control
using real flight signals via remote controllers or designed APIs. Building on the features above, we
develop a parallel realistic trajectory collection framework and a closed-loop simulation framework,
providing comprehensive algorithmic support for UAV tasks.

To mitigate the scarcity of realistic UAV trajectory data for VLN tasks, We leverage the unique
features of the TRAVEL platform to construct a target-oriented VLN dataset, which is the first real-
istic UAV VLN dataset to incorporate 6 degrees of freedom (DoF) motion, accurately capturing the
complex flight dynamics of UAVs. Human annotators conducted continuous flights on the TRAVEL
platform, regularly recording UAV states during annotation and asynchronously collecting addi-
tional sensor data to obtain navigation trajectories. We utilize GPT-4 to generate target descriptions
and follow up with manual quality checks to generate high-quality navigation instructions, which
result in a total of approximately 12k trajectory-instruction pairs.

The high maneuverability of UAVs and the complex aerial environments pose significant challenges
for UAV object search task relying solely on descriptive instructions. To support UAV to accom-
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Table 1: Comparison of existing VLN datasets based on the DoF of navigation action space and
dataset scale. Our UAV dataset incorporates 6 DoF trajectories for realistic VLN tasks. Ntraj and
Nvocab represent the number of collected trajectories and vocabulary size, respectively.

Dataset DoF Kinematics Ntraj Nvocab Traj Len. Intr Len. Actions Environment

R2R - ✗ 7189 3.1K 10 29 5 Matterport3D
TouchDown 2 ✗ 9326 5K 310 90 35 Google Street View
LANI 2 ✗ 6000 2.3K 16 57 116 CHALET
AVDN 3 ✗ 6269 3.3K 144 89 7 xView
AerialVLN 4 ✗ 8446 4.5K 661 83 204 AirSim
CityNav 4 ✗ 32637 6.6K 545 26 - SensatUrban
Ours 6 ✓ 12149 10.8K 255 104 264 TRAVEL

plish such tasks, we enhance UAV navigation capabilities by providing additional information and
accordingly propose the UAV-Need-Help benchmark. As shown in Fig. 1, we establish an assistant
that provides action guidance to UAVs in specific scenarios and categorize the assistant into three
types based on the varying levels of guidance. The UAV performs the task based on the initial target
description, environmental information, and instructions from the assistant.

To tackle the challenges presented by the UAV-Need-Help benchmark and enhance the efficiency
of UAVs in object search tasks, we propose a UAV navigation LLM. We leverage MLLM’s un-
derstanding and decision-making capabilities to produce hierarchical outputs for long-distance and
fine-grained trajectories. Additionally, we propose a backtracking sampling-based data aggregation
strategy to enhance environmental understanding and obstacle avoidance capabilities. Comprehen-
sive closed-loop evaluations across various settings validate the effectiveness of our approach.

We hope that the proposed platform, benchmark, and methodology can promote research and de-
velopment in VLN tasks based on continuous and realistic UAV trajectories, thereby facilitating the
transfer of UAV VLN systems to real-world applications.

2 RELATED WORK

Embodied Simulator. Simulation platforms are crucial for intelligent systems research. For
ground-based simulations, platforms like Habitat (Puig et al., 2024), Matterport3D (Chang et al.,
2017) and Google Street View (Anguelov et al., 2010) have been pivotal simulated realistic indoor
and outdoor scenes, significantly propelled research by improving data collection and algorithm
evaluation in complex scenarios. However, UAV simulation platforms are still in their early stages
of development. Some existing platforms, such as Gazebo (Koenig & Howard, 2004), provide a
foundation for UAV control and navigation, but they still exhibit limitations in terms of realism,
scalability, and adaptability to various scenarios. The xView platform (Lam et al., 2018) only offers
remote sensing satellite images which are unsuitable for low-altitude navigation tasks. Recently,
some studies (Liu et al., 2023b; Ma et al., 2020; Haley et al., 2023; Gill et al., 2021; Madaan et al.,
2020; Alvey et al., 2021) have combined UE with AirSim to develop high-fidelity imaging plat-
forms. However, these platforms typically lack algorithmic support for continuous trajectory VLN
tasks. In contrast, our platform offers realistic environments, authentic flight simulation, and exten-
sive algorithmic support, providing a foundation for realistic UAV VLN research.

Vision-Language Navigation Datasets. UAV VLN is an emerging task recently formed from
the expansion of outdoor VLN tasks. Table 1 presents a comparison between representative VLN
datasets. Beginning with indoor navigation, R2R dataset (Anderson et al., 2018) establishes a foun-
dation for grounded VLN. Inspiring works (Vasudevan et al., 2020; Zhu et al., 2021; Chen et al.,
2019; Misra et al., 2018) such as TOUCHDOWN, LANI have employed verbal navigation instruc-
tions to address the challenges of outdoor long-range navigation. Moving beyond ground-level
navigation, AVDN (Fan et al., 2022) collects aerial navigation trajectories with human dialogues.
AerialVLN (Liu et al., 2023b) and CityNav (Lee et al., 2024) propose VLN for UAVs and collect
aerial trajectory datasets of discrete 4-DOF UAV action. In previous datasets, UAV trajectories
were collected by simply modifying the UAV’s position, which significantly deviates from real UAV
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flights. Based on our platform, we collect a target-oriented realistic UAV VLN dataset with contin-
uous 6-DOF trajectories to enhance the realism of UAV navigation tasks.

LLM-based Navigation Agent. The application of LLM-based methodologies has led to signif-
icant advancements in developing navigation agents. LM-Nav (Shah et al., 2022) propose a goal-
conditioned robotic navigation method that enables robust generalization to real-world outdoor en-
vironments without language-annotated data. LMDrive (Shao et al., 2024) further progressed the
field by introducing a language-guided, end-to-end autonomous driving framework that integrates
multi-modal sensor data, facilitating effective human-robot interaction in challenging urban scenar-
ios. Some studies (Vemprala et al., 2023; Zhong et al., 2024) have utilized the zero-shot capabilities
of LLMs to generate UAV navigation code, while (Lee et al., 2024) combined LLMs for coordinate
optimization of drone target points, validating the basic capabilities of LLMs in drone navigation
tasks. To further expand the application scenarios for drones, we proposed a UAV navigation LLM
composed of hierarchical trajectory generation models in solving the object search task.

3 TRAVEL SIMULATION PLATFORM

As illustrated in Fig. 1, the TRAVEL simulation platform is a fully open-source platform devoted
to realistic UAV VLN tasks, integrating three modules: environment composition, flight simulation,
and algorithmic support to achieve comprehensive functionality.

3.1 ENVIRONMENT COMPOSITION

Diverse Scenario Resources. TRAVEL offers a wide range of scenarios and achieves high-fidelity
visual effects through the advanced graphical rendering capabilities of UE4. We integrate high-
quality scenarios from online repositories and urban scenarios from the CARLA simulator (Doso-
vitskiy et al., 2017), resulting in the TRAVEL platform featuring 22 distinct scenarios, including
urban, rural, and natural landscapes, as detailed in Appendix A. The platform can also simulate dy-
namic environments, such as vegetation swaying and variations in lighting. This further enhances
the platform’s realism, reducing the gap when transitioning to real-world environments.

Tailored Object Assets. TRAVEL platform features a wide variety of standalone object assets, in-
cluding humans, vehicles, animals, road signs, tables and other items suited for urban and natural
environments. Users can place objects in scenarios using different methods based on task require-
ments. In addition to UE4’s built-in scenario editor, we support the automatic placement method at
runtime. The method is implemented through the TRAVEL API, where we have pre-defined feasi-
ble regions within each scenario and classified various object categories. Annotators can utilize the
object placement API to select the object type and place it in appropriate and suitable areas.

3.2 FLIGHT SIMULATION

Realistic UAV Flight Control. TRAVEL platform integrates the AirSim plugin to achieve realistic
UAV flight simulation, enabling more precise flight control. Our platform can utilize the flight
control API to achieve physics-based UAV maneuvers with a 6 DoF trajectory representation. The
pose of the UAV at each time is represented as P = {x, y, z, θ, ϕ, ψ}, where (x, y, z) represent the
position coordinates, and (θ, ϕ, ψ) denote the pitch, roll, and yaw angles respectively. The pose can
be obtained at any time, allowing highly accurate simulation of UAV movement.

Configurable UAV Sensors. TRAVEL platform supports the simulation of various sensor pay-
loads during UAV flight, including IMU, RGB and depth cameras, LiDARs and GPS. The platform
initially configures the UAV with RGB and depth cameras covering front, rear, left, right, and down-
ward views, along with a LiDAR sensor set up with a 360-degree horizontal field of view. Users can
add necessary payloads and adjust detailed sensor configurations based on specific requirements,
such as modifying image resolution to optimize response time.

Human Control Interface. We integrate AirSim’s hardware-in-the-loop simulation capability and
use PX4 to support remote controller operation. However, the control link in AirSim can be rela-
tively complex for general users. Therefore, we develop simplified APIs that allows users to simulate
remote controller input via the keyboard, supporting functions such as data collection, and enabling
operation in both manual mode and position mode.
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Figure 2: Overview of our dataset construction and statistical analysis. (a) Data collection pipeline
for generating high-quality target descriptions and realistic UAV trajectories. (b) - (e) Statistical
analysis of the dataset, covering trajectory lengths, task distances, object categories, and dataset
splits. In (e), UM and UO represent Unseen Map and Unseen Object, respectively.

3.3 ALGORITHMIC SUPPORT

Data Collection Tools. TRAVEL platform has contained a data collection framework to tackle the
challenge of limited UAV training data. Collecting data from multiple sensors requires a certain
amount of time, which can affect the continuity of annotation. Therefore, we have implemented
an asynchronous collection method that initially gathers UAV attitude information at equal time
intervals, followed by the data collection of sensors in the background.

Closed-loop Simulation. The platform provides an extended interface for the UAV navigation
model, allowing for flexible integration of model outputs to control drone flight and real-time feed-
back of environmental information to the model. Moreover, we have implemented a dataset aggre-
gation (DAgger) method to enhance model training and proposed a backtracking policy. When the
UAV encounters a collision, it is reverted to its previous position and uses teacher action to perform
the next step, allowing it to recover from the collision and produce longer navigation trajectories.

Parallelization. TRAVEL platform employs an environment parallelization strategy, allowing mul-
tiple simulated environments to run concurrently to enhance the efficiency of data collection and
closed-loop evaluation. With 8 NVIDIA A100 GPUs, the simulation of a single UAV achieves a
performance boost of 16 times, reaching frame rates of between 160 and 1600 fps, depend on the
amount of data captured by UAV payloads.

4 TARGET-ORIENTED REALISTIC UAV VLN DATASET

We construct a target-oriented realistic UAV VLN dataset using the proposed TRAVEL platform,
which is the first dataset accurately capturing complex flight dynamics for UAV VLN tasks. As
shown in Fig. 2 (a), we introduce this dataset in two aspects: data collection and data analysis.

4.1 DATA COLLECTION

Description Collection. In the UAV object search task, the target descriptions consist of three
key components: 1) Target direction, indicating the relative position between the target and UAV’s
initial pose; 2) Object description, detailing the visual features of the target; and 3) Environmental
information, describing the surrounding spatial context. During the description collection process,
objects can be placed in the feasible regions of the scene using the TRAVEL object placement API.
Object descriptions and environment information are then obtained by positioning a camera above
the object to capture images from five different views (front, back, left, right, and down), followed
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by generating textual descriptions using GPT-4 (Achiam et al., 2023), with the prompts detailed
in Appendix B. Human experts review and refine the generated content to maintain data quality,
removing any inaccuracies or hallucinations.

Asynchronous Trajectory Collection. Human common sense in target searching provides valu-
able guidance for UAVs to learn effective search strategies. During the trajectory collection process,
human experts utilize the human control interface of the TRAVEL platform to manually control the
UAV according to the given instructions to search for the target. To minimize operational discon-
tinuity caused by sensor data storage latency, only UAV states are recorded at fixed time intervals
during the flight. After completing the trajectory collection, sensor data is acquired through the
parallel data collection framework of TRAVEL. The trajectory recording terminates when the UAV
approaches within 5 meters of the target, and any trajectory is discarded if a collision is detected.
Ultimately, a total of 12,149 valid trajectories are obtained.

4.2 DATA ANALYSIS

Trajectory Analysis. As illustrated in Fig. 2 (b), the UAV-Need-Help dataset contains a total of
12,149 trajectories, where trajectories shorter than 250 meters are classified as easy, and those ex-
ceeding 250 meters are classified as hard. The diversity in trajectory lengths ensures the challenge
and complexity of the tasks. Fig. 2 (c) illustrates that the distance to the targets ranges from 50
meters to 400 meters, representing the spatial scale of the environment.

Description Analysis. The most frequently occurring descriptions are illustrated in Fig. 2 (a), in-
cluding building, tree, and car. These descriptions provide contextual information for UAVs, en-
hancing their capability to estimate object locations through visual cues and thereby accurately find
the target. Fig. 2 (d) shows the target object set consists of 89 distinct categories for search tasks,
encompassing vehicles, humans, animals and other objects.

Dataset Split. As shown in Fig. 2 (e), to comprehensively evaluate the model’s performance on
both seen and unseen environments, and to analyze its ability to generalize to new maps and ob-
jects, we divide the dataset into four subsets: Train, Test Seen, Test Unseen Map, and Test Unseen
Object. Each test subset is further divided into easy and hard categories, consistent with the criteria
mentioned above. Specifically, the data distribution for each subset is as follows:
• Train - 9152 trajectories with 76 objects across 20 scenes as the training set.
• Test Seen - 1410 trajectories generated using objects and scenes seen in the training set.
• Test Unseen Map - 958 trajectories with 2 scenes unseen in the training set.
• Test Unseen Object - 629 trajectories with 13 objects unseen in the training set.

5 UAV-NEED-HELP BENCHMARK

5.1 TASK FORMULATION

We propose an assistant-guided UAV object search task named UAV-Need-Help, where the UAV
navigates to the target object following the target description, environment information and guidance
from the assistant. Fig. 1 provides an illustration of the UAV-Need-Help task.

Formally, in each episode, the UAV starts at an initial position with posture P0 and receives a target
description I that specifies the target direction, object features, and its surrounding environment. At
each time step, the UAV obtains its state S (position, posture, velocity), along with RGB images R
and depth images D from five perspectives: front, left, right, rear, and below. An assistant monitors
its status and provides additional instructions I ′ to suggest flight strategies when needed. In the
closed-loop simulation, the UAV navigation model predicts a 6 DoF trajectory sequence based on
{I, S,R,D}. Using the TRAVEL platform’s flight API, the UAV navigates to each predicted posi-
tion with a 6 DoF attitude {x′, y′, z′, θ′, ϕ′, ψ′} while adhering to its flight dynamics and updating
its observations. The task is successful if the UAV lands within a 20-meter radius of the target.

5.2 ASSISTANT MECHANISM

As previously mentioned, the inherent complexity and dynamic nature of aerial environments, with
obstructed views and shifting perspectives, make basic target descriptions insufficient for UAV ob-
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Figure 3: Overview of the assistant mechanism and UAV Navigation LLM framework. (a) Three
different assistant settings for providing varying levels of guidance. (b) UAV Navigation LLM
framework: The instructions, multi-view images, and a learnable query are encoded into the MLLM,
where the query extracts features to predict a long-distance target pose. This pose is then refined
using front-view inputs by a trajectory completion model to generate fine-grained trajectories.

ject searching. Thus, we introduce assistants to aid UAVs in this task, defining three distinct tiers
based on the level of guidance provided, as shown in Fig. 3 (a).

• L1 assistant provides high-frequency guidance closely aligned with the ground truth (GT) trajec-
tory. It continuously calculates the trajectory point in the oracle path that is closest to the UAV’s
current position, then identifies the appropriate actions based on the UAV’s orientation and the
direction toward the nearest GT point. These actions may include cruising, turning, or landing.
This setting ensures that the UAV stays on the correct path at all times.

• L2 assistant intervenes when the UAV encounters difficulties, providing low-frequency correc-
tions to steer it back toward the ground truth trajectory. It activates only when a collision risk
is identified through depth maps or when the UAV deviates too far from the GT path, offering
corrective actions to guide the UAV back to the desired trajectory.

• L3 assistant only provides obstacle avoidance assistance when the UAV is in a hazardous scenario.
It determines the distance between the UAV’s current position and obstacles using depth maps, and
when proximity to an obstacle is detected, it issues avoidance commands to prevent collisions.

6 UAV NAVIGATION LLM

UAV navigation LLM is a multimodal LLM capable of handling various input types, including
images and texts. We first tokenize the multi-model input, where vision tokens are aligned with
the language space. These tokens are then concatenated and fed into the LLM, with Vicuna-7B
serving as the base model. Utilizing the features obtained by LLM, a hierarchical trajectory decoder
generates both the UAV’s next target pose Ptarget and refined pose sequence {P 0

traj , P
1
traj ...P

N
traj},

where N represents the length of this trajectory. The overview architecture is shown in Fig. 3
(b). Additionally, we have designed a backtracking sampling-based data aggregation to expand the
dataset, thereby enhancing models’ obstacle avoidance capabilities in complex scenarios.

6.1 HIERARCHICAL TRAJECTORY GENERATION

Multimodal Tokenization. Given the task description Itask, assistant instructions Iinstr and
the UAV state information Istate, we tokenize them using a pre-trained language tokenizer (Li
et al., 2024) to obtain corresponding tokens Tinstr. For the multi-view images, we utilize a EVA-
CLIP (Sun et al., 2023) and a Q-former structure to extract the visual features. Each image is con-
verted into a set of tokens, consisting of 1 context token that captures global features and 16 content
tokens that represent local details through grid pooling. Finally, we concatenate the three types of
tokens: Timg for image tokens, Ttask for task description tokens, and Tinstr for instruction tokens,
to construct the multi-modal input token sequence, denoted as Tinput =< Timg, Ttask, Tinstr >.
The details of the multimodal input can be referenced in Appendix D.

Hierarchical Trajectory Decoder. The decoder is the core component that translates the input into
the UAV’s next step target pose. To enable complex trajectory planning within dynamic environ-
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ments, we employ a hierarchical structure with two levels: a high-level MLLM-based trajectory
decoder and a fine-grained path decoder.

The MLLM-based trajectory decoder utilizes a special learnable trajectory token Twp as input to
the LLM, which helps to extract trajectory-specific features Qwp. These features are fed into a
multilayer perceptron (MLP) to decode the target pose Ptarget, allowing the model to plan UAV
trajectories based on environmental data and detailed language instructions.

The fine-grained path decoder generates trajectory details to improve navigation efficiency. It takes
visual tokens T f

img encoded from the front-view image using pre-trained ViT and combines T f
img

with processed poses derived from the MLLM-based decoder. The concatenated features are passed
through an MLP to produce fine-grained trajectories Ptraj . The overall process is defined as follows:

Ptraj = MLP
(
T f
img, ftarget (MLLM(< Tinput, Qwp >))

)
,

where ftarget represents the alignment process of target poses from the MLLM output with the
dimensions of visual tokens. To further improve UAV landing accuracy near the target, a Grounding
DINO model (Liu et al., 2023a) is utilized for detection. Once the target object is identified in
multi-view images, the navigator initiates the landing process.

6.2 BACKTRACKING SAMPLING-BASED DATA AGGREGATION

We implement a DAgger (Ross et al., 2011) module for continuous and realistic UAV trajectories.
During data collection, the module samples from both predicted trajectories and reference paths pro-
vided by the teacher model. The teacher model selects the closest ground truth position to the UAV’s
current location and computes the next trajectory, which guides the UAV in VLN tasks. Considering
that collisions often occur when simulating UAV flight, it becomes challenging to collect complete
trajectories or those containing sufficient obstacle avoidance knowledge. Thus, we propose a back-
tracking sampling mechanism, where, if the UAV takes an action based on the model’s output that
results in a collision, it is reverted to its state from two frames earlier, restoring its pose, velocity,
and other attributes. It will then follow the trajectory given by the teacher model, helping the UAV
to avoid collisions and stay on track. In this way, we can obtain more successful obstacle-avoidance
trajectories, thereby enhancing the navigation capability of the model.

7 EXPERIMENTS

7.1 EXPERIMENTAL SETUP

Evaluation Metrics. We adapt evaluation metrics commonly used in VLN (Anderson et al., 2018;
Krantz et al., 2020), including success rate (SR), oracle success rate (OSR), success weighted by
path length (SPL), and navigation error (NE). SR measures the percentage of tasks where the UAV
successfully reaches the target. OSR measures whether the UAV reaches any location along the op-
timal trajectory, even if it doesn’t exactly reach the final destination. SPL evaluates both the success
rate and the efficiency of the path taken, rewarding shorter, more optimal paths. NE calculates the
average distance between the UAV’s final position and the target.

Comparison Baselines. We compare the following baselines against our method on the UAV-Need-
Help task. 1) Random: The UAV randomly selects trajectory poses without any structured planning
or guidance. This method is employed to illustrate the extent of the solution space. 2) Fixed Action:
The UAV maps the assistant’s instructions into predefined fixed actions. For example, cruise means
moving forward by 5 meters, while turn left results in a 30-degree turn followed by a 5-meter
forward movement. 3) Cross-Modal Attention (CMA): The CMA model (Anderson et al., 2018)
is commonly used in grounded VLN tasks and employs a bi-directional LSTM to simultaneously
process image inputs and instruction comprehension. To adapt to our task setting, we modify its
recurrent predictor to output a set of trajectories instead of traditional navigation actions.

7.2 QUANTITATIVE RESULT

Comparison with Baselines. Table 2 shows that our method outperforms across all metrics at dif-
ferent difficulty levels on the test seen set. At various assistant levels, the SR metric improves by an
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Table 2: Results on Test Seen Set across different assistant levels. DA refers to a model trained
using backtracking sampling-based data aggregation.

Method Assistant
Full Easy Hard

NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑

Random L1 222.20 0.14 0.21 0.07 142.07 0.26 0.39 0.13 320.12 0.00 0.00 0.00
Fixed L1 188.61 2.27 8.16 1.40 121.36 3.48 11.48 2.14 270.69 0.79 4.09 0.49

CMA L3 140.93 4.89 11.56 4.41 83.58 7.35 17.81 6.53 210.91 1.89 3.94 1.83
CMA L2 141.55 7.02 15.39 6.54 87.77 9.55 19.87 8.74 207.18 3.94 9.92 3.94
CMA L1 135.73 8.37 18.72 7.90 84.89 11.48 24.52 10.68 197.77 4.57 11.65 4.51

Ours L3 146.32 6.31 15.39 5.10 93.15 9.55 21.94 7.32 215.85 2.36 7.40 2.17
Ours L2 120.57 12.98 37.38 11.30 76.89 17.55 43.48 15.01 186.22 7.40 29.92 6.76
Ours L1 106.28 16.10 44.26 14.30 68.78 18.84 47.61 16.39 152.04 12.76 40.16 11.76
Ours-DA L1 98.66 17.45 48.87 15.76 66.40 20.26 51.23 18.10 138.04 14.02 45.98 12.90
Human L1 14.15 94.51 94.51 77.84 11.68 95.44 95.44 76.19 17.16 93.37 93.37 79.85

average of 5% over the CMA model. This demonstrates that our MLLM-based hierarchical trajec-
tory generation approach enhances scene understanding and produces more accurate and adaptable
pose sequences, ultimately improving decision-making and overall performance.

The classical baseline model CMA faces several challenges due to limitations in model size and
task complexity and performs poorly on multiple metrics. The Random and Fixed methods struggle
to complete the tasks, demonstrating that achieving the target search tasks without understanding
instructions and visual information is extremely difficult. We further evaluate our model trained
with backtracking sampling-based data aggregation, which shows an improvement in SR compared
to the original model, indicating this method has enhanced the UAV’s navigation capability.

Additionally, we evaluate the performance of humans operating UAVs with guidance from L1 assis-
tant. As shown in Table 2, humans achieve a high success rate but sometimes take longer paths. This
suggests that while humans make correct decisions, they may choose more cautious or exploratory
routes, leading to slightly less efficient path planning.

Comparison under Different Assistant Level. Under the continuous guidance of the L1 assistant,
our method achieves the highest success rate. As the assistant level increases, the UAV agent needs
to rely more on its navigation planning capabilities to complete tasks. The results show that both
our method and the CMA method experience a decline in success rate and other metrics at higher
levels of assistance, demonstrating that long-term VLN for UAVs is extremely challenging.

Generalization on Unseen Cases. Table 3 shows the performance on unseen datasets, highlight-
ing our method’s superior zero-shot capability and its adaptability to new scenarios. Our method
demonstrates a slightly higher success rate in the unseen object test set than in the seen set. This

Table 3: Generalization capabilities across different test sets with L1 assistant, where UO and UM
represent the Test Unseen Object Set and the Test Unseen Map Set, respectively.

Method Test Set
Full Easy Hard

NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑

Random UO 260.14 0.16 0.16 0.16 174.10 0.48 0.48 0.48 302.96 0.00 0.00 0.00
Fixed UO 212.84 3.66 9.54 2.16 151.66 6.70 13.88 3.72 243.29 2.14 7.38 1.38
CMA UO 155.79 9.06 16.06 8.68 102.92 14.83 22.49 13.90 182.09 6.19 12.86 6.08
Ours UO 118.11 22.42 46.90 20.51 86.12 24.40 49.28 22.03 134.03 21.43 45.71 19.75
Random UM 202.98 0.00 0.00 0.00 158.46 0.00 0.00 0.00 265.88 0.00 0.00 0.00
Fixed UM 180.47 0.52 2.61 0.39 132.89 0.89 4.28 0.67 247.72 0.00 0.25 0.00
CMA UM 141.68 2.30 10.02 2.16 102.29 3.57 14.26 3.33 197.35 0.50 4.03 0.50
Ours UM 138.80 4.18 20.77 3.84 102.94 4.63 22.82 4.24 189.46 3.53 17.88 3.28
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1 2 3 4 5 6

7 8 9

1 2 3 4 5 6

10 11 12

Instruction: There is a vehicle in left front of UAV…In the center of the figure, there is a yellow vehicle. The surrounding area 
consists of multiple multi-story buildings with varying architectural styles…

Instruction: There is a cow in right front of UAV…In the center of the figure, there is a cow standing next to a tree…

Figure 4: Visualization of object search results of our method. First two rows demonstrate our UAV
successfully follows the instruction. Notably, the third to fifth images depict the drone executing a
turning maneuver, resulting in a change in the drone’s perspective. The third row illustrates a failed
example, depicting a collision with trees in a forest scenario.

phenomenon can be attributed to the inherent generalization capabilities of the Grounding DINO
module (Liu et al., 2023a) used in our approach and the relatively simpler nature of the data. We
have still partitioned this dataset for future research aimed at models that do not require external
detectors. In the unseen scene test set, results of the fixed action method reflect the complexity of
the environment through its low success rate. Our method shows a noticeable decline in the unseen
scene test set, yet still outperforms other methods.

Table 4: Performance scalability with
varying amounts of training data.

Data Amount NE↓ SR↑ OSR↑ SPL↑

10% 126.50 10.78 31.21 9.68
50% 122.63 13.19 37.16 11.71

100% 106.28 16.10 44.26 14.30

Performance Scalability. Table 4 reports the model’s per-
formance across various quantities of training data with
L1 assistant. The results show that as the data volume in-
creases, the model performs better, indicating that a larger
and more diverse dataset could enhance the model’s under-
standing and decision-making capabilities.

7.3 QUALITATIVE RESULT

Fig. 4 presents two examples evaluated in TRAVEL platform. The first two rows show the UAV
successfully following the instructions, maneuvering through the buildings, and ultimately locating
a yellow vehicle. During this process, the UAV experienced camera view shifts due to its attitude
changes, highlighting the realistic fidelity of our platform. In contrast, the third row demonstrates
a collision caused by insufficient altitude while navigating through a forested area, showcasing the
challenges posed by complex environments. Additional results can be found in Appendix E.

8 CONCLUSION

We address the challenges of realistic UAV VLN from three aspects: platform, benchmark, and
methodology. To achieve this, we develop the TRAVEL platform, which provides realistic environ-
ments, flight simulation, and comprehensive algorithmic support. We also construct a target-oriented
realistic UAV VLN dataset and propose the UAV-Need-Help benchmark, which provides assistance
to guide UAVs through complex VLN scenarios. Additionally, we propose a UAV navigation LLM
along with a backtracking sampling-based data augmentation strategy, which together effectively
enhance the performance of realistic trajectory-based VLN tasks. Our contributions establish a uni-
fied framework for realistic UAV VLN research, making significant strides toward bridging the gap
between simulation and real-world UAV navigation applications. Furthermore, there are two promis-
ing directions for future research in realistic UAV VLN tasks. The first is to enhance the autonomous
navigation capabilities of UAVs, enabling them to operate effectively in complex environments with
minimal guidance. The second is to improve the transferability from UAV simulation to real-world
deployment, facilitating the application of UAVs in real-world scenarios.
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A PLATFORM AND DATASET DETAILS

We visually present some scenarios and complete object assets supported by the platform in Fig. 5
and Fig. 6, respectively. In addition to the scenarios shown in Fig. 5, we have also included 11 urban
maps transferred from the CARLA simulator, and described the styles of different maps in Table 5.
The dataset splits based on maps and objects are respectively presented in Table 6 and Table 7.

Figure 5: Platform Scenarios Overview: We present a selection of scenarios, respectively depicting
city, town, forest, and desert environments.

Figure 6: Platform Objects Overview: We present the platform’s object assets, including vehicles,
people, animals, and other objects.

B PROMPT ENGINEERING IN DESCRIPTION COLLECTION

As shown in Fig. 7, we use the following prompt to collect object descriptions (Section 4.1). The
prompt integrates information from multiple camera views to provide a comprehensive represen-
tation of the target object’s visual characteristics. The generated instruction incorporates detailed
descriptions of the surrounding environment’s colors and shapes to facilitate accurate visual iden-
tification. Furthermore, it specifies the spatial relationship between the target and nearby objects,
enabling precise localization of the target within its context.
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Map Style Map Style
NYCEnvironmentMegapa City, Park, River SwissGrassField Forest, Lake

NewYorkCity City BrushifyUrban City
ModularPark Village, Forest, Park BrushifyForestPack Forest

ModularEuropean City Carla Town01 Town, River
ModernCityDowntown City, Park Carla Town02 Town

TropicalIsland Mountain, Forest Carla Town03 City
BrushifyCountryRoads Mountain, Village Carla Town04 Town, Mountain

NordicHarbour Town, River Carla Town05 Town
RealCitySF City, River Carla Town06 Highway

RedDesertPack Desert Carla Town07 Village
RussianWinterTown Village, Forest Carla Town10HD City

WesterTown Desert, Village Carla Town15 City, Forest

Table 5: Maps and corresponding style classifications.

Dataset Maps
Train set NYCEnvironmentMegapa, NewYorkCity, ModularEuropean, Mod-

ernCityDowntown, TropicalIsland, BrushifyCountryRoads, NordicHar-
bour, RealCitySF, RedDesertPack, RussianWinterTown, WesterTown,
SwissGrassField, BrushifyUrban, BrushifyForestPack, Carla Town01,
Carla Town02, Carla Town04, Carla Town05, Carla Town06, Carla Town07,
Carla Town10HD, Carla Town15

Test seen NYCEnvironmentMegapa, NewYorkCity, ModularEuropean, TropicalIsland,
Carla Town01, Carla Town02, Carla Town04, Carla Town05, Carla Town06,
Carla Town07, Carla Town10HD, Carla Town15

Test unseen Carla Town03, ModularPark

Table 6: Map-based dataset split.

Dataset Object
Train / Test seen VolkswagenT2 2021 Parked, Tazzari, AmbulanceParked, CarlaCola,

FiretruckParked, Truck, AudiA2, AudiTT, VolkswagenBeetle, BMW-
GrandTourer, BMWIsetta, ChevroletImpala, Citroen C3, Cybertruck,
Charger parked, LincolnMkz2017 prop, MiniCooperS, Mini2021 parked,
Mustang prop, NissanPatrolST, ChargerParked, FordCrown parked,
LincolnParked, NissanPatrol2021 parked, TeslaM3 parked, RoadBike,
Yamaha, Vespa, Kawasaki, Harley, Bin, TrashCan01, TrashCan03,
TrasdhBag, ShoppingBag, ShoppingTrolley, TravelCase, PlasticTable,
PlasticChair, Table, Table Round, hayBale, Tent 02, Tent 03, Tent 04,
WarningConstruction, WarningAccident, TrafficCones 01, StreetBarrier,
FireHdrant, MailBox, Couple02, Couple04, Couple13, Dog01, Dog03,
Man01, Man02, Man10, Man17, Man32, Man33, Man36, Man39,
Man42, Man54, Woman04, Woman27, Woman44, Woman51, Woman52,
Woman53, African elephant, camel, Domestic sheep, horse skeleton,
leopard, Longhorn cattle, Longhorn cattle V2, mud pig, rhino, Scot-
land cattle, tiger, zebra

Test unseen Man17, Man54, Woman51, Indian elephant, Cape Buffalo, Domestic pig,
Dog02, Tent01, NissanMicra, EtronParked, SeatLeon, Lincoln2020Parked,
TravelCase

Table 7: Object-based dataset split.

C EXPERIMENTAL DETAILS

Implement Detail. We include the implementation details necessary for reproducing results. In
general, we adopted a training strategy similar to that described in Li et al. (2024). During the train-
ing of the MLLM, we freeze most of the model’s parameters and only compute gradients on the
visual projector, trajectory prediction head, and LoRA layers. These trainable parameters make up
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Prompt:
# CONTEXT # Describe the object in the image and its surroundings. These are images captured from the 
top, front, back, left, and right views, and the center object has a mesh body name of {object name}.
# OBJECTIVE # Please relate information from different views to describe the visual characteristics of the 
central object and the surroundings as a whole, prioritize describing the surrounding objects > surrounding 
buildings > vegetation, and descriptions prioritize color and shape.
# STYLE # Describe objectively; do not use jargon such as grid body, etc.
# TONE # Do not use subjective evaluation words. For example: sunny, beautiful, etc.
# AUDIENCE # Describes the object and its surroundings to make it easier for the drone pilot to find the 
target.
# RESPONSE # Please write the above tasks together in a paragraph, keep it concise, just information, don't 
have any additional output, don't emphasize that there are multiple viewpoints, blend the information together, 
pay attention to differentiate whether it's a tall building or a short building, and what position the target is in.

Target direction:
There is a target in front of UAV. Using your front as the x-axis and your right as the y-axis, The target is at a 
yaw angle of 213.0 degrees from you.

Object description and environment information (GPT4):
The central object is a green-colored vehicle positioned on a road. The vehicle is surrounded by urban 
architecture, including multiple tall and short buildings. The buildings are primarily multi-story, rectangular, and 
feature a mix of stone or brick facades. One of the notable buildings includes a "Leartes Bank" sign, indicating its 
purpose as a commercial building. There are a variety of structures, some with more ornate designs, particularly 
around windows and doors. Some of the buildings have fire escapes visible, typical of city settings. The streets 
are wide and largely empty, except for a few scattered objects like street lamps, signage, and the parked green 
vehicle. There is no visible vegetation or trees in the immediate area. The scene is devoid of people or other 
vehicles, adding to a sense of spaciousness. The road is straight and clean, with buildings positioned 
symmetrically on both sides. A billboard can also be seen on one of the buildings, contributing to the urban 
setting.

Figure 7: The instruction includes the creation of target direction, object descriptions, and environ-
mental information. The target direction is determined based on the coordinates of the UAV’s start
and end positions, while the object descriptions and environmental information are generated by
GPT-4 using the provided prompts, incorporating the top, front, rear, left, and right views and the
object’s name.

just 4% of the total model parameters and significantly reduce computational costs while maintain-
ing the model’s core capabilities. We supervise the predicted 3D angles using cosine similarity loss
and apply L1 loss between the predicted waypoints and the ground truth. Similarly, for the trajec-
tory completion model, we also freeze the parameters of the vision encoder. The MLP trajectory
prediction layer is trained using L1 loss between the predicted trajectory and the labelled trajectory.

Table 8: Ablation on model structure.

Component NE↓ SR↑ OSR↑ SPL↑

w/o LoRA 124.28 12.20 36.52 10.76
w/o Lcos 113.53 13.55 40.28 12.34
w/o Qwp 111.53 15.18 41.13 13.61

Ours 106.28 16.10 44.26 14.30

The MLLM model is trained on 8 NVIDIA A100
GPUs with a batch size of 128 for 2 epochs, while
the fine-grained model and CMA model are trained
with a batch size of 128 for 10 epochs. We use
Adam optimizer with a one-cycle learning rate de-
cay schedule to train all models, where we set the
maximum learning rate to 5e-4.

Ablation Study. To validate the effectiveness of each part, we summarize experiments results in
Table 8, where Lcos indicates the cosine loss of poses, Qwp indicates the learnable query. The
ablation of model architecture highlights the critical role of LoRA. The exclusion of LoRA resulted
in an 8% decrease in OSR and 4% in SR. Removing the cosine loss and the learnable query also leads
to a decline in performance, but the impact is relatively smaller. The complete model performs best
across all metrics, validating the effectiveness of each component in enhancing model performance.
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We further sample part of the test seen set for more extensive ablation experiments. First, we val-
idate the effectiveness of the hierarchical prediction design. As shown in Fig. 8, the hierarchical
trajectory prediction method achieves a balance between performance and computational efficiency,
completing one inference in 0.407 seconds, which matches real-time drone navigation requirements.
Using MLLM alone for long-distance prediction results in a decrease in success rate with similar in-
ference times. Fine-grained predictions using MLLM improve performance by receiving assistance
information more frequently. However, this comes at the cost of a significant increase in inference
time, making it unsuitable for real-time navigation.
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Figure 8: Ablation of hierarchical prediction.

Table 9: Ablation on assistant level.

Assist Level SR↑ OSR↑ NE↓ SPL↑

No assist 6.25 11.88 167.10 4.95
L3 assist 7.20 13.71 163.55 6.17
L1 assist 24.06 43.13 130.57 20.42

Table 10: Ablation on sensor configurations.

Model SR↑ OSR↑ NE↓ SPL↑

Front&top view 22.50 41.88 132.19 18.69
Baseline 24.06 43.13 130.57 20.42

We also conduct experiments on the UAV VLN task without relying on an assistant to validate
the current capabilities of autonomous UAV navigation in Table 9. The results show that similar
to previous UAV VLN tasks (Liu et al., 2023b), completing long-trajectory VLN tasks without
guidance information remains a significant challenge.

In Table 10, we explore the impact of using fewer sensors. We believe the front and top views are
more important for detection in search tasks, so we kept only these two perspectives for the VLN
tasks. The experimental results show a slight performance drop across various metrics after reducing
the number of sensors, indicating that visual information plays a supportive role in decision-making.

D MLLM PROMPT TEMPLATE

In this section, we provide a detailed prompt for the input to MLLM, which organizes assistant
instructions, drone states, task description information, and multi-view images into a specific format
for input into MLLM.

A chat between a user and an AI agent.
The agent is a navigation model that outputs UAV waypoints based on
the user's instruction and UAV state information.

Assistant: <assist_info>
Previous displacement: <delta>
Current position: <cur_pos>
Current image: <img>
Instruction: <task_desc>

Please control the drone and find the target.
Next goal position: <waypoint>

Figure 9: We present the specific template for the input to MLLM, where <delta> represents the
UAV’s position change from the previous moment, <cur pos> denotes the current global position
in the coordinate system of the first frame, and <waypoint> is the learnable special query.

E ADDITIONAL QUALITATIVE RESULTS

Here, we provide more visualization results of our method in closed-loop evaluation.
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Corresponding Top-Down View

Instruction: There is a target in left front of UAV. Using your front as the x-axis and your right as the y-axis, The target is at a 
yaw angle of 40 degrees from you. The object is a red fire trunk positioned on a dark asphalt surface. There are sidewalks adjacent 
to the buildings with clean, light-colored pedestrian paths and several evenly spaced streetlights. To locate the red trunk, focus on 
the downtown-like area with a mix of buildings, and trees along the streets. Please control the drone and find the target.

Instruction: There is a target in the right front of UAV. Using your front as the x-axis and your right as the y-axis, The target is at 
a yaw angle of 30 degrees from you. The center object is a brown elephant lying on the ground surrounded by a dense area of 
green vegetation. To the front, back, left, and right, there are trees scattered throughout the landscape, with some areas displaying 
lighter of soil and rocks. The terrain is mostly flat with gentle slopes. In the backdrop, there are small hills and elevated areas 
visible under a clear sky, providing additional reference points for locating the horse. Please control the drone and find the target.

Figure 10: More examples of the UAV object search task using our method illustrate longer trajec-
tories and improved navigation performance across various scenarios.
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