
Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

MULTI-TASK REINFORCEMENT LEARNING WITH TASK
REPRESENTATION METHOD

Myungsik Cho, Whiyoung Jung, Youngchul Sung ∗

School of Electrical Engineering
Korea Advanced Institute of Science and Technology
{ms.cho,wy.jung,ycsung}@kaist.ac.kr

ABSTRACT

Multi-task reinforcement learning (RL) algorithms can train agents to acquire
generalized skills across various tasks. However, jointly learning with multiple
tasks can induce negative transfer between different tasks, resulting in unstable
training. In this paper, we newly propose a task representation method that prevents
negative transfer in policy learning. The proposed method for multi-task RL adopts
a task embedding network in addition to a policy network, where the policy network
takes the output of the task embedding network and states as inputs. Furthermore,
we propose a measure of negative transfer and design an overall update method
that can minimize the suggested measure. In addition, we raise an issue of the
negative effect on soft Q-function learning resulting in unstable Q learning and
introduce the clipping method to reduce this issue. The proposed multi-task
algorithm is evaluated on various robotics manipulation tasks. Numerical results
show that the proposed multi-task RL algorithm effectively minimizes negative
transfer and achieves better performance than previous state-of-the-art multi-task
RL algorithms.

1 INTRODUCTION

Reinforcement learning (RL) with deep neural networks has been applied successfully to various
fields, e.g., playing Atari games from raw pixel images (Mnih et al., 2015), the game of Go (Silver
et al., 2016), control of locomotion skills (Schulman et al., 2015; Lillicrap et al., 2015; Schulman
et al., 2017; Haarnoja et al., 2018b; Fujimoto et al., 2018), etc. Despite such success of deep RL,
most deep RL algorithms solve each task independently so that they suffer from the lack of sample
efficiency on complex tasks. Learning multiple tasks with individual policies requires a large amount
of memory and samples, whereas training a single policy network that generalizes across a given
set of tasks is challenging in RL. In particular, generalized skills across diverse tasks are necessary
to apply RL algorithms in real robot control. Multi-task learning (Caruana, 1997) is one approach
to this problem. In multi-task RL, the agent needs to train a policy that can be generalized across
diverse sets of tasks. The agent can train a policy parameterized by a neural network with multiple
tasks, improving sample efficiency by sharing and reusing the parameters across different tasks.

𝜃𝑡
𝛻ℒ1

𝛻ℒ2

𝛻ℒ3

Figure 1: Negative transfer be-
tween Task 1 and Tasks 2/3

However, multi-task RL has a challenging problem called negative
transfer in which the training of some tasks can negatively affect
other tasks, resulting in instability in training (Sun et al., 2019). For
example, Fig. 1 shows that the gradients of task 1 and tasks 2 and3
do not align, so the gradient direction of task 1 harms the learning of
tasks 2 of 3. Note that as the number of tasks increases, the negative
transfer occurs more often. To tackle this issue, the policy with
multiple modules (Haarnoja et al., 2018a; Andreas et al., 2017; Yang
et al., 2020) was introduced to prevent the interference between tasks using the different module
for each task. In particular, the gradient surgery method proposed in (Yu et al., 2020a) keeps off
negative transfer by aligning the gradient direction of each task using the projection method. In

∗Corresponding author

1

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

practice, however, the gradient of each task contains large noisy component because it is computed
by sampling a mini-batch from replay buffer, resulting in an inaccurate projection of gradient.

In this paper, we focus on preventing negative transfer on both policy π and its action value function
Qπ. We propose a task representation method which effectively restrains the negative transfer in
policy learning. This approach consists of a task embedding network and a policy network and a
learning algorithm to minimize interference between tasks. The task embedding network receives its
input from the task ID designed as a one-hot encoding vector and the current state, and outputs the
representation of task information at the current time. The policy network takes the current state and
the representation from the task embedding network as input, and outputs an action at the current
time. In the learning process, we measure the amount of negative transfer according to the update of
policy for each task, and train the task embedding network to minimize the measurement through
a gradient-based meta-learning approach (Finn et al., 2017; Ji et al., 2020). Then, we analyze the
interference on Q function between different tasks, and introduce a simple clipping method on Q
function, allowing stable Q learning. The detail will be explained in the following sections. We
evaluate the proposed method in Meta-World (Yu et al., 2020b), which contains 50 manipulation
tasks using the robotic arm, and achieve better performance than previous state-of-the-art multi-task
algorithms.

2 BACKGROUND

2.1 SETUP

We consider RL composed of an environment E and an agent, and assume that the system is
modeled as a discrete-time finite-horizon Markov decision process (MDP) denoted by M =
(S,A,P, r, ρ, γ,H), where S is the state space, A is the action space, P : S × A × S → R+

is the transition probability, r : S × A → R+ is the reward function, ρ : S → R+ is the initial
state distribution, γ ∈ [0, 1) is the discount factor, and H is the time horizon. We assume that the
environment is fully-observable so that the environment state st is available to the agent. At each
time step t, the agent observes a state st ∈ S from the environment E and executes an action at ∈ A
based on its policy π(at|st). Then, the environment gives the agent a reward rt according to the
reward function rt = r(st, at) and makes a transition to a next state st+1 according to the transition
probability P(st+1|st, at). The goal of basic RL is to maximize the expected discounted accumulated
rewards J(π) = Eπ

[∑T
t=0 γ

tr(st, at)
]
. We use parameterized policy πθ(at|st) which is trained to

maximize J(πθ).

2.2 SOFT ACTOR-CRITIC

Soft Actor-Critic (SAC) (Haarnoja et al., 2018b) is an off-policy RL algorithm, where the action
from the actor is encouraged to be sampled uniformly by increasing the entropy of action. The
policy objective function of SAC is given by JSAC(π) = Eπ[

∑∞
t=0 γ

t(rt + βH(π(·|st)))] where
H is the entropy function and β > 0 is the weighting for the entropy term. To optimize JSAC(π),
SAC optimizes alternately the parameterized Soft Q-function Qψ and the policy πθ. The policy loss
function and soft Q-function loss are given by

Jπ(θ) = Es∼ρ
[
Ea∼π[β log πθ(a|s)−Qψ(s, a)]

]
, (1)

JQ(ψ) = Es∼ρ,a∼π
[1
2

(
Qψ(s, a)− (r(s, a) + γEs′,a′ [Qψ̄(s′, a′)− β log πθ(a′|s′)]))2

]
, (2)

where ψ̄ is a parameter for target Q-value network. The coefficient β is trained to maintain the
entropyH(π(·|st)) to a target entropy H̄ (Haarnoja et al., 2018c) with

J(β) = Ea∼π[−β log π(a|s)− βH̄]. (3)

2.3 MULTI-TASK REINFORCEMENT LEARNING

Under the setup of multi-task RL, we consider a task set C = {Ti}Ni=1 and assume a uniform distribu-
tion p(T) over the task set C. Here, each task Ti has a different MDP Mi = (S,A,Pi, ri, ρi, γ,H),
and captures a situation where the reward function ri and the transition probability Pi are different

2

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

across the tasks. Each task T drawn from the distribution p(T) has a maximization objective given
by the expected discounted accumulated rewards, J(π, T). The goal of Multi-task RL is to learn a
policy that maximizes the overall expected returns over the tasks Eτ∼p(T)[J(π, T)]

In this paper, we train a generalized policy π(a|s, z) across the tasks with the SAC algorithm as the
background algorithm, where z represents an encoding of the task ID, i.e., one-hot task identification
encoding. The policy objective of multi-task RL is then given by ET ∼p(T)[JSAC(π, T)].

We assume that the agent has an individual soft Q-function Qπi (s, a) for each task Ti, where each
soft Q-function is trained by the loss (2). The coefficient of entropy βi exists for each task Ti in the
multi-task RL setting, and each βi is optimized by J(βi) = Ea∼π,Ti

[−βi log π(a|s, z)− βiH̄].

3 MULTI-TASK REINFORCEMENT LEARNING WITH TASK EMBEDDING
NETWORK

In multi-task learning, we wish that the knowledge that is acquired from learning each task can be
exploited and helps learn other tasks better. During multi-task learning, however, the training of one
task can negatively affect the training of others, resulting in negative transfer which induces instability
in learning. In this section, we investigate how the negative transfer affects other tasks’ soft Q-function
Qπi learning, and introduce a simple clipping technique to prevent from harming Qπi . Then, we
propose a task embedding network for multi-task RL, which provides task representation to policy and
prevents the negative transfer effect on policy training. From the proposed task embedding network,
we introduce a measure of negative transfer for each task, which is used to reduce interference with
other tasks in policy training. Finally, we propose an additional experience replay per task, which
stores the top K trajectories on return for the task embedding network training.

3.1 POLICY NETWORK WITH TASK EMBEDDING NETWORK

In the proposed method, we have a generalized policy πθ(a|s, z) parameterized by θ, and a task
embedding network Eϕ(z|s, zT) parameterized by ϕ for each task T . Here, the proposed networks
are shared across all tasks. Note that Eϕ(·|s, zT) is a distribution over the representation space Z. At
each time, the task embedding network takes the input of the current state st and the embedding of the
task ID zT , and outputs the representation z ∼ Eϕ(z|s, zT), where zT is one-hot task identification
encoding. The policy πθ(a|s, z) is learned to achieve the goal of multi-task RL by taking the
representation z as an additional input in addition to the current state st.

3.2 MEASURE OF NEGATIVE TRANSFER

For each task Ti, we have the policy objective as JSAC(πθ, Eϕ, Ti), and the policy parameter θ
should be trained to maximize ET ∼p(T)[JSAC(πθ, Eϕ, T)] by gradient ascent. However, there can
exist some task Tk ∈ C whose gradient direction for its objective harms the objectives of other tasks,
and this makes it challenging to achieve the goal of the multi-task RL. Therefore, to tackle this
problem, we investigate when negative transfer can occur. Note that for notational simplicity, denote
JSAC(πθ, Eϕ, T) as JSAC(θ, ϕ, T).

Negative Transfer: Consider a task objective set Jset = {JSAC(θ, ϕ, Ti)}Ni=1. From the policy
objective JSAC(θ, ϕ, Ti) of each task Ti, we update the policy parameter θ to maximize the policy
objective by gradient-ascent. Let this updated policy parameter be θi, i.e.,

θi = θ + α∇θJSAC(θ, ϕ, Ti), (4)

where α > 0 is the gradient step size. From the updated policy parameter θi, we renew the task
objective set Jset to J iset:

J iset = {JSAC(θi, ϕ, Tj)}Nj=1. (5)

Assuming that a task Tk causes many negative transfers to other tasks, the task Tk increments the
number of tasks whose policy objective is lower than before the parameter was updated to θk. Let us
denote the number of such tasks as µ(Tk), i.e.,

µ(Tk) =
∣∣{i | JSAC(θk, ϕ, Ti) < JSAC(θ, ϕ, Ti)}

∣∣ (6)

3

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Task 𝓣𝟏

Task 𝓣𝟐

Task 𝓣𝟑

Task 𝓣𝑵

Task 𝓣𝑵−𝟏

𝒛 ∼ 𝑬𝝓(⋅ |𝒔, 𝒛𝓣) 𝒂 ∼ 𝝅𝜽(⋅ |𝒔, 𝒛)

Task Embedding
Network

Policy
Network

state 𝒔

Task ID 𝒛𝓣
𝒛 𝒂

π𝜽𝟏(⋅ |𝒔, 𝒛)

π𝛉𝟐(⋅ |𝐬, 𝐳)

π𝛉𝐍(⋅ |𝐬, 𝐳)

Update 𝜽 by
𝑱𝑺𝑨𝑪(𝜽,𝝓,𝓣)

𝑱𝑵⋅𝑻(𝝓)

ො𝒔

ො𝒔 = 𝑫𝝋(𝒛, 𝒛𝓣)

Decoder
Network

𝑱𝑽𝑨𝑬(𝝓,φ)

𝑱𝒑𝒐𝒍𝒊𝒄𝒚(𝜽)

Update for negative transfer
Update for variational approach
Update for policy

Figure 2: Architecture for the proposed method. Our architecture consists of three network: (1) task
embedding network Eϕ (2) policy network πθ (3) decoder network Dφ.

Measurement of Negative Transfer: µ(Tk) in Equation 6 indicates how many tasks are negatively
affected by updating the parameter θ to θk. Hence, µ(Tk) can be considered as a measure of negative
transfer on task Tk. So, we define µ(Tk) as the measure of negative transfer caused by task Tk. Note
that when µ(Tk) is large, task Tk induces large negative transfer.

3.3 TRAINING FOR POLICY NETWORK

The goal of training policy πθ is to maximize the average expected return over the task set C, i.e.,
ET ∼p(T)[JSAC(θ, ϕ, T)]. Based on the measure of negative transfer defined above, we determine
the set of tasks benign to other tasks in the middle of learning, and propose an update rule to train the
policy with learning stability.

Task Selection: We choose a benign set Cs of tasks from the task set C. For this, we order the
negative transfer measure values µ(Ti), i = 1, · · · , N and then select the tasks with the smallest M
values. That is, Cs := {Tj | µ(Tj) ≤ µ(Tκ(M))}, where κ(i) is defined as

κ(i) = argmin
k ∈ {1, · · ·N}

k ̸∈ {κ(1), · · ·κ(i − 1)}

µ(Tk) for i = 1, · · ·M. (7)

Then, instead of using the policy loss equally weighted over the task set C, we give the tasks in
Cs more weight to reduce negative transfer on the policy learning. The weight wi for task Ti is
proportional to the exponential of N − µ(Ti) as

wi =
exp

(
N − µ(Ti

)
)∑N

j=1 exp
(
N − µ(Ti)

) , (8)

where N is the number of tasks. Thus, we consider the following objective function for the policy:

Jpolicy(θ) =

N∑
i=1

wi JSAC(θ, ϕ, Ti). (9)

3.4 TRAINING FOR TASK EMBEDDING NETWORK

In order to prevent negative transfer, the task embedding network Eϕ should be trained to decrease
µ(Tk) for all tasks Tk ∈ C. However, it is difficult to decrease µ(Tk) directly because µ(Tk) is not
differentiable with respect to the parameter ϕ. Thus, we consider an alternative cost function for ϕ as
maximizing the average over the task objective set in Equation 5 for each task Tk:

JN ·T (ϕ, Tk) =
1

N

N∑
i=1

[
JSAC(θ

k, ϕ, Ti)
]
. (10)

Since the update rule in Equation 4 also depends on the parameter ϕ, we rewrite the Equation 10 as

JN ·T (ϕ, Tk) =
1

N

N∑
i=1

[
JSAC(θ + α∇θJSAC(θ, ϕ, Tk), ϕ, Ti)

]
. (11)

4

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Thus, optimizing the objective in Equation 11 can be seen as training the task embedding network
Eϕ not to perform well for a given policy πθ but to perform well after updating θ to θk, similar to
gradient-based meta-learning approaches (Finn et al., 2017; Ji et al., 2020).

For training of the embedding network, rather than considering all tasks in C, we focus on the tasks in
the set C \Cs, which is the set of harmful tasks in training policy πθ, and mitigate the negative effect
by each task T ∈ C \ Cs. Thus, the final objective function for parameter ϕ to suppress negative
transfer on policy learning is written as

ĴN ·T (ϕ) =
1

|C \ Cs|
∑

T ∈C\Cs

JN ·T (ϕ, T). (12)

Variational Approach to Task Embedding Network: The representation z ∼ Eϕ(·|s, zT) should
capture the sufficient feature of each task and the current state so that the policy can generalize over
the task set C by taking the representation z as an additional input. In order to capture relevant
features of state and task, we consider an additional objective through a variational approach (Kingma
& Welling, 2013).

Let the decoder network Dφ(z, zT) be parametrized by φ, which takes the representation z from
the embedding network Eϕ and the embedding of the task ID zT as input. The goal of the decoder
network is to reconstruct the state s from z ∼ Eϕ(·|s, zT) and zT so that the representation z
becomes a sufficient feature for current state s and task information T . Thus, we consider an
additional objective through variational approach in addition to the negative transfer loss:

JV AE(ϕ, φ) = ET ∼p(T)

[
Ez∼Eϕ,s∼T

[
|Dφ(s, zT)− s|2 +DKL(Eϕ(·|s, zT), p(z))

]]
, (13)

where p(z) is the standard normal distribution. Then, we obtain the final objective for the task
embedding network and the decoder network as follows:

J rep(ϕ, φ) = ĴN ·T (ϕ)− cvaeJV AE(ϕ, φ), (14)

where cvae > 0 is the weighting coefficient between the two terms.

3.5 NEGATIVE EFFECTS ON SOFT Q-FUNCTION

In practice, we consider an individual soft Q-function Qψi(s, a) parameterized by ψi for each task Ti
so that the parameters {ψi}Ni=1 are optimized individually. For a given state, action, reward, and next
state pair d = (s, a, r, s′), we can write the soft Bellman error of Q-function as

JQ(d, ψi) =
1

2

(
Qψi(s, a)− (r + γEa′∼π,z∼Eϕ

[Qψ̄i(s′, a′)− β log πθ(a′|s′, z)])
)2

, (15)

where ψ̄i is the parameter of the target Q-function network for each task Ti.
If the current policy parameter θ is significantly affected from other tasks, the Q-value Q(s′, a′) in
Equation 15 has a poor estimate because the distribution of the replay buffer may not correspond
with the distribution under the current policy, which results in unstable learning of soft Q-function
(Fujimoto et al., 2019).

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ev
al

-s
uc

ce
ss

-r
at

io

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

m
ea

n-
sq

-b
el

lm
an

-e
rr

or
1

(1
e6

)

(a) Reach-v2

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ev
al

-s
uc

ce
ss

-r
at

io

0

250

500

750

1000

1250

1500

m
ea

n-
sq

-b
el

lm
an

-e
rr

or
1

(1
e6

)

(b) Pick-Place-v2

Figure 3: Soft Bellman error and success
ratio graph: (a) Reach-v2 and (b) Pick-
place-v2

To see the negative effect on soft Q-value, we experi-
ment a multi-task SAC algorithm (Yu et al., 2020b) with
a shared policy and individual soft Q-function on MT10
benchmarks in the Meta-World (Yu et al., 2020b), and
investigate the soft Bellman error for each task. Fig. 3
shows the success ratio and soft Bellman error of two
specific tasks (Reach-v2 and Pick-place-v2) in MT10,
where the orange curve shows the average of the Bell-
man error JQ(d, ψi), and the blue curve shows the av-
erage of success ratio of the given task. It is seen that
the values of Bellman error become very large after a
certain time step, significantly reducing the success ratio of each task. Note that the scale of Bellman
error is 1e6.

5

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Clipping Q Loss: In order to solve the instability of individual soft Q-function learning, we propose
a simple technique that clips the soft Bellman error (15) for a given pair (s, a, s′) not to be so large.
Thus, the individual Q-function loss with clipping is given by

JQCLIP (ψ
i) = Ed=(s,a,r,s′)∼D

[
clip

(
JQ(d, ψi), 0, Vclip

)]
, (16)

where D is mini-batch and Vclip is a maximum value of that does not clip.

3.6 TOP-K EXPERIENCE REPLAY

The policy objective JSAC is obtained by sampling a mini-batch from the experience replay so that
the selected task set Cs may change largely depending on the sampled mini-batch. Thus, instead of
selecting the task set Cs for every time step, we select the task set Cs using the task selection method
for every H steps, where H is the horizon length of environments. In the original experience replay
buffer, there are many trajectories whose return may be high or low, and these diverse samples can
make the uncertainty on the task selection method. Since the chosen task set Cs plays an important
role in preventing negative transfer in our method, the proposed task selection method should be
more reliable. In order to reduce the uncertainty in the task selection method, we build another buffer
that stores K trajectories with high returns from the original buffer, and train the task embedding
network Eϕ by sampling mini-batchs from this replay buffer storing high-return trajectories. The
overall architecture of the proposed method is illustrated in Fig. 2 and is summarized in Algorithm 1

4 EXPERIMENT

In this section, we describe the environment setting, baselines, and implementation details.

4.1 ENVIRONMENT

Each environment used in our experiment has a distinct task set C = {T1, . . . , TN}, where N is the
number of tasks. Each task’s reward function and transition probability are different, but the remaining
setup such as the state and action spaces is identical. In order to test how well the proposed method
can perform on multiple complex tasks, we tested our approach with the environment proposed in
Meta-World (Yu et al., 2020b), which has 50 distinct robotic control tasks with a sawyer arm in the
MuJoCo environment (Todorov et al., 2012). Our experiments use two multi-task benchmarks, MT10
(Yu et al., 2020b) and MT20 with 10 and 20 manipulation tasks, respectively, from the Meta-World
environment. The task sets of MT10 and MT20 are given in Appendix B.

4.2 BASELINES

We compared the proposed method with the baseline methods: 1) SAC (Haarnoja et al., 2018b) with
a single-task (SAC-Ind): An individual policy for each task with the SAC algorithm. 2) SAC with
multi-task (SAC-MT): A shared policy with a one-hot task identification encoding and current state
as input. 3) SAC with Multi-task Multi-head (SAC-MT-MH) (Yu et al., 2020b): It is similar to SAC
with multi-task but has an independent final layer in the policy network for each task (multi-head). 4)
SAC with soft modularization (SAC-soft-modular) (Yang et al., 2020): Policy with multiple modules
with soft modularization technique that gives routing strategy for each task. 5) SAC with clipping in
multi-task setting (SAC-MT-with-clipping): SAC-MT with our proposed clipping method on soft
Q-function learning.

5 RESULTS

In this section, we evaluate the proposed multi-task SAC with a task embedding network in various
robotics manipulation tasks. We first provide a performance comparison between the proposed
method and previous multi-task RL methods on several benchmarks and then give an ablation study
on components constituting the proposed algorithm.

5.1 RESULTS ON MULTIPLE TASKS

6

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

MT10(10_env)

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(a) MT10 result

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

MT50(20_env)

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(b) MT20 result

Figure 4: Training curves for the average success ratio comparing the baseline algorithms and our
approaches: (a) MT10 benchmark (b) MT20 benchmark

Algorithm MT10 MT20

SAC-Ind 94.0% 94.1%
SAC-MT 74.3% 56.2%
SAC-MT-MH 76.9% 65.3%
SAC-soft-modular 83.3% 65.0%

SAC-MT-with-clip 85.9% 65.5%
Ours 89.3% 70.1%

Table 1: Final average success ratio of
MT10 and MT20 tasks

We first examined the performance of our approach com-
pared with baseline algorithms on MT10 and MT20
benchmarks. Fig. 4 shows the training curve of the av-
erage success ratio, and Table 1 shows the final average
success ratio for each algorithm. The success ratio is
obtained by the average of all tasks’ success ratios for
given task set, where the success ratio of each task is
well defined (Yu et al., 2020b). We ran the experiment 5
times for each algorithm with different seeds and plotted
the mean success ratio with standard deviation per every
200 episodes. We trained each algorithm with 5 million
samples per task on the MT10 and MT20 task sets.

Results on MT10. As seen in Table 1, our approach’s final success ratio is not only close to single task
SAC (upper bound) but also 6% better than the best multi-task baseline algorithm SAC-soft-modular
(Yang et al., 2020). Furthermore, SAC-MT combined with our Q clipping method also outperforms
other baseline algorithms but has lower performance than our algorithm.

Results on MT20. As the number of tasks increases, the multi-task RL problem becomes more
challenging since more negative transfer can occur. Nevertheless, as seen in Table 1, our approach
achieves the best final success ratio compared with other multi-task baselines, where the proposed
method has 4.8% better success ratio than the best multi-task baseline algorithm SAC-MT-MH (Yu
et al., 2020b). Furthermore, the SAC-MT combined with our Q clipping method is also similar to
other baseline algorithms but has lower performance than our algorithm.

The training curves for all tasks in the benchmarks are shown in Appendix C.

5.2 ABLATION STUDIES

Effects on Method for Preventing Negative Transfer

0 1 2 3 4 5

Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ev
al

-s
uc

ce
ss

-r
at

io

0.0

0.2

0.4

0.6

0.8

1.0

1.2

tr
ai

n-
in

de
x

(a) Button-press-
topdown-v2

0 1 2 3 4 5

Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ev
al

-s
uc

ce
ss

-r
at

io

0.0

0.2

0.4

0.6

0.8

1.0

1.2

tr
ai

n-
in

de
x

(b) Window-open-v2

Figure 5: Frequency of policy train and
success ratio graph : (a) Button-press-
topdown-v2 and (b) Window-open-v2

In our method, the measure of negative transfer for a
given task is important. In order to see how the measure
changes during the learning, we investigated the relation-
ship between the success ratio and the train frequency
for a given task. Here, the train frequency is the rate at
which the policy is trained on a given task over a period
of 20 episodes, inversely proportional to the measure of
negative transfer from the definition of the task set Cs
in Equation 6. The results for two tasks, Button-press-
topdown-v2 and Window-open-v2, are shown in Fig. 5,
where the blue curve shows the average success ratio
and the orange curve shows the average train frequency.

7

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

0 1 2 3 4 5

Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ev
al

-s
uc

ce
ss

-r
at

io

0.2
0.0
0.2
0.4
0.6
0.8

m
ea

n-
sq

-b
el

lm
an

-e
rr

or
1

(1
e6

)

(a) Reach-v2

0 1 2 3 4 5

Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ev
al

-s
uc

ce
ss

-r
at

io

200
0
200
400
600
800
1000

m
ea

n-
sq

-b
el

lm
an

-e
rr

or
1

(1
e6

)

(b) Pick-Place-v2

0 1 2 3 4 5

Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ev
al

-s
uc

ce
ss

-r
at

io

0
1
2
3
4
5
6
7
8

m
ea

n-
sq

-b
el

lm
an

-e
rr

or
1

(c) Reach-v2 with
clip

0 1 2 3 4 5

Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ev
al

-s
uc

ce
ss

-r
at

io

5.0
2.5

0.0
2.5
5.0
7.5
10.0
12.5

m
ea

n-
sq

-b
el

lm
an

-e
rr

or
1

(d) Pick-Place-v2
with clip

Figure 6: Average soft bellman error
and success ratio graph correspond-
ing to usage of clipping method. top:
SAC-MT and bottom: SAC-MT-with-
clipping

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

MT10(10_env)

Ours
Ours-clip
Ours-bestbatch
Ours-vae
SAC-MT

Figure 7: Compare the performance through excluding
components in our approach. (1) Ours-VAE: exclude vae
approach (2) Ours-clip: exclude clipping technique (3)
Ours-bestbatch: exclude top K experience replay.

It is seen that the train frequency decreases as the two tasks are quickly learned at the beginning of
learning, indicating that rapid policy learning in a given task can make frequent negative transfer to
other tasks. In addition, Fig. 5 shows our approach not only effectively prevents negative transfer
effect on other tasks over time but also maintains the success ratio. Hence, we conclude that the
proposed method can efficiently prevent the interference between different tasks.

Effects on Clipping Method

We propose the simple clipping method to mitigate the adverse effect on soft Q-function for joint
learning for multi-task shown in Fig 3. In order to check the clipping effect, we ran an experiment
for SAC-MT combined with the clipping Q-loss. The result is shown in Fig. 6, where the orange
curve shows the average of the Bellman error JQ(d, ψi), and the blue curve shows the average of the
success ratio of the given task. It is seen that the clipping method effectively reduces the soft Bellman
error so that the performance of each task improves.

Effect of Components of Our Method

We analyzed the importance of three techniques in our method with MT10: (1) Variational approach
to extract sufficient representation. (2) Clipping method to mitigate the adverse effects on soft
Q-function. (3) Top-k experience replay. We compared performance by excluding each component
in our method. This is denoted as (1) Ours-VAE, (2) Ours-clip, and (3) Ours-bestbatch. The result
is shown in Fig. 7. It is seen that the average success ratio is reduced when one of the components
is excluded. Thus, each component has an important role in our approach, and the VAE approach
affects performance the most among our components.

6 CONCLUSION AND FUTURE WORK

In this paper, we have considered jointly learning of multi-task RL and have proposed a new method
for preventing negative transfer on both policy and soft Q-function. We have proposed a task
embedding network and a Q clipping method to mitigate the negative transfer problem and have
proposed top-K experience replay for stable task selection. Numerical results show that the proposed
method effectively suppress the negative transfer between different tasks so that the approach improves
the performance compared with other baselines.

7 ACKNOWLEDGMENTS

This research was supported by the National Research Foundation of Korea(NRF) grant funded by
the Korea government. (MSIT) (2021R1A2C2009143)

8

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

REFERENCES

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with policy
sketches. In International Conference on Machine Learning, pp. 166–175. PMLR, 2017.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

Judith Butepage, Michael J Black, Danica Kragic, and Hedvig Kjellstrom. Deep representation
learning for human motion prediction and classification. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 6158–6166, 2017.

Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
Proceedings of the 30th International Conference on Neural Information Processing Systems, pp.
2180–2188, 2016.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International Conference
on Machine Learning, pp. 794–803. PMLR, 2018.

Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware semantic segmentation via multi-task network
cascades. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
3150–3158, 2016.

Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. Learning modular
neural network policies for multi-task and multi-robot transfer. In 2017 IEEE international
conference on robotics and automation (ICRA), pp. 2169–2176. IEEE, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 1126–1135. JMLR. org, 2017.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1587–1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062. PMLR, 2019.

Anirudh Goyal, Riashat Islam, Daniel Strouse, Zafarali Ahmed, Matthew Botvinick, Hugo Larochelle,
Yoshua Bengio, and Sergey Levine. Infobot: Transfer and exploration via the information bottle-
neck. arXiv preprint arXiv:1901.10902, 2019.

Tuomas Haarnoja, Vitchyr Pong, Aurick Zhou, Murtaza Dalal, Pieter Abbeel, and Sergey Levine.
Composable deep reinforcement learning for robotic manipulation. In 2018 IEEE international
conference on robotics and automation (ICRA), pp. 6244–6251. IEEE, 2018a.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018b.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018c.

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. In International Conference on
Learning Representations, 2018.

9

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. arXiv preprint arXiv:1808.06670, 2018.

Hanzhang Hu, Debadeepta Dey, Martial Hebert, and J Andrew Bagnell. Learning anytime predictions
in neural networks via adaptive loss balancing. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 3812–3821, 2019.

Kaiyi Ji, Jason D Lee, Yingbin Liang, and H Vincent Poor. Convergence of meta-learning with
task-specific adaptation over partial parameters. arXiv preprint arXiv:2006.09486, 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with attention.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1871–1880, 2019.

Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. The benefit of multitask
representation learning. Journal of Machine Learning Research, 17(81):1–32, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

Lerrel Pinto and Abhinav Gupta. Learning to push by grasping: Using multiple tasks for effective
learning. In 2017 IEEE international conference on robotics and automation (ICRA), pp. 2161–
2168. IEEE, 2017.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation. arXiv preprint arXiv:1511.06295, 2015.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate Saenko. Adashare: Learning what to share
for efficient deep multi-task learning. arXiv preprint arXiv:1911.12423, 2019.

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas
Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. In Advances in
Neural Information Processing Systems, pp. 4496–4506, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

10

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforcement learning: a
hierarchical bayesian approach. In Proceedings of the 24th international conference on Machine
learning, pp. 1015–1022, 2007.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
modularization. arXiv preprint arXiv:2003.13661, 2020.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. arXiv preprint arXiv:2001.06782, 2020a.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning, pp. 1094–1100. PMLR, 2020b.

Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee, Alberto Rodriguez, and Thomas Funkhouser.
Learning synergies between pushing and grasping with self-supervised deep reinforcement learning.
In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4238–
4245. IEEE, 2018.

Yu Zhang and Dit-Yan Yeung. A regularization approach to learning task relationships in multitask
learning. ACM Transactions on Knowledge Discovery from Data (TKDD), 8(3):1–31, 2014.

Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang. Facial landmark detection by deep
multi-task learning. In European conference on computer vision, pp. 94–108. Springer, 2014.

A RELATED WORK

Multi-task learning: Multi-task learning (Caruana, 1997) is one of the active research areas in
machine learning. In computer vision, researchers have shown that training with multiple objectives
helps extract features for generalization (Zhang et al., 2014; Dai et al., 2016; Liu et al., 2019).
Multi-task RL also gains increasing attention from the research community (Wilson et al., 2007;
Pinto & Gupta, 2017; Zeng et al., 2018; Hausman et al., 2018; Yang et al., 2020). Whereas sharing
parameters with different tasks can effectively transfer the knowledge from each task, it can induce
negative transfer between tasks. One can prevent negative transfer through distillation methods (Rusu
et al., 2015; Parisotto et al., 2015; Teh et al., 2017), but these require a distinct network per task.
Another approach to avoiding interference is to utilize different modules in multiple tasks using a
modular network (Rusu et al., 2016; Devin et al., 2017; Andreas et al., 2017; Haarnoja et al., 2018a;
Yang et al., 2020). Researchers also propose finding a relationship between tasks by gradient from
each task and using it to mitigate negative transfer (Zhang & Yeung, 2014; Chen et al., 2018; Hu et al.,
2019; Yu et al., 2020a). However, the gradient of a task has significant noise, so the task relationship
by noisy gradient can destabilize the training. Instead of using the gradient similarity, our approach
measures the number of negative effects and proposes a task embedding network with its learning
algorithm to prevent the negative transfer, allowing more stable training.

Representation learning: Representation learning (Bengio et al., 2013) has widely been studied
in machine learning (Kingma & Welling, 2013; Butepage et al., 2017; Chen et al., 2016; Hjelm
et al., 2018; Chen et al., 2020). Researchers have shown that multi-task learning extracts better
features, containing helpful knowledge to learn other tasks (Maurer et al., 2016). In multi-task RL, the
researchers also propose representation methods for multi-task RL (Goyal et al., 2019; Hausman et al.,
2018), where they focus on exploration for RL and generalization skills. While most representation
methods focus on finding features that can be helpful to training, our approach further concentrates
on preventing negative transfer between different tasks.

11

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

B DESCRIPTION OF BENCHMARKS AND EXPERIMENT

In our experiment, we make two benchmarks MT10 and MT20 that contain 10 and 20 distinct envi-
ronments from the 50 environments of Meta-World (Yu et al., 2020b), respectively. The environments
included in each benchmark are as follows:

• MT10 benchmark
reach, push, pick and place, open door, open drawer, close drawer, press button top-
down, insert peg side, open window, and open box.

• MT20 benchmark
assemble nut, basketball, pick bin, close box, press button top-down, press button
top wall, press button, press button wall, get coffee, push mug, pull mug, turn dial,
disassemble nut, close door, lock door, open door, unlock door, insert hand, open
drawer, and close drawer.

In all experiments, the policy, task embedding network, decoder network, and soft Q function are
implemented as neural networks with two hidden layers of size 400 and ReLU activation, where the
output size of the task embedding network is 8 with the same dimension of the representation space
Z. In addition, we set the M value in the task selection method as 5 and 10 for MT10 and MT20,
respectively. The maximum clipping value Vclip and the number of best trajectories K are set to 2000
and 30, respectively.

C TRAINING CURVES FOR EACH TASK

MT10 benchmark

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s R

at
io

reach-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(a) reach

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

push-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(b) push

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

pick-place-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(c) pick-place

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

door-open-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(d) door-open

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

drawer-open-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(e) drawer-open

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

drawer-close-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(f) drawer-close

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

button-press-topdown-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(g) button-press-topdown

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

peg-insert-side-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(h) peg-insert-side

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

window-open-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(i) window-open

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

window-close-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(j) window-close

Figure 8: Training curves for MT10 benchmark

12

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

MT20 benchmark

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s R

at
io

assembly-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(a) assembly

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

basketball-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(b) basketball

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

bin-picking-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(c) bin-picking

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

box-close-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(d) box-close

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

button-press-topdown-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(e) button-press-topdown

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

button-press-topdown-wall-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(f) button-press-topdown-
wall

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

button-press-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(g) button-press

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

button-press-wall-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(h) button-press-wall

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

coffee-button-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(i) coffee-button

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

coffee-pull-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(j) coffee-pull

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

coffee-push-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(k) coffee-push

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

dial-turn-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(l) dial-turn

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

disassemble-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(m) disassemble

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

door-close-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(n) door-close

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

door-lock-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(o) door-lock

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

door-open-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(p) door-open

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

door-unlock-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(q) door-unlock

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

drawer-close-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(r) drawer-close

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

drawer-open-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(s) drawer-open

0 1 2 3 4 5
Time steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s

Ra
ti

o

hand-insert-v2

SAC-Ind
SAC-MT
SAC-MT-MH
SAC-soft-modular
SAC-MT-with-clipping
Ours

(t) hand-insert

Figure 9: Training curves for MT20 benchmark

13

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

D ALGORITHM PSEUDO CODE

Algorithm 1 Multi-task SAC with a Task Embedding Net

Require: N,M,L,K
Initialize parameter θ, ϕ, φ, ψi, i = 1, 2, . . . , N
Di ← ∅ for each task Ti
for each iteration do

for each gradient step do
Sample random a mini-batch of size L from top-K trajectories in each replay Di
Compute J rep(ϕ, φ), Cs from the mini-batch
ϕ← ϕ+ δ∇ϕJ rep(ϕ, φ)
φ← φ+ δ∇φJ rep(ϕ, φ)

end for
for each environment step do

for each environment Ti do
Take action ait using πθ, Eϕ given state sit
Receive rit, s

i
t+1 from environment

Di ← Di ∪ {(st, at, rt, st+1)}
end for
Sample a random mini-batch of size L from each replay Di
Compute Jpolicy(θ), {JQCLIP (ψi)}Ni=1 using the mini-batch and Cs
θ ← θ + δ∇θJpolicy(θ)

ψi ← ψi − δ∇ψiJQCLIP (ψ
i) for i = 1, 2, . . . , N

end for
end for

14

	Introduction
	Background
	Setup
	Soft Actor-Critic
	Multi-task Reinforcement Learning

	Multi-Task Reinforcement Learning with Task Embedding Network
	Policy Network with Task Embedding Network
	Measure of Negative Transfer
	Training for Policy Network
	Training for Task Embedding Network
	Negative Effects on Soft Q-function
	Top-K Experience Replay

	Experiment
	Environment
	Baselines

	Results
	Results on multiple tasks
	Ablation Studies

	Conclusion and Future Work
	ACKNOWLEDGMENTS
	Related Work
	Description of Benchmarks and Experiment
	Training Curves for each Task
	Algorithm Pseudo Code

