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ABSTRACT

As a basic optimization technique, linear programming has found wide applications in many areas.
In this paper, we propose an improved quantum algorithm for solving a linear programming problem
with m constraints and n variables in time Õ(

√
m+ nγ2.25), where γ = Rr/ε is the additive error

ε scaled down with bounds R and r on the size of the primal and dual optimal solutions, improving
the prior best Õ(

√
m+ nγ2.5) by Bouland, Getachew, Jin, Sidford, and Tian (2023) and Gao, Ji,

Li, and Wang (2023). Our algorithm solves linear programming via a zero-sum game formulation,
under the framework of the sample-based optimistic multiplicative weight update. At the heart of
our construction, is an improved quantum multi-Gibbs sampler for diagonal Hamiltonians with time
complexity sublinear in inverse temperature β, breaking the general O(β)-barrier.

1 INTRODUCTION

Linear programming is a powerful mathematical optimization technique used to achieve the best outcomes given a set
of requirements represented as linear relationships. It involves maximizing a linear objective function subject to linear
equality or inequality constraints, where the variables can take real values. It enables optimal and efficient decision-
making in many complex real-world problems, including resource allocation, portfolio optimization, and network
flows. It is also fundamental to combinatorial optimization.

To be more concrete, a linear programming (LP) problem can be formulated in the following standard form: consider
a matrix A ∈ Rm×n; the question is to decide the maximum value of c⊺x where c is a given vector in Rn and x is the
variable vector under the constraints Ax = b for some b ∈ Rm. In the study of general LP algorithms, people usually
assume m = Θ(n) for simplicity. Also, there are cases where the algorithm can only output an approximate optimal
value with ε additive error.

In 1947, the simplex method was proposed by George Dantzig to solve the linear programming problem. The simplex
algorithm is very efficient in practice. However, in 1972, it was shown that the worst time complexity for the simplex
algorithm is exponential (with respect to n) (Klee & Minty, 1972). The linear programming problem was proven to
be solvable in polynomial time by Leonid Khachiyan in 1979 (Khachiyan, 1980).

In recent years, there have been several works (Cohen et al., 2021; Jiang et al., 2021) which aim to give faster algo-
rithms for the linear programming problem. In Cohen et al. (2021), the authors gave an algorithm for LP in O∗(nω)
time1 for current value ω ≈ 2.37 and O∗(n2+1/6) if ω = 2. In Cohen et al. (2021), the authors improve the latter
complexity to O∗(n2+1/18) if ω ≈ 2.

Linear programming has deep connections to matrix games in game theory. A matrix game involves two players
who each have to choose between a finite set of pure strategies. The payoffs for each player are given in a payoff
matrix based on the pure strategies chosen. Matrix games can be expressed as linear programs, with the payoff matrix
providing the coefficients for the objective function and constraints. The linear programming formulation allows for
identifying the optimal mixed strategies that maximize the expected payoff for each player. Solving the corresponding
dual linear program yields the value of the game. Therefore, techniques developed for solving linear programs can
also be applied to finding optimal solutions for matrix games. Conversely, finding optimal solutions for matrix games
can also be transformed into algorithms for linear programming (Vaserstein, 2006).

In Grigoriadis & Khachiyan (1995), the authors gave an Õ((n+m)/ε2) time randomized algorithm for matrix games.
This is done by updating a single entry of the strategy vectors each time. In Carmon et al. (2019), using the variance
reduction technique, the authors gave a Õ(mn+

√
mn(m+ n)/ε) time algorithm for matrix games.

1Throughout this paper, ω ≈ 2.37 denotes the matrix multiplication exponent.
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Quantum computation utilizes the principle of quantum mechanics to perform computation in a different way from
classical computation. Rather than using classical binary bits (which only have two states 0 and 1), quantum computers
use quantum bits (qubits) to store data and perform computation. The state of qubits can be in a superposition of 0 and
1 states. Harnessing this superposition feature, quantum algorithms are able to achieve speedups than their classical
counterparts. For instance, Shor’s algorithm for integer factorization and Grover’s algorithm for database search
provide provable speedups over the best-known classical algorithms.

Over the years, many quantum algorithms have been developed with quantum speedups over their classical counter-
parts. In the area of optimization, quantum algorithms for semi-definite programming are one of the most important
research areas in quantum algorithms (Brandão & Svore, 2017; van Apeldoorn et al., 2017; Brandão et al., 2019;
van Apeldoorn & Gilyén, 2019a). Other examples of quantum algorithms include quantum recommendation sys-
tems (Kerenidis & Prakash, 2017) and quantum algorithms for training linear and kernel-based classifiers (Li et al.,
2019).

In van Apeldoorn et al. (2017), the authors pointed out that their algorithm for semi-definite programming can also
be applied to solve linear programming problems in time Õ(

√
mn(Rr/ε)5) where R and r are parameters related to

the numerical scale of the problem. Then, in van Apeldoorn & Gilyén (2019b), the authors gave a quantum algorithm
specifically for matrix zero-sum games and linear programming with running time Õ(

√
m+ n(Rr/ε)3), which is by

designing a quantum Gibbs sampler and use the framework proposed in Grigoriadis & Khachiyan (1995). Following
this work, in Bouland et al. (2023), the authors proposed an improved dynamic Gibbs sampler, which results in an
Õ(
√
m+ n/ε2.5)-time solver for matrix zero-sum games.

This work presents improved quantum algorithms for matrix zero-sum games and linear programming by extending the
framework of sample-based optimistic multiplicative weight update first proposed by Gao et al. (2023). The framework
requires a specific task called multi-Gibbs sampling, which requires the quantum subroutine to collect multiple samples
from the Gibbs distribution in a single update iteration. In their work, they used the “preparing many copies of a
quantum state” technique of Hamoudi (2022) and the quantum singular value transformation (Gilyén et al., 2019) to
give an efficient quantum multi-Gibbs sampler. All the previous quantum Gibbs samplers used in van Apeldoorn &
Gilyén (2019b); Bouland et al. (2023); Gao et al. (2023) have a linear dependence on the ℓ1-norm β of the vector u. The
parameter β plays the role of inverse temperature as it scales the diagonal Hamiltonian H = diag(u)/β of trace norm
1. This β-dependence is known as the Ω(β) barrier and is proved for general quantum Gibbs sampling (Gilyén et al.,
2019; Wang & Zhang, 2023). Surprisingly, our improved multi-Gibbs sampler breaks this Ω(β) bound in the sense
of amortized complexity per sample under certain conditions. This improvement is the key to our further speedup
compared with the previous approach in Gao et al. (2023). By combining this new multi-Gibbs sampler with the
sample-based optimistic weight update framework, we present an Õ(

√
m+ n/ε2.25)-time quantum solver for matrix

zero-sum games and Õ(
√
m+ n(Rr/ε)2.25)-time quantum linear programming solver.

1.1 OUR RESULT

We propose quantum algorithms for solving matrix zero-sum games and linear programming problems, which im-
proves on the aspect of the runtime of the prior state-of-the-art quantum algorithms (Bouland et al., 2023; Gao et al.,
2023).

Theorem 1.1 (Informal version of Corollary 4.2). There exists a quantum algorithm that, for ε ∈ (0, 1/2) satisfying
1/ε = Õ((m+ n)2), returns an ε-approximate Nash equilibrium for the zero-sum game A ∈ Rm×n with probability
at least 2/3 in Õ(

√
m+ n/ε2.25) time.

Notice that our theorem requires 1/ε = Õ((m+ n)2). If this does not hold, i.e., 1/ε = Ω̃((m+ n)2), we can directly
uses the algorithm in Grigoriadis & Khachiyan (1995) with better time complexity.

In comparison, the algorithms in Bouland et al. (2023); Gao et al. (2023) with time complexity Õ(
√
m+ n/ε2.5)

requires 1/ε = O((m + n)−1). Our algorithm allows a wider range of parameter choices and achieves further
quantum speedups on this problem.

For the linear programming solver, we have:

Theorem 1.2 (Informal version of Corollary 4.3). There exists a quantum algorithm that, for ε ∈ (0, 1/2), returns an
ε-feasible and ε-optimal solution for linear programming problems of n variables and m constraints with probability
at least 2/3 in Õ

(√
m+ nγ2.25

)
time, provided thatR, r are the bounds on the ℓ1 norm of the primal and dual optimal

solutions and γ = Rr/ε = Õ((m+ n)2).
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In Table 1, we compare our algorithm with previous classical and quantum algorithms for linear programming.

The essential part in proving our theorem is an improved quantum multi-Gibbs sampler for diagonal Hamiltonians
which we state below.
Theorem 1.3 (Informal version of Theorem 3.2). There exists a quantum algorithm such that, for every ε ∈ (0, 1/2)
and a (β, ⌈log2(n)⌉, O(1), O(1))-amplitude-encoding V of a vector u ∈ Rn

≥0 with β ≥ 1, if the number of copies k
satisfies k = Ω̃(

√
β) and k = Õ(n

√
β), then with probability at least 1− ε the algorithm will return k samples from

a distribution that is ε-close to the Gibbs distribution of u in the total variation distance in Õ(β3/4
√
nk) time.

Table 1: Classical and quantum linear programming solvers
Method Approach Type Classical/Quantum Time Complexity

Multiplicative Weight Grigoriadis & Khachiyan (1995) Classical Õ((m+ n)γ2)

Multiplicative Weight Syrgkanis et al. (2015) Classical Õ(mnγ)

Multiplicative Weight Li et al. (2019) Quantum Õ(
√
m+ nγ4)

Multiplicative Weight van Apeldoorn & Gilyén (2019b) Quantum Õ(
√
m+ nγ3)

Multiplicative Weight Bouland et al. (2023) Quantum Õ(
√
m+ nγ2.5)

Multiplicative Weight Gao et al. (2023) Quantum Õ(
√
m+ nγ2.5)

Multiplicative Weight Our result Quantum Õ(
√
m+ nγ2.25)

Interior Point Jiang et al. (2021) Classical O∗((m+ n)ω)

Interior Point Casares & Martin-Delgado (2020) Quantum Õ(
√
n(m+ n)Mκ/ε2) †

† M and κ are the Frobenius norm and condition number of the systems of linear equations in the algorithm.

1.2 MAIN TECHNIQUES

Quantum Gibbs sampling was used in solving SDP and LP problems (Brandão & Svore, 2017; van Apeldoorn et al.,
2017; Brandão et al., 2019; van Apeldoorn & Gilyén, 2019a;b; Bouland et al., 2023). Recently, a specifically designed
Gibbs sampling for diagonal Hamiltonians was proposed in van Apeldoorn & Gilyén (2019b) for solving zero-sum
games and LPs. In van Apeldoorn & Gilyén (2019b), their quantum Gibbs sampler adopts the idea of quantum
rejection sampling (Grover, 2000; Ozols et al., 2013). The sampler first prepares a uniform superposition state |Ψ⟩, and
then applies a unitary block-encoding of exp(βH) on the state, whereH is the diagonal Hamiltonian diag(u−umax)/β
where u = Ax with β ≥ ∥u∥1, resulting in a state

|ψ⟩ ≈ 1√
n
|0⟩|uGibbs⟩+ |1⟩|garbage⟩,

where measuring |uGibbs⟩ in the computational basis will return a classical sample from the desired Gibbs distribu-
tion. The unitary block-encoding is constructed by quantum singular value transformation (QSVT) with a polynomial
approximating exp(βx) of degree Õ(β).

In Gao et al. (2023), they improved the procedure of van Apeldoorn & Gilyén (2019b) by (i) preparing a non-uniform
initial state |Ψ′⟩ after a Õ(β

√
nk)-time pre-processing procedure, adapting from the “preparing many copies of a

quantum state” techniques in Hamoudi (2022), (ii) applying a unitary block-encoding of exp(βH ′) where H ′ is
determined by the pre-processing procedure, which results in a state

|ψ′⟩ ≈
√
k

n
|0⟩|uGibbs⟩+ |1⟩|garbage⟩.

Then, they can obtain a copy of |uGibbs⟩ in Õ(β
√
n/k) time, thereby k copies in Õ(β

√
nk).

In this paper, we further improved the multi-sampling of Gao et al. (2023) with two novel observations.

Better polynomial approximation. In the previous works (van Apeldoorn & Gilyén, 2019b; Bouland et al., 2023;
Gao et al., 2023), they used a polynomial of degree Õ(β) to approximate the function exp(βx). We observe that
the polynomial is only required to be well-behaved on the interval [−1, 0]. Thus, the polynomial approximation for
exp(−β − βx) suffices, with a polynomial of degree Õ(

√
β) known in Sachdeva & Vishnoi (2014). Using this

polynomial, we can reduce the time complexity of step (ii) of the algorithm of Gao et al. (2023) to Õ(
√
βnk) for

preparing k copies of |uGibbs⟩.
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Tradeoff between pre-processing and multi-sampling. Even though we reduce the time complexity of step (ii)
of the algorithm of Gao et al. (2023), the overall time complexity still remains unchanged due to the dominating
time complexity of the pre-processing procedure. We thus parameterize both the pre-processing and multi-sampling
procedures with time complexity Õ(β

√
nξ) and Õ(k

√
βn/ξ), respectively. As a result, the time complexity is reduced

successfully as
Õ(β

√
nξ) + Õ(k

√
βn/ξ) = Õ(β3/4

√
nk)

by setting ξ = Θ̃(k/
√
β).

2 PRELIMINARIES

2.1 NOTATIONS

Through this paper, we will fix these notations: [n] stands for the set {1, . . . , n}. The symbol Rn
≥0 stands for

the set of n-dimensional vectors with non-negative entries. The symbol ∆n stands for the probability simplex{
x ∈ Rn

≥0 :
∑n

i=1 xi = 1
}
. For a vector u ∈ Rn, the notation diag(u) stands for the diagonal matrix in Rn×n with

diagonal entries being the entries of u.

2.2 QUANTUM COMPUTATION

Input Model. For matrix zero-sum games and linear programming, the input will be a matrix A = (Ai,j)
n
i,j=1 ∈

Rm×n. However, the time will be Ω(mn) if all the entries of A are read classically. Thus, in classical literature Grigo-
riadis & Khachiyan (1995), they assume an oracle access fA(·, ·) to A. The oracle function fA acts as follows:
fA(i, j) = Ai,j . Following this idea, previous quantum algorithms for zero-sum games (van Apeldoorn & Gilyén,
2019b; Bouland et al., 2023; Gao et al., 2023) used a quantum analog of this oracle, namely a unitary OA which acts
as follows:

OA|i⟩|j⟩|k⟩ = |i⟩|j⟩|k ⊕Ai,j⟩.
Here, we assume that Ai,j has a finite floating number precision. We also assume that we have an oracle access to the
unitary O′

A that satisfies:

O′
A|i⟩|j⟩|0⟩ = |i⟩|j⟩ ⊗

(√
Ai,j |0⟩+

√
1−Ai,j |1⟩

)
.

QRAM. Quantum-read classical-write random access memory (QRAM) is a common assumption in many quantum
algorithms. The memory can store classical data, and it allows superposition query access. In previous quantum
algorithms for linear programming problems (van Apeldoorn & Gilyén, 2019b; Bouland et al., 2023; Gao et al.,
2023), they all utilize the QRAM to achieve quantum read-access for efficiently constructing unitaries.

Complexity Measure. For the query complexity of quantum algorithms, when we claim we use queries to U , we
mean that we use queries to U , controlled-U , and their inverses. For the time complexity, following Apers & de Wolf
(2022), we say a quantum algorithm has time complexity T , if it uses at most T one- and two-qubit gates, quantum
queries to the input, and QRAM operations.

2.3 BASIC QUANTUM ALGORITHMS

Quantum Minima Finding. Finding the minimal k elements in a database with n entries is a common task. It is
known in Dürr et al. (2006) that quantum algorithms have quadratic speedups not only over n but also over k. Here,
we state a modified version of their theorem for our use, which aims to find maximal elements instead of minimal
ones.

Theorem 2.1 (Quantum maxima finding, Adapted from (Dürr et al., 2006, Theorem 3.4)). Given k ∈ [n], and quantum
oracle Oa for an array a1, a2, . . . , an, i.e., Oa : |i⟩|0⟩ 7→ |i⟩|ai⟩ for all i ∈ [n], there is a quantum algorithm
FindMax(Oa, n, k, ε) that, with probability at least 1 − ε, finds a set S ⊆ [n] of cardinality |S| = k such that
ai ≥ aj for all i ∈ S and j /∈ S, using O(

√
nk log(1/ε)) queries to Oa and in O(

√
nk log(n) log(1/ε)) time.

Quantum Amplitude Amplification. The procedure of quantum amplitude amplification is a generalization of the
Grover search, and it is commonly used in the context of quantum singular value related algorithms for amplifying a
desired state. Here, we state the theorem for our later use.
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Theorem 2.2 (Adapted from (Brassard et al., 2002, Theorem 3)). Let U be an n × n unitary matrix. Suppose
that U |0⟩|0⟩ = √p|0⟩|ϕ0⟩ +

√
1− p|1⟩|ϕ1⟩, where p ∈ (0, 1), |ϕ0⟩ and |ϕ1⟩ are normalized pure quantum state.

There exists a quantum algorithm Amp(U, ε), such that, with probability at least 1 − ε, output the state |ϕ0⟩, using
O(log(1/ε)/

√
p) queries to U and in O(log(n) log(1/ε)/

√
p) time.

Consistent Quantum Amplitude Estimation. Besides quantum amplitude amplification, amplitude estimation is
also a very useful quantum procedure. However, the result of the quantum amplitude estimation usually depends on
the measurement. In our algorithm, we need a consistent version of amplitude estimation, which is stated as follows:

Theorem 2.3 (Adapted from Gao et al. (2023, Theorem C.3)). Let U be an n × n unitary matrix. Suppose that:
U |0⟩|0⟩ = √p|0⟩|ϕ0⟩ +

√
1− p|1⟩|ϕ1⟩, where p ∈ (0, 1), |ϕ0⟩ and |ϕ1⟩ are normalized pure quantum states. Then

there exists a quantum algorithm AmpEst(U, s, δ) such that, on input δ > 0 and an O(r)-bit random string s, the
algorithm outputs f(s, p) with probability at least 1− exp(−Ω(r)) such that |f(s, p)− p| ≤ δ, using O(r/δ) queries
to U and in O(r log(n)/δ) time.

2.4 QUANTUM SINGULAR VALUE TRANSFORMATION

Quantum singular value transformation is a powerful quantum algorithm design framework proposed in Gao et al.
(2023). Here we review some key concepts and theorems which will be used later for our algorithm design.

Block-Encoding. The concept of block-encoding is fundamental to the quantum singular value transformation
framework. The definition of block-encoding is as follows:

Definition 2.1. Suppose A is a linear operator on a Hilbert space of s qubits. For an (s+ a)-qubit unitary operator
U , we call it an (α, a, ε)-block-encoding of A, if U satisfies ∥A− α⟨0|⊗aU |0⟩⊗a∥ ≤ ε.

Scaling Technique for Block-Encoding Operators. Sometimes the coefficient α in the block-encoding is a barrier
for later constructions of the entire algorithm. Thus we need the following lemma for adjusting the coefficients of
block-encoding operators.

Lemma 2.4 (Up-scaling of block-encoded operators, (Wang & Zhang, 2023, Corollary 2.8)). Suppose that unitary
operator U is a (1, a, ε)-block-encoding of A/α with ∥A∥ ≤ 1. Then, there is a quantum circuit BlockAmp(U,α) that
is a (1, a+ 2, 8αε)-block-encoding of A, using O(α) queries to U and in O((a+ 1)α) time.

Linear Combination of Unitaries. Linear combination of unitaries (LCU) is a powerful technique to use existing
block-encodings of some linear operators to obtain block-encodings for the linear combination of these operators. To
state the lemma clearly, we first need the definition of the state preparation pair.

Definition 2.2 (State preparation pair, (Gilyén et al., 2019, Definition 28)). Let y ∈ Rn be an m-dimensional vector;
in this context, we require the coordinate index to start at 0, and ∥y∥1 ≤ β for some β > 0. The unitary pair (PL, PR),
both acting on b qubits, is called a (β, b, ε)-state-preparation-pair for y, if

PL|0⟩⊗b =

2b−1∑
i=0

cj |j⟩, PR|0⟩⊗b =

2b−1∑
i=0

dj |j⟩,

such that
∑m−1

j=0 |yj − βc∗jdj | ≤ ε, and for j = m, . . . , 2b − 1, c∗jdj = 0.

Now we can state the LCU lemma as follows:

Lemma 2.5 (Linear combination of block-encoded matrices, (Gilyén et al., 2019, Lemma 29)). Let {Aj}m−1
j=0 be a set

of linear operators of the same dimension. For all j ∈ {0, 1, . . . ,m − 1}, suppose we have Uj which is a (α, a, ε1)-
block-encoding of Aj . For an m-dimensional vector y ∈ Rm, suppose β ≥ ∥y∥1 and (PL, PR) is a (β, b, ε2)-state
preparation pair for y. Define A =

∑m−1
j=0 yjAj and

W =

m−1∑
j=0

|j⟩⟨j| ⊗ Uj +

I − m−1∑
j=0

|j⟩⟨j|

⊗ Ia ⊗ Is.
Then, we can implement a unitary LCU((Uj)

m−1
j=0 , PL, PR) which is an (αβ, a+ b, αβε1+αε2)-block-encoding of A,

using O(1) queries to PL,PR and W .
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Polynomial Eigenvalue Transformation. We are now ready to state polynomial eigenvalue transformation, which
is a special case of quantum singular value transformation when we have a block-encoding of a Hermitian matrix. The
result of the polynomial eigenvalue transformation is obtained by combining this special case of the general QSVT
theorem and the LCU lemma. The theorem can be stated as follows:

Theorem 2.6 (Gilyén et al. (2019, Theorem 31)). Suppose a unitary operator U is an (α, a, ε)-block-encoding of a
Hermitian matrixA. For every δ > 0 and real polynomial P (x) ∈ R[x] of degree d, satisfying supx∈[−1,1]|P (x)| ≤ 1

2 ,
there is a quantum circuit EigenTrans(U,P, δ) which is a (1, a + 2, 4d

√
ε/α + δ)-block-encoding of P (A/α). The

circuit consists of O(d) queries to U , and O((a + 1)d) other one- and two-qubit gates. Moreover, the description of
the quantum circuit can be computed in O(poly(d, log(1/δ))) time on a classical computer.

2.5 POLYNOMIAL APPROXIMATION RESULTS FOR QSVT

Chebyshev Polynomial. We define Chebyshev polynomial Td(x) of degree |d| for every integer d by Td(x) =
2xTd−1(x)− Td−2(x) for d ≥ 2 with T0(x) = 1 and T1(x) = x. We also denote Td(x) = T|d|(x) for d < 0.

Polynomial Approximation of Monomials. In Sachdeva & Vishnoi (2014), they show that a degree d monomial
with coefficient 1 can be approximated by a polynomial of degree

√
d. The exact statement is as follows:

Theorem 2.7 (Sachdeva & Vishnoi (2014, Theorem 3.3)). For positive integers s and d, let ps,d(x) =∑d
i=−d

1
2s

(
s

s+i
2

)
Ti(x) be a polynomial of degree d, where

(
n
m

)
= 0 if m is not an integer between 0 and n. Then,

supx∈[−1,1]|ps,d(x)− xs| ≤ 2 exp
(
−d2/2s

)
.

Polynomial Approximation of Exponential Functions. Using the above result and the Taylor expansion of expo-
nential functions, we have the following theorem for the approximation of exponential functions.

Theorem 2.8 (Sachdeva & Vishnoi (2014, Lemma 4.2)). For every λ > 0, δ ∈ (0, 1/2], we choose t = O(λ +

log(δ−1)) and d = O(
√
t log(δ−1)) and define polynomial qλ,t,d(x) = exp(−λ)

∑t
i=0

(−λ)i

i! pi,d(x) of degree d.
Then, supx∈[−1,1]|qλ,t,d(x)− exp(−λ− λx)| ≤ δ.

2.6 SAMPLERTREE

SamplerTree. The SamplerTree is a quantum data structure that combines binary tree and QRAM characteristics to
efficiently construct unitaries. See Kerenidis & Prakash (2017); Gilyén et al. (2019) for more discussions. We have
the following lemma for describing the functionality of the SamplerTree data structure.

Lemma 2.9 (Adapted from Kerenidis & Prakash (2017, Theorem 5.1) and Gilyén et al. (2019, Lemma 48 in the full
version)). Let u ∈ Rn

≥0 be a vector. There is a data structure SamplerTree, of which an instance T can maintain the
vector u and support the following operations:

• Initialization: SamplerTree.Initialize(n, c): return an instance of the SamplerTree, and set ui ← c for all
i ∈ [n] in this instance, where c ≥ 0, in O(1) time.

• Assignment T .Assign(i, c): set ui ← c for some index i, where c ≥ 0, in O(log(n)) time.

• State Preparation: output a unitary T .Prepare(ε) which satisfies:∥∥∥∥∥T .Prepare(ε)|0⟩ −
n∑

i=1

√
ui
∥u∥1

|i⟩

∥∥∥∥∥ ≤ ε,
in O(log2(n) log5/2(n∥u∥1/ε)) time.

• Query Access: output a unitary T .BlockEnc(ε) where β ≥ maxi|ui| which is a (1, O(1), ε)-block-encoding
of diag(u/β) in O(log(n) + log5/2(β/ε)) time.

2.7 QUANTUM ACCESS TO CLASSICAL DATA

Amplitude-Encoding. The concept of amplitude-encoding is proposed in Gao et al. (2023). This concept is a way
to specify how classical data is stored and accessed in quantum computation.
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Definition 2.3. Let V be an (a + b + c)-qubit unitary operator acting on subsystems A,B,C with a, b, c qubits,
respectively. V is said to be a (β, a, b, c)-amplitude-encoding of a vector u ∈ Rn

≥0 with a ≥ log2(n), if for all i ∈ [n],
the following holds:

⟨0|CV |0⟩C|i⟩A|0⟩B =

√
ui
β
|i⟩A|ψi⟩B,

where |ψi⟩ is a normalized pure state. When a, b, c are not important or explicit in the context, we simply call V a
β-amplitude-encoding of u.

The following lemma shows that we can transform the amplitude-encoding to block-encoding.
Lemma 2.10 (Adapted from Gao et al. (2023, Proposition D.11)). Let V be a (β, a, b, c)-amplitude-encoding of a
vector u ∈ Rn

≥0. Then there is an algorithm AmpToBlock(V ) which returns (the classical description of) a (β, b +

2c, 0)-block-encoding of diag(u), using O(1) queries to V .

3 MULTI-GIBBS SAMPLING ALGORITHM

In this part, we propose an improved algorithm for the multi-Gibbs sampling task. For readability, we first introduce a
pre-processing procedure in the first subsection and then introduce the main algorithm which uses the pre-processing
algorithm as a subroutine.

3.1 PRE-PROCESSING

The pre-processing algorithm is shown in Algorithm 1, and its correctness and complexity are analyzed in Theo-
rem 3.1. The idea of this algorithm is to use consistent amplitude estimation to access the classical data in the
amplitude-encoding, then use the quantum maximum finding algorithm to find the largest ℓ elements for the later
state preparation procedure. It should be noted that amplitude estimation could only return an estimate rather than
the exact value. Thus, we can only guarantee that our maximum finding can only find the largest ℓ elements of the
estimate rather than the true value.

Algorithm 1 GibbsPre(V, ℓ, ε): pre-processing of the multi-Gibbs sampling
Input: Failure probability parameter ε, a (β, ⌈log(n)⌉, O(1), O(1))-amplitude-encoding V of a vector u ∈ Rn

≥0, and
ℓ ∈ [n].

Output: A set S ⊆ [n], and ũi’s for all i ∈ S.
1: Generate a Θ(log(nℓ/ε))-bit random string s.
2: S ← FindMax(AmpEst(V ′, s, 1/2β), n, ℓ, ε/2), where

V ′ = (XORD,C)
†
(V ⊗ ID)(XORD,C).

3: for all i ∈ S do
4: Prepare the state AmpEst(V ′, s, 1/2β)|i⟩|0⟩ and measure the last register.
5: Store the measurement result classically as ũi.
6: end for
7: Output the set S and ũi’s for i ∈ S.

Theorem 3.1. For every ℓ ∈ [n], ε ∈ (0, 1/2), and (β, ⌈log2(n)⌉, O(1), O(1))-amplitude-encoding V of a vector
u ∈ Rn

≥0, algorithm GibbsPre(V, ℓ, ε) (Algorithm 1) outputs the following with probability at least 1− ε

• a set S such that there exist ũi’s satisfying ui ≤ ũi ≤ ui + 1 for all i ∈ [n], and S contains the indices of the
largest ℓ elements of ũi.

• a list of non-negative real numbers ũi’s for all i ∈ S,

using O(β
√
nℓ log(nℓ/ε) log(1/ε)) queries to V , in time O(β

√
nℓ log(nℓ/ε) log(1/ε) log(n)).

3.2 SAMPLING

In the following, we will present the main multi-Gibbs sampling algorithm. In the algorithm, we will need two fixed
unitary matrices PL, PR as a state-preparation-pair for the linear combination of unitaries. These matrices should be

7
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chosen to satisfy the following requirements:

PL|0⟩ =
1√
6
|0⟩ − 1√

6
|1⟩ −

√
2√
3
|2⟩, PR|0⟩ =

1

2
|0⟩+ 1

2
|1⟩+ 1

2
|2⟩+ 1

2
|3⟩. (1)

Algorithm 2 Gibbs(V, k, ε): Gibbs sampling
Input: A (β, ⌈log(n)⌉, O(1), O(1))-amplitude-encoding V of the vector u ∈ Rn

≥0, sample count k, and ε ∈ (0, 1/2).
Output: Samples i1, i2, . . . , ik.

1: Compute ℓ =
⌊

k log(k/ε)

β1/2 log1/2(n/ε) log(1/ε)

⌋
;

2: Compute εq = Θ(ℓε2/n), and ε2 = Θ(ε2q/d
2);

3: Compute t = Θ(β + log(ε−1
q )), and d = Θ(

√
t log(ε−1

q )).
4: (S, (ũi)i∈S)← GibbsPre(V, ℓ, ε/2);
5: Compute ũmin = mini∈S ũi;
6: Compute W = (n− ℓ) exp(ũmin) +

∑
i∈S exp(ũi);

7: T ← SamplerTree.Initialize(n, ũmin);
8: Texp ← SamplerTree.Initialize(n, exp(ũmin)/W );
9: for all i ∈ S do

10: T .Assign(i, ũi);
11: Texp.Assign(i, exp(ũi)/W );
12: end for
13: Compute the classical description of ULCU = LCU((T .BlockEnc(ε2),AmpToBlock(V ), I), PL, PR), where PL

and PR are defined in Equation (1);
14: Compute the classical description of UET = EigenTrans(BlockAmp(ULCU,

√
6), qβ,t,d, εq/2);

15: for l = 1, . . . , k do
16: Prepare the state |ψl⟩ = Amp(UET · (I ⊗ Texp.Prepare(εq)), ε/2k);
17: Measure |ψl⟩ in the computational basis, and store the outcome as il;
18: end for
19: Output i1, . . . , ik.

We have the following theorem for the algorithm:
Theorem 3.2. For every ε ∈ (0, 1/2), integer k > 0, and a (β, ⌈log2(n)⌉, O(1), O(1))-amplitude-encoding V of a
vector u ∈ Rn

≥0 with β ≥ 1, if

1 ≤ k log(k/ε)

β1/2 log1/2(n/ε) log(1/ε)
≤ n,

then with probability at least 1− ε, Algorithm 2 will return k samples from a distribution that is ε-close to the Gibbs
distribution of u, using

QGibbs(n, k, β, ε) = O
(√

nk
(
β3/4 + β1/4 log1/2(n/ε)

)
log1/2(1/ε) log3/4(n/ε) log1/2(k/ε)

)
queries to V , and in

TGibbs(n, k, β, ε) = O

(
k log(k/ε) log(n)

β1/2 log1/2(n/ε) log(1/ε)
+ QGibbs(n, k, β, ε) log

2(n) log2.5(nβ/ε)

)
time.

4 COMPUTING THE NASH EQUILIBRIUM OF ZERO-SUM GAMES

In this section, we discuss applying our multi-Gibbs sampling procedure to computing the ε-approximate Nash equi-
librium of two-person zero-sum games.

4.1 THE SETUP

The problem setting is as follows: suppose we are given a matrix A ∈ Rm×n with entries ai,j ∈ [0, 1]. The goal
of our algorithm is to find the approximate optimal strategies x ∈ ∆m, y ∈ ∆n, such that maxy′∈∆n

x⊺Ay′ −
minx′∈∆m

x′⊺Ay ≤ ε.

8
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4.2 QUANTUM OPTIMISTIC MULTIPLICATIVE WEIGHT UPDATE

Algorithm 3 Quantum Optimistic Multiplicative Weight Update
Input: Quantum oracle to the element ai,j of the matrix A ∈ Rm×n, step size λ, additive approximation error ε, total

round T .
Output: The ε-approximate Nash equilibrium strategy pair (u, v).

1: Set u← 0m, v ← 0n, ζ(0) ← 0m, η(0) ← 0n, x(0) ← 0m, and y(0) ← 0n.
2: for t = 1, . . . , T do
3: (i

(t)
1 , i

(t)
2 , . . . , i

(t)
T )← Gibbs(−Ay(t−1), T, εG).

4: (j
(t)
1 , j

(t)
2 , . . . , j(t))← Gibbs(A⊺x(t−1), T, εG).

5: ζ(t) ←
∑T

l=1 e(i
(t)
l )/T .

6: η(t) ←
∑T

l=1 e(j
(t)
l )/T .

7: x(t) ← x(t−1) + 2ζ(t) − ζ(t−1).
8: y(t) ← y(t−1) + 2η(t) − η(t−1).
9: u← u+ ζ(t).

10: v ← v + η(t).
11: end for
12: return the pair (u/T, v/T ).

In Gao et al. (2023), the authors proved the following theorem for Algorithm 3.
Theorem 4.1 (Gao et al. (2023, Theorem 3.2)). Suppose T = Θ(log(mn)/ε), εG = O(ε/ log(mn)), and
λ ∈ (0,

√
3/6) be a constant. Then with probability at least 2/3, Algorithm 3 will return an ε-approximate Nash

equilibrium for the zero-sum game A.

Using our Theorem 3.2, we have the following corollary:
Corollary 4.2. There exists a quantum algorithm that, for ε ∈ (0, 1/2), with probability at least 2/3, returns an
ε-approximate Nash equilibrium for the zero-sum game A ∈ Rm×n, using

O(QGibbs(m+ n,Θ(log(mn)/ε),Θ(log(mn)/ε), ε3)) = Õ(
√
m+ n/ε9/4)

queries to A, and in

O(TGibbs(m+ n,Θ(log(mn)/ε),Θ(log(mn)/ε), ε3)) = Õ(
√
m+ n/ε9/4)

time, provided that 1/ε = Õ((m+ n)2).

4.3 APPLICATION: LINEAR PROGRAM SOLVER

As is discussed in van Apeldoorn & Gilyén (2019b); Gao et al. (2023), solving linear programs can be reduced
to finding an ε-approximate Nash equilibrium of a related zero-sum game. See Appendix D for a more detailed
discussion of the reduction. Thus, we have the following corollary:
Corollary 4.3. There exists a quantum algorithm that, for ε ∈ (0, 1/2), with probability at least 2/3, returns an
ε-feasible and ε-optimal solution for the linear programming problem:

minimize
x ∈ Rn

c⊺x

subject to Ax ≤ b,
x ≥ 0

(2)

which uses

O(QGibbs(m+ n,Θ(log(mn)Rr/ε),Θ(log(mn)Rr/ε), (ε/Rr)3)) = Õ(
√
m+ n(Rr/ε)9/4)

queries to A, b, and c, and runs in

O(TGibbs(m+ n,Θ(log(mn)Rr/ε),Θ(log(mn)Rr/ε), (ε/Rr)3)) = Õ(
√
m+ n(Rr/ε)9/4)

time, provided that Rr/ε = Õ((m+ n)2).
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