
Retrieval-Augmented Data Augmentation
for Low-Resource Domain Tasks

Minju Seo∗ Jinheon Baek∗ James Thorne Sung Ju Hwang
KAIST

{minjuseo, jinheon.baek, thorne, sjhwang82}@kaist.ac.kr

Abstract

Despite large successes of recent language models, they suffer from severe perfor-
mance degeneration in low-resource settings with limited training data available.
Many existing works tackle this problem by generating synthetic data from the train-
ing data and then training models on them, recently using Large Language Models
(LLMs). However, in low-resource settings, the amount of seed data samples to use
for data augmentation is very small, which makes generated samples suboptimal
and less diverse. To tackle this challenge, we propose a novel method that augments
training data by incorporating a wealth of examples from other datasets, along with
the given training data. Specifically, we first retrieve relevant instances from other
datasets, such as their input-output pairs or contexts, based on their similarities
with the given seed data, and prompt LLMs to generate new samples with the
contextual information within and across the original and retrieved samples. This
approach can ensure that the generated data is not only relevant but also more
diverse than what could be achieved using the limited seed data alone. We validate
our Retrieval-Augmented Data Augmentation (RADA) framework on multiple
datasets under low-resource settings of training and test-time data augmentation
scenarios, on which it outperforms existing data augmentation baselines.

1 Introduction
Recent advances in language models [7, 58, 46, 3] have achieved numerous successes across various
natural language tasks. The common practice to further enhance their performances is to perform fine-
tuning on task-specific datasets, which has been proven substantially effective regardless of model
sizes [23, 41]. However, the efficacy of this fine-tuning is closely tied to the volume and quality of
the data available for training. Meanwhile, in real-world scenarios, there is often a scarcity of training
instances, and the manual annotation of additional training samples is costly and time-consuming.

To address this challenge, various approaches have been proposed to augment the training data
automatically, which range from altering the texts of existing training samples [54, 64], to leveraging
generative models to produce new instances based on initial seed samples [68, 2, 34] with LLMs that
eliminates the burden of performing task-specific training [28, 65, 35]. However, in low-resource
environments where only a limited number of training instances are available, generating new data
from these minimal seed samples results in poor diversity and variation (See Figure 1, (B)). We note
that, while a recent approach attempts to overcome this by iteratively including generated samples as
seed data for further data generation [60], it is still ill-suited, which is not only constrained by the
limited diversity of the initial seed data but also vulnerable to recursively diminishing the quality of
subsequent augmentations due to the potential low-quality of prior augmentations.

Despite the limited seed data in low-resource settings, there is an abundance of examples and
resources accumulated in existing data pools, which can be utilized for data augmentation. Moreover,
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Figure 1: (A) Low-Resource Tasks refer to problems (usually on the specific domains) where there is a limited
amount of data available. (B) Existing Data Augmentation approaches expand the seed data with itself,
which results in the limited diversity of the generated data samples. (C) Our Retrieval-Augmented Data
Augmentation (RADA) framework generates the new data with the external context, retrieved from the external
datasets, along with the seed data, yielding more diverse and useful samples. (Upper Right:) Our RADA
outperforms existing methods, demonstrating the quality of generated samples. (Lower Right:) The generated
data samples from RADA are more diverse than existing data augmentation, based on the t-SNE visualization.

by leveraging the contextual understanding capabilities of LLMs, we can effectively utilize a mixture
of samples drawn from the initial seed data, other datasets, or a combination of both. This can enable
the synthesis of new samples, which mirror the characteristics of the seed data while being diverse.

However, not all samples from external datasets are useful for data augmentation, as most of them
may not align with the characteristics of the seed data. Thus, inspired by the motivation to use external
data instances while overcoming the problem of many of their irrelevancies, in this work, we propose
a novel LLM-powered Retrieval-Augmented Data Augmentation (RADA) framework (See Figure 1,
(C)). Specifically, the input of our data augmentation approach consists of in-context examples
containing example instances, along with a target context that elicits a new sample generation. Then,
our RADA flexibly employs multiple retrieval strategies to construct these in-context and target-
context with samples from both original and external datasets, enabling diverse data augmentation.

We validate the effectiveness of RADA in augmenting low-resource datasets on multiple domain-
specific datasets, where we consider both the training and test-time data augmentation scenarios.
Then, the experimental results show that RADA consistently surpasses several LLM-powered data
augmentation baselines. In addition, a key finding from our analyses is the dual benefit offered by our
RADA: the incorporation of external data sources enhances the diversity of the generated instances,
while the retrieval mechanism ensures maintaining their semantic alignment with the initial seed data.

2 Methodology
2.1 Problem Statement
Low-Resource Domain-Specific Tasks Before explaining the low-resource tasks that we focus
on, we define conventional natural language tasks. Formally, their goal is to predict a label y
given an input x, where x and y are comprised of a sequence of tokens: x = [x1, x2, ..., x|x|] and
y = [y1, y2, ..., y|y|]. Then, the training data D can be represented as an aggregation of input-output
pairs: D = {(xi,yi)}Ni=1 where its size N can vary widely from just a few dozens to several millions.
In this work, we target handling challenging scenarios where N is notably small, referred to as
low-resource settings. These settings are particularly prevalent in domain-specific tasks (for example,
within legal, medical, or technical fields), where the availability of labeled data is inherently limited
due to the specialized nature of the domain or the scarcity of domain experts for annotation.

LLMs for Data Augmentation A typical way to handle the low-resource domain tasks is to expand
the training data D with data augmentation techniques, which has been recently powered by LLMs
due to their strong text-generation capabilities. Formally, let us first describe the LLM as a model
parameterized by θ, which takes the input x and generates the output y, as follows: y = LLMθ(x).
Here, θ is trained with massive text corpora with several training strategies and, after that, it usually
remains fixed due to the costs of further training. Also, x can be any form of text, referred to as a
prompt, which includes task-dependent instructions and contexts (such as demonstrations), to guide
LLMs in generating outputs that align with the user’s intent, which is data augmentation in our work.

The primary goal of data augmentation is to expand the diversity and amount of data D available
for model training (and for testing in certain use cases such as test-time adaption), without manually
collecting the new data, for tackling specific tasks especially on low-resource domains. Formally,
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this data augmentation process can be represented as follows: D′ = f(D), where f is the model
(or technique) designed to generate new input-output pairs (x′,y′) for the augmented dataset D′,
which is achieved by leveraging the underlying patterns, contexts, and knowledge existing in seed
data D. However, unlike existing works that mainly focus on expanding the original data D with
itself, we can potentially incorporate any external sources of information easily available at hand,
which could introduce greater diversity and quality in generating the samples for data augmentation.
In addition, especially in low-resource settings, the available data to use as a source for expansion is
largely scarce, which poses a challenge as the augmentation method f is operationalized with only
limited samples, leading to the generation of samples that may lack the desired diversity and quality.

2.2 Retrieval-Augmented Data Augmentation

To tackle the aforementioned drawbacks of existing data augmentation approaches, we propose a
novel data augmentation method (from a different angle), that leverages available external datasets.

Data Generation with External Resources We redefine the concept of previous data augmentation
to incorporate samples from external resources, as follows: D′ = f(D, C) where C is an external data
store that is composed of input-output pairs (x,y) aggregated from all available datasets. However,
not all the external data samples can be accommodated within the context length of LLMs, but also
many of these samples may not be pertinent for generating valuable augmentations for D.

Retrieving Relevant Instances To tackle the aforementioned challenges, we propose to retrieve
contextually relevant instances from the data store C, which is critical as it ensures that the data
produced by LLMs is not only diverse and high-quality but also contextually coherent and aligned
with the nuances of the target dataset D. In the following, we first provide the general formulation of
the retrieval and then propose our two specific instantiations of the retrieval for data augmentation.

Formally, for a given input instance q, the goal of a retriever is to identify and fetch a ranked list of
k entries from a large corpus, which are deemed most relevant to the input, represented as follows:
{ci}ki=1 = Retriever(q, C) where ci ∈ C. Here, q can be a textual query; C is the corpus (which
is typically a large collection of documents) from which the relevant information is to be retrieved;
Retriever is designed with keyword-based algorithms or neural embedding-based models [52, 32].

2.2.1 Retrieval for Data Augmentation
Construction of LLM Input Text

Context: One of the most effective measures for 
preventing the spread of JN.1, a variant of COVID-19 …

In-Context

Target-Context

Context: COVID-19 symptoms can range from …
Input: Common symptoms of COVID-19?
Output: Fever, cough, and shortness of breath

Context: COVID-19 prevention strategies have …
Input: What are strategies to prevent COVID-19?
Output: Wearing masks, maintaining distance …

…

COVID-QA

External Data Store

Input: JN.1 moved swiftly to 
become the most widely 
circulating variant of COVID-19.

Seed Data

Retriever

Figure 2: RADA Framework Overview. We first
retrieve the external instances (relevant to the seed
data) from the external data store, and construct
in-context and target-context of LLM prompts with
the retrieved samples along with the seed data.

The input to LLMs can be viewed from two differ-
ent perspectives: in-context learning which refers to
their ability to learn from the input demonstrations;
task-solving where the model executes specific tasks
requested by users (e.g., data augmentation). Accord-
ing to them, we propose two instantiations of retrieval
for LLM-powered data augmentation (See Figure 2).

Retrieval for In-Context Learning In-context
learning plays a crucial role in enabling LLMs to
align their outputs with the contextual cues provided
in the input examples. Similarly, in data augmentation, it may enable LLMs to learn from examples
(e.g., input-output pairs) in the seed data, to generate new input-output pairs. Yet, in low-resource
settings, the combination of data samples to provide as the examples in the input prompt is largely
limited. This limitation highlights the advantage of our retrieval-augmented data augmentation frame-
work, which can fill the input demonstrations with samples from external datasets. Yet, as not all the
samples are relevant, we retrieve only the relevant samples based on the similarity between the sample
in seed data D and the external sample in data store C, as follows: {ci}ki=1 = Retriever(q, C)
where q ∈ D. Mathematically, the combination of demonstrations to use as the LLM input is
expanded to O((k × |D|)3) from O(|D|3), where |D| is typically small in the low-resource setting.

Retrieval for Target Sample Generation Unlike in-context examples providing background
information for data augmentation, the context to be retrieved and used here has a different goal,
which should serve as a source for generating a complete input-output pair or one among them when
given the other, depending on specific use cases. Specifically, a certain document can be used as
a context to derive a query-answer pair, along with their in-context examples. Another example is
to provide a question as a context and then generate its answers, or vice versa to augment queries.
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Table 1: Training data augmentation results, where 10, 30, and 100 denote the number of initial seed data.
Covid QA Policy QA Tech QA Average

Methods 10 30 100 10 30 100 10 30 100 10 30 100

Seed Data 57.07 66.93 68.97 6.25 16.26 28.09 12.28 17.59 33.90 25.20 33.59 43.65
PAQ (non-LLM) 65.23 66.55 66.72 24.37 25.87 27.48 24.03 25.65 29.89 37.88 39.36 41.36
Augment w/ Seed Data 62.74 64.69 65.01 28.08 27.49 25.89 40.20 42.07 42.42 43.67 44.75 44.44
Self-Instruct 63.34 61.90 64.20 27.48 27.50 27.53 33.20 39.13 37.55 41.34 42.84 43.09
QA Generation 51.72 48.98 39.05 20.04 20.46 20.95 30.01 30.99 32.80 33.92 33.48 30.93
CQA Generation 67.00 67.01 67.80 27.30 24.96 25.94 28.08 30.94 31.88 40.79 40.97 41.87
Seed + External Data 62.30 62.81 63.50 25.72 25.60 29.34 34.82 35.46 37.06 40.95 41.29 43.30
RADA (Ours) 67.55 67.95 68.36 28.83 28.25 28.88 40.44 44.41 45.81 45.61 46.87 47.68

0 10 20 30 40 50 60

Percentage

Music
Law

Finance
Film

Computing
Biomedical

NQ
Covid QA

0 10 20 30 40 50
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Policy QA

0 10 20 30 40 50 60
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Tech QA

Figure 3: Breakdown results of retrieved instances on domain-specific
data, where samples in the retrieval pool are one of Biomedical, Computing,
Film, Finance, Law, and Music, as well as NQ (covering general domains).

Domains Covid QA Tech QA

All 67.55 40.44

Biomedical 67.75 40.09
Computing 66.70 42.67

Table 2: Results with the hand-
crafted data store, selectively us-
ing only the most suitable external
domain as the retrieval pool.

Formally, {ci}ki=1 = Retriever(q, C) where q can be either the document or the question from D.
Also, the augmented samples generated directly from the retrieved instances are similar in nature to
the original samples, as we consider relevant top-k instances, ensuring a high degree of contextual
coherence with seed samples while being more diverse against the generation with seed.

3 Experimental Setups and Results

Experimental Setups We validate our RADA on training data augmentation in Covid [44], Pol-
icy [1] and Tech [8] datasets and test-time data augmentation scenarios in MMLU [26]. For ex-
ternal resources for retrieval, we use Natural Questions (NQ) [33] and labeled subset [67] of MS
MARCO [45], as well as MMLU’s auxiliary data from similar datasets. For data augmentation, we
use Llama2-7B-Chat [58] for all methods. For fine-tuning, we use T5-base [48] or Llama2-7B, to
measure the effectiveness of different approaches without worrying about data contamination as they
are not trained on any downstream tasks/datasets. We provide additional details in Appendix A.

Table 3: Test-time data augmentation results on sub-
domains of MMLU and domain-specific QA datasets.

MMLU CS Biology Law Average
5-Shots w/ Training 32.00 47.74 64.46 48.07
External Data 48.00 54.52 66.12 56.21
RADA (Ours) 49.00 55.48 70.25 58.24

Domain-Specific QA Covid Policy Tech Average
External Data 54.02 19.32 12.97 28.77
PAQ (non-LLM) 61.22 25.03 19.83 35.36
RADA (Ours) 66.03 29.14 29.17 41.45

Main Results We conduct experiments on two
different data augmentation scenarios and report
the results of training data augmentation in Ta-
ble 1 and the test-time augmentation results in
Table 3 (See Table 8 and Table 9 for standard
deviations). As shown in them, RADA substan-
tially outperforms all baselines, demonstrating
its effectiveness. We note that the average score
of the non-LLM-based PAQ approach is low,
compared to LLM-based methods, which con-
firms the effectiveness of using LLMs for data augmentation perhaps thanks to their prior knowledge
(See Appendix B for more results and discussion). Moreover, as shown in Table 3, RADA is highly
effective in the challenging test-time data augmentation scenario (where no data is available for
training), outperforming the model trained with all the external data instances. This may be due to
our retrieval strategy, which results in generating samples that are relevant to the test data.

Analysis of Retrieval To understand which data instances are retrieved for data augmentation
and what are their effectiveness, we conduct a comprehensive analysis. Firstly, we visualize the
categories of retrieved instances for domain-specific QA in Figure 3, which shows that (mostly)
only the relevant instances are retrieved and used for data augmentation for each specific task. For
example, the Biomedical domain is the dominant field of retrieval source for Covid QA; meanwhile,
the Computing domain is for Tech QA. In addition, to see the contribution of relevant retrieval, we
restrict the retrieval domain to the one that is the most relevant to the given specific dataset. For
example, we use only the Biomedical domain for Covid QA and the Computing domain for Tech QA.
As shown in Table 2, we observe that when manipulating the retrieval pool, the performance further
increases (as instances from irrelevant domains are not retrieved), which reaffirms the effectiveness
of retrieval and its room for improvement for data augmentation.
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Figure 5: ROUGE-L score distributions measured
between the seed and generated data on Tech QA.
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Figure 6: Results with varying the augmentation size, where we increase
the size by factors of 1, 3, 5, 10, 30, and 100 relative to the seed data size.

Methods Tech QA

RADA (Ours) 44.41
w/o In-context Retriever 41.24
w/o Target-context Retriever 34.42
w/o All Retrievers 30.38

Table 4: Ablation study of RADA
on the Tech QA dataset.

Analysis of Augmented Data Diversity A notable advantage of RADA is that it intuitively can
generate more diverse samples than what could be achieved by existing data augmentation approaches
that use the seed data alone, by augmenting this process with the retrieval from external data samples.
To measure this ability, we visualize the embedding space of the augmented samples in Figure 4
and report their lexical overlaps in Figure 5. Specifically, for the visualization, we first embed the
generated instances with Sentence-BERT [50] into the latent space and project them with t-SNE [59].
From this, we observe that, unlike Augment w/ Seed Data whose generated samples are close to
the seed data, the samples generated from RADA are broadly dispersed. Further, we measure the
max ROUGE-L scores between the seed and generated instances where lower scores indicate higher
diversity. As shown in Figure 5, RADA generates distinct samples to the seed data thanks to retrieving
and utilizing the external contexts beyond the seed data, unlike baselines that rely solely on it.

Analysis of Augmented Data Size To see how the performance changes as a function of the size of
augmented data samples, we vary the augmentation size relative to the seed data size and report the
results in Figure 62. Firstly, when the amount of augmented data is very small, baseline performances
are comparable with RADA since the data samples that can be generated from the seed data alone
can have a certain diversity level as we augment only a small amount. Yet, as the augmentation size
expands, RADA consistently outperforms baselines, showcasing its ability to generate broader and
richer samples through retrieval augmentation.

Ablation Study To see how each component of RADA affects the overall performance, we conduct
an ablation study where we replace our in-context and target-context retrieval modules with random
retrievals. As shown in Table 4, we observe that, without retrieving relevant instances, the perfor-
mances drop substantially since irrelevant samples are used to construct the in-context examples
and target context, leading to generating the samples not useful. Also, the target-context retriever is
particularly important for data augmentation, as this is used to directly derive instances for training.

4 Conclusion
In this work, we pointed out the limitation of existing data augmentation approaches that use the seed
data alone, leading to generating suboptimal and less diverse instances, despite the existence of plenty
of external samples available. Inspired by this, we proposed the LLM-powered Retrieval-Augmented
Data Augmentation (RADA) framework, which augments the seed data by leveraging samples
retrieved from the external data store based on their relevance with the seed data. Specifically, the
input to LLMs for data augmentation can be viewed from two different angles of in-context examples
and task-solving context, and we constructed them through samples from within and across the seed
data and the retrieved data. Through extensive evaluation results on multiple datasets with training
and test-time data augmentation scenarios, we showed that RADA outperforms strong LLM-powered
data augmentation baselines substantially. Also, our findings reveal that the data samples generated
from our approach are much more diverse against baselines while being relevant to the seed data, due
to leveraging retrieval for data augmentation. We believe that RADA will pave the way for enhancing
the model performances on realistic low-resource domain-specific tasks, which have arisen as very
important problems recently due to the limited availability and privacy concerns of data.

2Due to the cost of Self-Instruct, we are not able to generate its samples for the 100 times augmentation-level.
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A Additional Experimental Setups

A.1 Tasks and Datasets

We validate our RADA on training data augmentation and test-time data augmentation scenarios.

Training Data Augmentation The goal of training data augmentation is to expand the samples
available, which is useful when new events occur that the model needs to adapt to, while having only
limited data for training. To test RADA with this scenario, we use three low-resource domain-specific
datasets: Covid QA [44] that is annotated by medical doctors for tackling the COVID-19 pandemic;
Policy QA [1] that is designed with specialized policies about website privacy; and Tech QA [8] that
is constructed with questions on technical public forums for the IT domain. Additionally, to simulate
the low-resource settings, we sample 10, 30, and 100 instances from the training dataset.

Test-Time Data Augmentation The assumption of test-time data augmentation is more challenging,
considering the case where there is no data available for training due to strict privacy concerns (e.g.,
users or institutions may not want to share their private data to train models) [30]. For this scenario,
we select and use three specific domains from the MMLU dataset [26] as it does not have direct
training instances (aligned with our validation purpose), as well as using previous Covid QA, Policy
QA, and Tech QA without any training samples for this setup.

External Resources for Retrieval We construct the external data store serving as a retrieval source
by aggregating samples from other datasets. Specifically, for Covid QA, Policy QA, and Tech QA
designed for open-domain Question Answering (QA), we use the Natural Questions (NQ) [33] and
the labeled subset [67] of MS MARCO [45], covering broad domains with questions asked on web
search. For MMLU that targets multi-choice QA, we use its official auxiliary data collected from
similar datasets.

A.2 Baselines and Our Model

We compare our approach to several LLM-powered data augmentation baselines to ensure a fair
evaluation. Also, we include non-LLM-based approaches for reference purposes, contrasting them
with LLM-based methods (see Appendix B for further discussion and results on them).

1. Seed Data – It uses only the seed data for training models without extra data augmentation steps.
2. PAQ (non-LLM) – It [36] is a state-of-the-art non-LLM-based method, which selects passages,

extracts answers, generates questions, and filters some of them, with conventional NER tools.
3. Augment w/ Seed Data – It expands the seed data by generating new data instances from the seed

data, where samples for in-context learning and target-context selection are randomly picked.
4. Self-Instruct – It [60] aims to bootstrap new tasks only with limited seed examples, by incorpo-

rating the generated data instances in the data pool and leveraging them along with the seed data
iteratively, where the samples in the pool are used to construct the in-context and target samples.

5. CQA Generation – It [56] generates a context and then, based on it, subsequently generates a
question-answer pair, where existing seed data samples are used for in-context learning. Its variant
(QA Generation) generates a question-answer pair with in-context learning [69].

6. Seed + External Data – It trains the models with the seed data instances as well as all the instances
available in the external data pool.

7. RADA – This is our model that generates samples by retrieving samples (relevant to the seed data)
from the external corpus and using them for in-context and target context.

We note that, for the test-time data augmentation scenario, since the samples having complete input-
output pairs are unavailable, we cannot compare against the baselines requiring in-context examples;
yet, RADA can run with only the target context.

A.3 Implementation Details

Models We use Llama2-7B-Chat [58] as the basis for data augmentation across all methods. For
fine-tuning, we use either T5-base [48] or Llama2-7B, to measure the effectiveness of different
approaches directly without worrying about data contamination as they are not trained on any
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Figure 7: ROUGE-L score distributions measured
between the seed and generated data on Covid QA.
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Figure 8: ROUGE-L score distributions measured
between the seed and generated data on Policy QA.

downstream tasks/datasets. For the number of data augmented, unless otherwise stated, we produce
samples amounting to 30 times that of the seed data and train models with the seed and generated
data. A retriever used to retrieve instances is DistilBert TAS-B [27]. We report results with the F1
score for Covid QA, Policy QA, and Tech QA datasets, and the accuracy for MMLU, following
standard evaluation protocols.

Fine-tuning Details Here, we provide more details on how to fine-tune models on the seed and
augmented data samples. Firstly, for T5-base, we train it over 5 epochs with a batch size of 8 and
a learning rate of 3×10−5, selecting the best epoch to report the performance with inference. For
Llama-7B, to train it with our computational resources available, we use the QLORA [15] technique,
on which we use the epoch size of 30, the batch size of 1, and the learning rate of 2×10−4. Lastly,
we report the fine-tuning results with three runs.

Prompts The prompt used to elicit the data augmentation is provided in Table 12. For the domain-
specific datasets including Covid QA, Policy QA, and Tech QA, we use the following prompt to
generate the answer: "Context: { } Question: { } Answer: ". For the MMLU dataset, we use the
following prompt: "Question: { } Answer Options: { } Answer:" where 5-shot examples prepended
are the same as the one in the official code repository3.

Computational Resources and Time We train and inference all baselines and our model by using
one of the TITAN RTX, NVIDIA GeForce RTX 3080, NVIDIA GeForce RTX 3090, NVIDIA RTX
A4000, NVIDIA RTX A5000, and Quadro RTX 8000 GPUs, depending on their availability at the
time of run. The time required for training RADA ranges from a few minutes to about one and half
day, which also depends on the number of the augmented data used for model fine-tuning.

Deep Learning Libraries In our experiments, we utilize the deep learning libraries as follows:
PyTorch [47], Transformers [66], SentenceTransformers [51], and BEIR [57].

B Additional Experimental Results

Table 5: The average ROUGE-scores between the origi-
nal data samples and the augmented data samples.

Covid Policy Tech

Augment w/ Seed Data 0.34 0.29 0.39
Self-Instruct 0.33 0.28 0.32

RADA (Ours) 0.30 0.25 0.24

More Analysis of Data Diversity In addition
to the result of ROUGE-L score distributions
on Tech QA in Figure 5, we provide results
on Covid QA and Policy QA in Figure 7 and
Figure 8, respectively. Additionally, for their
actual ROUGE-L scores, please see Table 5.

To compare the diversity of augmented samples
between other baselines and our method, we have provided further visualizations using t-SNE
embeddings for Covid QA, Policy QA and Tech QA in Figure 9, Figure 10 and Figure 11, respectively.

Table 6: Training time augmentation results on Covid
QA with T5 and Llama as the base for fine-tuning.

# of seed Bases 0-shot 5-shot Seed RADA (Ours)

10 T5 N/A N/A 53.94 67.49
Llama2 12.79 16.43 50.62 56.50

30 T5 N/A N/A 66.50 68.15
Llama2 12.79 16.43 55.48 53.62

Results of Llama on Domain-Specific QA
Here we discuss the training data augmentation
results of Llama on domain-specific QA data
(such as Covid QA). Specifically, in Table 6,
we report its 0-shot and 5-shot performances,
as well as its fine-tuning performances on seed
data and augmented data. As shown in Table 6,

3https://github.com/hendrycks/test
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Table 7: Results with filtering mechanisms on domain-specific QA with training data augmentation settings.
Covid QA Policy QA Tech QA Average

Methods 10 30 100 10 30 100 10 30 100 10 30 100

RADA (Ours) 67.49 68.15 68.57 29.23 28.49 29.18 40.81 44.37 46.93 45.84 47.00 48.23
w/ ROUGE-based Filtering 66.21 67.25 66.84 28.35 28.09 28.31 37.75 44.64 46.74 44.10 46.66 47.30
w/ Embedding-based Filtering 67.19 67.67 67.27 28.62 28.13 28.65 40.02 44.64 46.74 45.27 46.82 47.55

w/o Answer Filtering 66.78 66.65 67.09 28.78 28.44 29.12 40.55 42.43 42.56 45.37 45.84 46.26

Table 8: Training data augmentation results where we report the standard deviations in parentheses and the
statistically significant results (under the t-test of p-value < 0.05) in bold.

Covid QA Policy QA Tech QA

Methods 10 30 100 10 30 100 10 30 100

Seed Data 57.07 (2.76) 66.93 (0.38) 68.97 (0.46) 6.25 (1.21) 16.26 (3.46) 28.09 (0.49) 12.28 (2.37) 17.59 (0.48) 33.90 (2.34)

PAQ (non-LLM) 65.23 (0.66) 66.55 (0.24) 66.72 (0.47) 24.37 (0.18) 25.87 (0.60) 27.48 (0.46) 24.03 (0.48) 25.65 (1.39) 29.89 (0.35)
Augment w/ Seed Data 62.74 (1.41) 64.69 (0.01) 65.01 (0.51) 28.08 (0.41) 27.49 (0.47) 25.89 (0.16) 40.20 (0.92) 42.07 (1.52) 42.42 (1.01)
Self-Instruct 63.34 (1.58) 61.90 (0.18) 64.20 (0.24) 27.48 (0.53) 27.50 (0.13) 27.53 (0.27) 33.20 (0.75) 39.13 (0.76) 37.55 (0.53)
QA Generation 51.72 (1.15) 48.98 (1.82) 39.05 (1.91) 20.04 (0.77) 20.46 (0.55) 20.95 (0.22) 30.01 (0.13) 30.99 (0.23) 32.80 (0.78)
CQA Generation 67.00 (0.32) 67.01 (0.18) 67.80 (0.17) 27.30 (0.26) 24.96 (0.17) 25.94 (0.70) 28.08 (0.92) 30.94 (0.68) 31.88 (0.95)
Seed + External Data 62.30 (0.44) 62.81 (0.28) 63.50 (0.55) 25.72 (0.41) 25.60 (1.07) 29.34 (0.12) 34.82 (0.21) 35.46 (0.94) 37.06 (0.02)

RADA (Ours) 67.55 (0.15) 67.95 (0.20) 68.36 (0.25) 28.83 (0.37) 28.25 (0.21) 28.88 (0.50) 40.44 (0.53) 44.41 (0.45) 45.81 (0.97)

despite the large number of parameters that Llama2-7B has (which is ten times larger than T5), we
observe that Llama2 is inferior to T5. We conjecture that this may be because the general massive cor-
pus used to pre-train Llama2 has little (to no) overlap or relevance with instances in domain-specific
tasks. In other words, eliciting the domain-specific ability of Llama2 with fine-tuning may be largely
suboptimal, when it does not have internalized knowledge about its corresponding domain-specific
tasks. In addition, this result may further highlight the fact that not all the larger models perform
always better than the smaller models in low-resource settings, which gives us a promise to take
advantage of computational efficiency, especially when dealing with extreme domain-specific tasks,
or that specific LLMs may be required to handle each specific domain.

Results with Filtering Strategies We try various filtering approaches on the augmented data to
fine-tune models with only the samples of high quality. Specifically, to further promote diversity in
the generated samples from our RADA, we filter samples if they are similar to the already generated
samples, based on their ROUGE scores or their embedding-level distances. Then, as shown in Table 7,
these filtering techniques do not improve the model performance. This may further strengthen our
claim that the augmented instances from RADA are already very diverse but also relevant to the seed
data, which does not necessitate additional filtering mechanisms. On the other hand, if we relax the
assumption that the passage should include the answer to the question for domain-specific QA, and
subsequently do not apply the filtering strategy, the performance drops slightly in Table 7.

Table 9: Test-time data augmentation results where the
standard deviations are in parentheses and the statisti-
cally significant results (p-value < 0.05) are in bold.

Domain-Specific QA Covid Policy Tech

External Data 54.02 (0.42) 19.32 (0.11) 12.97 (0.52)
PAQ (non-LLM) 61.22 (0.22) 25.03 (0.34) 19.83 (0.83)

RADA (Ours) 66.03 (0.15) 29.14 (0.18) 29.17 (0.98)

Results with Standard Deviation We report
the average performance of three different runs
and their standard deviation on training-time
data augmentation and test-time data augmen-
tation scenarios in Table 8 and Table 9, respec-
tively. These results show that our proposed
RADA achieves the statistically significant re-
sults over baselines on the most cases.

Table 10: Comparison results of RADA against non-
LLM-based methods on the challenging TechQA dataset,
with the training time augmentation scenario. We report
the standard deviations in parentheses and the statisti-
cally significant results (under the t-test) in bold.

10 30 100

PAQ 24.03 (0.48) 25.65 (1.39) 29.89 (0.35)
GENIUS 12.28 (2.37) 26.90 (0.50) 43.55 (0.45)
EDA 38.27 (0.53) 41.93 (0.26) 45.21 (0.64)
AEDA 38.86 (0.30) 41.98 (0.30) 45.24 (0.16)

RADA (Ours) 40.44 (0.53) 44.41 (0.45) 45.81 (0.97)

More Results of Non-LLM-based Baselines
It is worth noting that making a comparison of
LLM-based approaches (including our RADA)
over non-LLM-based methods is unfair since
different LMs have different capabilities in gen-
erating outputs, which leads to far different qual-
ity of augmented samples. Therefore, to ensure
a fair comparison across all data augmentation
approaches, we set Llama2 as the basis for data
augmentation. Nevertheless, to see the efficacy
of non-LLM-based approaches, we compare our

15



RADA against several recent and popular (non-LLM-based) methods, namely PAQ [36], GE-
NIUS [24], EDA [62], and AEDA [31], on the most challenging dataset (TechQA) that we observe in
Table 1. Then, we report the results in Table 10. From this, we observe that RADA significantly out-
performs previous non-LLM-based methods, demonstrating the effectiveness of using the LLM-based
approach for data augmentation under low-resource settings, thanks to LLM’s prior knowledge.

Table 11: Results of another LLM (ChatGPT) for data
augmentation with seed examples of 10.

Covid Policy Tech Average

Self-Instruct 57.86 26.20 33.42 39.16
CQA Generation 65.64 27.20 34.16 42.33

RADA (Ours) 67.19 28.59 36.17 43.98

Analysis of Using Different LLMs We con-
duct an auxiliary analysis to see whether the su-
periority of RADA is consistent across different
LLMs, compared to existing baselines. In partic-
ular, we use ChatGPT 3.5 (released on June 13,
2023) as the basis model for data augmentation,
and report the results in Table 11. From this,
we observe that RADA significantly outperforms baselines with another data augmentation LLM,
demonstrating its robustness across different LLMs for data augmentation.

Quantitative Analysis In Table 13, 14, 15, we provide examples of the augmented instances across
different methods on Covid QA, Policy QA, and Tech QA. A key finding from these results is that
the existing approach that uses only the seed data results in a limited diversity of generated samples,
unlike our RADA which generates distinct yet contextually coherent samples with the seed data,
thanks to the retrieval of relevant external samples.

C Related Work

In this section, we provide detailed discussions about the relevant literature.

Large Language Models Large Language Models (LLMs), which are trained on vast amounts
of textual corpora with multiple training strategies along with a large number of parameters, have
demonstrated remarkable capability of handling diverse tasks [7, 58, 46, 3]. A notable feature of
these models is their ability to perform in-context learning, which means they can understand and
learn from examples or instructions provided in the input and then adapt their responses based on
this information, without requiring retraining for each specific task [7, 63, 43, 11, 21]. Due to its
simplicity yet effectiveness and versatileness, several approaches have been introduced to improve the
quality of the LLM context. In particular, Lyu et al. [42] constructs pseudo-demonstrations, for the
case where examples in the context are unavailable, by retrieving relevant instances from the external
corpus based on their similarities with the input query. Similarly, Ram et al. [49] and Baek et al. [4]
augment LLMs by prepending relevant documents or facts retrieved from the external corpus in their
input context, to improve the factuality of LLM responses. Lastly, Long et al. [40] targets adapting
LLMs with in-context examples (which are adaptively retrieved) for domain adaptation. However,
existing works do not focus on augmenting the data based on the retrieval of its relevant samples
from other datasets, through in-context learning of LLMs.

Data Augmentation Despite the notable successes of LLMs, their performance significantly
deteriorates in low-resource settings, particularly for domain-specific environments where the data
available for training is very scarce (for instance, in the case of emerging events like novel viruses) or,
in certain cases, completely unavailable (such as in privacy-sensitive enterprise contexts) [39, 10, 5].
Further, they are less likely to be trained with ones similar to these specialized data, leading to
constrained capability in handling them. To address this challenge, numerous studies have proposed to
expand the original seed data with various data augmentation techniques [19, 37]. Early works utilized
token-level perturbation approaches, which either alter texts [54, 64] or interpolate them [9, 25].
Recent studies have shifted the focus towards utilizing the capability of generative language models,
since they may internalize the useful knowledge to generate samples relevant to the seed data. Previous
works on this line trained relatively smaller language models, based on the input-output pairs of
the seed data to generate new outputs from the input variants [68, 2, 34]. Also, more recent works
have used LLMs, which have much greater capability in generating high-quality data (sometimes
surpassing human-level performances) without requiring task-specific training [16, 28, 65, 35].
Specifically, in information retrieval, some studies have generated synthetic queries with LLMs, to
match the unlabeled documents with them [6, 14, 53]. Similarly, some other studies have proposed
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LLM-powered methods for specific down-stream tasks, such as text classification [13, 55], reading
comprehension [56], natural language understanding [18, 22] or multi-hop question answering [12].
This trend also goes to empowering the collection of instruction-tuning and alignment datasets for
LLM training, which expands actual data samples with synthetic samples generated from LLMs
themselves [29, 60, 61, 38, 17, 20]. However, in the low-resource setting, the seed data samples
available to use for data augmentation are extremely scarce, which may result in suboptimal quality
and limited diversity of the generated data. In this work, we propose to overcome this limitation by
augmenting the data generation process with retrieval from larger external samples.

D Limitations

We faithfully discuss some remaining room for improvements to our RADA framework. First of all,
the effectiveness of our retrieval-augmentation approach (by its nature) depends on the quality and
relevance of the external data store. Thus, the performance of RADA may degenerate if the retrieval
source is not truly aligned with our seed data, and we leave exploring this new setting as future
work. Also, investigating the scenario of continuously updating the retrieval pool over time would be
interesting for future work as well. On the other hand, due to the heavy cost of fine-tuning LLMs,
data sample efficiency (i.e., reducing the amount of samples to train while maintaining the model
performance) becomes an important agenda. While we do have some preliminary results on filtering
augmented samples in Appendix B, it would be interesting to developing more on this direction.

E Broader Impacts

While RADA is superior in generating more diverse and high-quality samples (compared to existing
data augmentation approaches), its performance is not flawless: the retriever might retrieve offensive
or harmful instances for data augmentation, and the generator might produce plausible yet factually
incorrect instances. Therefore, it may be carefully used for mission-critical domains, such as
biomedical or legal fields, (perhaps with the help of domain-experts during the augmentation process).
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Figure 9: Embedding-space visualization results using t-SNE on Covid QA.
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Figure 10: Embedding-space visualization results using t-SNE on Policy QA.
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Figure 11: Embedding-space visualization results using t-SNE on Tech QA.
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Table 12: A list of prompts that we use for data augmentation with the proposed RADA framework. It is worth
noting that the variable inside the parentheses {} is replaced with its actual string (e.g., context, question, answer
options, and answer). Also, the last sentence of the prompt represents the target context, which is used as the
main source of information to generate the augmented instance. For MMLU, we use the combinations of Version
1 and Version 2 for data augmentation.

Types Prompts

Domain-
specific QA

I want you to act as a question and answer generator. Your goal is to create an
extractive question-answer pair based on a given context. The answer to the question
must be a specific span from the given context.
Context: {context 1}
Question: {question 1}
Answer: {answer 1}
Context: {context 2}
Question: {question 2}
Answer: {answer 2}
Context: {context 3}
Question: {question 3}
Answer: {answer 3}
Context: {context}

MMLU
(Version 1)

I want you to act as an answer options and answer generator. Your goal is to create
four answer options and the answer pair based on a given question. The answer must
be one of the generated answer options.
Question: {question 1}
Answer Options: {answer options 1}
Answer: {answer 1}
Question: {question 2}
Answer Options: {answer options 2}
Answer: {answer 2}
Question: {question 3}
Answer Options: {answer options 3}
Answer: {answer 3}
Question: {question}

MMLU
(Version 2)

I want you to act as a question and answer generator. Your goal is to create an
extractive question-answer pair based on the given answer options. The answer to the
question must be selected from the given answer options.
Answer Options: {answer options 1}
Question: {question 1}
Answer: {answer 1}
Answer Options: {answer options 2}
Question: {question 2}
Answer: {answer 2}
Answer Options: {answer options 3}
Question: {question 3}
Answer: {answer 3}
Answer Options: {answer options}
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Table 13: The example question-answer pairs generated from different models on Covid QA.
Types Samples

Augment
w/ Seed Data

Context: polymerase chain reaction testing, the time lag between hospitalization and
reporting was longer for early cases compared with that of more recent cases. Among
the seven locations reporting importation, the total volume of inbound passengers
from China was m = 63.1 million per year in 2017 [9] , of which 100q = 2.1% were
from Wuhan [10] , a home of n = 19.0 million people as the catchment population of
Wuhan airport.
Generated Question: What was the total volume of inbound passengers from China
to the seven locations reporting importation in 2017?
Generated Answer: 63.1 million per year

Self-Instruct

Context: polymerase chain reaction testing, the time lag between hospitalization and
reporting was longer for early cases compared with that of more recent cases. Among
the seven locations reporting importation, the total volume of inbound passengers
from China was m = 63.1 million per year in 2017 [9] , of which 100q = 2.1% were
from Wuhan [10] , a home of n = 19.0 million people as the catchment population of
Wuhan airport.
Generated Question: What is the total volume of inbound passengers from China?
Generated Answer: m = 63.1 million per year in 2017

RADA (Ours)

Context: MYTH: The flu is just a bad cold. Influenza may cause bad cold symptoms,
like sore throat, runny nose, sneezing, hoarseness, and cough. But in the United States
alone, 36,000 people die and more than 200,000 are hospitalized each year because
of the flu. During the 2017/18 flu season, flu activity has significantly increased
throughout the majority of the country with the A(H3N2) viruses predominating so
far, according to the Centers for Disease Control (CDC).
Generated Question: What are the consequences of getting the flu?
Generated Answer: 36,000 people die and more than 200,000 are hospitalized each
year because of the flu.

Table 14: The example question-answer pairs generated from different models on Policy QA.
Types Samples

Augment
w/ Seed Data

Context: IP Addresses. We use your IP address to help diagnose problems with our
server, and to administer our Web site. Your IP address is used to help identify you
and, in the case of the Coffee Review Marketplace, your shopping cart and to gather
broad demographic information in the interest of improving our site and service.
Generated Question: How does the company use IP addresses?
Generated Answer: to help diagnose problems with our server, and to administer our
Web site.

Self-Instruct

Context: IP Addresses. We use your IP address to help diagnose problems with our
server, and to administer our Web site. Your IP address is used to help identify you
and, in the case of the Coffee Review Marketplace, your shopping cart and to gather
broad demographic information in the interest of improving our site and service.
Generated Question: What information does the company use IP addresses for?
Generated Answer: to help diagnose problems with our server, and to administer our
Web site. Your IP address is used to help identify you and, in the case of the Coffee
Review Marketplace, your shopping cart and to gather broad demographic information
in the interest of improving our site and service.

RADA (Ours)

Context: The 1998 Data Protection Act sets the rules for how UK businesses can
gather, store and use people confidential data. The Act is organised around eight
principles of data protection. They include the idea that personal data should be
obtained and processed fairly and lawfully, that only the right data should be used,
that data should be accurate and so on. Principle Seven covers data security. It states:
Generated Question: What is the main purpose of the 1998 Data Protection Act?
Generated Answer: The 1998 Data Protection Act sets the rules for how UK busi-
nesses can gather, store and use people confidential data.
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Table 15: The example question-answer pairs generated from different models on Tech QA.
Types Samples

Augment
w/ Seed Data

Context: VULNERABILITY DETAILS

CVEID: CVE-2015-1920 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2015-1920]
DESCRIPTION: WebSphere Application Server could allow a remote attacker to
execute arbitrary code by connecting to a management port and executing a specific
sequence of instructions.
CVSS Base Score: 9.3
CVSS Temporal Score: See https://exchange.xforce.ibmcloud.com/vulnerabilities/102404
[https://exchange.xforce.ibmcloud.com/vulnerabilities/102404] for the current score
CVSS Environmental Score*: Undefined
CVSS Vector: (AV:N/AC:M/Au:N/C:C/I:C/A:C)
Generated Question: What is the CVSS Base Score of the vulnerability in IBM
WebSphere Application Server?
Generated Answer: The CVSS Base Score of the vulnerability in IBM WebSphere
Application Server is 9.3.

Self-Instruct

Context: VULNERABILITY DETAILS

CVEID: CVE-2015-1920 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2015-1920]
DESCRIPTION: WebSphere Application Server could allow a remote attacker to
execute arbitrary code by connecting to a management port and executing a specific
sequence of instructions.
CVSS Base Score: 9.3
CVSS Temporal Score: See https://exchange.xforce.ibmcloud.com/vulnerabilities/102404
[https://exchange.xforce.ibmcloud.com/vulnerabilities/102404] for the current score
CVSS Environmental Score*: Undefined
CVSS Vector: (AV:N/AC:M/Au:N/C:C/I:C/A:C)
Generated Question: What is the CVSS score for the vulnerability in WebSphere
Application Server?
Generated Answer: CVSS Base Score 9.3.

RADA (Ours)

Context: The Wii Homebrew Applications (such as The Homebrew Channel, Emula-
tors, Games, Media players, etc.), USB Loader GX’s NAND emulation feature and
DIOS MIOS (Lite) require a FAT32 partition format. You can use a FAT32 SD/SDHC
card for that purpose and set your USB hard drive as NTFS or Ext partition format.
Generated Question: What partition format is required for certain Wii Homebrew
applications?
Generated Answer: FAT32
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Abstract and Introduction, as well as all other sections followed by them.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section D.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our paper does not have any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 3 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We will provide the data and code, with instructions to reproduce the results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release new data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all the assets and follow their terms.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: We do not release the new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not have crowdsourcing experiments and research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not have human study and its participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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