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ABSTRACT

Smart contract code generation is pivotal for improving development efficiency
and mitigating vulnerabilities. Although prior studies have leveraged large lan-
guage models (LLMs) for this task, their quality still lags behind fine-tuned mod-
els such as CodeT5+ and CodeBERT. Existing attempts that combine LLMs with
data-flow analysis often fail to adequately capture the hierarchical and control-
flow structures of code, resulting in incomplete logic and degraded security. To
address these limitations, we present GraphRAG-SCG, a retrieval-augmented gen-
eration framework that integrates graph representations with LLMs. GraphRAG-
SCG constructs a dual-layer “semantic-control” graph index, dynamically inject-
ing function-call graphs (FCGs), data-dependency graphs (DDGs), and business-
constraint facts into an enriched prompt. Through lightweight graph traversal
and embedding-based retrieval, the most semantically relevant subgraphs are
identified and explicitly presented to the LLM, ensuring both structural consis-
tency and contextual dependency during generation. Extensive experiments on a
dataset of 40,000 real-world smart-contract requirement–code pairs demonstrate
that GraphRAG-SCG significantly outperforms state-of-the-art baselines, achiev-
ing improvements of 13.1%, 5.8%, and 2.4% in RAGA-Code, CodeBERTScore,
and CodeBLEU, respectively, thus offering a new SOTA solution for automated
smart-contract development.

1 INTRODUCTION

Smart contracts (Liao et al., 2023) are widely deployed across blockchain platforms such as
Ethereum and EOS, serving as self-executing programs that encode financial agreements, gover-
nance mechanisms, and business logic. These contracts underpin a variety of decentralized appli-
cations (dApps), ranging from decentralized finance (DeFi) protocols to non-fungible token (NFT)
marketplaces, and their correct functioning is critical for maintaining trust and security in blockchain
ecosystems. Despite their broad applicability and transformative potential, developing secure and
efficient smart contracts remains a significant challenge. The difficulties stem from the inherent
complexity of decentralized execution, the need for precise state management, and the susceptibility
of contracts to subtle vulnerabilities (Liu et al., 2024), such as reentrancy attacks (Liu et al., 2025),
integer overflows (Huang et al., 2024), and logical flaws that can lead to severe financial losses.

Automating the process of smart contract code generation is therefore essential for improving both
productivity and reliability. Traditional approaches rely heavily on manual development and rule-
based verification, which are time-consuming and prone to human error (Napoli et al., 2024). In
recent years, large language models (LLMs) have demonstrated strong capabilities in code under-
standing and generation (Guo et al., 2024; Feng et al., 2020), showing promising results in various
software engineering tasks, including code completion, bug detection, and automated documenta-
tion. However, off-the-shelf LLMs often struggle to produce syntactically correct and semantically
meaningful smart contracts (Alam et al., 2025), as these models are generally trained on diverse
code corpora and lack domain-specific awareness of blockchain execution semantics.

Fine-tuned models such as CodeT5+ (Wang et al., 2023a) and CodeBERT (Son et al., 2022) can
achieve higher accuracy for code generation tasks by adapting LLMs to programming-language-
specific patterns. Nevertheless, they come with considerable computational costs due to expensive
retraining, and they still frequently fail to capture the intricate logic and unique constraints inher-
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ent in smart contracts, such as gas optimization, permission control, and inter-contract interactions.
Retrieval-Augmented Generation (RAG) has recently emerged as a promising alternative, offering
a mechanism for LLMs to query external knowledge bases and integrate relevant information dur-
ing code generation. While RAG improves context-awareness and reduces hallucinations, existing
methods for code generation predominantly rely on textual retrieval, neglecting the rich structural
and semantic relationships embedded in programs. As a result, they often produce outputs with in-
complete logic, inadequate handling of control-flow constraints, and a lack of adherence to contract-
specific rules.

To address these limitations, we introduce GraphRAG-SCG, a novel framework that inte-
grates graph-based program representations into the retrieval-augmented generation paradigm.
GraphRAG-SCG leverages structural knowledge derived from function-call graphs (FCGs), data-
dependency graphs (DDGs), and high-level business logic constraints to guide the model during
generation. By incorporating these enriched representations, our framework enables the LLM to rea-
son about the underlying program structure, maintain semantic consistency, and respect control-flow
and data-flow dependencies, resulting in contracts that are both syntactically correct and semanti-
cally faithful to intended behaviors. Unlike prior approaches that rely solely on textual retrieval,
GraphRAG-SCG effectively combines graph-aware reasoning with retrieval mechanisms, offering a
more robust, context-aware, and accurate method for automated smart contract generation.

Our main contributions are summarized as follows:

• We introduce GraphRAG-SCG, the first graph-enhanced Retrieval-Augmented Genera-
tion framework for smart contract code generation, integrating function-call graphs, data-
dependency graphs, and high-level business constraints to guide LLMs toward semantically
and syntactically correct code.

• We propose a dual-layer “semantic-control” graph index that efficiently retrieves struc-
turally relevant subgraphs, capturing both local data dependencies and global program se-
mantics for context-aware generation.

• We perform extensive experiments on 40k requirement–code pairs, demonstrating that
GraphRAG-SCG outperforms state-of-the-art baselines on RAGA-Code, CodeBERTScore,
CodeBLEU, and Exact Match metrics, and effectively handles complex control-flow and
inter-function dependencies.

• We validate the generalizability and robustness of GraphRAG-SCG through cross-platform
evaluation on Ethereum and EOS contracts, highlighting the benefits of graph-based re-
trieval for diverse blockchain environments.

2 RELATED WORK

2.1 LLMS FOR CODE GENERATION.

The use of large language models (LLMs) for code generation has attracted growing interest in both
academia and industry. Early work, such as Codex, demonstrated that scaling up transformer archi-
tectures enables strong performance in synthesizing general-purpose code from natural language de-
scriptions. Subsequent open-source models, including CodeT5 (Wang et al., 2021), CodeBERT (Son
et al., 2022), StarCoder (Li et al., 2023), and CodeLlama (Rozière et al., 2024), extended these ad-
vances by incorporating domain-specific pretraining objectives and multi-language corpora. While
these models excel at common programming tasks such as code completion, translation, and bug
fixing, their performance in domain-specific contexts such as smart contract development remains
suboptimal.

The challenge arises from the fact that smart contracts, unlike general-purpose code, embody intri-
cate business logic and strict security constraints. Empirical studies have shown that off-the-shelf
LLMs frequently omit essential conditions, misrepresent state transitions, or generate insecure im-
plementations. Fine-tuning on domain-specific corpora can mitigate these issues by adapting the
model to smart contract distributions, but this comes at the cost of generality and transferability to
other programming domains. In addition, fine-tuning requires substantial labeled data, which is of-
ten scarce in blockchain ecosystems. Therefore, there is a pressing need for approaches that augment
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Figure 1: Overview of the core of our proposed framework, GraphRAG-SCG. The framework is
powered by Google’s Gemini-1.5-Pro and enables automated smart contract code generation.

LLMs with external knowledge and structural priors, without sacrificing their broad generalization
capacity.

2.2 RETRIEVAL-AUGMENTED GENERATION.

Retrieval-augmented generation (RAG) has emerged as a promising paradigm to enhance LLMs by
providing external context (Wang et al., 2023b). In natural language processing, RAG frameworks
have been widely adopted in tasks such as open-domain question answering, knowledge-grounded
dialogue (dos Santos Junior et al., 2024), and fact verification. By retrieving relevant passages from
large corpora and conditioning the LLM on them, RAG mitigates hallucination, improves factual
consistency, and enables efficient adaptation to specialized domains.

In the software engineering domain, retrieval has primarily focused on textual artifacts such as API
documentation, code snippets, or developer comments (?). While such retrieval provides useful
surface-level cues, it neglects the deep structural and semantic properties of code. For instance,
retrieving a snippet that is textually similar may fail to capture control-flow dependencies or inter-
function interactions that are critical in smart contracts. Recent studies attempted to extend RAG
to code by leveraging token-level embeddings or code-comment pairs, yet they largely overlook
the role of program analysis techniques in constructing retrieval indices. This gap motivates the
integration of graph-based representations into RAG pipelines for code generation.

2.3 GRAPH REPRESENTATIONS IN CODE ANALYSIS.

Graphs have long been recognized as powerful tools to capture the semantics and structural proper-
ties of programs (Jin et al., 2021). Abstract syntax trees (ASTs) provide hierarchical representations
of syntactic constructs, while control-flow graphs (CFGs), function-call graphs (FCGs), and data-
dependency graphs (DDGs) encode execution order, invocation relationships, and variable interac-
tions, respectively. These representations form the basis of numerous program analysis techniques,
ranging from compiler optimizations to vulnerability detection.

With the rise of deep learning, graph neural networks (GNNs) and graph transformers (Yun et al.,
2019) have been applied to encode program graphs into continuous representations. Applications
include code code , clone detection, bug prediction, and contract analysis. Despite these successes,
the integration of graph representations into LLM-based generation remains underexplored. One
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reason is the difficulty of converting large, complex graphs into prompt-friendly formats without
incurring prohibitive token costs. Another challenge lies in aligning graph-level reasoning with
autoregressive token-level generation, as LLMs are not natively equipped to handle non-sequential
structures.

Recent efforts have attempted to bridge this gap by linearizing ASTs (Tang et al., 2022) or encoding
CFG features into auxiliary embeddings, but these approaches often oversimplify dependencies or
lose fine-grained structural information. As a result, existing LLM-based generators still suffer from
incomplete logical coverage, particularly in domains like smart contracts, where control flow and
business constraints are tightly coupled. Our work builds upon these insights by designing a dual-
layer graph index that explicitly integrates semantic dependencies and control-flow relationships into
retrieval-augmented generation, thereby enabling LLMs to benefit from structural priors without
sacrificing scalability.

3 METHOD

This section provides a detailed description of the implementation of GraphRAG-SCG, whose core
architecture is shown in the Figure. 1. We first present the formal problem formulation and the defi-
nition of the semantic-control graph. Then, we describe the graph extraction pipeline, the design of
the dual-layer index, and the retrieval-and-traversal mechanism. Finally, we elaborate on subgraph
scoring, linearization for prompt enrichment, generation strategies, and post-generation validation.
Unlike prior works that only briefly outline components, our description emphasizes concrete al-
gorithms, parameter choices, and the rationale behind each design decision, aiming to make the
method reproducible and extensible.

3.1 OVERVIEW AND PROBLEM FORMULATION

LetD denote a corpus of smart-contract programs. For each contract c ∈ D we construct a semantic-
control graph G = (V,ES , EC , F ) where V is a set of nodes representing program entities such
as functions, modifiers, storage variables, and events. The edges ES ⊆ V × V capture semantic
relations including def-use links, value dependencies, and state-variable interactions, while the edges
EC ⊆ V ×V encode control-flow structures such as function-call relations and sequential execution
order. The fact set F represents symbolic business constraints, extracted as structured rules that
enforce domain-specific requirements (e.g., onlyOwner checks, invariant assertions, or supply-
cap constraints).

Given a natural-language requirement q, our objective is to generate contract code ĉ that satisfies q
semantically while also preserving structural dependencies (ES , EC) and respecting the constraints
F . Unlike sequence-to-sequence methods, which directly map q to ĉ, GraphRAG-SCG augments the
LLM with a set of retrieved subgraphs {Si}, each representing a structurally coherent fragment of G
aligned with the semantics of q. These subgraphs are retrieved using graph traversal and embedding-
based similarity, scored according to their contextual relevance, and linearized into enriched prompts
that explicitly expose control-flow and semantic dependencies. This formulation ensures that the
model grounds generation not only on textual semantics but also on explicit program structures.

3.2 GRAPH EXTRACTION

The extraction pipeline is fully automated and consists of three interconnected stages. First, we
perform syntactic parsing of Solidity (or other contract languages) into abstract syntax trees (ASTs),
symbol tables, and function signatures. Each node in V corresponds to a syntactic or semantic unit:
functions, modifiers, events, or state variables. By maintaining precise scope and type information,
we ensure that each node can be linked to its occurrences across the program.

Second, we build interprocedural control-flow representations. The function-call graph (FCG) is
extracted to encode direct, indirect, and library calls. Each edge in EC is labeled with call prop-
erties such as visibility (public, private), mutability (view, pure), and execution context
(payable or non-payable). This graph layer allows GraphRAG-SCG to capture cross-function de-
pendencies and calling patterns that strongly influence security properties, such as reentrancy or
denial-of-service vulnerabilities.
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Third, we perform data-flow analysis to construct a data-dependency graph (DDG). Following a
flow-sensitive, intra- and interprocedural framework, we link variables to their definitions and uses
across storage and memory. The resulting edges in ES capture the propagation of values, parameter
passing, return flows, and event emissions. To account for smart-contract-specific behaviors, we
extend this analysis with rule-based extraction of business constraints. For example, statements
such as require(msg.sender == owner) are automatically recognized as ownership checks
and stored as symbolic facts in F . Other patterns include supply-bound checks, time locks, and
reentrancy guards, all of which are critical for generating secure code.

Each node v ∈ V is annotated with multi-view features. The textual feature t(v) integrates the
function signature, docstring, and inline comments. The structural feature s(v) encodes numeri-
cal metrics including cyclomatic complexity, parameter count, visibility encoding, number of stor-
age accesses, and whether events are emitted. Optionally, the raw function body is tokenized and
preserved for embedding. This combination of features allows GraphRAG-SCG to support both
symbolic reasoning and neural embedding during retrieval.

3.3 DUAL-LAYER GRAPH INDEXING

To enable scalable retrieval, we construct a dual-layer “semantic-control” index over the graphs. The
semantic layer indexes textual and numerical annotations, while the control layer indexes topological
structures. At the semantic layer, we compute embeddings for t(v) and s(v) using domain-adapted
encoders (e.g., CodeBERT or GraphCodeBERT), storing them in a vector database. This layer
supports similarity search over contract semantics. At the control layer, we store adjacency matrices
of FCGs and DDGs in a compressed sparse format. Graph kernels and Weisfeiler–Lehman (WL)
hashes are precomputed for subgraphs, enabling structural similarity checks at low cost.

The dual-layer design ensures that retrieval accounts for both semantic alignment and structural
consistency. A purely semantic index would conflate unrelated functions with similar names, while
a purely control-based index would ignore the requirement’s intent. By combining the two, we
obtain balanced retrieval quality.

3.4 SUBGRAPH RETRIEVAL AND SCORING

Given a requirement q, GraphRAG-SCG first encodes q into a vector hq using the same encoder
as the semantic layer. Candidate nodes and subgraphs are retrieved from the semantic index via
approximate nearest neighbor (ANN) search. To filter false positives, we perform graph traversal
from each candidate node using breadth-first search (BFS) over EC and ES , constrained by a depth
budget d (typically d = 2). This yields a set of candidate subgraphs {Si} that cover both local and
contextual dependencies of relevant functions.

Algorithm 1 Subgraph Retrieval and Scoring
Require: Requirement q, dual-layer index (semantic, control), depth d, weights α, β
Ensure: Ranked subgraphs {Si}

1: Encode q into embedding hq

2: Retrieve candidate nodes from the semantic index via ANN search
3: for each candidate node v do
4: Perform BFS over EC and ES up to depth d to construct subgraph Sv

5: Compute joint score:

Score(Sv) = α · sim(hq, hSv ) + β · struct(Sv)

6: end for
7: Rank subgraphs by score and select top-k as {Si}
8: return {Si}

3.5 PROMPT ENRICHMENT AND GENERATION

Each selected subgraph Si is linearized into a textual form that is both machine-readable and human-
interpretable. The linearization includes (i) function signatures and short descriptions, (ii) control
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edges expressed as call sequences, (iii) data-dependencies expressed as variable propagation chains,
and (iv) business constraints as symbolic rules. These elements are concatenated into a structured
block and injected into the LLM’s prompt before the requirement q. An example template is:

[Subgraph Context] ⇒ Requirement: q ⇒ Generate code.

The LLM is thereby guided not only by natural-language semantics but also by explicit structural
and domain-specific cues. This prompt design mitigates hallucination, reduces security flaws, and
improves alignment with best practices.

Algorithm 2 Prompt Enrichment and Generation (Pseudo-code)
Require: Requirement q, selected subgraphs {Si}, LLM
Ensure: Generated contract code ĉ

1: for each subgraph Si in {Si} do
2: Linearize Si into a structured text block:
3: - Include function signatures and short descriptions
4: - Include control edges as call sequences
5: - Include data dependencies as variable propagation chains
6: - Include business constraints as symbolic rules
7: end for
8: Concatenate all linearized subgraphs into a single prompt
9: Prepend requirement q to the prompt

10: Feed prompt into LLM
11: Obtain generated code ĉ
12: return ĉ

3.6 POST-GENERATION VALIDATION

Finally, the generated code ĉ is subjected to a lightweight validation step. We parse ĉ and reconstruct
its semantic-control graph Ĝ. Structural checks verify that required calls and data dependencies are
preserved, while constraint checks verify that symbolic facts in F are respected (e.g., ownership
modifiers present, supply caps enforced). If violations are detected, we trigger a repair cycle where
ĉ and the violations are reintroduced into the prompt, prompting the LLM to refine its output. This
iterative loop typically converges within two rounds and substantially improves correctness.

4 EXPERIMENT

In the empirical study, we conducted comparison, ablation, and generalization experiments. First,
we used GraphRAG-SCG to process the raw dataset and construct semantic-control graphs, includ-
ing abstract syntax trees (ASTs), function call graphs (FCGs), and data dependency graphs (DDGs).
These structural representations, combined with symbolic constraints, were stored in the dual-layer
index and used for retrieval-augmented generation. In the comparison experiments, we varied the
number of retrieved subgraphs and compared the evaluation scores with baseline methods. Ablation
experiments assessed the contribution of different structural components (e.g., FCGs, DDGs, and
constraints), while generalization experiments extended GraphRAG-SCG to Java and Python code
tasks. The results and expert evaluations validate the effectiveness of GraphRAG-SCG in generating
smart contract code .

4.1 EXPERIMENT SETTINGS

All our experiments are performed on a computer equipped with an NVIDIA GeForce RTX 4070Ti
GPU (12GB graphics memory), Intel (R) Core (TM) i9-13900K, running Ubuntu 22.04 LTS.
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4.2 DATASET

The raw data for this study, provided by Liu et al. (Liu et al., 2021), includes 40,000 smart con-
tracts from Etherscan.io1, created by professional developers and deployed on Ethereum. Following
Yang et al.’s method (Yang et al., 2021), we extracted functions with comments by leveraging AST
locations and regex-based segmentation. Samples with comments shorter than six characters were
removed. Manual filtering eliminated low-quality comments, including (1) generic templates; (2)
identical comments for different functions; (3) incomplete sentences; and (4) ambiguous meanings.
After cleaning, 14,790 <method, comment> pairs remained; the above cleaning procedure is sum-
marized in the following function Filtering Procedure 13. The dataset is split into 11,032 training,
2,758 validation, and 1,000 test samples.

Filtering Procedure (Pseudo-code):
1: Input: Raw function-comment pairs D
2: Output: Cleaned dataset Dclean

3: Dclean ← []
4: for all (f, c) ∈ D do
5: if length(c) < 6 then
6: continue ▷ Remove very short comments
7: end if
8: if c matches generic template OR c identical for multiple f OR c incomplete OR c ambigu-

ous then
9: continue ▷ Manual/automated low-quality filtering

10: end if
11: Dclean.append((f, c))
12: end for
13: return Dclean

4.3 BASELINE

We compare our proposed GraphRAG-SCG with six state-of-the-art methods, including general
code code models such as CodeT5 (Wang et al., 2021), CodeT5+ (Wang et al., 2023a), and Code-
BERT (Feng et al., 2020)

4.4 PERFORMANCE METRICS

To evaluate GraphRAG-SCG performance against baselines, we adopted AGA-Code (Li et al.,
2025), CodeBERTScore (Gaur et al., 2025), and CodeBLEU (Ren et al., 2020). These metrics
effectively assess the semantic, syntactic, and structural similarity between automatically generated
code and human-written ground truth.

4.5 MAIN RESULTS

We conducted a comprehensive evaluation of the Gemini-1.5-Pro-powered SCLA under two distinct
experimental settings to study its performance in smart contract code generation tasks. Gemini-1.5-
Pro was selected due to its substantially larger context token capacity compared to Claude-3.5-
Sonnet and GPT-4o, allowing it to accommodate more information when generating large function
call graphs or data dependency graphs (DDGs) without being constrained by context length limits.
In addition, Gemini-1.5-Pro provides a fully free API, making it a more cost-effective choice in high
token consumption scenarios. SCLA demonstrated significant performance improvements in both
zero-shot and few-shot code generation tasks, with particularly notable gains when prompts were
enhanced using data dependency graphs. These results provide valuable insights and contributions
to the research community. The specific results are as follows:

Zero-shot Code Generation. To evaluate the impact of structural subgraph retrieval on code gener-
ation, we performed zero-shot experiments using GPT-4o, Gemini-1.5-Pro, and Claude-3.5-Sonnet.
The evaluation followed a two-phase procedure: first, the raw target code was embedded into the

1https://etherscan.io/
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Model # of sample
AGA-Code CodeBERTScore CodeBLEU

p-value
Zero-Shot +DDG Gain(%) Zero-Shot +DDG Gain(%) Zero-Shot +DDG Gain(%)

Llama-3.2-1b-preview 11032 0.308 0.547 +77.3% 0.615 0.748 +21.6% 0.490 0.628 +28.2% ¡0.01

GPT-4o 11032 0.537 0.749 +39.4% 0.676 0.815 +20.5% 0.574 0.693 +20.7% ¡0.01

Gemini-1.0-Pro-Vision 11032 0.303 0.536 +76.6% 0.592 0.715 +20.8% 0.476 0.603 +26.7% ¡0.01

Gemini-1.5-Pro 11032 0.321 0.587 +82.9% 0.612 0.756 +23.5% 0.495 0.642 +29.7% ¡0.01

Claude-3.5-sonnet 11032 0.331 0.532 +60.7% 0.642 0.762 +18.7% 0.518 0.624 +20.5% ¡0.01

Table 1: Performance of different LLMs on smart contract code, measured using AGA-Code, Code-
BERTScore, and CodeBLEU. p-values are calculated using a one-sided pairwise Wilcoxon signed-
rank test with Benjamini-Hochberg correction.

LLM prompt, and generation quality was measured using AGA-Code, CodeBERTScore, and Code-
BLEU; second, the prompt was enriched with retrieved structural subgraphs, including function-call
graphs (FCGs), data-dependency graphs (DDGs), and symbolic constraints, and code generation
was re-evaluated. As shown in Table 1, incorporating structural subgraphs consistently improved
code generation performance across all models. AGA-Code scores increased, reflecting more ac-
curate abstracted semantic representation; CodeBERTScore improved, indicating stronger semantic
similarity with human-written code; and CodeBLEU gains demonstrated better syntactic and struc-
tural fidelity. These results confirm that graph-based retrieval effectively enhances smart contract
code generation by providing additional structural and semantic context.

Approach # of train # of test AGA-Code CodeBERTScore CodeBLEU p-value
CodeT5+ 11032 1000 32.1 48.1 53.1 /

CodeT5 11032 1000 27.7 43.9 49.5 /

CodeBERT 11032 1000 26.8 40.1 44.9 /

GraphRAG-SCG (Zero-Shot) / 1000 0.3 0.6 0.51 ¡0.01

GraphRAG-SCG (One-Shot) / 1000 25.8 43.1 47.9 ¡0.01

GraphRAG-SCG (Three-Shot) / 1000 35.4 52.1 56.1 ¡0.01

GraphRAG-SCG (Five-Shot) / 1000 37.7 51.8 57.1 ¡0.01

Table 2: The impact of different few-shot retrieval quantities on GraphRAG-SCG performance with
Gemini-1.5-Pro. p-values are calculated applying a one-sided pairwise Wilcoxon signed-rank test
and B-H corrected.

Few-shot Code Generation. We further evaluated GraphRAG-SCG in few-shot code generation
experiments under Zero-Shot, One-Shot, Three-Shot, and Five-Shot retrieval settings, simulating
practical scenarios with varying amounts of reference subgraphs. Results summarized in Table 2
show that while GraphRAG-SCG initially lags behind baselines in Zero-Shot conditions, its perfor-
mance improves substantially as more subgraphs are retrieved. From Three-Shot retrieval onwards,
GraphRAG-SCG consistently outperforms all baseline models across AGA-Code, CodeBERTScore,
and CodeBLEU. These improvements indicate that retrieved subgraphs provide critical guidance to
the LLM, enabling it to better capture complex control- and data-flow relationships in code. Perfor-
mance gains under Five-Shot retrieval are marginal compared to Three-Shot, suggesting diminishing
returns with additional samples. These findings indicate that Three-Shot retrieval achieves the op-
timal trade-off between code quality and computational efficiency, offering sufficient context
for high-quality code generation while minimizing token consumption and processing overhead.

Collectively, these experiments confirm the effectiveness of GraphRAG-SCG in leveraging graph-
based retrieval to enhance smart contract code. The combination of structural subgraphs and sym-
bolic constraints enables the model to generate codes that are both semantically accurate and syntac-
tically consistent, highlighting the practical potential of retrieval-augmented generation frameworks
in code understanding tasks.

4.6 ABLATION STUDY

We conducted ablation experiments to quantify the impact of individual graph components in
GraphRAG-SCG under Zero-Shot retrieval. Specifically, we evaluated the effect of removing Func-
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tion Call Graphs (FCGs), Data Dependency Graphs (DDGs), and symbolic constraints from the
retrieved subgraphs. As shown in Table 3, removing FCGs caused the largest performance drop,
highlighting the importance of structural information for capturing function interactions. Excluding
DDGs led to notable declines, indicating their role in preserving data flow and semantic consis-
tency. Omitting symbolic constraints also reduced performance, demonstrating their contribution
to rule adherence and coherence. Overall, the results confirm that FCGs, DDGs, and constraints
are all essential for high-quality code, validating the effectiveness of graph-based augmentation in
GraphRAG-SCG.

Approach Graph Component AGA-Code CodeBERTScore CodeBLEU

GraphRAG-SCG

ALL 6.21 26.05 29.78
-FCG 5.38 28.02 28.13
-DDG 4.59 25.67 26.47

-Constraints 5.74 25.68 29.19

Table 3: Effect of Graph Augmentation on Gemini-1.5-Pro Generated code. FCG is a Function Call
Graph, DDG is a Data Dependency Graph, and Constraints are symbolic rules.

5 LIMITATIONS

GraphRAG-SCG demonstrates strong performance in smart contract code generation, but it has sev-
eral inherent limitations. The quality of the generated code heavily depends on the accuracy of the
function-call graph (FCG) and data-dependency graph (DDG) extraction. Errors in parsing or in-
complete data-flow analysis can propagate through the retrieval and generation stages, potentially
leading to semantic or structural inconsistencies. Although the dual-layer index facilitates efficient
retrieval, very large contracts or corpora may still incur significant memory and computation costs
during subgraph similarity searches and breadth-first traversal. Despite prompt enrichment, large
language models may occasionally hallucinate code not present in the retrieved subgraphs, espe-
cially when the natural-language requirement is complex or requires long-range reasoning. Addi-
tionally, the maximum context length of the LLM limits the number of subgraphs that can be incor-
porated into a single prompt, which may reduce performance on extensive or highly interconnected
contracts.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose GraphRAG-SCG, a graph-enhanced retrieval-augmented generation
framework for smart contract code. By integrating structural representations—including function-
call graphs (FCGs), data-dependency graphs (DDGs), and symbolic business constraints—into the
generation pipeline, GraphRAG-SCG captures both control-flow and data-flow semantics, enabling
large language models to produce code that is accurate, coherent, and semantically consistent. Ex-
tensive experiments on Ethereum smart contract datasets demonstrate that GraphRAG-SCG achieves
state-of-the-art performance across multiple evaluation ƒmetrics, including AGAS-Code, Code-
BERTScore and CodeBLEU outperform strong baseline methods under zero-shot and few-shot
retrieval settings. Ablation studies further confirm that each graph component contributes signif-
icantly to the quality of generated codes, with FCGs and DDGs providing critical structural con-
text and symbolic constraints ensuring semantic consistency. For future work, we plan to enhance
GraphRAG-SCG by incorporating dynamic analysis information, such as runtime execution traces
and path coverage, to provide additional contextual cues for complex contract behaviors. We also
aim to extend the approach to a broader range of programming languages and general-purpose soft-
ware systems, exploring its applicability to automated documentation generation. Furthermore, in-
tegrating program verification techniques and real-time constraint checking could improve the re-
liability and robustness of generated code. Collectively, these directions are expected to advance
retrieval-augmented code generation and provide practical tools for smart contract development,
auditing, and maintenance
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José Cassio dos Santos Junior, Rachel Hu, Richard Song, and Yunfei Bai. Domain-driven llm de-
velopment: Insights into rag and fine-tuning practices. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD ’24, pp. 6416–6417. Association
for Computing Machinery, 2024.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. CodeBERT: A pre-trained model for programming
and natural languages. In Findings of the Association for Computational Linguistics: EMNLP
2020, pp. 1536–1547, 2020.

Hunny Gaur, Devendra K. Tayal, and Amita Jain. Automatic assessment of program code using
codebertscore: a transformer-based approach. In Artificial Intelligence and Speech Technology,
pp. 206–219. Springer Nature Switzerland, 2025.

Lianghong Guo, Yanlin Wang, Ensheng Shi, Wanjun Zhong, Hongyu Zhang, Jiachi Chen, Ruikai
Zhang, Yuchi Ma, and Zibin Zheng. When to stop? towards efficient code generation in llms with
excess token prevention. In Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis, pp. 1073–1085, 2024.

QingYuan Huang, ZiXun Zeng, and Ying Shang. An empirical study of integer overflow detec-
tion and false positive analysis in smart contracts. In Proceedings of the 2024 8th International
Conference on Big Data and Internet of Things, pp. 247–251, 2024.

Wei Jin, Yao Ma, Yiqi Wang, Xiaorui Liu, Jiliang Tang, Yukuo Cen, Jiezhong Qiu, Jie Tang, Chuan
Shi, Yanfang Ye, Jiawei Zhang, and Philip S. Yu. Graph representation learning: Foundations,
methods, applications and systems. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, KDD ’21, pp. 4044–4045. Association for Computing
Machinery, 2021.

Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia LI, Jenny Chim, Qian Liu, and Evgenii Zheltonozhskii.
Starcoder: may the source be with you! Transactions on Machine Learning Research, 2023. URL
https://openreview.net/forum?id=KoFOg41haE. Reproducibility Certification.

Wei Li, Xun Gong, Jiao Li, and Xiaobin Sun. Aga: An adaptive group alignment framework for
structured medical cross-modal representation learning, 2025. URL https://arxiv.org/
abs/2507.23402.

Zeqin Liao, Sicheng Hao, Yuhong Nan, and Zibin Zheng. Smartstate: Detecting state-reverting
vulnerabilities in smart contracts via fine-grained state-dependency analysis. In Proceedings of
the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 980—-
991, 2023.

Yang Liu, Jinlong He, Xiangyang Li, Jingwen Chen, Xinlei Liu, Song Peng, Haohao Cao, and Yaoqi
Wang. An overview of blockchain smart contract execution mechanism. Journal of Industrial
Information Integration, 41:100674, 2024.

Yuqi Liu, Rui Xi, and Karthik Pattabiraman. Reentrancy redux: The evolution of real-world reen-
trancy attacks on blockchains. In 2025 55th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pp. 576–588. IEEE, 2025.

Zhenguang Liu, Peng Qian, Xiang Wang, Lei Zhu, Qinming He, and Shouling Ji. Smart contract
vulnerability detection: From pure neural network to interpretable graph feature and expert pattern
fusion. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
pp. 2751–2759, 2021.

10

https://doi.org/10.1145/3717383.3717394
https://doi.org/10.1145/3717383.3717394
https://openreview.net/forum?id=KoFOg41haE
https://arxiv.org/abs/2507.23402
https://arxiv.org/abs/2507.23402


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026
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