
Under review as a conference paper at ICLR 2023

TEST-TIME ADAPTATION FOR BETTER ADVERSARIAL
ROBUSTNESS

Anonymous authors
Paper under double-blind review

ABSTRACT

Standard adversarial training and its variants have been widely adopted in prac-
tice to achieve robustness against adversarial attacks. However, we show in this
work that such an approach does not necessarily achieve near optimal general-
ization performance on test samples. Specifically, it is shown that under suitable
assumptions, Bayesian optimal robust estimator requires test-time adaptation, and
such adaptation can lead to significant performance boost over standard adver-
sarial training. Motivated by this observation, we propose a practically easy-to-
implement method to improve the generalization performance of adversarially-
trained networks via an additional self-supervised test-time adaptation step. We
further employ a meta adversarial training method to find a good starting point for
test-time adaptation, which incorporates the test-time adaptation procedure into
the training phase and it strengthens the correlation between the pre-text tasks in
self-supervised learning and the original classification task. Extensive empirical
experiments on CIFAR10, STL10 and Tiny ImageNet using several different self-
supervised tasks show that our method consistently improves the robust accuracy
of standard adversarial training under different white-box and black-box attack
strategies.

1 INTRODUCTION

Adversarial Training (AT) (Madry et al., 2018) and its variants (Wang et al., 2019; Zhang et al.,
2019) are currently recognized as the most effective defense mechanism against adversarial attacks.
However, AT generalizes poorly; the robust accuracy gap between the training and test set in AT is
much larger than the training-test gap in standard training of deep networks (Neyshabur et al., 2017;
Zhang et al., 2017). Unfortunately, classical techniques to overcome overfitting in standard training,
including regularization and data augmentation, only have little effect in AT (Rice et al., 2020).

Theoretically, as will be shown in Section 3, the loss objective of AT does not achieve optimal robust-
ness. Instead, under suitable assumptions, the Bayesian optimal robust estimator, which represents
the statistical optimal model that can be obtained from training data, requires test-time adaptation.
Compared with the fixed restricted Bayesian robust estimators, the test-time adapted estimators
largely improve the robustness. Therefore, we should perform the test-time adaptation for each test
input to boost the robustness.

To this end, we propose to fine-tune the model parameters for each test mini-batch. Since the labels
of the test images are not available, we exploit self-supervision, which is widely used in the standard
training of networks (Chen et al., 2020b; Gidaris et al., 2018; He et al., 2020). Fine-tuning the
self-supervised tasks has a high gradient correlation with fine-tuning the classification task so that
it forms a substitute of fine-tuning the classification loss at the inference time. Thus, we expect
minimizing this self-supervised loss function yields better generalization on the test set.

To make our test-time adaptation strategy effective, we need to search for a good starting point that
achieves good robust accuracy after fine-tuning. As will be shown in our experiments, AT itself
does not provide the optimal starting point. We therefore formulate the search for such start point
as a bilevel optimization problem. Specifically, we introduce a Meta Adversarial Training (MAT)
strategy dedicated to our self-supervised fine-tuning inspired by the model-agnostic meta-learning
(MAML) framework (Finn et al., 2017). To this end, we treat the classification of each batch of
adversarial images as one task and minimize the corresponding classification error of the fine-tuned

1

Under review as a conference paper at ICLR 2023

network. MAT strengthens the correlation between the self-supervised and classification tasks so
that self-supervised test-time adaptation can further improve robust accuracy.

In order to reliably evaluate our method, we follow the suggestions of (Tramer et al., 2020) and
design an adaptive attack that is fully aware of the test-time adaptation. Using rotation and ver-
tical flip as the self-supervised tasks, we empirically demonstrate the effectiveness of our method
on the commonly used CIFAR10 (Krizhevsky et al., 2009), STL10 (Coates et al., 2011) and Tiny
ImageNet (Le & Yang, 2015) datasets under both standard (Andriushchenko et al., 2020; Croce &
Hein, 2020a; Madry et al., 2018) and adaptive attacks in both white-box and black-box attacks. The
experiments evidence that our method consistently improves the robust accuracy under all attacks.
Our contributions can be summarized as follows:

1. We show that the estimators should be test-time adapted in order to achieve the Bayesian optimal
adversarial robustness, even for simple models like linear models. And the test-time adaptation
largely improves the robustness compared with optimal restricted estimators.

2. We introduce the framework of self-supervised test-time fine-tuning for adversarially-trained
networks, showing that it improves the robust accuracy of the test data.

3. We propose a meta adversarial training strategy based on the MAML framework to find a good
starting point and strengthen the correlation between the self-supervised and classification tasks.

4. The experiments show that our approach is valid on diverse attack strategies, including an adaptive
attack that is fully aware of our test-time adaptation, in both white-box and black-box attacks.

2 RELATED WORK

Adversarial Training. In recent years, many approaches have been proposed to defend networks
against adversarial attacks (Guo et al., 2018; Liao et al., 2018; Song et al., 2018). Among them,
Adversarial Training (AT) (Madry et al., 2018) stands out as one of the most robust and popu-
lar methods, even under various strong attacks (Athalye et al., 2018; Croce & Hein, 2020a). AT
optimizes the loss of adversarial examples to find parameters that are robust to adversarial attacks.
Several variants of AT (Wang et al., 2019; Zhang et al., 2019) also achieved and similar performance
to AT (Rice et al., 2020). One important problem that limits the robust accuracy of AT is overfitting.
Compared with training on clean images, the gap of robust accuracy between the training and test set
is much larger in AT (Rice et al., 2020). Moreover, traditional techniques to prevent overfitting, such
as regularization and data augmentation, have little effect. Recently, some methods have attempted
to flatten the weight loss landscape to improve the generalization of AT. In particular, Adversar-
ial Weight Perturbation (AWP) (Wu et al., 2020) achieves this by designing a double-perturbation
mechanism that adversarially perturbs both inputs and weights. In addition, learning-based smooth-
ing can flatten the landscape and improve the performance (Chen et al., 2021b).

Self-supervised Learning. In the context of non-adversarial training, many self-supervised strate-
gies have been proposed, such as rotation prediction (Gidaris et al., 2018), region/component fill-
ing (Criminisi et al., 2004), patch-base spatial composition prediction (Trinh et al., 2019) and con-
trastive learning (Chen et al., 2020b; He et al., 2020). While self-supervision has also been employed
in AT (Chen et al., 2020a; Kim et al., 2020; Yang & Vondrick, 2020; Hendrycks et al., 2019), their
methods only use self-supervised learning at training time to regularize the parameters and improve
the robust accuracy. By contrast, we propose to perform self-supervised fine-tuning at test time,
which we demonstrate to significantly improve the robust accuracy on test images. As will be
shown in the experiments, the self-supervised test-time adaptation has larger and complementary
improvements over the training time self-supervision.

Test-time Adaption. Test-time adaptation has been used in various fields, such as image super-
resolution (Shocher et al., 2018) and domain adaption (Sun et al., 2020; Wang et al., 2021). While
our work is thus closely related to Test-Time Training (TTT) in (Sun et al., 2020), we target a sig-
nificantly different scenario. TTT assumes that all test samples have been subject to the same distri-
bution shift compared with the training data. As a consequence, it incrementally updates the model
parameters when receiving new test images. By contrast, in our scenario, there is no systematic
distribution shift, and it is therefore more effective to fine-tune the parameters of the original model
for every new test mini-batch. This motivates our MAT strategy, which searches for the initial model
parameters that can be effectively fine-tuned in a self-supervised manner.

2

Under review as a conference paper at ICLR 2023

3 THEORY OF TEST-TIME ADAPTATION

In this section, we study the relationship between the test-time adaptation and Bayesian optimal
robustness, which represents the optimal robustness that can be achieved from the training data,
showing that the test-time adaptation can extend the function classes and improve the robustness of
the model.
Definition 3.1. For a model F (x) with `2 adversarial constraint ‖x?−x‖ < ε, we define its natural
risk and adversarial risk as at point x

Rnat
x (F) = (F (x)− E[y|x])2, Radv

x (F) = Rnat
x (F) + max

‖x?−x‖<ε
(F (x?)− F (x))2

Remarks. We use the MSE loss to define the natural risk Rnat
x (F) and adversarial Radv

x (F) at point
x. Similar to TRADES (Zhang et al., 2019) The adversarial risk is defined as the sum of natural
risk and the loss changes under adversarial attack, and it can be bounded by the maximum MSE loss
within the adversarial budget

ExR
adv
x (F) ≤ Ex max

‖x?−x‖≤ε
(F (x?)− E[y|x])2 ≤ 2ExR

adv
x (F).

Therefore, for the adversarial input x? with ‖x? − x‖ < ε, small Radv
x (F) guarantee small test

error on x?. Small Rnat
x (F) and Radv

x (F) represents good clean performance and high adversarial
robustness respectively

In the following definitions, we define three algorithms to obtain adversarially robust functions and
compare their adversarial risks.

Definition 3.2 (Adversarial Training with TRADES). We define F̂AT as

F̂AT = arg min
F̂

1

n

n∑
i=1

[
(yi − F̂ (xi))

2 + max
‖x?

i−xi‖<ε
(F̂ (x?i)− F̂ (xi))

2

]
,

where xi represents the i-th clean training data and yi represents the clean training label.

Remark. Empirically, adversarial training is a very popular method to achieve robustness. It mini-
mizes the adversarial risk on the training data. Then we consider the Bayesian optimal robustness.
Let F represent a function class. We assume the response is generated by y = F∗(x) + ξ with
prior distribution F∗ ∈ F ∼ PF and ξ ∼ Pξ. Denote X ∈ Rn×d,Y ∈ Rn as the training data
and training response generated by yi = F∗(xi) + ξ. For problems like Bayesian linear regression
(Bishop & Nasrabadi, 2006), function F̂ ∈ F is able to achieve the Bayesian optimal natural risk
EX,Y,y(F̂ (x) − y)2. However, the function class F is not enough to achieve the Bayesian optimal
adversarial risk. The adversarial risk depends on the local Lipschitz of function F̂ , in order to better
trade-off between the Lipschitz and natural risk of the function F , much more complicated func-
tion classes than F are needed to achieve the optimal adversarial robustness. We defined the two
Bayesian functions FRB and FAB that minimize global adversarial risk and adversarial risk at the
specific point x. FAB extends the function class beyond F and achieves better robustness.
Definition 3.3 (Restricted Bayesian Robust Function FRB). The restricted Bayesian robust function
FRB minimizes the global adversarial risk inside the function class F

min
F̂∈F

ExEy,X,Y|x
[
(F̂ (x)− y)2 + max

‖x?−x‖<ε
(F̂ (x?)− F̂ (x))2

]
Remark. The Bayesian function represents the best robust function inside the function class F For
any F ∈ F, no training algorithms can achieve better average adversarial risk than FRB.
Definition 3.4 (Adaptive Bayesian Robust Function FAB). The adaptive Bayesian robust function
FAB inside the function class F that minimizes the adversarial risk at point x is

min
F̂∈F

Ey,X,Y|x
[
(F̂ (x)− y)2 + max

‖x?−x‖<ε
(F̂ (x?)− F̂ (x))2

]

3

Under review as a conference paper at ICLR 2023

Remark. Instead of minimizing the global average Radv
x (F), FAB minimizes the adversarial risk

in the given input point x. The function depends on the input x so that the model extends the
function class beyond F. For different test inputs, we can use different functions to achieve the
optimal adversarial risk. Therefore, we refer to FAB as the test-time adapted function.

In the following theorem, we show the difference between three functions in the model, where the
test-adapted function FAB significantly improves the robustness.
Theorem 3.1 (Linear Models). We consider a linear function classes FLin = {F Lin|F Lin(x;θ) =
x>θ,θ ∈ Rd}. The output y is generated by y = x>θ∗ + ξ, where θ∗ is independent of x with
θ∗ ∼ N(0, τ2I), and the noise ξ ∼ N(0, σ2). Let X ∈ Rn×d,Y ∈ Rn denote the training data and
the responses respectively. For linear model F Lin(x;θ), three estimators in Definition 3.2 to 3.4 are

θ̂Lin
AT = X(X>X + nε2In)−1Y, θ̂Lin

RB =
1

ε2d+ 1
θ̂Lin

nat , θ̂Lin
AB = (xx> + ε2Id)

−1xx>θ̂Lin
nat ,

where θ̂Lin
nat = X(X>X + λ∗In)−1Y, λ∗ = σ2/τ2. Furthermore, if each dimension of x is i.i.d.

with Ex = 0, Cov(x) = Id/d and E[
√
dxi]4 ≤ M for some universal constant M < ∞, denoting

∆ = (1 + c+ λ∗)
2 − 4c, then when n, d→∞ with n/d = c ∈ (0, 1)

Radv
x (θ̂Lin

AT) = τ2, Radv
x (θ̂Lin

RB) = τ2, Radv
x (θ̂Lin

AB) = τ2

(
1− 1 + c+ λ∗ −

√
∆

2(ε2 + 1)

)
.

And when c→ 1 with SNR= σ2/τ2 ≤ 1, Radv
x (θ̂Lin

AB) < Radv
x (θ̂Lin

RB)(1− 2
3(ε2+1)).

Remarks. In this theorem, we provide the form of the three estimators and their adversarial risks.
The gap of adversarial risk between θ̂Lin

AT and θ̂Lin
RB vanishes when n, d → ∞. The estimator θ̂Lin

RB
achieves the optimal robust risk among all linear models. However, for an arbitrary ratio c =

n/d, Radv
x (θ̂Lin

AB) < Radv
x (θ̂Lin

RB), indicating that adaptation to each test data x can improve the
robustness of the model even when compared with the best linear model.

Theorem 3.1 provides the optimal test-time adapted estimator in the linear function classes FLin,
which depends on the clean input x. In Figure 1, we plot the adversarial risk of three estimators for
different adversarial budgets, which clearly shows that our adaptation can significantly increase
the robustness. When the input is corrupted with adversarial noise, the same form of the test-time
adapted estimator also significantly improves the adversarial risk shown in the following theorem.
Theorem 3.2 (Corrupted Input). We assume the oracle parameter θ∗ is independent of x and has
the prior distribution θ∗ ∼ N(0, τ2I), and the noise ξ ∼ N(0, σ2). Furthermore, each dimension of
x is i.i.d. with Ex = 0, Cov(x) = Id/d and E[

√
dxi]4 ≤ M for some universal constant M < ∞,

then when n, d→∞ with n/d = c ∈ (0, 1). Given corrupted input x? = x + εθ̂/‖θ̂‖, with ε < 1,
the adversarial risk of θ̂Lin

AB,? = (x?x?> + ε2Id)
−1x?x?>X(X>X + λ∗In)−1Y is

Radv
x (θ̂Lin

AB,?) = τ2

(
1− (1− ε2 +

2ε2

(1 + ε)2
)

2c

(1 + c+ λ∗ +
√

∆)(ε2/(1 + ε)2 + 1)

)
< Radv

x (θ̂Lin
RB).

50000 100000 150000 200000 250000
n

0.0

0.2

0.4

0.6

0.8

1.0

Adversarial Risk = 0.10

Lin
AT
Lin
RB
Lin
AB
Lin
AB, *

203570 203620

0.44595
0.44600

Figure 1: The comparison of Radv
x

for θ̂Lin
AT , θ̂Lin

RB , θ̂Lin
AB , θ̂Lin

AB,?. We set
τ2 = 1, σ2 = 0.2 and d = 250000.

Remarks. The theorem shows that when the given input is
adversarial, the test-time adaptation can still lower the ad-
versarial risk of the model as Radv

x (θ̂Lin
AB) < Radv

x (θ̂Lin
AB,?) <

Radv
x (θ̂Lin

RB).

In the statistical Bayesian model, we show that the test-
time adaptation can extend the function classes and
achieve the significantly lower adversarial risk than the
fixed model. In the practical non-Bayesian classification task,
explicit calculation of the optimal model is difficult. Nev-
ertheless, the test-time adaptation also helps to improve the
robustness of the model. As will be shown in the following
section, we perform the self-supervised test-time fine-tuning
to adapt the model to each input, and largely improves the
robust accuracy of the test-time adapted model.

4

Under review as a conference paper at ICLR 2023

4 METHODOLOGY

We follow the traditional multitask learning formulation (Caruana, 1997) and consider a neural net-
work with a backbone z = E(x;θE) and K+ 1 heads. One head f(z;θf) outputs the classification
result while the other K heads g1(z;θg1), ..., gK(z;θgK) correspond to K auxiliary self-supervised
tasks. θ = (θE ,θf ,θg1, · · · ,θgK) encompasses all trainable parameters, and we further define

F = f ◦ E; Gk = gk ◦ E, k = 1, 2, ...,K. (1)

Furthermore, let D = {(xi, yi)}ni=1 denote the training set, and D̃ = {(x̃i, ỹi)}mi=1 be the test
set. For further illustration, the labels of the test set are shown. However, they are unknown to the
networks at test time. We denote the adversarial examples of x as x?. It satisfies ‖x?−x‖ ≤ ε, and
ε is the size of the adversarial budget. For any set S, we represent its average loss as

L(S) =
1

|S|
∑
si∈S

L(si) (2)

where |S| is the number of elements in S. The general classification loss, such as the cross-entropy,
is denoted by Lcls. We use the superscript “AT” to denote the adversarial training loss. For example,

LATcls (S) =
1

|S|
∑

xi,yi∈S
max

‖x?
i−xi‖≤ε

Lcls(F (x?i), yi) . (3)

4.1 SELF-SUPERVISED TEST-TIME FINE-TUNING

Our goal is to perform self-supervised learning on the test examples to mitigate the overfitting
problem of AT and adapt the model for each data point. To this end, let us suppose that an
adversarially-trained network with parameters θ0 receives a mini-batch of b adversarial test ex-
amples B̃? = {(x̃?1, ỹ1), · · · , (x̃?b , ỹb)} , As the labels {ỹi}bi=1 are not available, we propose to
fine-tune the backbone parameters θE by optimizing the loss function

LSS(B̃?) =
1

b

K∑
k=1

Ck

b∑
i=1

LSS,k(Gk(x̃?i);θE ,θgk) , (4)

which encompasses K self-supervised tasks. Here, LSS,k represents the loss function of the k-th
task and {Ck}Kk=1 are the weights balancing the contribution of each task. In our experiments, the
LSS,K is the cross-entropy loss to predict rotation and vertical flip.

The number of images b may vary from 1 to m. b = 1 corresponds to the online setting, where only
one adversarial image is available at a time, and the backbone parameters θE are adapted to every
new image. The online setting is the most practical one, as it does not make any assumptions about
the number of adversarial test images the network receives. By contrast, b = m corresponds to the
offline setting, where all adversarial test examples are available at once. It is similar to transductive
learning (Gammerman et al., 1998; Vapnik, 2013). Note that our online setting differs from the
online test-time training described in TTT (Sun et al., 2020); we do not incrementally update the
network parameters as new samples come, but instead initialize fine-tuning from the same starting
point θ0 for each new test image.

Eqn (4) encourages θE to update in favor of the self-supervised tasks. However, as the classification
head f was only optimized for the old backbone E(·;θ0

E), it will typically be ill-adapted to the
new parameters θ∗E , resulting in a degraded robust accuracy. Furthermore, for a small b, the model
tends to overfit to the test data, reducing LSS to 0 but extracting features that are only useful for the
self-supervised tasks. To overcome these problems, we add an additional loss function acting on the
training data that both regularizes the backbone E and optimizes the classification head f so that f
remains adapted to the fine-tuned backbone E(·;θ∗E). Specifically, let B ⊂ D denote a subset of
the training set. We then add the regularizer

LR(B) =LATcls (B) =
1

|B|
∑

xi,yi∈B
max

‖x?
i−xi‖≤ε

Lcls(F (x?i), yi) (5)

to the fine-tuning process. In short, Eqn (5) evaluates the AT loss on the training set to fine-tune the
parameters θf of the classification head. It also forces the backbone E to extract features that can

5

Under review as a conference paper at ICLR 2023

be used to make correct predictions, i.e., to prevent θE from being misled by LSS when b is small.
Combining Eqn (4) and Eqn (5), our final test-time adaptation loss is

Ltest(B̃
?, B) = LSS(B̃?) + CLR(B) (6)

whereC sets the influence of LR. The algorithms that describe our test-time self-supervised learning
are deferred to Appendix D. As SGD is more efficient for larger amount of data, we use SGD to
optimize θ when b is large (e.g. offline setting).

4.2 META ADVERSARIAL TRAINING

To make the best out of optimizing Ltest at test time, we should find a suitable starting point θ0,
i.e., a starting point such that test-time self-supervised learning yields better robust accuracy. We
translate this into a meta learning scheme, which entails a bilevel optimization problem.

Specifically, we divide the training data into s small exclusive subsets D = ∪sj=1Bj and let B?j to
be adversaries of Bj . We then formulate meta adversarial learning as the bilevel minimization of

Lmeta(D;θ) =
1

s

∑
Bj⊂D

LATcls (Bj ;θ
∗
j (θ)), where θ∗j = arg min

θ
LSS(B?j ;θ) , (7)

where LSS is the self-supervised loss function defined in Eqn (4) and LATcls is the loss function of
AT defined in Eqn (3). As bilevel optimization is time-consuming, following MAML (Finn et al.,
2017), we use a single gradient step of the current model parameters θ to approximate θ∗j .

θ∗j ≈ θ − α∇θLSS(B?j ;θ) . (8)

In essence, this Meta Adversarial Training (MAT) scheme searches for a starting point such that
fine-tuning with LSS will lead to good robust accuracy. If this holds for all training subsets, then we
can expect the robust accuracy after fine-tuning at test time also to increase. Note that, because the
meta learning objective of Eqn (7) already accounts for classification accuracy, the regularization by
LR is not needed during meta adversarial learning.

Accelerating Training. To compute the gradient ∇θLmeta(D;θ), we need to calculate the time-
consuming second order derivatives −α∇2

θLSS(B?j ;θ)∇θ∗j
LATcls (Bj ;θ

∗
j) . Considering that AT is

already much slower than standard training (Shafahi et al., 2019), we cannot afford another signif-
icant training overhead. Fortunately, as shown in (Finn et al., 2017), second order derivatives have
little influence on the performance of MAML. We therefore ignore them and take the gradient to be

∇θLmeta(D;θ) ≈ 1

s

∑
Bj⊂D

∇θ∗j
LATcls (Bj ;θ

∗
j) . (9)

However, by ignoring the second order gradient, only the parameters on the forward path of the
classifier F , i.e., θE and θf , will be updated. In other words, optimizing Eqn (7) in this fashion will
not update {θgk}Kk=1. To nonetheless encourage each self-supervised head Gk to output the correct
prediction, we incorporate an additional loss function encoding the self-supervised tasks,

LATSS (D) =
∑
k

CkL
AT
SS,k(D) =

∑
k

Ck
|D|

∑
xi∈D

max
‖x?

i−xi‖≤ε
LSS,k(Gk(x?i)) . (10)

Note that we use the adversarial version of LSS to provide robustness to the self-supervised tasks,
which, as shown in (Chen et al., 2020a; Hendrycks et al., 2019; Yang & Vondrick, 2020), is beneficial
for the classifier. The final meta adversarial learning objective therefore is

Ltrain(D) = Lmeta(D) + C ′LATSS (D) (11)

where C ′ balances the two losses. Algorithm 1 shows the complete MAT algorithm.

5 EXPERIMENTS

Experimental Settings. Following previous works (Cui et al., 2020; Huang et al., 2020), we con-
sider `∞-norm attacks with an adversarial budget ε = 0.031(≈ 8/255). We evaluate our method

6

Under review as a conference paper at ICLR 2023

Algorithm 1 Meta Adversarial Training

Input: Training set D; Learning rate α, β; Iterations T ; Weights Ck and C ′
Output: Starting parameters θ0 for the test-time fine-tuning
1: for t = 1 to T do
2: Sample q exclusive batches of training images B1, B2, · · · , Bq ⊂ D
3: Using PGD to find the adversaries B?j : x?j,i = arg max‖x?

j,i−xj,i‖≤ε Lcls(F (x?j,i), yj,i)

4: for batches B1, B2, · · · , Bq do
5: θ∗j = θ − α∇θLSS(B?j ;θ)

6: lmeta,j = LATcls (Bj ;θ
∗
j)

7: end for
8: θ = θ − β

q

∑
Bj

[
∇θ∗j

lmeta,j + C ′∇θL
AT
SS (Bj ;θ)

]
9: end for

10: return Trained parameters θ0 = θ

on three datasets: CIFAR10 (Krizhevsky et al., 2009), STL10 (Coates et al., 2011) and Tiny Im-
ageNet (Le & Yang, 2015). We also use two different network architectures: WideResNet-34-
10 (Zagoruyko & Komodakis, 2016) for CIFAR10, and ResNet18 (He et al., 2016) for STL10 and
Tiny ImageNet. The hyperparameters are provided in the Appendix D.

Self-Supervised Tasks. In principle, any self-supervised tasks can be used for test-time fine-tuning,
as long as they are positively correlated with the robust accuracy. However, for the test-time fine-
tuning to remain efficient, we should not use too many self-supervised tasks. Furthermore, as we
aim to support the fully online setting, where only one image is available at a time, we cannot
incorporate a contrastive loss (Chen et al., 2020b; He et al., 2020; Kim et al., 2020) to LSS . In
our experiments, we therefore use two self-supervised tasks that have been shown to be useful to
improve the classification accuracy: Rotation Prediction and Vertical Flip Prediction.

Attack Methods. In the white-box attacks, the attacker knows every detail of the defense method.
Therefore, we need to assume that the attacker is aware of our test-time adaptation method and will
adjust its strategy for generating adversarial examples accordingly. Suppose that the attacker is fully
aware of the hyperparameters for test-time adaptation. Then, finding adversaries B̃? of the clean
subset B̃ can be achieved by maximizing the adaptive loss

x̃?i = arg max
‖x̃?

i−xi‖≤ε
Lattack(F (x̃?i), y;θT (B̃?)) , (12)

where Lattack refers to the general attack loss, such as the cross-entropy or the difference of logit
ratio (DLR) (Croce & Hein, 2020a). We call this objective in Eqn (12) adaptive attack, which can
be either performed in white-box or black-box attacks. We consider four common white-box and
black-box attack methods: PGD-20 (Madry et al., 2018), AutoPGD (both cross-entropy and DLR
loss) loss (Croce & Hein, 2020a), FAB (Croce & Hein, 2020b) and Square Attack (Andriushchenko
et al., 2020). We apply both the standard and adaptive versions of these methods. Particularly,
AutoPGD we use is a strong version that maximizes the loss function that continues when finding
adversarial examples (Croce et al., 2022). More details are provided in the Appendix E.

Baselines. We compare our method with the following methods: 1) Regular AT, which uses LATcls
in Eqn (3). 2) Regular AT with an additional self-supervised loss, i.e., using LATcls + C ′LATSS for AT,
where LATSS is given in Eqn (10). This corresponds to the formulation of (Hendrycks et al., 2019).
3) MAT (Algorithm 1) without test-time fine-tuning.

5.1 ROBUST ACCURACY

CIFAR10. Table 1a shows the robust accuracy for different attacks and using two different tasks for
fine-tuning. The adaptive attack is not applicable to models without fine-tuning. As we inject dif-
ferent self-supervised tasks into the AT stage, and as different self-supervised tasks may impact the
robust accuracy differently (Chen et al., 2020a), the robust accuracy without fine-tuning still varies.
The vertical flipping task yields better robust accuracy before fine-tuning but its improvement after
fine-tuning is small. By contrast, rotation prediction achieves low robust accuracy before fine-tuning,

7

Under review as a conference paper at ICLR 2023

Table 1: Robust accuracy on CIFAR10, STL10 and Tiny ImageNet of the test-time fine-tuning on
both the online and the offline settings. We use an `∞ budget ε = 0.031. FT stands for fine-tuning.
We underline the accuracy of the strongest attack and highlight the highest accuracy among them.

(a) CIFAR10 with WideResNet-34-10.

Tasks Methods Square Attack PGD-20 AutoPGD FAB Worst
StandardAdaptiveStandardAdaptiveStandardAdaptiveGMSAStandardAdaptive

None AT 62.51% - 55.74% - 52.14% - - 51.34% - 51.30%

Rotation

AT w/o FT 63.54% - 56.64% - 52.57% - - 51.87% - 51.85%
MAT w/o FT 63.96% - 57.35% - 53.09% - - 53.09% - 53.04%
Online FT 65.52% 65.85% 59.52% 59.50% 57.93% 56.96% 57.60% 75.58% 77.69% 56.62%
Offline FT 67.05% 65.75% 61.17% 59.71% 58.77% 57.63% - 78.12% 68.60% 57.21%

VFlip

AT w/o FT 62.09% - 55.50% - 52.79% - - 51.24% - 51.23%
MAT w/o FT 66.15% - 59.73% - 53.41% - - 53.02% - 52.98%
Online FT 66.91% 66.16% 61.47% 59.40% 58.74% 56.79% 58.53% 75.68% 80.57% 55.98%
Offline FT 67.23% 65.60% 61.82% 59.69% 59.26% 58.06% - 75.60% 72.24% 57.01%

Rotation
+

VFlip

AT w/o FT 65.64% - 59.19% - 53.16% - - 53.05% - 52.95%
MAT w/o FT 65.75% - 59.51% - 53.99% - - 53.85% - 53.76%
Online FT 67.34% 66.80% 61.79% 60.46% 59.23% 57.70% 59.60% 76.39% 79.80% 57.21%
Offline FT 68.50% 66.05% 62.87% 60.54% 60.25% 58.26% - 76.89% 71.58% 57.88%

(b) STL10 with ResNet18.

Tasks Methods Square Attack PGD-20 AutoPGD FAB Worst
Standard Adaptive Standard Adaptive Standard Adaptive Standard Adaptive

None AT 44.83% - 37.89% - 35.78% - 35.64% - 35.58%

Rotation
+

VFlip

AT w/o FT 44.00% - 36.92% - 33.72% - 33.73% - 33.65%
MAT w/o FT 44.75% - 38.66% - 35.60% - 35.38% - 35.31%
Online FT 45.07% 46.19% 40.31% 40.24% 39.53% 40.85% 51.25% 51.08% 39.21%
Offline FT 47.86% 48.03% 45.21% 43.33% 43.78% 43.20% 58.49% 54.13% 42.57%

(c) Tiny ImageNet with ResNet18.

Tasks Methods Square Attack PGD-20 AutoPGD FAB Worst
Standard Adaptive Standard Adaptive Standard Adaptive Standard Adaptive

None AT 28.5% - 20.6% - 17.5% - 17.2% - 17.2%

Rotation
+

VFlip

AT w/o FT 29.5% - 22.2% - 17.1% - 16.7% - 16.7%
MAT w/o FT 29.3% - 23.1% - 16.9% - 16.8% - 16.7%
Online FT 30.2% 30.2% 24.0% 23.2% 18.9% 18.1% 33.7% 31.6% 17.7%
Offline FT 32.4% 31.0% 25.6% 24.1% 23.7% 20.6% 36.5% 27.7% 20.1%

Table 2: The statistics ρ(x̃?) and two
self-supervised tasks. The dataset is CI-
FAR10 and the network is WideResNet-
34-10. Adversarial budget ε = 0.031

Tasks E(ρ(x̃?)) P (ρ(x̃?) > 0)
Rotation 0.15 68.51%

VFlip 0.22 72.16%

0.5 0.0 0.5 1.0
(xadv)

0.0

0.2

0.4

0.6

0.8

1.0
Rotation

1.0 0.5 0.0 0.5 1.0
(xadv)

0.0

0.2

0.4

0.6

0.8

1.0
Vertical Flip

Figure 2: Empirical cdf of ρ(x̃?i) on CIFAR10 and
WideResNet-34-10. Adversarial budget ε = 0.031

but its improvement after fine-tuning is the largest. Using both tasks together combines their effect
and yields the highest overall accuracy after test-time adaptation. Note that our self-supervised test-
time fine-tuning, together with meta adversarial learning, consistently improves the robust accuracy
under different attack methods. Under the strongest adaptive AutoPGD, test-time fine-tuning using
both tasks achieves a robust accuracy of 57.70%, significantly outperforming regular AT.

STL10 and Tiny ImageNet. As using both the rotation and vertical flip prediction led to the highest
overall accuracy on CIFAR10, we focus on this strategy for STL10 and Tiny ImageNet. Table 1b
and 1c shows the robust accuracy on STL10 and Tiny ImageNet using a ResNet18. Our approach
also significantly outperforms regular AT on these datasets.

Offline Test-time Adapattion. As shown in Table 1a, 1b, 1c, the offline fine-tuning further improves
the robust accuracy over the online version.

8

Under review as a conference paper at ICLR 2023

Diverse Attacks. Recommended by (Croce et al., 2022), in Appendix C.1, we evaluate our method
on diverse attacks including transfer attack, expectation attack and boundary attack, where test-time
adaptation all improves the robustness of the model.

5.2 METHOD ANALYSIS

We observe the significant positive correlation between the gradient of self-supervised loss LSS and
the classification loss Lcls. Define

ρ(x̃?i) =
∇θE

Lcls(x̃
?
i , ỹi)

T∇θE
LSS(x̃?i)

‖∇θE
Lcls(x̃?i , ỹi)‖2‖∇θE

LSS(x̃?i)‖2
, (13)

and approximate Lcls by the Taylor expansion

Lcls(x̃
?
i , ỹi;θE − η∇θE

LSS(x̃?i))− Lcls(x̃
?
i , ỹi;θE) ≈ −ηρ(x̃?i)‖∇θE

Lcls(x̃
?
i , ỹi)‖2‖∇θE

LSS(x̃?i)‖2 .

As θE contains millions of parameters, its gradient norm is typically large. Therefore, gradient
descent w.r.t. LSS should act as a good substitute for optimizing Lcls when ρ(x̃?i) is significantly
larger than 0. We further confirm this empirically. For all adversarial test inputs x̃? ∼ D̃?, we regard
ρ(x̃?) as a random variable and calculate its empirical statistics on the test set. Table 2 shows the
empirical statistics of an adversarially-trained model on CIFAR10, and Figure 2 shows the c.d.f. of
ρ(x̃?). The mean of ρ(x̃?) is indeed significantly larger than 0 and P (ρ(x̃?) > 0) is larger than the
robust accuracy of the adversarially-trained network (50%-60%), which implies that self-supervised
test-time fine-tuning helps to correctly classify the adversarial test images.

We further provide the theoretical analysis in a linear model in Theorem B.1, which shows that the
correlated gradient significantly strengthens the robustness and lowers natural risk. Besides, the
correlated gradient also helps the model to move closer to the Bayesian robust estimator θ̂AB.

5.3 ABLATION STUDY

Meta Adversarial Training. To show the effectiveness of MAT, we perform an ablation study to
fine-tune the model with regular AT (i.e., setting α = 0 in line 5 of Algorithm 1). Table 7 shows that
the robust accuracy and the improvements of fine-tuning are consistently worse without MAT.

Accuracy Improvement on Inputs with Different Adversarial Budget. As shown in Table 8, we
set ε = 0.015 to perform the online test-time fine-tuning, showing that our method is also able to
improve the robust accuracy of inputs with different adversarial budgets.

Removing LSS or LR. To study the effect of LSS and LR in Ltest, we report the robust accuracy
after online fine-tuning using only LR and LSS in Table 9. While, as expected, removing LSS tends
to reduce more accuracy than removing LR. It shows the benefits of our self-supervised test-time
fine-tuning strategy. Nevertheless, the best results are obtained by exploiting both loss terms.

Improvement on Clean Images. As predicted by Theorem 3.1 and B.1, our method is able to
improve not only the robust accuracy but also the natural accuracy. As shown in Table 10, our
approach increases the clean image accuracy by test-time adaptation. This phenomenon further
strengthens our conjecture that the improvement of robust accuracy is due to the improvement of
generalization instead of gradient masking.

6 CONCLUSION

In linear models and two-layer random networks, we theoretically demonstrate the necessity of test-
time adaptation for the model to achieve optimal robustness. To this end, we propose self-supervised
test-time fine-tuning on adversarially-trained models to improve their generalization ability. Further-
more, we introduce a MAT strategy to find a good starting point for our self-supervised fine-tuning
process. Our extensive experiments on CIFAR10, STL10 and Tiny ImageNet demonstrate that our
method consistently improves the robust accuracy under different attack strategies, including strong
adaptive attacks where the attacker is aware of our test-time adaptation technique. In these ex-
periments, we utilize three different sources of self-supervision: rotation prediction, vertical flip
prediction and the ensemble of them.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square at-
tack: a query-efficient black-box adversarial attack via random search. In European Conference
on Computer Vision, pp. 484–501. Springer, 2020.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of se-
curity: Circumventing defenses to adversarial examples. In International Conference on Machine
Learning, pp. 274–283. PMLR, 2018.

Zhidong Bai and Jack W Silverstein. Spectral analysis of large dimensional random matrices,
volume 20. Springer, 2010.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, vol-
ume 4. Springer, 2006.

Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

Jiefeng Chen, Xi Wu, Yang Guo, Yingyu Liang, and Somesh Jha. Towards evaluating the robustness
of neural networks learned by transduction. In International Conference on Learning Represen-
tations, 2021a.

Jinghui Chen and Quanquan Gu. Rays: A ray searching method for hard-label adversarial attack.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 1739–1747, 2020.

Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa Amini, and Zhangyang Wang. Adversarial
robustness: From self-supervised pre-training to fine-tuning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 699–708, 2020a.

Tianlong Chen, Zhenyu Zhang, Sijia Liu, Shiyu Chang, and Zhangyang Wang. Robust overfitting
may be mitigated by properly learned smoothening. In International Conference on Learning
Representations, 2021b. URL https://openreview.net/forum?id=qZzy5urZw9.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020b.

Chen Cheng, John Duchi, and Rohith Kuditipudi. Memorize to generalize: on the necessity of
interpolation in high dimensional linear regression. arXiv preprint arXiv:2202.09889, 2022.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelli-
gence and statistics, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

Antonio Criminisi, Patrick Pérez, and Kentaro Toyama. Region filling and object removal by
exemplar-based image inpainting. IEEE Transactions on image processing, 13(9):1200–1212,
2004.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In International Conference on Machine Learning, pp. 2206–
2216. PMLR, 2020a.

Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast adaptive
boundary attack. In International Conference on Machine Learning, pp. 2196–2205. PMLR,
2020b.

Francesco Croce, Sven Gowal, Thomas Brunner, Evan Shelhamer, Matthias Hein, and Taylan
Cemgil. Evaluating the adversarial robustness of adaptive test-time defenses. arXiv preprint
arXiv:2202.13711, 2022.

Jiequan Cui, Shu Liu, Liwei Wang, and Jiaya Jia. Learnable boundary guided adversarial training.
arXiv preprint arXiv:2011.11164, 2020.

10

https://openreview.net/forum?id=qZzy5urZw9

Under review as a conference paper at ICLR 2023

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, pp. 1126–1135. PMLR,
2017.

A. Gammerman, V. Vovk, and V. Vapnik. Learning by transduction. In Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence, UAI’98, pp. 148–155, San Francisco, CA,
USA, 1998. Morgan Kaufmann Publishers Inc. ISBN 155860555X.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=S1v4N2l0-.

Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. Uncovering
the limits of adversarial training against norm-bounded adversarial examples. arXiv preprint
arXiv:2010.03593, 2020.

Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. Countering adversarial
images using input transformations. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=SyJ7ClWCb.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738, 2020.

Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-supervised learn-
ing can improve model robustness and uncertainty. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.
cc/paper/2019/file/a2b15837edac15df90721968986f7f8e-Paper.pdf.

Lang Huang, Chao Zhang, and Hongyang Zhang. Self-adaptive training: beyond empirical risk
minimization. In Advances in Neural Information Processing Systems, volume 33, 2020.

Hoki Kim, Woojin Lee, and Jaewook Lee. Understanding catastrophic overfitting in single-step
adversarial training. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 8119–8127, 2021.

Minseon Kim, Jihoon Tack, and Sung Ju Hwang. Adversarial self-supervised contrastive learning.
In Advances in Neural Information Processing Systems, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu, and Jun Zhu. Defense against
adversarial attacks using high-level representation guided denoiser. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1778–1787, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Behnam Neyshabur, Srinadh Bhojanapalli, David Mcallester, and Nati Srebro. Exploring gener-
alization in deep learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/
paper/2017/file/10ce03a1ed01077e3e289f3e53c72813-Paper.pdf.

11

https://openreview.net/forum?id=S1v4N2l0-
https://openreview.net/forum?id=SyJ7ClWCb
https://proceedings.neurips.cc/paper/2019/file/a2b15837edac15df90721968986f7f8e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/a2b15837edac15df90721968986f7f8e-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/10ce03a1ed01077e3e289f3e53c72813-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/10ce03a1ed01077e3e289f3e53c72813-Paper.pdf

Under review as a conference paper at ICLR 2023

Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning. In
International Conference on Machine Learning, pp. 8093–8104. PMLR, 2020.

Kuniaki Saito, Donghyun Kim, Stan Sclaroff, and Kate Saenko. Universal domain adaptation
through self supervision. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 16282–16292. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/
file/bb7946e7d85c81a9e69fee1cea4a087c-Paper.pdf.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free!
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
7503cfacd12053d309b6bed5c89de212-Paper.pdf.

Changhao Shi, Chester Holtz, and Gal Mishne. Online adversarial purification based on self-
supervised learning. In International Conference on Learning Representations, 2020.

Assaf Shocher, Nadav Cohen, and Michal Irani. “zero-shot” super-resolution using deep internal
learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3118–3126, 2018.

Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pixeldefend:
Leveraging generative models to understand and defend against adversarial examples. In Interna-
tional Conference on Learning Representations, 2018. URL https://openreview.net/
forum?id=rJUYGxbCW.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time train-
ing with self-supervision for generalization under distribution shifts. In International Conference
on Machine Learning, pp. 9229–9248. PMLR, 2020.

Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to
adversarial example defenses. In Advances in Neural Information Processing Systems, volume 33,
2020.

Trieu H Trinh, Minh-Thang Luong, and Quoc V Le. Selfie: Self-supervised pretraining for image
embedding. arXiv preprint arXiv:1906.02940, 2019.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media,
2013.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. In International Conference on Learning Repre-
sentations, 2021. URL https://openreview.net/forum?id=uXl3bZLkr3c.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving
adversarial robustness requires revisiting misclassified examples. In International Conference on
Learning Representations, 2019.

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust gener-
alization. Advances in Neural Information Processing Systems, 33, 2020.

Junfeng Yang and Carl Vondrick. Multitask learning strengthens adversarial robustness. In European
Conference on Computer Vision. Springer, 2020.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Edwin R. Hancock Richard
C. Wilson and William A. P. Smith (eds.), Proceedings of the British Machine Vision Conference
(BMVC), pp. 87.1–87.12. BMVA Press, September 2016. ISBN 1-901725-59-6. doi: 10.5244/C.
30.87. URL https://dx.doi.org/10.5244/C.30.87.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In International Conference on Learning Rep-
resentations, 2017.

12

https://proceedings.neurips.cc/paper/2020/file/bb7946e7d85c81a9e69fee1cea4a087c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/bb7946e7d85c81a9e69fee1cea4a087c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf
https://openreview.net/forum?id=rJUYGxbCW
https://openreview.net/forum?id=rJUYGxbCW
https://openreview.net/forum?id=uXl3bZLkr3c
https://dx.doi.org/10.5244/C.30.87

Under review as a conference paper at ICLR 2023

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International Conference
on Machine Learning, pp. 7472–7482. PMLR, 2019.

13

Under review as a conference paper at ICLR 2023

A PROOFS OF THEOREMS

A.1 PRELIMINARY: MARCHENKO-PASTUR LAW AND TRANSFORMATION OF EIGENVALUES

Before the proof linear models, we first give the asymptotic spectrum of the matrix K = X>X, and
some useful results of the trace of the transformation of K.

Lemma A.1 (Marchenko-Pastur Law, Theorem 3.4 in (Bai & Silverstein, 2010)). We define the
eigenvalues of X>X: λ1 > λ2 > · · ·λn has distribution with c.d.f.

Hn(s) =
1

n

n∑
i=1

1λi≤s.

If each dimension of x is i.i.d. with Ex = 0, Cov(x) = Id/d and E[
√
dxi]4 ≤M for some universal

constant M < ∞, then when n, d → ∞ with n/d = c ∈ (0, 1), for any bounded function g, when
n, d→∞ with c = n/d ∈ [0,∞)∫

g(s)dHn(s)→
∫
g(s)dH(s),

with p.d.f. dH(s)

dH(s) =
1

2πc

√
(λ+ − s) (s− λ−)

s
1s∈[λ−,λ+]ds,

where λ− = (1−
√
c)2 and λ+ = (1 +

√
c)2.

Lemma A.2. If each dimension of x is i.i.d. with Ex = 0, Cov(x) = Id/d and E[
√
dxi]4 ≤M for

some universal constant M <∞, then when n, d→∞ with n/d = c ∈ (0, 1),

Tr(K(K + λIn)−2) = d
1 + c+ λ−

√
∆

2
√

∆
,

Tr(K2(K + λIn)−2) = d
(1 + c+ λ)−

√
∆

2
(1− λ√

∆
),

Tr((K + λIn)−2) = d
(1 + c)(1 + c+ λ)− 4c− (1− c)

√
∆

2λ2
√

∆
,

where ∆ = (1 + c+ z)2 − 4c.

Proof. We define three transformations of the eigenvalue of dH(s)

t1(z) =

∫
s

(s+ z)2
dH(s), t2(z) =

∫
s2

(s+ z)2
dH(s), t3(z) =

∫
1

(s+ z)2
dH(s), (14)

for z ∈ [0,∞). They can be calculated by the Stieltjes transformation of Marchenko-Pastur law.

By Marchenko-Pastur semicircular law, the Stieltjes transformation of dH(s) is (Lemma 3.11 in
(Bai & Silverstein, 2010) and Lemma 4.4 in (Cheng et al., 2022))

m(z) =

∫
1

s− z
dH(s) =

1− c− z −
√

(1 + c− z)2 − 4c

2cz

Let ∆ = (1 + c+ z)2 − 4c

t(z) = m(−z) =
1− c+ z −

√
(1 + c+ z)2 − 4c

−2cz
,

and ∫
1

(s+ z)2
dH(s) = − d

dz

∫
1

s+ z
dH(s) = −dt(z)

dz
.

14

Under review as a conference paper at ICLR 2023

Then

t1(z) =

∫
1

s+ z
dH(s)−

∫
z

(s+ z)2
dH(s) = t(z) + z

dt(z)

dz
=

1 + c+ z −
√

∆

2c
√

∆
, (15)

t2(z) =1−
∫

2z

s+ z
dH(s) +

∫
z2

(s+ z)2
dH(s) = 1− 2zt(z)− z2 dt(z)

dz

=
(1 + c+ z)−

√
∆

2c
(1− z√

∆
),

(16)

t3(z) = − d

dz

∫
1

s+ z
dH(s) =

dt(z)

dz
=

(1 + c)(1 + c+ z)− 4c− (1− c)
√

∆

2cz2
√

∆
. (17)

The trace operation can be translated into:

Tr(K(K + λIn)−2) = n

∫
s

(s+ λ)2
dHn(s),

Tr(K2(K + λIn)−2) = n

∫
s2

(s+ λ)2
dHn(s),

Tr((K + λIn)−2) = n

∫
1

(s+ λ)2
dHn(s).

Therefore, when n, d→∞ with c = n/d ∈ (0, 1),

Tr(K(K + λIn)−2)→n1 + c+ λ−
√

∆

2c
√

∆
= d

1 + c+ λ−
√

∆

2
√

∆
,

Tr(K2(K + λIn)−2)→n (1 + c+ λ)−
√

∆

2c
(1− λ√

∆
) = d

(1 + c+ λ)−
√

∆

2
(1− λ√

∆
),

Tr((K + λIn)−2)→n (1 + c)(1 + c+ λ)− 4c− (1− c)
√

∆

2cλ2
√

∆

=d
(1 + c)(1 + c+ λ)− 4c− (1− c)

√
∆

2λ2
√

∆
.

where ∆ = (1 + c+ λ)2 − 4c.

A.2 PROOF OF THEOREM 3.1

We separate the proof into three parts for three estimators separately.

Proof of θ̂Lin
AT . For θ̂AT

Lin, taking gradient with respect to the objective function

1

n

n∑
i=1

[
(yi − x>i θ) + ε2‖θ‖2

]
,

we obtain
2

n
(Y −X>θ) + 2nεθ = 0.

Therefore,
θ̂Lin

AT = X(X>X + nε2In)−1Y

Its natural risk is

Rnat
x (θ̂Lin

AT) =Eξ,θ∗,x(x>(θ̂Lin
AT − θ∗))

2 =
1

d
‖θ̂Lin

AT − θ∗‖2

=
1

d
Eξ,θ∗‖θ∗ −X(X>X + λIn)−1(X>θ∗ + ξ)‖2

=τ2(1− n

d
) +

λ2τ2

d
Tr((K + λIn)−2) +

σ2

d
Tr(K(K + λIn)−2)

(18)

15

Under review as a conference paper at ICLR 2023

And the Lipschitz constant is

L(θ̂Lin
AT)2 =‖θ̂Lin

AT ‖2

=Eξ,θ∗‖(XX> + λId)
−1X(X>θ∗ + ξ)‖2

=τ2Tr
(
(K + λIn)−2K2

)
+ σ2Tr

(
(K + λIn)−2K

)
.

(19)

When λ = nε2 →∞, by Lemma A.2,

Tr(K(K + λIn)−2)→ 0, Tr(K2(K + λIn)−2)→ 0, λ2Tr((K + λIn)−2)→ n

d
(20)

Therefore,
Radv

x (θ̂Lin
AT) = Rnat

x (θ̂Lin
AT) + ε2L(θ̂Lin

AT)→ τ2 (21)

Lemma A.3. If the oracle parameter θ∗ is independent of x and has the prior distribution θ∗ ∼
N(0, τ2I), and the noise ξ ∼ N(0, σ2). Furthermore, if we assume each dimension of x is i.i.d.
with Ex = 0, Cov(x) = Id/d and E[

√
dxi]4 ≤ M for some universal constant M < ∞, when

n, d→∞ with n/d = c ∈ (0, 1), then for λ∗ = σ2/τ2 and θ̂ = 1
AX(X>X + λ∗In)Y ,

Rnat
x (θ̂) = τ2 − τ2

A
((1 + c+ λ∗)−

√
∆)(1− 1

2A
),

L(θ̂)2 =
dτ2

2A2
((1 + c+ λ∗)−

√
∆),

where ∆ = (1 + c+ λ∗)
2 − 4c.

Proof.

Rnat
x (θ̂) =

1

d
Eξ,θ∗‖θ∗ −

1

A
X(X>X + λ∗In)−1(X>θ∗ + ξ)‖2

=
τ2

d
Tr

((
Id −

1

A
X(K + λ∗In)−1X>

)2
)

+
σ2

d
Tr

(
1

A2
X(K + λ∗In)−2X>

)
=
τ2

d
(d− 2n

A
) +

2τ2λ∗
dA

Tr
(
(K + λ∗In)−1

)
+

τ2

dA2
Tr
(
K2(K + λ∗In)−2

)
+

σ2

dA2
Tr
(
(K + λ∗In)−2K

)
.

(22)

According to Lemma A.2, when n, d→∞ with c = n
d ∈ (0, 1),

Tr((K + λ∗In)−1) = d
1− c+ λ∗ −

√
∆

−2λ∗

Tr(K(K + λ∗In)−2) = d
1 + c+ λ∗ −

√
∆

2
√

∆

Tr(K2(K + λ∗In)−2) = d
(1 + c+ λ∗)−

√
∆

2
(1− λ∗√

∆
),

where λ∗ = σ2/τ2 and ∆ = (1 + c+ λ∗)
2 − 4c. Therefore,

Rnat
x (θ̂lin

bayes) = τ2 − τ2

A
((1 + c+ λ∗)−

√
∆)(1− 1

2A
).

And

L(θ̂)2 =Eξ,θ∗‖
1

A
X(X>X + λ∗In)−1(X>θ∗ + ξ)‖2

=
τ2

A2
Tr
((

X(K + λ∗In)−1X>
)2)

+
σ2

A2
Tr

(
1

A2
X(K + λ∗In)−2X>

)
=
τ2

A2
Tr
(
K2(K + λ∗In)−2

)
+
σ2

A2
Tr
(
(K + λ∗In)−2K

)
.

(23)

16

Under review as a conference paper at ICLR 2023

Therefore,

L(θ̂) =
dτ2

2A2
((1 + c+ λ∗)−

√
∆). (24)

Proof of θ̂Lin
RB . It is well known that the posterior distribution of θ∗ is

θ∗|X,Y ∼ N(X(X>X + λ∗In)−1Y, σ2(XX> + λ∗Im)−1),

where λ∗ = σ2/τ2. According to the definition of Bayesian estimator,

θ̂Lin
RB = arg min

θ̂

Eθ∗|XEx

(
(x>(θ̂ − θ∗))

2 + ε2‖θ̂‖2
)
.

As the linear model only allows fixed θ̂ for each x, we obtain

d

dθ̂
Eθ∗|X

(
1

d
‖θ̂ − θ∗‖2 + ε2‖θ̂‖2

)
=Eθ∗|X

d

dθ̂

(
1

d
‖θ̂ − θ∗‖2 + ε2‖θ̂‖2

)
=Eθ∗|X

(
2

d
(θ̂ − θ∗) + 2ε2θ̂

)
= 0.

(25)

Therefore,

θ̂Lin
RB =

1

ε2d+ 1
Eθ∗|Xθ∗ =

1

ε2d+ 1
X(X>X + λ∗In)−1Y.

Using Lemma A.3, when d→∞

Rnat
x (θ̂Lin

RB) =τ2 − τ2

ε2d+ 1
((1 + c+ λ∗)−

√
∆)

2ε2d+ 1

2(ε2d+ 1)
→ τ2,

L(θ̂Lin
RB)2 =

dτ2

2(ε2d+ 1)2
((1 + c+ λ∗)−

√
∆)→ 0.

(26)

Summarizing the results,

Rnat
x (θ̂Lin

RB) = Rnat
x (θ̂Lin

RB) + ε2L(θ̂Lin
RB)2 → τ2 (27)

Proof of θ̂Lin
AB . Bayesian robust estimator of each x, which optimizes (x>(θ̂ − θ∗))

2 + ε2‖θ̂‖2 is

θ̂Lin
AB = arg min

θ̂

Eθ∗|X

(
(x>(θ̂ − θ∗))

2 + ε2‖θ̂‖2
)
,

where it is well known that the posterior distribution of θ∗ is

θ∗|X,Y ∼ N(X(X>X + λ∗In)−1Y, σ2(XX> + λ∗Im)−1).

Taking the gradient w.r.t θ̂ gives the solution

θ̂Lin
AB(x) =(xx> + ε2Id)

−1xx>X(X>X + λ∗In)−1Y

=
xx>

ε2 + x>x
θ̂Lin

nat ,
(28)

where θ̂Lin
nat = X(X>X + λ∗In)−1(X>θ∗ + ξ) with λ∗ = σ2/τ2 is the Bayesian estimator for

natural risk.

For its natural risk Rnat
x (θ̂Lin

AB),

Rnat
x (θ̂Lin

AB) = Eθ∗,ξEx(x>(θ̂Lin
AB − θ∗))

2

As

x>θ̂ =
x>xx>

ε2 + x>x
θ̂Lin

nat = x>
(

x>x

ε2 + x>x
θ̂Lin

nat

)
,

17

Under review as a conference paper at ICLR 2023

then

Rnat
x (θ̂Lin

AB) = Eθ∗,ξEx(x>(
x>x

ε2 + x>x
θ̂Lin

nat − θ∗))
2.

When d→∞, x>x→ 1 in probability. Therefore,

x>x

ε2 + x>x
→ 1

1 + ε2
. (29)

Then when d→∞,

Rnat
x (θ̂Lin

AB) = Eθ∗,ξ‖
1

ε2 + 1
θ̂Lin

nat − θ∗‖2

By Lemma A.3,

Rnat
x (θ̂Lin

AB) = τ2 − τ2

ε2 + 1
((1 + c+ λ∗)−

√
∆)(1− 1

2(ε2 + 1)
) (30)

As x>x→ 1 in probability when d→∞, x>x
(ε2+x>x)2

→ 1
(ε2+1)2 . Then

L(θ̂Lin
AB)2 → 1

d(ε2 + 1)2
Eθ∗,ξ‖θ̂Lin

nat ‖2. (31)

From Lemma A.3,

Eθ∗,ξ‖θ̂Lin
nat ‖2 = dτ2 (1 + c+ λ∗)−

√
∆

2
.

Summarizing two parts, the adversarial risk is

Radv
x (θ̂Lin

AB) =τ2 − τ2

2(ε2 + 1)
((1 + c+ λ∗)−

√
∆) ≤ τ2(1− c

(ε2 + 1)(1 + c+ λ∗)
).

A.3 PROOF OF THEOREM 3.2

Proof. As θ̂Lin
AB =

xx>θ̂Lin
nat

ε2+x>x
, the adversarial input

x? = ε
θ̂Lin

AB

‖θ̂Lin
AB‖

= x + ε
x

‖x‖

As d→∞, ‖x‖ → 1 in probability. Therefore, x? = (1 + ε)x. Taking it into

θ̂Lin
AB,? = (x?x?> + ε2Id)

−1x?x?>X(X>X + λ∗In)−1Y,

we obtain

θ̂Lin
AB,? =

(1 + ε)2xx>θ̂Lin
nat

ε+ (1 + ε)2x>x

From Eqn (30) and 31,

Rnat
x (θ̂Lin

AB,?) =τ2

(
1− (1 + ε)2

ε2 + (1 + ε)2
(1 + c+ λ∗ −

√
∆)

)
+

τ2(1 + ε)4

2(ε2 + (1 + ε)2)2
(1 + c+ λ∗ −

√
∆)

L(θ̂Lin
AB,?)

2 =
τ2(1 + ε)4

2(ε2 + (1 + ε)2)2
(1 + c+ λ∗ −

√
∆).

Therefore,

Radv
x (θ̂Lin

AB,?) =Rnat
x (θ̂Lin

AB,?) + ε2L(θ̂Lin
AB,?)

2 = τ2

(
1− (1− ε2 +

2ε2

(1 + ε)2
)

1 + c+ λ∗ −
√

∆

2(ε2/(1 + ε)2 + 1)

)

18

Under review as a conference paper at ICLR 2023

B CORRELATED GRADIENTS

In the following Theorem, we show that with correlated gradient, one gradient descent step like our
method largely improves the natural and adversarial risk of the model.
Theorem B.1. We assume the oracle parameter θ∗ is independent of x and has the prior distribution
θ∗ ∼ N(0, τ2I), and the noise ξ ∼ N(0, σ2). Let θ̂0 = θ̂AT be the estimator of adversarial training
of the linear model F Lin(x;θ):

θ̂0 = X(X>X + nε2In)−1Y.

When receiving a new test data point (x?, y) and taking one gradient descent step with cor-
related gradient ĝ: θ̂1 = θ̂0 − ηĝ, where ‖x? − x‖ ≤ ε is an adversarial example of x,
Corr(ĝ,∇θ̂0L(F Lin(x, θ̂0), y)) = ρ > 0 and η is the learning rate. Let x = (x1, · · · , xd) where xi

is the i-th element of x. We further assume that {xi}di=1 are i.i.d. with E[xi] = 0, Var[xi] = 1/d.
And E[

√
dxi]4 ≤M for some universal constant M <∞. When n, d→∞ with c = n/d ∈ (0, 1),

with the optimal learning rate,

Rnat
x (θ̂0)−Rnat

x (θ̂1) ≥ τ2ρ2

(((1 + ε)2 + σ2/τ2)(1 + ε)2(1 + ε)2)2
−

2τ2ρ2

((1 + ε)2 + σ2/τ2)(1 + ε)2(1 + ε)2

Radv
x (θ̂0)−Radv

x (θ̂1) ≥ τ2ρ2(1− ε)2

((1 + ε)2 + σ2/τ2)(1 + ε)2(1 + ε2)
.

Remarks. With correlated gradients, improvements of Rnat
x and Radv

x are both positive when having
ρ > 0. By taking correlated gradient descent on the parameter, we get large improvements of both
natural and adversarial risks.

Theorem B.1 shows that fine-tuning with correlated gradient largely improves both clean perfor-
mance and robustness of the models. In addition, for linear models, the Bayesian optimal estimator
is θ̂Lin

AB ‖ x. And θ̂1 ‖ ĝ with Corr(x?, ĝ) = ρ. As x? is close to x, with a proper learning rate, we
can get close to Bayesian robust estimator with correlated gradient descent.

B.1 PROOF OF THEOREM B.1

Proof. For a new test input (x?, y), where ‖x? − x‖ ≤ ε is an adversarial example near the input,
its MSE loss is

L(x, y,θ) =
1

2
(x?>θ∗ + ξ − x?>θ)2.

Taking the gradient w.r.t θ

∇Lθ(x?, y,θ) = (x?>θ − x?>θ∗ − ξ)x?.

Suppose the self-supervised task gives a correlated version of gradient and updates θ̂0 with one step
of gradient descent

θ̂1 = θ̂0 − η[(x?>θ̂0 − x?>θ∗ − ξ)ĝ],

where Corr(ĝ,x?) = ρ and E[ĝ>ĝ] = E[x?>x?]. From Theorem 3.1, when λ = nε2 → ∞,
Rnat

x (θ̂0) and ‖θ̂0‖2 can be simplified as:

Eθ∗,ξ‖θ̂0‖2 =
τ2(1 + c) + σ2

ε4d
+ o(

1

d
)→ 0, Rnat

x (θ̂0) = Eξ,θ∗‖θ̂0 − θ∗‖2 → τ2.

Therefore, when d→∞
θ̂1 → η[(x?>θ∗ + ξ)ĝ].

Then when d→∞,

Ex‖θ̂1‖2 =η2θ>∗ Ex[ĝ>ĝx?>x?]θ∗ + η2ξ2Ex[ĝ>ĝ] + 2η2ξθ>∗ Ex[ĝ>x?].

19

Under review as a conference paper at ICLR 2023

Therefore,
Ex,θ∗,ξ‖θ̂1‖2 =η2

(
τ2Ex[ĝ>ĝx?>x?] + σ2Ex[ĝ>ĝ]

)
.

By decomposing ĝ = ρx? +
√

1− ρ2z∗, we can obtain,

Ex,θ∗,ξ‖θ̂1‖2 =η2
(
τ2Ex[(x?>x?)2] + σ2Ex[x?>x?]

)
.

As ‖x? − x‖ ≤ ε,
Ex,θ∗,ξ‖θ̂1‖2 ≤η2

(
τ2(1 + ε)4 + σ2(1 + ε)2

)
.

For natural risk

Rnat
x (θ̂1) =Ex,ξ,θ∗‖x>(θ∗ − θ̂1)‖2

→τ2 + η2τ2Ex[x?>x?(x>ĝ)2] + η2σ2Ex[(x>ĝ)2]− 2ητ2E[x>x?x>ĝ].

By ‖x? − x‖ ≤ ε, Corr(ĝ,x?) = ρ and E[ĝ>ĝ] = E[x?>x?],

Rnat
x (θ̂1) ≤τ2 + η2τ2(1 + ε)4 + η2σ2(1 + ε)2 − 2ητ2ρ(1− ε)2.

Therefore,

Radv
x (θ̂1) ≤τ2 + η2τ2(1 + ε2)(1 + ε)4 + η2σ2(1 + ε2)(1 + ε)2 − 2ητ2ρ(1− ε)2.

Optimizing η get

η∗ =
ρτ2(1− ε)2

(τ2(1 + ε)4 + σ2(1 + ε)2)(1 + ε2)
. (32)

With η∗,

Radv
x (θ̂1) ≤ τ2(1− ρ2(1− ε)2

((1 + ε)2 + σ2/τ2)(1 + ε)2(1 + ε2)
), (33)

and

Rnat
x (θ̂1) ≤τ2 − τ2ρ2

(((1 + ε)2 + σ2/τ2)(1 + ε)2(1 + ε)2)2
− 2τ2ρ2

((1 + ε)2 + σ2/τ2)(1 + ε)2(1 + ε)2
.

(34)
Compared with θ̂0

Radv
x (θ̂0) =τ2, Rnat

x (θ̂0) = τ2,

we have improvements of

Rnat
x (θ̂0)−Rnat

x (θ̂1)

≥ τ2ρ2

(((1 + ε)2 + σ2/τ2)(1 + ε)2(1 + ε)2)2
− 2τ2ρ2

((1 + ε)2 + σ2/τ2)(1 + ε)2(1 + ε)2

(35)

and

Radv
x (θ̂0)−Radv

x (θ̂1) ≥ τ2ρ2(1− ε)2

((1 + ε)2 + σ2/τ2)(1 + ε)2(1 + ε2)
. (36)

C ADDITIONAL EXPERIMENTS

C.1 DIVERSE ATTACKS

Transfer Attack. In Table 3, we perform a transfer attack from the static adversarial defense.
We use the robust networks with the same architecture as the substitute model, and the test-time
adaptation also improves the robust accuracy.

Expectation Attack. In Table 4, we show the results of the expectation attack. We modify the adap-
tive attack and average the gradient from 10 fine-tuned models, whose training batches are different.
We evaluate the model using the ensemble of rotation and vertical flip as the self-supervised task on
CIFAR10. We evaluate the model with Adaptive-AutoPGD-EOT and Adaptive-SquareAttack-EOT.
One is the strongest attack in our method and the other is a black-box attack that is less likely to be

20

Under review as a conference paper at ICLR 2023

Table 3: Accuracy on transfer attack on CIFAR10.

Methods Rotation VFlip Rotation + VFlip
Without FT 84.77% 86.55% 86.36%
Online FT 86.10% 87.00% 87.10%

Table 4: Accuracy on expectation attack on CIFAR10 with the ensemble of rotation and vertical flip
task.

Attacks w/o Fine-tuning w/ Fine-tuning
Adaptive-AutoPGD 53.99% 57.70%
Adaptive-AutoPGD-EOT 53.99% 57.65%
Adaptive-SquareAttack 65.75% 66.80%
Adaptive-SquareAttack-EOT 65.75% 66.73%

affected by gradient masking. The experiment shows that the expectation attack has little influence
on the improvement of our test-time adaptation.

Boundary Attack. We use one of the SOTA decision-based attacks: RayS (Chen & Gu, 2020). We
test it on CIFAR10 with the ensemble of rotation and vertical flip. Table 5 shows that our method
also improves the robust accuracy of the decision-based attack.

GMSA (Chen et al., 2021a) with AutoPGD. GMSA is a recently proposed attack algorithm targeted
at the test-time model adaptation. We use the GMSA with AutoPGD to attack our method, and the
results are shown in Table 6. Under GMSA, our test-time adaptation still significantly improves the
robust accuracy. Moreover, Table 6 also demonstrates the strength of our adaptive attack strategy as
it achieves a higher success rate than GMSA.

C.2 ABLATION STUDY

Meta Adversarial Training. Our meta training strategy in Algorithm 1 aims to strengthen the cor-
relation between the self-supervised tasks and classification. To show its effectiveness, we perform
an ablation study where we fine-tune the model with regular AT (i.e., setting α = 0 in line 5 of
Algorithm 1). We then perform the same test-time fine-tuning on the model without MAT, using
the same hyperparameters as in the MAT case. As shown in Table 7, the robust accuracy and the
improvements of fine-tuning are consistently worse without MAT.

Accuracy Improvement on Inputs with Different Adversarial Budget. Our method is also able
to improve the robust accuracy of inputs with different adversarial budgets. As shown in Table 8,
we set `∞ budget of the adversarial inputs to be 0.015 to perform the online test-time fine-tuning.
The robust accuracy is ed improved.

Removing LSS or LR. In our previous experiments, test-time fine-tuning was achieved using a
combination of two loss functions: LSS and LR. To study the effect of each of these terms sep-
arately, we remove either one of them from Ltest. In Table 9, we report the robust accuracy after
online fine-tuning using only LR and only LSS . While, as expected, removing LSS tends to reduce
more accuracy than removing LR. It shows the benefits of our self-supervised test-time fine-tuning
strategy. Nevertheless, the best results are obtained by exploiting both loss terms.

Accuracy Improvement on Clean Images. As shown in Eqn (30) and Theorem B.1, our method
is able to improve not only the robust accuracy but also the natural accuracy of clean images on
adversarially-trained models. To evidence this, we maintain all the components of our model and
simply replace the adversarial input images with clean images (i.e. replacing B̃? with clean inputs
B̃ in Algorithm 2) and perform the same self-supervised test-time fine-tuning.

As shown in Table 10, our approach increases the clean image accuracy. This phenomenon further
strengthens our conjecture that the improvement of robust accuracy is due to the improvement of
generalization instead of perturbing the model parameters, because randomly perturbing the param-
eters usually lowers the natural accuracy of the model.

21

Under review as a conference paper at ICLR 2023

Table 5: Accuracy on RayS on CIFAR10 with the ensemble of rotation and vertical flip task.

Attacks w/o Fine-tuning w/ Fine-tuning
RayS 65.61% 77.38%
Adaptive-RayS - 75.03%

Table 6: Accuracy under GMSA on CIFAR10.

Tasks Rotation VFlip Rotation+VFlip
Meta AT w/o FT 53.90% 52.79% 53.16%
Meta AT w/ FT + Adaptive AutoPGD 56.96% 56.79% 57.70%
Meta AT w/ FT + GMSA AutoPGD 57.60% 58.53% 59.63%

Attacking Objectives. The improvement of the test-time adaptation is not affected by the attack
objectives. Even if no information of the ground truth label is incorporated in the attack, the test-
time adaptation improves the robust accuracy. When the attacker randomly lowers the score of the
false label to perform the adversarial attack, if our method uses the information of the leaked label
to improve the robust accuracy, it will predict the false label and reduce the accuracy. However, as
shown in Table 11, the self-supervised test-time fine-tuning improves the robust accuracy on these
“adversarial” images. Besides, previous experiments on clean images already show that test-time
fine-tuning is effective even if there is no information of the ground truth label.

C.3 ADDITIONAL COMPARISON

Comparison with SOAP (Shi et al., 2020). Our method is different from SOAP as we are fine-
tuning the model to adapt to new examples instead of purifying the input. We apply SOAP-RP to
the adversarially-trained model and find that its improvement is marginal. Under AutoPGD, the
accuracy is improved from 53.09% to 53.57%. This improvement is much smaller than our method,
whose improvement is from 53.09% to 57.93%. SOAP only has little effect when combined with
the commonly used AT.

Combination with (Gowal et al., 2020). We combine our test-time adaptation with AT using ad-
ditional data (Gowal et al., 2020). We apply our Meta AT to it with the ensemble of rotation and
vertical flip. Using a WideResNet-28-10, it achieves a robust accuracy of 62.07% under AutoPGD.
With our test-time adaptation, the robust accuracy is improved to 64.34%. The improvement of
robust accuracy is 2.27%.

Robust Accuracy v.s Fine-tuning Steps. Figure 3 shows the robust accuracy at each step of the
test-time fine-tuning for different self-supervised tasks and attack methods. When using the standard
version of attacks, the robust accuracy gradually increases as fine-tuning proceeds. When using our
adaptive attacks, the adversarial examples are generated to attack the network with θT (T = 10)
instead of θ0. Thus, when the parameters gradually change from θ0 to θT , the accuracy drops.

Inference Time. Table 12 shows the inference time for different methods. While the inference time
for our method is larger than SOAP and the normal method when the batch size is 1, the inference
time gets closer when using a larger batch size. And the batch size of 20 or more is a common
scenario of the inference. In order to achieve the statistical optimal adversarial risk, additional time

Table 7: Ablation study on the online test-time fine-tuning. The dataset is CIFAR10 and the task is
the “Rotation + VFlip”. All attacks are standard attacks. SA stands for Square Attack.

Methods SA PGD-20 AutoPGD FAB
Regular AT 65.64% 59.19% 53.16% 53.05%
Online FT 66.26% 60.18% 56.86% 75.26%
Improvement 0.62% 0.99% 3.70% 22.21%
Meta AT 65.75% 59.51% 53.99% 53.85%
Online FT 67.34% 61.79% 59.23% 76.39%
Improvement 1.59% 2.28% 5.24% 22.54%

22

Under review as a conference paper at ICLR 2023

Table 8: Robust test accuracy on CIFAR10 of the online test-time fine-tuning. We use the same
WideResNet-34-10 as in Table 1a, which is trained with `∞ budget 0.031. The inputs are in the `∞
ball of ε = 0.015. The self-supervised task is the ensemble of rotation and vertical flip.

Methods Square Attack PGD-20 AutoPGD FAB

Standard Adaptive Standard Adaptive Standard Adaptive Standard Adaptive
Meta AT w/o FT 78.01% - 75.34% - 72.72% - 72.58% -
Online FT 80.50% 79.87% 77.14% 76.75% 77.25% 74.93% 82.04% 83.76%

Table 9: Ablation study on the online test-time fine-tuning. The dataset is CIFAR10 and the task is
the “Rotation + VFlip”. All attacks are standard attacks. Removing the LSS or LR results in lower
robust accuracy than the full method. SA stands for Square Attack.

Methods SA PGD-20 AutoPGD FAB
Before FT 65.75% 59.51% 53.99% 53.85%
Online FT 67.34% 61.79% 59.23% 76.39%
Removing LR 66.83% 60.45% 57.32% 75.63%
Removing LSS 65.44% 60.24% 55.64% 75.08%

Table 10: Accuracy on clean images. Networks are trained with corresponding meta adversarial
training.

Methods Rotation VFlip Rotation + VFlip
Without FT 84.77% 86.55% 86.36%
Online FT 86.10% 87.00% 87.10%

of test-time adaptation is necessary. Reducing the inference time is an important future work of
these kinds of methods.

Combination with TRADES (Zhang et al., 2019). Table 13 shows the robust accuracy of combin-
ing our test-time adaptation with TRADES. Our test-time adaptation improves the robust accuracy
by about 4%, which shows our approach can improve various types of robust training methods.

C.4 VISUALIZATION

In Figure 4, we show the visualization of several examples that our test-time adaptation successfully
corrects the misclassified examples. The input examples are generated by AutoPGD on CIFAR10,
and we fine-tune the network with the ensemble of Rotation and VFlip tasks. It shows our test-
time adaptation reduces the loss for the whole neighbourhood of the input examples to increase the
accuracy of the model.

In Figure 5, we show the histograms of the loss values for the successful and unsuccessful test-time
adapted models. For each input instance, if the test-time adaptation corrects the wrong prediction,
we count it as successful. And if the misclassified instance is not correctly predicted after our test-
time adaptation, it is counted as an unsuccessful one. The figure illustrates that our method can
adapt the model to correctly classify the instances close to the decision boundary (with medium loss
value). However, for the highly misclassified instances (with large loss value), which are far away
from the decision boundary, our test-time adaptation cannot make the model change so much to
predict correct labels for them.

D DETAILS OF OUR EXPERIMENTAL SETTING

D.1 HYPERPARAMETERS

Meta Adversarial Training. The algorithm of Meta Adversarial Training is shown in Algorithm 1.
We consider an `∞ norm with an adversarial budget ε = 0.031. We also use two different net-
work architectures: WideResNet-34-10 for CIFAR10 and ResNet18 for STL10 and Tiny ImageNet.
Following the common settings for AT, we train the network for 100 epochs using SGD with a

23

Under review as a conference paper at ICLR 2023

Table 11: Experiments to rule out the possibility of label leaking. We use the WideResNet-34-10
trained with `∞ budget ε = 0.031 and show the robust test accuracy on CIFAR10 of the online
test-time fine-tuning. The self-supervised task is the ensemble of rotation and vertical flip.

Methods Square Attack PGD-20 AutoPGD FAB

Standard Adaptive Standard Adaptive Standard Adaptive Standard Adaptive
Meta AT w/o FT 85.43% - 85.60% - 85.00% - 86.22% -
Online FT 86.56% 87.63% 86.29% 86.68% 86.10% 85.90% 87.61% 86.97%

2 4 6 8 10
Steps

0.64

0.65

0.66

0.67

0.68

Ac
cu

ra
cy

Standard Square Attack

2 4 6 8 10
Steps

0.58

0.59

0.60

0.61

0.62

Ac
cu

ra
cy

Standard PGD-20

2 4 6 8 10
Steps

0.53
0.54
0.55
0.56
0.57
0.58
0.59

Ac
cu

ra
cy

Standard AutoPGD

2 4 6 8 10
Steps

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Standard FAB

Rotation
Vertical Flip
Ensemble

2 4 6 8 10
Steps

0.660

0.665

0.670

0.675

0.680

0.685

Ac
cu

ra
cy

Adaptive Square Attack

2 4 6 8 10
Steps

0.60

0.61

0.62

0.63

Ac
cu

ra
cy

Adaptive PGD-20

2 4 6 8 10
Steps

0.57

0.58

0.59

0.60

0.61

Ac
cu

ra
cy

Adaptive AutoPGD

2 4 6 8 10
Steps

0.78

0.79

0.80

0.81

0.82

0.83

Ac
cu

ra
cy

Adaptive FAB

Rotation
Vertical Flip
Ensemble

Figure 3: Robust accuracy at different steps of the online test-time fine-tuning on CIFAR10.

Table 12: Average inference time for each instance using different methods.

Batch Size 1 5 10 20 40
Normal 17.1ms 14.5ms 13.2ms 12.8ms 11.7ms
SOAP (Shi et al., 2020) 163ms 91.2ms 75.3ms 73.1ms 72.5ms
Ours 545ms 168ms 118ms 83.9ms 82.9ms

momentum factor of 0.9 and a weight decay factor of 5 × 10−4. The learning rate β starts at 0.1
and is divided by a factor of 10 after the 50-th and again after the 75-th epochs. The step size α
in Eqn (8) is the same as β. The factor C ′ in Eqn (11) is set to 1.0. We use 10-iteration PGD
(PGD-10) with a step size of 0.007 to find the adversarial image B?j at training time. The weight
of each self-supervised task is set to Ck = 1

K . We set |Bj | = 32 and sample 8 batches B1, ..., B8

in each iteration. Furthermore, we save the model after the 51-st epoch for further evaluation, as
the model obtained right after the first learning rate decay usually yields the best performance (Rice
et al., 2020).

We use PGD with the standard cross-entropy loss to generate adversarial examples at training time
in line 3, line 6 and line 8 of Algorithm 1. The hyperparameters of the attacks are as follows:

• Line 3: PGD-10 with step size 0.007.
• Line 6: As θ∗j is similar to θ, the adversarial examples at this step are similar to those at

Line 4. To save training time, we therefore choose the starting point of the attack as the
adversarial examples in Line 4 and use PGD-2 with a step size of 0.005.

• Line 8: PGD-3 with step size 0.02.

Online Test-time Fine-tuning. The algorithm for online fine-tuning is shown in Algorithm 2. We
fine-tune the network for T = 10 steps with a momentum of 0.9 and a learning rate of η = 5×10−4.
We set Ck = 1

K and C = 15.0. In line 2 of Algorithm 2, we sample a batch B ⊂ D containing 20
training images. In line 3, we use PGD-10 with a step size of 0.007.

Offline Test-time Fine-tuning. The algorithm for offline fine-tuning is shown in Algorithm 3. As
stochastic gradient descent is more efficient for a large amount of data, we use stochastic gradient
descent in the offline fine-tuning. This is the main difference between Algorithm 2 (online fine-

24

Under review as a conference paper at ICLR 2023

0.02 0.00 0.02
Adversarial Direction

0.03

0.02

0.01

0.00

0.01

0.02

0.03
Ra

nd
om

 D
ire

ct
io

n

Before Fine-tuning

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.02 0.00 0.02
Adversarial Direction

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Ra
nd

om
 D

ire
ct

io
n

After Fine-tuning

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.02 0.00 0.02
Adversarial Direction

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Ra
nd

om
 D

ire
ct

io
n

Loss Change

1.0

0.8

0.6

0.4

0.2

0.0

0.02 0.00 0.02
Adversarial Direction

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Ra
nd

om
 D

ire
ct

io
n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.02 0.00 0.02
Adversarial Direction

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Ra
nd

om
 D

ire
ct

io
n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.02 0.00 0.02
Adversarial Direction

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Ra
nd

om
 D

ire
ct

io
n

1.0

0.8

0.6

0.4

0.2

0.0

0.02 0.00 0.02
Adversarial Direction

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Ra
nd

om
 D

ire
ct

io
n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.02 0.00 0.02
Adversarial Direction

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Ra
nd

om
 D

ire
ct

io
n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.02 0.00 0.02
Adversarial Direction

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Ra
nd

om
 D

ire
ct

io
n

1.0

0.8

0.6

0.4

0.2

0.0

0.02 0.00 0.02
Adversarial Direction

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Ra
nd

om
 D

ire
ct

io
n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.02 0.00 0.02
Adversarial Direction

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Ra
nd

om
 D

ire
ct

io
n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.02 0.00 0.02
Adversarial Direction

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Ra
nd

om
 D

ire
ct

io
n

1.0

0.8

0.6

0.4

0.2

0.0

0.02 0.00 0.02
Adversarial Direction

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Ra
nd

om
 D

ire
ct

io
n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.02 0.00 0.02
Adversarial Direction

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Ra
nd

om
 D

ire
ct

io
n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.02 0.00 0.02
Adversarial Direction

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Ra
nd

om
 D

ire
ct

io
n

1.0

0.8

0.6

0.4

0.2

0.0

Figure 4: Visualization of several examples that our test-time adaptation successfully changes the
wrong prediction. Each row represents an example of loss surfaces before fine-tuning, after fine-
tuning and the loss changes of our fine-tuning. The origin point represents the clean example.
Following (Kim et al., 2021), x-axis represents the direction of the adversarial example and y-axis
is a random direction. The white line is the decision boundary. As the fine-tuned model correctly
classifies the input example, the decision boundary does not exist in the neighbourhood of the clean
input for the fine-tuned model.

25

Under review as a conference paper at ICLR 2023

Table 13: Combination with our test-time adaptation with TRADES on CIFAR10 with the ensemble
of rotation and vertical flip tasks.

Standard AutoPGD Adaptive AutoPGD GMSA AutoPGD
Meta AT w/o FT 54.06%
Online FT 59.63% 57.74% 59.39%

0 2 4 6 8
Cross Entropy Before Fine-tuning

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

Rotation

2 4 6
Cross Entropy Before Fine-tuning

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

VFlip

0 2 4 6
Cross Entropy Before Fine-tuning

0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

Rotation+VFlip

Successful
Unsuccessful

Figure 5: Histograms of the loss values for the successful and unsuccessful test-time adapted models.

tuning) and Algorithm 3 (offline fine-tuning). We also fine-tune the network for 10 epochs. The
batch size of each B̃?j is 128. The other hyperparameters are the same as in the online version.

Algorithm 2 Self-supervised Test-time Fine-tuning

Input: Initial parameters θ0; Adversarial test images B̃? = {x̃?i }bi=1; Training data D; Learning
rate η; Steps T ; Weights Ck and C

Output: Prediction of x̃?i : ŷi
1: for t = 1 to T do
2: Sample a batch of training images B ⊂ D
3: Find adversarial x?i of training image xi ∈ B by PGD attack.
4: Calculate Ltest in Eqn (6)
5: θt = θt−1 − η∇θt−1Ltest(B̃

?, B;θt−1)
6: end for
7: return Prediction ŷi = arg maxj F (x̃?i ;θ

T)j

Attacks. The detailed settings of each attack are provided below:

• PGD-20. We use 20 iterations of PGD with step size γ = 0.003. The attack loss is the
cross-entropy.

• AutoPGD. We use both the cross-entropy and the difference of logits ratio (DLR) as the
attack loss. The hyperparameters are the same as in (Croce & Hein, 2020a).

• FAB. We use the code from (Croce & Hein, 2020a) and keep the hyperparameters the same.

• Square Attack. We set T = 2000 and the initial fraction of the elements p = 0.3. The other
hyperparameters are the same as in (Andriushchenko et al., 2020).

For the adaptive versions, we set the interval u = dT/5e.

D.2 SELF-SUPERVISED TASKS

Rotation Prediction is a widely used self-supervision task proposed in (Gidaris et al., 2018) and
has been employed in AT as an auxiliary task to improve the robust accuracy (Chen et al., 2020a;
Hendrycks et al., 2019). Following (Gidaris et al., 2018), we create 4 copies of the input image by
rotating it with Ω = {0◦, 90◦, 180◦, 270◦}. The task then consists of a 4-way classification problem,
where the head grotate aims to predict the correct rotation angle. The loss for an image x is the average

26

Under review as a conference paper at ICLR 2023

Algorithm 3 Self-supervised Test-time Fine-tuning with SGD

Input:
Initial parameters θ0; Adversarial test images B̃? = {x̃?i }bi=1; Training data D; Learning rate
η; Steps T ; Weights Ck and C

Output: Prediction of x̃?i : ŷi
1: for t = 1 to T do
2: Divide B̃? into r subsets B̃?1 , ..., B̃

?
r

3: for B̃?j in B̃?1 , ..., B̃
?
r do

4: Sample a batch of training images B ⊂ D
5: Find adversarial x?i of training image xi ∈ B by PGD attack.
6: θt = θt−1 − η∇θt−1Ltest(B̃

?
j , B;θt−1)

7: end for
8: end for
9: return Prediction ŷi = arg maxj F (x̃?i ;θ

T)j

cross-entropy over the 4 copies, given by

Lrotate(x) = −1

4

∑
ω∈Ω

log(Grotate(xω)ω) , (37)

where xω is the rotated image with angle ω ∈ Ω, Grotate = grotate ◦ E denotes the classifier for
rotation prediction, and Grotate(·)ω is the predicted probability for the ω angle. The head grotate is a
fully-connected layer followed by a softmax layer.

Vertical Flip (VFlip) Prediction is a self-supervised task similar to rotation prediction and has
also been used for self-supervised learning (Saito et al., 2020). In essence, we make two copies of
the input image and flip one copy vertically. The head gvflip then contains a 2-way fully-connected
layer followed by a softmax layer and predicts whether the image is vertically flipped or not. The
corresponding loss for an image x is

Lvflip(x) = −1

2

∑
v∈V

log(Gvflip(xv)v) , (38)

where V = {flipped, not flipped} is the operation set and Gvflip = gvflip ◦ E. xv denotes and
transformed input and Gvflip(·)v is the probability of operation v. Note that we do not flip the
image horizontally as it is a common data augmentation technique and classifiers typically seek to
be invariant to horizontal flip.

E ADAPTIVE ATTACKS

In the white-box attacks, the attacker knows every detail of the defense method. Therefore, we need
to assume that the attacker is aware of our test-time adaptation method and will adjust its strategy for
generating adversarial examples accordingly. Here, we discuss one such strong adaptation strategy
targeted to our method.

Suppose that the attacker is fully aware of the hyperparameters for test-time adaptation. Then,
finding adversaries B̃? of the clean subset B̃ can be achieved by maximizing the adaptive loss

x̃?i = arg max
‖x̃?

i−xi‖≤ε
Lattack(F (x̃?i), y;θT (B̃?)) , (39)

where Lattack refers to the general attack loss, such as the cross-entropy or the difference of logit ra-
tio (DLR) (Croce & Hein, 2020a). Let θT be the fine-tuned test-time parameters using Algorithm 2.
At the k-th step of the attack, it depends on the input B̃(k) = {(x̃(k)

j , ỹj)}bj=1 via the update

θt+1 = θt − η∇θtLtest(B̃
(k), B) , (40)

where Ltest and B are the loss function and subset of training images mentioned in Eqn (6). As
θT is a function of the input B̃(k), we can calculate the end-to-end gradient of x̃

(k)
i ∈ B̃(k) as

27

Under review as a conference paper at ICLR 2023

∇
x̃
(k)
i

Lattack(F (x̃
(k)
i);θT (B̃(k))). However, θT goes through T gradient descent steps, and thus

calculating the gradient∇
x̃
(k)
i

θT (B̃(k)) requires T -th order derivatives of the backbone E, which is
virtually impossible if T or the dimension of θE is large. We therefore approximate the gradient as

Grad(x̃
(k)
i) ≈ ∇

x̃
(k)
i

Lattack(F (x̃
(k)
i);θT) , (41)

which treats θT as a fixed variable so that high-order derivatives from θT (B̃(k)(x̃
(k)
i)) can be

avoided. Although this approximation makes Grad(x̃
(k)
i) inaccurate, common white-box attacks

use projected gradients, which are robust to such inaccuracies. For example, PGD only uses the sign
of the gradient under an `∞ adversarial budget. Note that solving the maximization in Eqn (12) does
not necessarily require calculating the gradient Grad(x̃

(k)
i). For instance, we will also use Square

Attack (Andriushchenko et al., 2020), a strong score-based black-box attack, to maximize Eqn (12)
and generate adversaries for B̃.

As another approximation to save time, one can also fix θT for several iterations. This leverages the
intuition that attack strategies often make small changes to the input x̃, and thus, for the intermediate
images in the k-th and (k+1)-th steps, θT (B̃(k)) and θT (B̃(k+1)) should be close. Therefore, a
general version of our adaptive attacks only updates θT every u iterations, with u a hyperparameter.

In Algorithm 4, 6, 5 and 7, we show the algorithms for `∞ norm-based adaptive PGD, AutoPGD,
Square Attack and FAB, respectively. The main difference between the original and adaptive ver-
sions is the target loss function for maximization. The reader may refer to (Andriushchenko et al.,
2020; Croce & Hein, 2020a;b) for a more detailed description of the steps in these algorithms (e.g.,
the condition for decreasing the learning rate in AutoPGD).

Algorithm 4 `∞ Norm Adaptive PGD Attack

Input: Test images B̃ = {(x̃i, ỹi)}; Attack loss Lattack; Step size γ; Iterations T ; Intervals u;
Adversarial budget ε; Trained parameters of the network θ0.

Output: Adversarial images B̃? = {x̃?i }
1: Add random noise to x̃i in B̃ and get B̃′
2: for t = 1 to T do
3: if t mod u = 0 then
4: Get final parameters θT by taking B̃′ as input image for Algorithm 2: θ = θT

5: end if
6: for x̃′i in B̃′ do
7: Grad(x̃′i) = ∇x̃′i

Lattack(F (x̃′i), ỹi;θ)

8: x̃′i = Clip[x̃i−ε,x̃i+ε](x̃
′
i + γSign(Grad(x̃′i)))

9: end for
10: end for
11: return Adversarial image x̃?i = x̃′i

28

Under review as a conference paper at ICLR 2023

Algorithm 5 `∞ Norm Adaptive AutoPGD

Input: Test images B̃ = {(x̃i, ỹi)}; Attack loss Lattack; Step size γ; Iterations T ; Intervals u;
Adversarial budget ε; Parameter of the adversarially-trained network θ0; Decay iterations W =
{w0, ..., wn}; Momentum ξ

Output: Adversarial image B̃? = {x̃?i }
1: Get final parameter θT by taking B̃ as input image for Algorithm 2.
2: θ = θT

3: for x̃i in B̃ do
4: x̃0

i = x̃i
5: Grad(x̃i) = ∇x̃i

Lattack(F (x̃i), ỹi;θ)
6: x̃1

i = Clip[x̃i−ε,x̃i+ε](x̃
0
i + γSign(Grad(x̃i)))

7: l0i = Lattack(F (x̃0
i), ỹi;θ)

8: l1i = Lattack(F (x̃1
i), ỹi;θ)

9: l∗i = max{l0i , l1i }
10: x̃∗i = x̃0

i if l∗i = l0i else x̃∗i = x̃1
i

11: end for
12: for t = 1 to T − 1 do
13: if t mod u = 0 then
14: Get final parameter θT by taking B̃∗ = {x̃∗i } as input image for Algorithm 2.
15: θ = θT

16: end if
17: for i = 1, ..., |B̃| do
18: Grad(x̃ti) = ∇x̃t

i
Lattack(F (x̃ti), ỹi;θ)

19: zt+1
i = Clip[x̃i−ε,x̃i+ε](x̃

t
i + γSign(Grad(x̃ti)))

20: x̃t+1
i = Clip[x̃i−ε,x̃i+ε](x̃

t
i + ξ(zt+1

i − zti) + (1− ξ)(x̃ti − x̃t−1
i))

21: lt+1
i = Lattack(F (x̃t+1

i), ỹi;θ)

22: x̃∗i = x̃t+1
i and l∗i = lt+1

i if lt+1
i > l∗i

23: if k ∈W and satisfy the condition of dropping learning rate then
24: γ = γ/2 and x̃t+1

i = x̃∗i
25: end if
26: end for
27: end for
28: return Adversarial image x̃?i = x̃∗i

29

Under review as a conference paper at ICLR 2023

Algorithm 6 `∞ Norm Adaptive Square Attack

Input: Test images B̃ = {(x̃i, ỹi)}; Attack loss Lattack; Step size γ; Iterations T ; Intervals u;
Image size w; Color channels c; Adversarial budget ε; Parameter of the adversarially-trained
network θ0.

Output: Adversarial image B̃? = {x̃?i }
1: Add noise to x̃i in B̃ and get B̃′
2: for t = 1 to T do
3: if t mod u = 0 then
4: Get final parameter θT by taking B̃′ as input image for Algorithm 2.
5: θ = θT

6: end if
7: for x̃′i in B̃′ do
8: ht ←− side length of the square to modify (according to some schedule)
9: δ ←− array of zeros of size w × w × c

10: Sample uniformly r, s ∈ {0, ..., w − ht} ⊂ N
11: for j = 1, ..., c do
12: ρ←− Uniform(−2ε, 2ε)
13: δr+1:r+ht,s+1:s+ht = ρ · 1ht×ht

14: end for
15: x̃new

i = Clip[x̃i−ε,x̃i+ε](x̃
′
i + δ)

16: lnew
i = Lattack(F (x̃new

i), ỹi;θ)
17: if lnew < l∗ then
18: x̃′i = x̃new

i
19: l∗i = lnew

i
20: end if
21: end for
22: end for
23: return Adversarial image x̃?i = x̃′i

30

Under review as a conference paper at ICLR 2023

Algorithm 7 `∞ Norm Adaptive FAB

Input: Test images B̃ = {(x̃i, ỹi)}; Step size γ; Iterations T ; Intervals u; Adversarial budget ε;
Trained parameters of the network θ0; αmax, η, β.

Output: Adversarial images B̃? = {x̃?i }
1: Add random noise to x̃i in B̃ and get B̃′
2: v = +∞
3: for t = 1 to T do
4: if t mod u = 0 then
5: Get final parameters θT by taking B̃′ as input image for Algorithm 2: θ = θT

6: end if
7: for x̃′i in B̃′ do
8: Grad(x̃′i)l = ∇x̃′i

F (x̃′i;θ)l

9: s = arg minl 6=yi
|F (x̃′i;θ)l−F (x̃′i;θ)yi |

‖Grad(x̃′i)l−Grad(x̃′i)yi‖1
10: δt = proj∞(x̃′i, πs, C)
11: δtorig = proj∞(x̃i, πs, C)

12: α = min

{
‖δt‖∞

‖δt‖∞+‖δt
orig ‖∞

, αmax

}
∈ [0, 1]

13: x̃′i = projC
(

(1− α)(x̃′i + ηδt) + α(x̃i + ηδtorig)
)

14: if x̃′i is not classified as yi then
15: if ‖x̃′i − x̃i‖∞ < v then
16: x̃?i = x̃′i
17: v = ‖x̃′i − x̃i‖∞
18: end if
19: x̃′i = (1− β)x̃i + βx̃′i
20: end if
21: end for
22: end for
23: return Adversarial image x̃?i

31

	Introduction
	Related Work
	Theory of Test-time Adaptation
	Methodology
	Self-Supervised Test-time Fine-tuning
	Meta Adversarial Training

	Experiments
	Robust Accuracy
	Method Analysis
	Ablation Study

	Conclusion
	Proofs of Theorems
	Preliminary: Marchenko-Pastur Law and Transformation of Eigenvalues
	Proof of Theorem 3.1
	Proof of Theorem 3.2

	Correlated Gradients
	Proof of Theorem B.1

	Additional Experiments
	Diverse Attacks
	Ablation Study
	Additional Comparison
	Visualization

	Details of our Experimental Setting
	Hyperparameters
	Self-supervised Tasks

	Adaptive Attacks

