
MultiRepast4py: A Framework for Agent-Based
Simulations on Multilayer Networks

Keng-Lien Lin and Parinaz Naghizadeh

University of California San Diego, San Diego CA 92092, USA
{kel030, parinaz}@ucsd.edu

Abstract. Agent-Based Simulations (ABS) offer a powerful approach
for analyzing how individual agents’ decisions and interactions within
networked systems lead to system outcomes. ABS have been widely used
across various fields, including in the study of the spread of diseases and
(mis)information. However, traditional ABS platforms, such as NetLogo
and Repast, simplify models by assuming a single network of interactions
between agents. In reality, agents’ interactions are typically multi-layered
(i.e., involve multiple interconnected networks that influence agents’ deci-
sions). To address this limitation, we developed MultiRepast4py, a multi-
layer simulation tool extending the simulation capabilities of Repast4py.
Our framework enables simulations on multilayer networked systems by
efficiently reconstructing network data and utilizing agent attributes, al-
lowing agents to dynamically access multilayer connections during simu-
lation. By maintaining Repast4py’s scalability and minimizing memory
overhead, MultiRepast4py ensures high performance for large-scale sim-
ulations. Through simulation examples on the spread of information in
social networks, we showcase how MultiRepast4py can enable more com-
prehensive agent-based simulations, guiding improved predictions and
interventions.

Keywords: Agent Based Simulations · Multilayer Networks · Repast.

1 Introduction

Agent-based models and simulations have become a widely used computational
approach for analyzing how the behavior and interactions of autonomous agents
give rise to complex, system-level outcomes [20]. In an agent-based simulation
(ABS), agents are first endowed with a set of attributes and decision-making
heuristics. The simulation then allows these agents to interact repeatedly over
time, with their interactions governed by an interaction topology (referred to
here as a network). By running large-scale experiments in a cost-effective way,
ABS enable researchers to analyze how various “micro”-scale assumptions on
agents (e.g., their movement patterns, their propensity to catch a disease, or
adopt an opinion), as well as different interventions to change agents’ behavior
or their network (e.g., limiting agents’ exposure to content on social networks, or
isolation/vaccination strategies), can (collectively) alter the “macro” outcomes
(e.g., spread of a disease or misinformation).



2 Keng-Lien Lin and Parinaz Naghizadeh

There currently exist several commonly used simulations platforms for ABS,
built on different programming languages and offering different levels of cus-
tomization; these include NetLogo [28], Repast [9], MASON [19], FLAME [16],
and Swarm [21]; we refer the interested reader to [18] for a comparison of (some
of) these platforms. The versatility of ABS and the accessibility of these plat-
forms has led to the wide use of ABS by researchers in many fields. For instance,
ABS have been leveraged to gain insights into COVID-19 dynamics and inter-
ventions [15], healthcare resource management [7], spatio-temporal dynamics
of crime [24], supply chain management [14], and policy design in labor mar-
kets [10]. The capabilities of these platforms have also been extended in several
directions, including by integrating micro-findings from human subject exper-
iments into agents’ decision models [27], advocating for data-driven ABS [23],
and developing strategies for scaling-up to accommodate data-intensive simula-
tions [3].

The gap. Despite their widespread use and recent advances, existing ABS plat-
forms assume that agents’ interactions occur within a single interaction topol-
ogy/network (e.g., they account for the spread of misinformation over one social
network, or the spread of a disease over one mode of interaction). However, there
exist many settings, including in the study of disease spread and information
dynamics, where this approach overlooks the complexities of intersectionality of
humans - how an individual’s experiences and outcomes can be shaped by their
multiple social identities and networks. For instance, individuals with accounts
on two social media platforms (e.g., TikTok and Instagram) follow, and are fol-
lowed by, different accounts on each platform, can cross-post the same content
on both platforms, and may further use these platforms at differing frequencies
and for different purposes; studying the spread of (mis)information on any one
of these platforms in isolation would fail to capture these nuances. Similarly, a
family network and a workplace network may differ in size, interaction frequency,
and types of interactions, yet both can significantly influence an individual’s ex-
posure to a disease; isolation or vaccination policies that do not explicitly account
for these differences may therefore be suboptimal.

Multilayer networks. For the situations described above, and other similar con-
texts, multilayer networks have been proposed as a model to simultaneously
account for the multiple modalities of interactions between agents; see [4, 17, 1,
25, 5] for surveys of this field. The study of multilayer networks, as opposed to the
study of their constituent single-layer networks in isolation, can offer a nuanced
understanding of how the “micro” differences between the various modalities of
interactions (ranging from the agents’ attributes on each network, to the differ-
ences in each network’s topology, to the frequency with which agents are actively
interacting with others in each network) impact macro outcomes. Existing works
have used the formalism of multilayer networks to study game theoretical de-
cision making over multiple interaction/information modalities (e.g., [26, 13, 2,
11]), to evaluate the resilience of networks of networks against failures or at-
tacks, often by studying percolation (e.g., [6, 12, 30, 22, 31, 32, 4]), and to analyze



MultiRepast4py 3

dynamical processes on interacting networks (such as diffusion and spreading
processes) to identify the critical thresholds for an outbreak (in epidemic mod-
eling) or consensus (in the study of opinion dynamics) on these networks (e.g.,
[29, 33, 4]). Despite the broad applicability of multilayer network models and the
increasing body of research dedicated to them, to the best of our knowledge,
no existing agent-based simulation platform supports multilayer networks. This
limitation confines both current and potential future research to smaller-scale,
custom-built simulation environments. While experiments involving multilayer
systems have been conducted, they all require researchers to develop their own
frameworks, as no platform currently offers native support for such models.

Our contributions. To address these limitations, we have developed
MultiRepast4py, a multilayer agent-based simulation framework. This frame-
work builds on an existing ABS simulation platform (specifically, Repast4py
[9]), enabling researchers to model complex, multilayered interactions without
needing extensive programming skills, making it accessible to researchers across
various disciplines. The framework’s design maintains Repast4py platform’s flex-
ibility and scalability, which can enable leveraging High-Performance Computing
(HPC) resources for large-scale (multilayer) simulations. It is also prepared for
integration with data-driven approaches, allowing researchers to easily incorpo-
rate real-world data into their models.

In more detail, our framework makes the following key contributions:

1. Multilayer Agent-Based Simulation Capability: MultiRepast4py in-
troduces the ability to run multilayer agent-based simulations by building
on the established Repast4py platform. This bridges a crucial gap in ABS
technology, allowing for more nuanced and realistic modeling of complex
systems where agents interact across multiple interconnected networks.

2. Scalability and Flexibility: MultiRepast4py retains all the features that
make the Repast suite powerful, including its renowned scalability and flex-
ibility. This ensures that researchers can tackle large-scale, complex simula-
tions without sacrificing computational efficiency.

3. Seamless Integration: MultiRepast4py seamlessly integrates with
Repast4py, requiring minimal modifications to model logic. By reconstruct-
ing network files, users need only add one attribute to their agents to access
multilayer connections during simulation. This design ensures accessibility
for users familiar with the Repast family.

4. Opportunities for Customization: MultiRepast4py is developed in
Python, and remains open to additional features and enhancements. This
includes the potential for incorporating data-driven models, further increas-
ing the framework’s relevance and applicability in an era of big data.

Illustration through simulation studies. To demonstrate the practical utility of
MultiRepast4py, we present a case study analyzing rumor propagation across
interconnected social networks. This is done through two complementary simu-
lations: a reduced-scale proof-of-concept and a full-scale validation. The study



4 Keng-Lien Lin and Parinaz Naghizadeh

builds upon Repast4py’s single-layer rumor model, explicitly demonstrating how
to enhance conventional agent-based simulations with multilayer capabilities.
The layers represent distinct social media platforms with unique network topolo-
gies (Erdős-Rényi random graphs) and interaction patterns. Through parame-
terized layer configurations, we model critical real-world phenomena like cross-
platform connectivity and varying interaction frequencies – features impossible
to capture in single-layer ABS. Our small-scale experiment reveals how nodes
with balanced cross-layer connectivity (combined degree centrality = 7) out-
perform those with superior single-layer positions, while the large-scale exten-
sion demonstrates persistent multilayer effects in more realistic networks (50,000
nodes per layer). By comparing single-layer versus multilayer seeding strategies,
we empirically validate that ignoring platform interdependence leads to subop-
timal diffusion predictions – a critical limitation for social media analytics. The
seamless scaling from 25 to 50,000 agents per layer further demonstrates our
framework’s computational feasibility, executing efficiently on consumer-grade
hardware. This case study exemplifies how MultiRepast4py enables researchers
to 1) convert existing single-layer models into multilayer systems and 2) identify
emergent phenomena arising from cross-layer interactions.

2 Multilayer Networks

We model multilayer networks as structures consisting of multiple single-layer
networks connected together, with each layer corresponding to a particular type
of social relation, mode of interaction, or information channel, between agents.

Formally, each layer α of a multilayer network is a network represented by a
graph Gα =< Nα,Aα >, where Nα denotes the set of agents in layer α and Aα

denotes the intra-network adjacency matrix. An agent m ∈ Nα could be, e.g.,
an individual in a social network. An edge aαmn ∈ Aα represents the dependency
between agents m and n in Gα, and can capture, e.g., the exchange of information
(in-person or virtual). We assume that interactions are undirected and weighted
(reflecting mutual dependencies, but with potentially different strengths).

In addition, as these layers do not operate in isolation, there exist connections
between nodes in different layers, captured using an inter-network adjacency
matrix Bα,β ∈ RNα×Nβ

. An edge bα,βmn ∈ Bα,β indicates that the decisions made
by agent m in Gα are linked to those of agent n in Gβ . In this paper, we focus on
the case of an identity inter-network adjacency matrix. These matrices capture
a special case of multilayer networks in which the different layers consist of the
same set of nodes/agents, but where the nature of the relation between the nodes
being different in each layer; these are also referred to as multiplex networks in the
literature [4]. Multiplex networks are primarily used when agents have access to
different communication or interaction modalities. Examples include the spread
of social influence campaigns between social networks (e.g. Twitter in layer α
and Facebook in layer β), or the spread of diseases as individuals interact with
others in both their family (layer α) and work (layer β) networks.



MultiRepast4py 5

⍺

β

1

2

5 6

1

3

1

1

4

2

2

A↵ =

2
664

0 1 0 0
1 0 0 2
4 0 0 0
0 0 0 0

3
775

<latexit sha1_base64="mWDBiQZZ5gRo+xPpXlT2qcaUv9Q=">AAACUXicbVFLSwMxEJ6ur7q+qh69BIviqezWgl6EqhePFawtdEvJptM2mM0uSVYsS/+iBz35P7x4UMzWIvUxMOSb75vJ40uYCK6N570UnIXFpeWV4qq7tr6xuVXa3rnVcaoYNlksYtUOqUbBJTYNNwLbiUIahQJb4d1lrrfuUWkeyxszTrAb0aHkA86osVSvNDrvZQEVyYhOyBkJQhxymYURNYo/TFyPHBLfZr56QeB+Y5tVW9fm6lz35ms3QNn/3qtXKnsVbxrkL/BnoAyzaPRKT0E/ZmmE0jBBte74XmK6GVWGM4ETN0g1JpTd0SF2LJQ0Qt3Npo5MyIFl+mQQK5vSkCk7P5HRSOtxFNpOe7+R/q3l5H9aJzWD027GZZIalOzroEEqiIlJbi/pc4XMiLEFlClu70rYiCrKjP0E15rg/37yX3BbrfjHlep1rVy/mNlRhD3YhyPw4QTqcAUNaAKDR3iFd/goPBfeHHCcr1anMJvZhR/hrH0CKCKoNQ==</latexit>

A� =

2
4

0 1 0
1 0 3
0 3 0

3
5

<latexit sha1_base64="+Y5x8GsnR7NnR24OeiMa8POooK8=">AAACNHicbVBNSwMxEM3Wr7p+VT16CRbFU9ltBb0IVS+Clwr2A7qlZNNpG5rNLklWLEt/lBd/iBcRPCji1d9gui2irQPDvLx5Q2aeH3GmtOO8WJmFxaXlleyqvba+sbmV296pqTCWFKo05KFs+EQBZwKqmmkOjUgCCXwOdX9wOe7X70AqFopbPYygFZCeYF1GiTZUO3d93k48HzQZ4TNsQI+JxA+Ilux+ZDv4ELsmHc+z02qyZHBax2/bA9H50bdzeafgpIHngTsFeTSNSjv35HVCGgcgNOVEqabrRLqVEKkZ5TCyvVhBROiA9KBpoCABqFaSHj3CB4bp4G4oTQqNU/b3REICpYaBb5Rmv76a7Y3J/3rNWHdPWwkTUaxB0MlH3ZhjHeKxg7jDJFDNhwYQKpnZFdM+kYRq47NtTHBnT54HtWLBLRWKN8f58sXUjizaQ/voCLnoBJXRFaqgKqLoAT2jN/RuPVqv1of1OZFmrOnMLvoT1tc3YealMA==</latexit>

2 Ā =

2
666666664

0 1 0 0 1 0 0
1 0 0 2 0 0 0
4 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 1 0
0 2 0 2 1 0 3
0 0 0 0 0 3 0

3
777777775

<latexit sha1_base64="+EaxsvTNIT5ch5xSiAig+Tvx/8U=">AAAC0nicdVLLSsNAFJ3EV42vqks3g0VxVZJW0I3gY+POClaFppTJ9LYOTiZhZiLWUEXc+nXu/AT/wkmNEmu9cJkz59zXPIKYM6Vd992yp6ZnZudK887C4tLySnl17VJFiaTQpBGP5HVAFHAmoKmZ5nAdSyBhwOEquD3J9Ks7kIpF4kIPYmiHpC9Yj1GiDdUpf/gBkenREB9gP4A+E2kQEi3Z/dBx8Tb2jLu5/2Dfd4p8rYAzbbe4H9Mm8hNq/uqZ59UK/b5j6//UrGer44Po/pynU664VXdk+C/wclBBuTU65Te/G9EkBKEpJ0q1PDfW7ZRIzSiHoeMnCmJCb0kfWgYKEoJqp6MnGeItw3RxL5LGhcYjtpiRklCpQRiYSDPfjRrXMnKS1kp0b7+dMhEnGgT9atRLONYRzt4Xd5kEqvnAAEIlM7NiekMkodr8Asdcgjd+5L/gslb16tXa+W7l8Di/jhLaQJtoB3loDx2iU9RATUStMyuxHq0n+8J+sJ/tl69Q28pz1tEvs18/AZxfuo0=</latexit>

A↵
<latexit sha1_base64="k5MH26oP8dA8YuKD8FSDwPCE64s=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclaQKuqy6cVnBPqCJ5WY6bYdOJmFmIpaQX3HjQhG3/og7/8ZJm4W2Hhg4nHMv98wJYs6Udpxva2V1bX1js7RV3t7Z3du3DyptFSWS0BaJeCS7ASjKmaAtzTSn3VhSCANOO8HkJvc7j1QqFol7PY2pH8JIsCEjoI3UtyteCHpMgKdX2YMHPB5D3646NWcGvEzcglRRgWbf/vIGEUlCKjThoFTPdWLtpyA1I5xmZS9RNAYygRHtGSogpMpPZ9kzfGKUAR5G0jyh8Uz9vZFCqNQ0DMxknlQtern4n9dL9PDST5mIE00FmR8aJhzrCOdF4AGTlGg+NQSIZCYrJmOQQLSpq2xKcBe/vEza9Zp7VqvfnVcb10UdJXSEjtEpctEFaqBb1EQtRNATekav6M3KrBfr3fqYj65Yxc4h+gPr8wc/E5SS</latexit>

A�
<latexit sha1_base64="xLWOsI3KhiN0qklG1z+1g7KqB1U=">AAAB+nicbVC7TsMwFL0pr1JeKYwsFhUSU5UUJBgLLIxFog+pDZXjOq1Vx4lsB1SFfgoLAwix8iVs/A1OmwFajmTp6Jx7dY+PH3OmtON8W4WV1bX1jeJmaWt7Z3fPLu+3VJRIQpsk4pHs+FhRzgRtaqY57cSS4tDntO2PrzO//UClYpG405OYeiEeChYwgrWR+na5F2I9Ipinl9P7nk817tsVp+rMgJaJm5MK5Gj07a/eICJJSIUmHCvVdZ1YeymWmhFOp6VeomiMyRgPaddQgUOqvHQWfYqOjTJAQSTNExrN1N8bKQ6VmoS+mcyCqkUvE//zuokOLryUiTjRVJD5oSDhSEco6wENmKRE84khmEhmsiIywhITbdoqmRLcxS8vk1at6p5Wa7dnlfpVXkcRDuEITsCFc6jDDTSgCQQe4Rle4c16sl6sd+tjPlqw8p0D+APr8wdyZJQe</latexit>

B↵,�
<latexit sha1_base64="7yebldCbeYCiQLk+pIoVJ93viAA=">AAACA3icbVBNS8NAEN34WetX1JtegkXwICWpgh5LvXisYD+giWWy3bRLN5uwuxFKCHjxr3jxoIhX/4Q3/42bNgdtfTDweG+GmXl+zKhUtv1tLC2vrK6tlzbKm1vbO7vm3n5bRonApIUjFomuD5IwyklLUcVINxYEQp+Rjj++zv3OAxGSRvxOTWLihTDkNKAYlJb65qEbghphYGkju09dYPEIzlyfKMj6ZsWu2lNYi8QpSAUVaPbNL3cQ4SQkXGEGUvYcO1ZeCkJRzEhWdhNJYsBjGJKephxCIr10+kNmnWhlYAWR0MWVNVV/T6QQSjkJfd2ZXyznvVz8z+slKrjyUsrjRBGOZ4uChFkqsvJArAEVBCs20QSwoPpWC49AAFY6trIOwZl/eZG0a1XnvFq7vajUG0UcJXSEjtEpctAlqqMb1EQthNEjekav6M14Ml6Md+Nj1rpkFDMH6A+Mzx9k+pf/</latexit>

B�,↵
<latexit sha1_base64="6hJNiyt+2b1CVJmQOZmnR8s8uuE=">AAACA3icbVBNS8NAEN34WetX1JtegkXwICWpgh5LvXisYD+giWWy3bRLN5uwuxFKCHjxr3jxoIhX/4Q3/42bNgdtfTDweG+GmXl+zKhUtv1tLC2vrK6tlzbKm1vbO7vm3n5bRonApIUjFomuD5IwyklLUcVINxYEQp+Rjj++zv3OAxGSRvxOTWLihTDkNKAYlJb65qEbghphYGkju09dnyg4c4HFI8j6ZsWu2lNYi8QpSAUVaPbNL3cQ4SQkXGEGUvYcO1ZeCkJRzEhWdhNJYsBjGJKephxCIr10+kNmnWhlYAWR0MWVNVV/T6QQSjkJfd2ZXyznvVz8z+slKrjyUsrjRBGOZ4uChFkqsvJArAEVBCs20QSwoPpWC49AAFY6trIOwZl/eZG0a1XnvFq7vajUG0UcJXSEjtEpctAlqqMb1EQthNEjekav6M14Ml6Md+Nj1rpkFDMH6A+Mzx9kopf/</latexit>

5

7

3

4

Fig. 1. An example of a multilayer network, and its intra-layer and inter-layer adja-
cency matrices.

An illustration of a multilayer network is shown in Figure 1. As illustrated
in the figure, the inter-network and intra-network adjacency matrices can be
collected into a single “supra-adjacency” matrix Ā. One might then propose that
the interactions of agents can be viewed as happening over a single-layer net-
work with adjacency matrix Ā. We note, however, that the multilayer network is
different from this single-layer network with adjacency matrix Ā. First, a multi-
layer model can impose different structural properties on the adjacency matrices
in each layer, and enables us to investigate their impact on emergent phenom-
ena accordingly. For example, real-world data can be used to learn the different
structural properties of two social networks separately, and allow for each to be
reflected independently in the ABS environment. Further, disturbances or infor-
mation from a node may spread within each layer following a different process,
and at a different time scale. For instance, individuals may interact with their
co-workers during the week, and with their extended family and friends over the
weekend; they may also engage in different activities with each group, therefore
impacting the likelihood of the spread of a disease between them in each context
differently. Lastly, multilayer network simulations allow us to distinguish how
regulators can propose and enact interventions in each layer.

3 MultiRepast4py: A Multilayer ABS Framework

Given the limitations of traditional ABS platforms and the importance of incor-
porating multilayer functionalities, our objective is to create ABS tools that
enable agent-based simulations over multilayer networks. In this section, we
first outline our evaluation of existing simulation platforms to identify those
best suited for developing and implementing a multilayer ABS framework (Sec-
tion 3.1). We then provide details on our implementation of MultiRepast4py,
and outline the main challenges that were addressed (Section 3.2).

3.1 Platform Selection and Rationale

As noted in the introduction, there exist several widely used platforms for ABS,
built on different programming languages; these include NetLogo [28], Repast



6 Keng-Lien Lin and Parinaz Naghizadeh

[9], MASON [19], FLAME [16], and Swarm [21], and their extensions. Among
these, NetLogo is the highest-level platform, with a relatively simple program-
ming language and a well-developed graphical interface; however, while NetLogo
offers robust features for certain applications (e.g., grid-based ABMs), it presents
limitations for highly specialized or complex simulations. The remaining plat-
forms (e.g., Repast, MASON, Swarm) provide a framework (a set of concepts for
describing an agent-based model and the required simulation components) along
with a software library (implementations of the framework using customized sim-
ulation tools). While these require additional programming skills, they facilitate
customization, as well as integration with a wide range of data analysis and
machine learning libraries to enable data-driven ABS. Our focus in this work
is similarly on developing a framework and library for multilayer ABS, while
maintaining the flexibility for customization and data-driven implementations.

Accordingly, Repast4py [8], a Python-based member of the Repast Suite, was
chosen as the development platform for the following reasons:

1. Scalability : Repast4py simplifies the construction of large-scale ABMs that
can be distributed across multiple processing cores using MPI, enabling ef-
ficient execution of complex simulations.

2. Flexibility : The platform’s dynamic simulation step capabilities, facilitated
by the scheduling feature, enables a high degree of customization, ensuring
the seamless implementation of our multilayer approach.

3. Extensibility : Built on Python, Repast4py inherently supports integration
with a wide range of data analysis and machine learning libraries, facilitating
data-driven modeling and future expansions.

3.2 Implementation Details

The multilayer functionality in MultiRepast4py is implemented through a struc-
tured process that embeds each agent’s multilayer edges into a unified data struc-
ture. Specifically, connections from the network files are mapped using the node
identifiers (node_id) defined in the first file, ensuring consistent agent identifi-
cation across all layers.

Each agent is associated with its own shadow_data, a list of dictionaries
where each dictionary corresponds to a specific layer and stores that agent’s
outgoing edges for that layer. This design enables efficient differentiation of inter-
layer connections while maintaining a cohesive representation for each agent.

The implementation is organized into four sequential stages, each addressing
a critical aspect of our multilayer simulation framework. First, multilayer net-
work files are parsed and merged into a unified structure, creating a cohesive
representation of all layers. Second, edge data is transformed—compressed and
encoded—to satisfy the Repast4py’s network file format requirements while en-
hancing memory efficiency. Third, agents are initialized by reconstructing their
multilayer connections from the processed data, enabling a decentralized setup
that supports parallel execution. Finally, the simulation step function is adapted
to allow layer-specific interactions, ensuring that each simulation cycle accurately



MultiRepast4py 7

reflects the dynamics of the corresponding layer. Together, these stages facilitate
efficient memory usage and scalable parallel processing while preserving the es-
sential semantics of multilayer networks. The following sections provide detailed
explanations of each component.

Network File Parsing. In this stage, multiple network files are provided as in-
put, each representing a layer. The file contains agent information in the form of
unique identifiers (UIDs): (node_id, agent_type, and rank) and the edge con-
nections between nodes. These network files can be generated using Repast4py’s
write_network function. The parsing process constructs a data structure where
each agent maintains a list of dictionaries representing its outgoing edges, in-
dexed by layer:

[{(uid) : edge_weight, . . . }, . . . ]
By storing outgoing edges as agent attributes, the model achieves greater de-
centralization, thereby reducing the need for message passing between ranks. A
list of dictionaries is employed instead of a nested dictionary because, in most
cases, the number of layers remains fixed, making a list a more memory-efficient
choice. However, at the layer level, edges may be dynamically added or modified,
justifying the use of a dictionary structure for efficient access and updates.

Data Compression & Encoding. Outgoing edge lists for agents cannot be
directly stored in Repast4py network files, as the framework’s network file format
prohibits nested data structures and requires string-based keys (e.g., connection
tuples must be formatted as strings). To ensure compatibility with Repast4py’s
network serialization requirements, edge data undergoes a four-step transforma-
tion:

1. Stringification: Tuple keys are converted to strings for JSON compatibility.
2. UTF-8 Encoding: Encode JSON-serialized structure with UTF-8.
3. zlib Compression: Reduce storage overhead using zlib compression
4. Base64 Encoding: Convert compressed bytes to an ASCII-safe string via

Base64 to avoid file encoding conflicts.

The final encoded string is stored in the following format

{"data" : "[Base64 string]"}

Agent Initialization. During the agent initialization phase, the read_network
function is invoked to load the modified network file. A custom agent creation
function is then employed to decode the JSON-encoded attribute, restoring it
to its original list-of-dictionaries format. This approach allows the initialization
process to be executed in parallel across multiple ranks, as each agent indepen-
dently retrieves and reconstructs its respective edge data. Consequently, each
agent gains access to its outgoing edges across all layers while maintaining a
scalable structure.



8 Keng-Lien Lin and Parinaz Naghizadeh

Algorithm 1 Multi-Layer Network Reconstruction
Require: List of network file paths file_paths
Ensure: Unified network file with compressed multi-layer edges

Parsing Phase
1: procedure ReconstructNetworkFiles(file_paths)
2: num_layers← len(file_paths)
3: node_info← {}, all_nodes← ∅
4: agents← defaultdict(λ : [{} for _ in range(num_layers)])
5: for layer_index, file_path in file_paths do
6: lines← ReadContents(file_path)
7: directed← ParseHeader(lines[0])
8: found_edges← False
9: for line in lines[1 :] do

10: if not found_edges then
11: if line.strip() = "EDGES" then
12: found_edges← True
13: Continue
14: end if
15: if layer_index = 0 then
16: Parse node_id, agent_type, rank ← line
17: node_info[node_id]← (node_id, agent_type, rank)
18: all_nodes.add(node_id)
19: end if
20: else
21: Parse edge (u, v, weight)← line
22: agents[u][layer_index][v]← weight
23: if not directed then
24: agents[v][layer_index][u]← weight
25: end if
26: end if
27: end for
28: end for

Compression Phase
29: compressed_edges← []
30: for node_id in sorted(all_nodes) do
31: uid← node_info[node_id]
32: edge_dict← agents[node_id]
33: compressed← CompressEdges(edge_dict)
34: compressed_edges.append(compressed)
35: end for

File Writing Phase
36: Create copy of base file (First file in list)
37: Inject compressed_edges {′data′ : compressed_edges} as node attributes
38: Write modified content to new file
39: end procedure



MultiRepast4py 9

Modify Step function. The multilayer simulation is facilitated through
Repast4py’s scheduling mechanism. To enable multilayer simulations, a modified
step function is defined in MultiRepast4py, which accepts a layer parameter to
specify the active layer for a given simulation step. The function determines
whether an agent participates in a particular layer by checking the presence of
outgoing edges within that layer. The spreading process is then executed by it-
erating over the agent’s outgoing edges in the specified layer, allowing users to
define custom propagation mechanisms. Specifically, an agent’s list of neighbors
can be retrieved using:

Agent.shadow_data[layer].keys()

If an agent has no outgoing edges in a given layer, this function returns an empty
list, otherwise, it returns a list of tuple(uids).

4 Experimental Demonstration

To demonstrate the capabilities of our multilayer simulation framework, we
present a case study focused on information dynamics – specifically, rumor prop-
agation. This topic is commonly explored in agent-based simulations and serves
as an excellent example to highlight the advantages of our multilayer approach.

This case study is based on modifications of existing demo, Tutorial 2 -
The Rumor Network Model from Repast4py. We selected this example to better
illustrate the process of transforming a single-layer ABS into a multilayer ABS.
The simulation was executed on an Apple M2 chip with 8GB RAM, showing
that our framework is accessible on standard computing platforms.

4.1 Multilayer Analysis of Rumor Propagation Through
Cross-Platform Interaction

This case study demonstrates how multilayer network simulations reveal propa-
gation dynamics that conventional single-layer analyses cannot capture, partic-
ularly through the mechanism of cross-platform information diffusion.

Model Configuration. We implement a two-layer multiplex network model
where each layer contains 25 nodes representing individuals active on distinct so-
cial platforms. The experimental configuration employs a reduced-scale network
to enable clear demonstration of multilayer interaction effects, with larger-scale
validation presented in Section 4.2.

– Network Topology: Both layers’ connections are generated via Erdős-
Rényi random graphs(G(n, p) model, n = 25, p = 0.1), producing sparse
networks with average degree k = 2.5. This model was selcted for its sim-
plicity, controllability, and reproducibility.

– Agent State Model: Each agent has the following attribute
• received_rumor: Binary state (0=uninformed, 1=informed)



10 Keng-Lien Lin and Parinaz Naghizadeh

• shadow_data: Multilayer adjacency list storing intra-layer connections

Propagation Dynamics. The rumor dissemination process operates as:

1. Both layer activates at each time step
2. Within the activate layer, Informed nodes attempt transmission to adjacent

uniformed neighbors
3. Per-contact infection probability β = 0.005
4. New informed nodes participate in next spreading cycle

Simulation Protocol. We execute 100 Monte Carlo replications for each of 25
network seeds, yielding 2,500 independent simulations (100 time steps each). All
results present ensemble averages with stochastic effects mitigated through this
extensive sampling.

Combined Degree Centrality. For a multilayer network with L layers, the
combined degree centrality Ccombined

D of an agent m is defined as:

Ccombined
D (m) =

L−1∑

γ=0

1

Tγ
· Cγ

D(m), (1)

– Cγ
D(m) denotes the degree centrality of agent m in layer γ,

– Tγ is the execution interval of layer γ, specifying how frequently the layer is
active; it must be strictly positive (Tγ > 0).

Empirical Findings. Figure 2 demonstrates the propagation patterns for three
strategic seed nodes, quantified through cumulative adoption curves. Table 1
provides structural context through degree centrality measures.

Table 1. Node Centrality Measures Across Network Perspectives. Combined degree
centrality is calculated as the sum of intra-layer degree centralities, weighted by the
reciprocal of each layer’s activation interval (T0, T1 = 1).

Degree Centrality
Seed Node Layer 1 Layer 2 Combined
Agent 2 3 4 7
Agent 23 4 1 5
Agent 24 1 5 6

The propagation dynamics reveal several critical insights. Despite Agents 23
and 24 exhibiting maximal intra-layer centrality in their respective platforms
(Layer1 : CD = 4, Layer2 : CD = 5), Agent 2 demonstrates superior global
propagation efficiency (AUC = 365.65 vs 274.62 and 312.30) due to its cross-
platform connectivity (Combined CD = 7). This emergent property remains
invisible to single-layer analyses - traditional centrality metrics would priori-
tize Agents 23 and 24 as optimal seeds within their native platforms, overlook-
ing the critical role of inter-layer connectivity in system-scale diffusion. This



MultiRepast4py 11

Fig. 2. Rumor propagation across multilayer networks. Curves represent mean adop-
tion rates (N=100 simulations) for three seed nodes. Area Under Curve (AUC) values
quantify total propagation efficiency.

highlights the importance of multilayer network analysis, made possible by the
MultiRepast4py, in accounting for the impacts of different interacting networks
on global outcomes.

4.2 Large-Scale Validation of Multilayer Propagation Dynamics

To evaluate the scalability and robustness of our framework, we extend the analy-
sis presented in Section 4.1 by conducting a full-scale simulation of cross-platform
information diffusion. This experiment quantifies the persistence of multilayer
interaction effects in realistic network configurations and demonstrates the com-
putational feasibility of large-scale multilayer agent-based simulations.

Model Configuration. We implement a two-layer multiplex network with
50,000 agents per layer, preserving the structural consistency of the small-scale
demonstration while scaling the network parameters to reflect real-world social
platforms.

– Network Topology: Each layer is instantiated as an Erdős-Rényi random
graph(G(n, p)model, n = 50000, p = 0.0005), yielding networks with an av-
erage degree k = 25.

– Agent State Model: As described in Section 4.1.

Propagation Dynamics: As detailed in Section 4.1, we set β = 0.004 to
decelerate the spread, enhancing clarity and interpretability in the plot.

Simulation Protocol: We perform 100 Monte Carlo replications for each of
three network seeding strategies, resulting in 300 independent simulations (each
spanning 100 time steps). Seed nodes are selected according to three criteria:
– Top 10 degree centrality nodes in Layer 1 (single-layer perspective)
– Top 10 degree centrality nodes in Layer 2 (single-layer perspective)
– Top 10 combined degree centrality nodes (multilayer perspective)



12 Keng-Lien Lin and Parinaz Naghizadeh

Fig. 3. Large-scale rumor propagation across Multilayer Networks. Curves depict the
mean adoption rates (N=100 simulations) across three seeding strategies.

Empirical Findings. Figure 3 illustrates the propagation trajectories for each
seeding strategy, with the Area Under the Curve (AUC) serving as a quantitative
measure of overall dissemination efficiency.

Although the absolute differences in AUC values are modest relative to those
observed in the small-scale demonstration, statistical analyses (t-test, Combined
vs. Layer 1, p-value: 0.0007) confirm that the disparities are significant. Notably,
the combined centrality seeds achieve approximately 10% greater population
penetration at key diffusion milestones compared to the single-layer strategies.
These findings underscore the importance of cross-platform connectivity in en-
hancing global diffusion efficiency in large networks.

5 Conclusion

We have developed MultiRepast4py, a multilayer agent-based simulation frame-
work. This framework builds on an existing ABS simulation platform (specifi-
cally, Repast4py [9]) enabling researchers to model complex, large-scale, mul-
tilayered interactions without needing extensive programming skills, making it
accessible to researchers across various disciplines. We used simulations studies
on rumor spreading to highlight the advantages of our multilayer approach. Our
use cases were selected from existing ABS on single-layer networks, to further
illustrate the process of transitioning from single-layer to multilayer ABS using
our proposed platform. As noted in the introduction, our framework has the
potential to be integrated with data analysis techniques to enable data-driven
(multilayer) ABS; we view this as an important directions of future work.

Acknowledgments. This work is supported by the University of California San Diego
Summer Research Internship program, and by the NSF under award CCF-2416311.

Disclosure of Interests. The authors declare no competing interests.



MultiRepast4py 13

References

1. Aleta, A., Moreno, Y.: Multilayer networks in a nutshell. Annual Review of Con-
densed Matter Physics 10, 45–62 (2019)

2. Battiston, F., Perc, M., Latora, V.: Determinants of public cooperation
in multiplex networks. New Journal of Physics 19(7), 073017 (jul 2017).
https://doi.org/10.1088/1367-2630/aa6ea1, https://dx.doi.org/10.1088/1367-
2630/aa6ea1

3. Bhattacharya, P., Ekanayake, S., Kuhlman, C.J., Lebiere, C., Morrison, D.,
Swarup, S., Wilson, M.L., Orr, M.G.: The matrix: An agent-based modeling frame-
work for data intensive simulations. In: Proceedings of the 18th International Con-
ference on Autonomous Agents and MultiAgent Systems. pp. 1635–1643 (2019)

4. Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C.I., Gómez-Gardenes, J.,
Romance, M., Sendina-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics
of multilayer networks. Physics reports 544(1), 1–122 (2014)

5. Bródka, P., Musial, K., Jankowski, J.: Interacting spreading processes in mul-
tilayer networks: A systematic review. IEEE Access 8, 10316–10341 (2020).
https://doi.org/10.1109/ACCESS.2020.2965547

6. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cas-
cade of failures in interdependent networks. Nature 464(7291), 1025–1028 (2010)

7. Cabrera, E., Taboada, M., Iglesias, M.L., Epelde, F., Luque, E.: Optimization of
healthcare emergency departments by agent-based simulation. Procedia computer
science 4, 1880–1889 (2011)

8. Collier, N., Ozik, J.: Distributed agent-based simulation with repast4py. In: 2022
Winter Simulation Conference (WSC). pp. 192–206. IEEE (2022)

9. Collier, N.: Repast: An extensible framework for agent simulation. The University
of Chicago’s social science research 36, 2003 (2003)

10. De Bufala, N., Kant, J.D.: An evolutionary approach to find optimal policies
with an agent-based simulation. In: 18th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2019), (2019)

11. Ebrahimi, R., Naghizadeh, P.: United we fall: On the nash equilibria of multiplex
network games. In: 2023 59th Annual Allerton Conference on Communication,
Control, and Computing (Allerton). pp. 1–8. IEEE (2023)

12. Gao, J., Buldyrev, S.V., Stanley, H.E., Havlin, S.: Networks formed from interde-
pendent networks. Nature physics 8(1), 40–48 (2012)

13. Gómez-Gardeñes, J., Reinares, I., Arenas, A., Floría, L.M.: Evolution of co-
operation in multiplex networks. Scientific Reports 2(1), 620 (Aug 2012).
https://doi.org/10.1038/srep00620, https://doi.org/10.1038/srep00620

14. Julka, N., Srinivasan, R., Karimi, I.: Agent-based supply chain management—1:
framework. Computers & Chemical Engineering 26(12), 1755–1769 (2002)

15. Kerr, C.C., Stuart, R.M., Mistry, D., Abeysuriya, R.G., Rosenfeld, K., Hart, G.R.,
Núñez, R.C., Cohen, J.A., Selvaraj, P., Hagedorn, B., et al.: Covasim: an agent-
based model of covid-19 dynamics and interventions. PLOS Computational Biology
17(7), e1009149 (2021)

16. Kiran, M., Richmond, P., Holcombe, M., Chin, L.S., Worth, D., Greenough, C.:
Flame: simulating large populations of agents on parallel hardware architectures.
In: Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems: volume 1-Volume 1. pp. 1633–1636 (2010)

17. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.:
Multilayer networks. Journal of complex networks 2(3), 203–271 (2014)



14 Keng-Lien Lin and Parinaz Naghizadeh

18. Kravari, K., Bassiliades, N.: A survey of agent platforms. Journal of Artificial Soci-
eties and Social Simulation 18(1), 11 (2015). https://doi.org/10.18564/jasss.2661,
http://jasss.soc.surrey.ac.uk/18/1/11.html

19. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: A multiagent
simulation environment. Simulation 81(7), 517–527 (2005)

20. Macal, C.M., North, M.J.: Agent-based modeling and simulation. In: Proceedings
of the 2009 winter simulation conference (WSC). pp. 86–98. IEEE (2009)

21. Minar, N., Burkhart, R., Langton, C., Askenazi, M., et al.: The swarm simulation
system: A toolkit for building multi-agent simulations (1996)

22. Parandehgheibi, M., Modiano, E.: Robustness of interdependent networks: The
case of communication networks and the power grid. In: 2013 IEEE Global Com-
munications Conference (GLOBECOM). pp. 2164–2169. IEEE (2013)

23. Rand, W.: Theory-interpretable, data-driven agent-based modeling. Social-
behavioral modeling for complex systems pp. 337–357 (2019)

24. Rosés, R., Kadar, C., Gerritsen, C., Rouly, C.: Agent-based simulation of offender
mobility: Integrating activity nodes from location-based social networks. In: Aa-
mas. pp. 804–812 (2018)

25. Salehi, M., Sharma, R., Marzolla, M., Magnani, M., Siyari, P., Montesi, D.: Spread-
ing processes in multilayer networks. IEEE Transactions on Network Science and
Engineering 2(2), 65–83 (2015)

26. Shahrivar, E.M., Sundaram, S.: The game-theoretic formation of interconnections
between networks. IEEE Journal on Selected Areas in Communications 35(2),
341–352 (2017)

27. Smith, E.B., Rand, W.: Simulating macro-level effects from micro-level observa-
tions. Management Science 64(11), 5405–5421 (2018)

28. Tisue, S., Wilensky, U.: Netlogo: A simple environment for modeling complexity.
In: International conference on complex systems. vol. 21, pp. 16–21. Citeseer (2004)

29. Yağan, O., Gligor, V.: Analysis of complex contagions in random multiplex net-
works. Physical Review E 86(3), 036103 (2012)

30. Yağan, O., Qian, D., Zhang, J., Cochran, D.: Optimal allocation of interconnecting
links in cyber-physical systems: Interdependence, cascading failures, and robust-
ness. IEEE Transactions on Parallel and Distributed Systems 23(9), 1708–1720
(2012)

31. Zhang, Y., Arenas, A., Yağan, O.: Cascading failures in interdependent systems
under a flow redistribution model. Physical Review E 97(2), 022307 (2018)

32. Zhang, Y., Yağan, O.: Robustness of interdependent cyber-physical systems against
cascading failures. IEEE Transactions on Automatic Control 65(2), 711–726 (2019)

33. Zhuang, Y., Yağan, O.: Multistage complex contagions in random multiplex net-
works. IEEE Transactions on Control of Network Systems 7(1), 410–421 (2019)


