
Simple Data Sharing for Multi-Tasked Goal-Oriented
Problems

Anonymous Author(s)
Affiliation
Address
email

Abstract

Many important sequential decision problems – from robotics, games to logistics1

– are multi-tasked and goal-oriented. In this work, we frame them as Contextual2

Goal Oriented (CGO) problems, a goal-reaching special case of the contextual3

Markov decision process. CGO is a framework for designing multi-task agents4

that can follow instructions (represented by contexts) to solve goal-oriented tasks.5

We show that CGO problem can be systematically tackled using datasets that are6

commonly obtainable: an unsupervised interaction dataset of transitions and a su-7

pervised dataset of context-goal pairs. Leveraging the goal-oriented structure of8

CGO, we propose a simple data sharing technique that can provably solve CGO9

problems offline under natural assumptions on the datasets’ quality. While an of-10

fline CGO problem is a special case of offline reinforcement learning (RL) with11

unlabelled data, running a generic offline RL algorithm here can be overly con-12

servative since the goal-oriented structure of CGO is ignored. In contrast, our13

approach carefully constructs an augmented Markov Decision Process (MDP) to14

avoid introducing unnecessary pessimistic bias. In the experiments, we demon-15

strate our algorithm can learn near-optimal context-conditioned policies in simu-16

lated CGO problems, outperforming offline RL baselines.17

1 Introduction18

Goal-Oriented (GO) problems (Kaelbling, 1993) are an important class of sequential decision-19

making problems with widespread applications, ranging from robotics (Yu & Mooney, 2023) to20

game-playing (Hessel et al., 2019) to real-world logistics (Mirowski et al., 2018). Many of these21

problems are multi-tasked: rather than aiming toward a single goal, the agent needs to reach task-22

specific goals based on the task instruction it receives. In this work, we frame these multi-tasked23

goal-oriented applications as Contextual GO (CGO) problems and design a simple algorithm that24

can provably solve them using offline datasets that are commonly available in CGO applications.25

CGO problem is a special case of contextual Markov Decision Process (MDP) (Hallak et al., 2015).26

In a CGO problem, each task is a reaching problem with a goal set that is communicated indirectly27

to the agent via a context. CGO problem includes the classical GO problem as a special case,28

where the context is just the target goal, but in general contexts in CGO problem can convey rich,29

high-level task instructions. In robotics, e.g., common contexts are verbal instructions like “clean30

up the table” whereas goals are specific configurations (e.g., a clean table) in the environment. In31

games, contexts can be side-quests for the player to accomplish, and in logistics contexts describe32

origins and destinations of journeys an operator should execute. We will use navigation as a running33

example in this paper. Imagine instructing a truck operator with the context “Deliver goods to a34

warehouse in the Bay area”. Given the context, they must first infer a goal (e.g., a warehouse35

location) and implement a policy to efficiently navigate to the goal.36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

CGO problems are challenging, because the rewards are sparse (non-zero rewards only when reach-37

ing goals) and the contexts can be difficult to interpret into feasible goals. However, CGO problem38

has an important structure that the transition dynamics (e.g., navigating a city road network) are39

independent of the context (e.g., journey origin and destination), and efficient multitask learning can40

be achieved by sharing dynamics data across tasks or contexts.41

We study offline Reinforcement Learning (RL) for CGO problems. Offline learning is timely for42

CGO problems given the recent availability of suitable massive datasets. We identify two different43

kinds of datasets that are commonly available in CGO applications – an (unsupervised) dynamics44

dataset of agent trajectories, and a (supervised) context-goal dataset of pairs of contexts and goals.45

In robotics, task-agnostic play data can be obtained at scale (Lynch et al., 2020; Walke et al., 2023)46

in an unsupervised manner whereas instruction datasets (e.g., Misra et al. (2016)) allow supervised47

learning of the context-goal mapping. In navigation, self-driving car trajectories (e.g., Wilson et al.48

(2021); Sun et al. (2020)) allow us to learn dynamics whereas landmarks datasets (e.g. Mirowski49

et al. (2018); Hahn et al. (2021)) allow us to map the contexts to goals.50

We propose a Simple Data Sharing (SDS) technique that can provably solve CGO problems subject51

to natural assumptions on the datasets’ quality. We prove that SDS can learn a near-optimal policy52

for the CGO problem with high probability, as long as the distribution generating the context-goal53

dataset covers the target context and the distribution generating the dynamics dataset covers a feasi-54

ble path to the target goal set. SDS is a reduction-based technique that can be implemented on top of55

a standard offline RL algorithm. Our key insight is to carefully construct an action-augmented MDP56

such that the dynamics dataset and context-goal dataset can be reconciled together as a standard57

reward-labeled offline dataset.58

To our knowledge, SDS is the first offline algorithm that can provably solve CGO problems with59

just positive data (i.e., the context-goal dataset). While the offline CGO problem here can be cast as60

an offline RL problem with unlabeled data (i.e., viewing each {context, state} pair as a composite61

state1), existing theoretical results (Yu et al., 2022; Hu et al., 2023; Li et al., 2023a) indicate that both62

positive data and negative data (i.e., pairs of context and non-goal data) are needed.2. An alternative63

approach to offline CGO problems is to predict goals based on contexts and then run offline goal-64

conditioned RL (Ma et al., 2022). This approach only needs positive data in learning the predictor,65

but it can fail when the predicted goal is not reachable from the initial state. In the truck operator66

example, suppose that there are two warehouses on either side of a river but the bridge across the67

river is closed to traffic. The goal predictor must reason about the connectivity of the road network68

when it sets goals; otherwise it may set an infeasible goal (e.g., a warehouse on the other side of the69

river) that no goal-conditioned policy can successfully execute.70

We contribute an effective SDS technique and a new analysis technique that formally proves that71

CGO problem can be solved offline with just dynamics data and context-goal data (i.e. positive72

data), without the need of negative data. We also show that SDS can be implemented on top of73

existing offline RL algorithms (with concrete instantiations for PSPI (Xie et al., 2021) in Section 3.374

and IQL (Kostrikov et al., 2021) in Section 4). In addition to theoretical analyses, we conduct several75

experiments in simulated domains, confirming that SDS outperforms SOTA offline RL baselines76

designed for unlabeled data. Finally, we situate our contributions within the vast literature on Goal-77

Oriented RL (Kaelbling, 1993) and contextual MDPs (Hallak et al., 2015) in Appendix A.78

2 Preliminaries79

2.1 Contextual Goal-Oriented (CGO) Problem80

A Contextual Goal-Oriented (CGO) problem describes a multi-tasked goal-oriented setting with a81

shared transition kernel. We consider a Markovian CGO problem with an infinite horizon, defined82

by the tuple M = (S,A, P,R, γ, C, d0), where S is the state space, A is the action space, P :83

S × A → ∆(S) is the transition kernel, R : S × C → {0, 1} is the reward function, γ ∈ [0, 1)84

is the discount factor, C is the context space, and finally ∆ denotes the space of distributions. We85

1Context-goal data can be processed into reward-labeled data, whereas dynamics data from the original
MDP imputed with all of the contexts seen in the context-goal dataset becomes the reward-unlabeled data.

2Additionally reward-labeled data covering the full trajectory is necessary for general offline RL. But for
GO problems, we show that a weaker condition of covering only the goals is sufficient. Existing algorithms for
offline RL with unlabeled data may work with this weaker notion of coverage, but it is unclear how to prove it.

2

(a) Similar goal sets with differ-
ent contexts

(b) Distinct goal sets with different but
small number of contexts

(c) Overlapping goal sets across con-
texts but with an empty intersection

Figure 1: The interplay between contexts and goals in a Contextual Goal-Oriented (CGO) prob-
lem characterizes many real-world multi-task settings. (a) All the contexts may share similar goal
sets (e.g., pouring coffee). (b) Each context may map to different goal sets (e.g., general-purpose
robotics). (c) Contexts may have different overlapping goal sets, creating a complex CGO problem.

do not assume any particular topology on S,A and C and they can be continuous. Each context86

c ∈ C specifies a goal-reaching task with a goal set Gc ⊂ S, and reaching any goal in the goal set87

Gc is regarded as successful. The reward function is hence defined as R(s, c) = 1(s ∈ Gc). An88

episode of a CGO problem starts from an initial state s0 and a context c sampled according to a89

distribution d0(s0, c), and it terminates when the agent reaches the goal set Gc. During the episode,90

c does not change; only st changes (according to P (s′|s, a)) and the transition kernel P (s′|s, a) is91

context independent. The classical GO problem (Kaelbling, 1993) is a special case of CGO, where92

a multi-goal problem can be viewed as multiple contexts with each context describing a goal.93

Spectrum of CGO Problem Figure 1 illustrates different CGO problems encountered when learn-94

ing a language-conditioned control policy for a robot manipulator. s describes the robot and the95

world state, a is the robot action, and c is the language instruction. For each instruction c, the ma-96

nipulation task for the robot is a reaching problem to a set of targeted robot and world states. The97

simplest CGO instance is when most of the contexts c ∈ C correspond to the very similar goal sets,98

as shown in Figure 1a. In this case, a context-agnostic policy can be near-optimal3. When different99

contexts have non-overlapping goal sets Gc and the number of contexts are small (as in Figure 1b),100

the problem is essentially multi-task RL which requires context-conditioned policies. In its full101

complexity, the number of contexts can be infinite; and goal sets of different contexts could overlaps102

while their intersection is empty, as shown in Figure 1c. A CGO agent thus needs to learn how to103

respond to different contexts as well as transfer knowledge efficiently across contexts.104

Objective Since the context carries rich information, a CGO policy in general is context-105

conditioned, i.e., π : S × C → ∆(A). The performance of a policy π is measured by its return,106

J(π) := Eπ,P,d0

[∑T
=0 γ

tR(st, c)
]
, where T is the time the agent first enters Gc (a random variable107

dependent on π, P and d0), and Eπ,P,d0
denotes the expectation over trajectories generated by run-108

ning π with P starting from s0, c sampled from d0. We can view the return as the average success109

rate of reaching any goal in the goal set Gc when the problem horizon is exponentially distributed110

(according to the discount γ). A CGO algorithm takes a policy class Π = {π : S × C → ∆(A)} as111

input and returns a near-optimal policy π† such that J(π†) ≈ maxπ∈Π J(π).112

2.2 Offline Learning113

We aim to solve CGO problems using offline datasets without additional online environment interac-114

tions, à la offline RL. We identify two types of data that are commonly available: Ddyn := {(s, a, s′)}115

is an unsupervised dataset of agent trajectories collected from P (s′|s, a), whereas Dgoal := {(c, s) :116

s ∈ Gc} is a supervised dataset of context-goal pairs. Different offline CGO algorithms can be117

judged based on the assumptions they require on {Ddyn, Dgoal}, such as what the datasets should118

cover and how much data are needed to learn π†. No algorithm, to our knowledge, can provably119

learn near-optimal π† using only the positive Dgoal data (i.e., without needing additional negative120

data of non-goal examples) when combined with Ddyn data. In the next section, we demonstrate121

how to leverage the special structure of the CGO problem to design provably correct offline algo-122

rithms. This insight leads to a Simple Data Sharing (SDS) scheme that can enable existing offline123

3Indeed we show in Section 4 that some existing multi-task RL benchmarks are in this regime where a
context-agnostic Implicit Q-Learning (IQL) (Kostrikov et al., 2021) baseline performs well.

3

RL algorithms (designed for fully labeled data) to solve offline CGO problems using just the positive124

goal-labeled data without needing any additional non-goal examples, or reward learning.125

2.3 Notation and Assumption126

Before presenting the main results, we introduce some definitions and shorthand to make the pre-127

sentation more readable. We introduce a fictitious zero-reward absorbing state s+ and modify the128

dynamics such that whenever the agent enters Gc it transits to s+ in the next time step (for all ac-129

tions) and stays there forever. This is a standard technique to convert a goal reaching problem (with130

a random problem horizon) to an infinite horizon problem. It does not change the problem.131

Specifically, we extend the reward and the dynamics as follows: We define S̄ = S
⋃
{s+}, X :=132

S × C, and X̄ := S̄ × C. In addition, we define X+ := {x : x = (s, c), s = s+, c ∈ C}. We use133

G to denote the goal set on X , i.e., G := {x ∈ X : x = (s, c), s ∈ Gc}. With abuse of notation,134

we define the reward function and the transition kernel on X̄ accordingly as R(x) = 1(s ∈ Gc)135

and P (x′|x, a) := P (s′|s, c, a)1(c′ = c), where P (s′|s, c, a) := 1(s′ = s+) if s ∈ Gc or s = s+;136

otherwise P (s′|s, c, a) = P (s′|s, a), where x = (s, c) and x′ = (s′, c′). Notice the context does not137

change in the transition. For all value functions, we define their value at s+ as zero.138

Given a policy π : X → ∆(A), we define its state-action value function (i.e., Q function) as139

Qπ(x, a) := Eπ,P [
∑∞

t=0 γ
tR(x)|x0 = x, a0 = a]. We use V π(x) := Qπ(x, π) to denote the value140

function π, where f(π) := Ea∼π[f(a)]. By construction, we have Qπ(x, a), V π(x) ∈ [0, 1], ∀x ∈141

X , a ∈ A. By these definitions, we can write the return J(π) = V π(d0) = Qπ(d0, π). We denote142

π∗ as the optimal policy and define Q∗ := Qπ∗
, V ∗ := V π∗

.143

Data Assumption We suppose that there are two distributions µdyn(s, a, s
′) and µgoal(s, c), where144

µdyn(s
′|s, a) = P (s′|s, a) and µgoal has support within Gc, i.e., µgoal(s|c) > 0 ⇒ s ∈ Gc. We145

assume that Ddyn and Dgoal are i.i.d. samples drawn from µdyn and µgoal, i.e.,146

Ddyn = {(si, ai, s′i) ∼ µdyn} and Dgoal = {(sj , cj) ∼ µgoal}.

We suppose that x ∼ d0 is not in G almost surely. This is to simplify the presentation. If x ∈ G, the147

agent reaches its goal immediately and no learning is needed.148

3 Simple Data Sharing To Solve CGO Problems149

The key idea of SDS is the construction of an action-augmented MDP with which the dynamics150

and context-goal datasets can be combined into a conventional offline RL dataset. In the following,151

first we describe this action-augmented MDP (Section 3.1) and show that it preserves the optimal152

policies of the original MDP (Appendix B.1). We then outline a practical algorithm to convert the153

two datasets of an offline CGO problem into a dataset for this augmented MDP (Section 3.2) such154

that any generic offline RL algorithm can be used as a solver. Finally, in Section 3.3, we theoretically155

analyze an instantiation of SDS based on PSPI (Xie et al., 2021) and show that SDS can provably156

find a near-optimal policy for the CGO problem.157

3.1 Action-Augmented MDP158

One reason why offline RL cannot directly leverage Ddyn and Dgoal to solve a CGO problem is that159

each goal-reaching problem has its own context-specific termination criterion. Notice that although160

the dynamics datasets Ddyn is consistent with the original MDP transition kernel (i.e. P (s′|s, a)),161

it is however not consistent with the transition kernel P (x′|x, a) (which also includes the effect of162

context-specific termination) of the context-augmented MDP in Section 2.3. This is easiest to see163

if some s ∈ Gc in the Dgoal dataset is also observed in the dynamics dataset. Ddyn will imply from164

(s, a, s′) that action a can transition to s′, however Dgoal implies that all actions at s will transition to165

s+. This conflict means that combining the two datasets naively leads to an inconsistent algorithm.166

We propose a new augmented MDP, which augments the action space of the context-augmented167

MDP in Section 2.3 with a fictitious action a+ to avoid conflicts across Ddyn and Dgoal. Define168

Ā = A
⋃
{a+}. The reward in this action-augmented MDP is now action-dependent, for x =169

(s, c) ∈ X , R̄(x, a) := 1(s ∈ Gc)1(a = a+) and the transition upon taking action a+ is defined as170

P̄ (x′|x, a+) := 1(s′ = s+) and P̄ (x′|x, a) := P (s′|s, a)1(c′ = c) for other actions.171

4

Algorithm 1 Simple Data Sharing (SDS) for CGO
Input: Dynamics dataset Ddyn, context-goal dataset Dgoal

for each sample (s, c) ∼ Dgoal do
Create transition4(x, a+, 1, x+), where x = (s, c) and x+ = (s+, c), add it to D̄goal

end for
for each (s, a, s′) ∼ Ddyn do

for each (·, c) ∼ Dgoal do
Create transition (x, a+, 0, x′), where x = (s, c) and x′ = (s′, c), add it to D̄dyn

end for
end for

Output: D̄dyn and D̄goal

We denote this action-augmented MDP as M := (X̄ , Ā, R̄, P̄ , γ). For policy π : X → ∆(A) and172

value functions f : X ×A → [0, 1] defined in the original MDP, we define their extensions on M:173

π̄(a|x) =
{
π(a|x), x /∈ G

a+, otherwise
and f̄g(x, a) =


g(x), a = a+ and x /∈ X+

0, x ∈ X+

f(x, a), otherwise

where the extension of f is based on a function g : X → [0, 1] which determines its value at a+.174

We show in Appendix B.1 (see Lemma B.3) that the regret of a policy extended to the augmented175

MDP is equal to the regret of the policy in the original MDP describing the CGO problem, and176

any policy defined in the augmented MDP can be converted into that in the original MDP without177

increasing the regret. Thus, solving the augmented MDP can yield correspondingly optimal policies178

for the original problem. We next sketch a practical technique to combine Ddyn and Dgoal along with179

the fictitious action labels a+ such that we can solve the action-augmented MDP effectively.180

3.2 Practical Algorithm: Simple Data Sharing181

In Algorithm 1 we sketch our Simple Data Sharing (SDS) technique. It takes the two datasets182

Ddyn and Dgoal as input, and produces a single dataset D̄dyn
⋃
D̄goal that is suitable for use by any183

offline RL algorithm like CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2021), PSPI (Xie et al.,184

2021), ATAC (Cheng et al., 2022) etc. Notice that any policy returned by the offline RL algorithm185

can be executed in the CGO problem by simply masking out the a+ action. We note that in practice186

Algorithm 1 can be implemented as a pre-processing step in the minibatch sampling of a deep offline187

RL algorithm (as opposed to computing the full D̄dyn and D̄goal once before learning). Empirically,188

we found that equally balancing the samples D̄dyn and D̄goal generates the best result. Below we189

analyze SDS theoretically by applying SDS to PSPI (Xie et al., 2021); later in Section 4, we apply190

SDS to IQL (Kostrikov et al., 2021) in simulation experiments.191

3.3 Analysis of SDS+PSPI: Information Theoretic Guarantee192

In this section, we show a formal analysis for our reduction approach, when instantiated with PSPI193

(Xie et al., 2021). We summarize the main theoretical result as follows.194

Theorem 3.1. Let π† denote the learned policy of SDS + PSPI with datasets Ddyn and Dgoal, using195

value function classes5 F = {X × A → [0, 1]} and G = {X → [0, 1]}. Under realizability and196

completeness assumptions below, with probability 1− δ, it holds, for any π ∈ Π,197

J(π)− J(π†) ≤ Cdyn(π)
√
ϵdyn + Cgoal(π)

√
ϵgoal

where ϵdyn = O
(

log(|F||G||Π|/δ)
|Ddyn|

)
and ϵgoal = O

(
log(|G|/δ)
|Dgoal|

)
are statistical errors, and Cdyn(π) and198

Cgoal(π) are concentrability coefficients which decrease as the data coverage increases.199

Assumption 3.2 (Realizability). We assume for any π ∈ Π, Qπ ∈ F and R ∈ G.200

4s+ is implemented as terminal=True.
5We state a more general result for non-finite function classes in the appendix.

5

Assumption 3.3 (Completeness). We assume: For any f ∈ F and g ∈ G, max(g(x), f(x, π)) ∈ F;201

And for any f ∈ F , π ∈ Π, T πf(x, a) ∈ F , where T π is a zero-reward Bellman backup operator202

with respect to P (s′|s, a): T πf(x, a) := γEx′∼P (s′|s,a)1(c′=c)[f(x
′, π)].203

Definition 3.4. We define the generalized concentrability coefficients:204

Cdyn(π) := max
f,f ′∈F

∥f − T πf ′∥2ρπ
/∈G

∥f − T πf ′∥2µdyn

and Cgoal(π) := max
g∈G

∥g − r∥2ρπ∈G

∥g − r∥2µgoal

where ∥h∥2µ := Ex∼µ[h(x)
2], ρπ/∈G(x, a) = Eπ,P

[∑T−1
t=0 γt1(xt = x, at = a)

]
, ρπ∈G(x) =205

Eπ,P

[
γT 1(xT = x)

]
, and T is the first time the agent enters the goal set.206

Concentrability coefficients is a generalization notion of density ratio; it describes how much the207

(unnormalized) distribution in the numerator is covered by that in the denominator in terms of the208

generalization ability of function approximators (Xie et al., 2021). By setting π = π∗ in Theo-209

rem 3.1, we see that the policy learned by SDS+PSPI has a small regret as long as the dynamics data210

Ddyn covers the trajectory of the optimal policy, and the context-goal dataset Dgoal covers goals the211

optimal policy would reach. In other words, SDS+PSPI can provably learn with only the positive212

data (i.e., the context-goal dataset) without the need of additional labeling of non-goal samples.213

Remark 3.5. MAHALO (Li et al., 2023a) is a SOTA offline RL algorithm that can provably learn214

from unlabeled data. MAHALO can also be implemented on top of PSPI; however, their theoretical215

result (Theorem D.1) requires a stronger version concentrability, maxg∈G ∥g−r∥2
ρπ
/∈G
/∥g−r∥2

µgoal
, to be216

small. In other words, it needs additional labeling of non-goal states.217

3.3.1 Algorithm: SDS+PSPI218

Here we briefly summarize how SDS+PSPI is implemented, without taking literally a+ and s+ in219

function approximators. Due to space constraints, we defer the details to Appendix B.220

We consider the information theoretic version of PSPI (Xie et al., 2021) which can be summarized221

as follows: For an MDP (X ,A, R, P, γ), given a tuple dataset D = {(x, a, r, x′)}, a policy class Π,222

and a value class F , it finds the policy through solving the two-player game:223

max
π∈Π

min
f∈F

f(d0, π) s.t. ℓ(f, f ;π,D)− min
f ′∈F

ℓ(f ′, f ;π,D) ≤ ϵb (1)

where f(d0, π) = Ex0∼d0 [f(x0, π)], ℓ(f, f ′;π,D) := 1
|D|

∑
(x,a,r,x′)∈D(f(x, a)− r− f ′(x′, π))2.224

The term ℓ(f, f ;π,D) −minf ′ ℓ(f ′, f ;π,D) is an empirical estimation of the Bellman error on f225

of π on the data distribution µ, i.e. Ex,a∼µ[(f(x, a)−T πf(x, a))2]. It constrains the Bellman error226

to be a small ϵb, since Ex,a∼µ[(Q
π(x, a)− T πQπ(x, a))2] = 0.227

Instantiating PSPI In order to run PSPI on the augmented MDP, we extend the policy class to Π̄228

and define an extended value class F̄G based on F and G as discussed in Section 3.1. Then we rewrite229

the squared Bellman error on the two data distributions 6 using equation 6 and Proposition B.4 as:230

Ex,a∼µdyn [(Q̄
π̄(x, a)− T̄ π̄Q̄π̄(x, a))2] = Ex,a∼µdyn [(Q̄

π̄(x, a)− γEx′∼P̄ (·|x,a)[max(R(x′), Qπ(x′, π))])2]
231

Ex,a∼µgoal [(Q̄
π̄(x, a)− T̄ π̄Q̄π̄(x, a))2] = Ex,a∼µgoal [(Q̄

π̄(x, a+)− 1)2]

where T̄ π̄ denotes the Bellman backup operator and Q̄π̄ denotes the Q-function of π̄ in M.232

Using this expression for the squared Bellman error, we can reformulate the empirical losses in233

equation 1:234

ℓdyn(f̄g, f̄
′
g′ ; π̄) := 1

|D̄dyn|
∑

(x,a,r,x′)∈D̄dyn
(f(x, a)− γmax(g′(x′), f ′(x′, π)))2 (2)

ℓgoal(f̄g) :=
1

|D̄goal|
∑

(x,a,r,x′)∈D̄goal
(g(x)− 1)2 (3)

Using these losses, we can define the two-player game of PSPI for the action-augmented MDP as:235

max
π∈Π

min
f̄g∈F̄

f̄g(d0, π̄) s.t. ℓdyn(f̄g, f̄g; π̄)− min
f̄ ′
g′∈F̄

ℓdyn(f̄
′
g′ , f̄g; π̄) ≤ ϵdyn, ℓgoal(f̄g) ≤ 0 (4)

Notice f̄g(d0, π̄) = f(d0, π), so this problem can be solved using samples without knowing G.236

6With abuse of notation, we write µdyn(x, a, x
′) = µdyn(s, a, s

′)µgoal(c) and µgoal(x, a, x
′) =

µgoal(c, s)1(a = a+)1(s′ = s+). In Algorithm 1, we have D̄dyn ∼ µdyn and D̄goal ∼ µgoal.

6

4 Experiments237

Through experiments we aim to answer the following questions: 1) Does our method work in sce-238

narios of different context-goal relationships shown in Figure 1, under the data assumptions in Sec-239

tion 2.3? 2) Under each setting, is there any empirical benefit from using SDS, compared with offline240

RL baselines (for unlabeled data) that require pessimistic reward learning?241

4.1 Environments and datasets242

Dynamics dataset. For all experiments, we use the AntMaze-v2 datasets of D4RL (Fu et al., 2020)243

as dynamics datasets Ddyn; we remove the reward and terminal information labels.244

Context-goal dataset. We construct three levels of context and goal relationships as shown in Fig-245

ure 1: 1) Figure 1a where multiple contexts define very similar goal sets (Section 4.3); 2) Figure 1b246

where the number of contexts is finite and the goal sets of different do not overlap (Section 4.4);247

3) Figure 1c where the contexts are continuous and randomly sampled, the goal sets can overlap248

but their intersection is empty (Section 4.5). For each environment, we define a context set and249

an oracle function to tell whether a state is within the goal set; this oracle function is only used in250

data construction and is not accessible to the algorithms tested here. Then given each context, we251

select states in the dynamics dataset that satisfy the oracle function to construct the goal examples7252

In Appendix E, we include results of the goal set containing samples not from the dynamics dataset.253

Evaluation. Section 4.3, 4.4 and 4.5 contain results where the training and testing contexts are254

sampled from the same distribution; in Section 4.5 we also test the algorithms with a different255

context distribution. For evaluation, we use8 the oracle function that defines context-goal sets to256

provide the reward given a certain context in Section 4.4 and 4.5 . The evaluation of each context is257

done by 100 episodes. We train each algorithm for 5 seeds and report the statistics.258

4.2 Methods259

Here we describe the algorithms compared in the experiments. To facilitate a clean comparison of260

different conceptual approaches to solving offline CGO problems, we use IQL (Kostrikov et al.,261

2021) as the backbone offline algorithm for all the methods. The same set of hyperparameters in262

IQL is used in all experiments. In the experiments, we use the −1/0 reward notion, which can be263

shown to be the same as the 0/1 reward notion in terms of ranking policies under the discounted264

MDP setting. Please see Appendix C.1 for detailed hyperparameters of all methods.265

SDS+IQL (Ours). We apply SDS in Algorithm 1 with IQL as the offline RL algorithm to solve266

the augmented MDP defined in Section 3.1. More specifically, we set a+ to be an extra dimension in267

the action space but mask out extra dimension for policy output. We can think of IQL as optimizing268

Eq. (2) via expectile regression given the offline dataset..269

Reward prediction (RP). For naive reward prediction, we first convert the context-goal set to270

a dataset with reward 0 for all (c, s) ∼ Dgoal, and then learn a reward function with the dataset.271

For policy training, we randomly sample (s, a, s′) ∼ Ddyn and c ∼ Dgoal and label the transition272

with the learned reward: if reward prediction of (c, s′) is larger then some threshold, we label the273

transition with r = 0 and terminal = True; otherwise we label the transition with r = −1 and274

terminal = False. Then we apply IQL with this labeled dataset.275

PDS. For PDS (Hu et al., 2023), we follow the similar procedure as RP but learn a pessimistic276

reward function using ensembles. Then we apply similar steps to label the transitions with contexts277

and apply IQL with this labeled dataset as RP.278

UDS+RP. On top of RP, we introduce another possible way to learn a reward function while we279

construct “non-goal” samples in a pessimistic manner: we also sample random c ∼ Dgoal and280

s ∼ Ddyn and label it with r = −1 similar to the spirit of UDS (Yu et al., 2022), then train the281

reward function with the combined positive and negative dataset. Then we follow the same steps in282

RP for policy training with the learned reward function.283

Context-agnostic IQL. As discussed in Section 4.1, if we “hack” our context-goal construction284

method, given contest-goal data we can label the corresponding transitions with terminal = True285

and r = 0, and for other transitions and contexts, we label it with terminal = False and r = −1,286

7No method in the comparison utilizes this fact.
8Exception: in the original AntMaze, we use the D4RL metric, so the results are comparable to the literature.

7

then we will have a labeled offline dataset. We then treat the union of all goal sets as one large goal287

set with a single context. It is only to provide a reference to the conventional methods used to solve288

AntMaze, but not for comparison with our method or other baselines and cannot be implemented in289

a real-world offline CGO problem.290

4.3 Original AntMaze291

In the original AntMaze, 2D goal locations (contexts) are sampled from a fixed cell in the maze and292

perturbed with a small noise, generating very similar goal sets. Our training context set is chosen as293

2D locations of the states with terminal=True in the D4RL datasets, and the full state is added as the294

goal example. Test contexts and environmental evaluation follow the original AntMaze.295

SDS matches the performance of the context-agnostic method under the setting of Fig 1a, and296

achieves better performance than reward learning baselines. We show the normalized return297

in each AntMaze environment for all methods in Table 1. Without the need to learn an extra reward298

function, our method consistently achieves equivalent or better performance in each environment299

compared to other reward learning baselines. We observe that our method achieves comparable300

average performance to the context-agnostic method, given that goal sets are all very similar.9301

Reward model evaluation for reward learning baselines. We also visualize the learned reward302

model from reward learning baselines10 to show how good they are at predicting the reward, and303

how it is related to the performance. Take “medium-diverse” and “large-diverse” environments as304

examples (see Figure 2, 3). For PDS, we can observe that the reward distribution for positive and305

negative samples are better separated in the large one than the medium one, explaining that it has306

better performance in the large-diverse environment than the medium-diverse one. Also, we observe307

that UDS+RP is consistently better at separating positive and negative distributions than plain RP, so308

we omit to compare with RP in the rest of the experiments. Intuitively, our method does not require309

reward learning thanks to the augmented MDP, which avoids the extra errors in reward prediction.310

Env/Method SDS (Ours) PDS RP UDS+RP Context-agnostic IQL
umaze 94.8±1.3 87.2±2.5 50.5±2.1 54.3±6.3 97.7±1.0
umaze diverse 72.8±7.7 73.2±3.1 72.8±2.6 71.5±4.3 65.5±10.5
medium play 75.8±1.9 35.2±8.2 0.5±0.3 0.3±0.3 75.2±3.4
medium diverse 84.5±5.2 3.8±1.7 0.5±0.5 0.8±0.5 76.0±3.7
large play 60.0±7.6 41.5±4.9 0±0 0±0 45.8±2.6
large diverse 36.8±6.9 28.8±6.3 0±0 0±0 46.7±5.4
average 70.8 45.0 20.7 21.2 67.8

Table 1: Normalized return in AntMaze-v2, averaged over 5 random seeds with standard errors.

(a) PDS (b) UDS+RP (c) RP

Figure 2: Reward model evaluation for the large-diverse environment. Green dots are outliers.

4.4 Modified AntMaze: Four Rooms311

Context-goal setup. We partition the maze into four rooms and any state in the room would be a312

goal state. We use discrete room numbers (1,2,3,4) as contexts. As the agent always starts in Room313

1, the training and test context sets are Room 2,3,4. We use medium-play and large-play datasets.314

9Also, we find that umaze is too easy such that even if the goal labeling is bad it still has a relatively high
reward (since the maze is too small), so we also omit umaze in other experiments. Li et al. (2023b) show offline
RL algorithms can learn good with goal-reaching data even when the rewards are wrong.

10We include the details for reward model evaluation in Appendix C.2.

8

SDS achieves better performance than reward learning baselines under the setting in Fig-315

ure 1b. We show the normalized return (average success rate in percentage) in each modified Four316

Rooms environment for our method and baseline methods in Table 2, where our method consistently317

outperforms all baseline methods in each environment. We observe that the context agnostic method318

achieves rather high performance under this setting. This is because the number of rooms is only319

three, and the context agnostic method will learn to reach one room always with a high successful320

rate so the average is roughly 1/3, but it will not be the case in Section 4.5 when we have more test321

contexts. We also provide evaluation for reward learning in Figure 5.

Env/Method SDS (Ours) PDS UDS+RP Context-agnostic IQL
medium 78.2±1.2 26.3±1.6 14.0±0.9 32.6±0.8
large 73.3±1.9 14.0±2.7 21.6±21.3 28.1±0.3

Table 2: Average scores with standard errors over 5 random seeds from Four Rooms. The score for
each run is the average success rate (%) of the other three rooms.

322
4.5 Modified AntMaze: Random Cells323

Context-goal setup. We use the 2D locations as context but the distribution of the context is much324

more diverse than Section 4.3. For each maze map, we choose a set of non-wall 2D locations in the325

maze map, uniformly sample from it, and add uniform perturbations to get the training contexts. To326

construct the goal set given context, we obtain states with the 2D locations within the L2 ball with a327

certain radius. For test distributions, we have two settings: 1) the same as the training distribution;328

2) test contexts are drawn from a limited area that is far away from the starting point of the agent.329

SDS achieves better performance than reward learning baselines under the setting in Fig-330

ure 1c. We show the normalized return (average success rate in percentage) in each modified331

Random Cells environment for all methods in Table 3, where our method consistently outperforms332

all baseline methods in each environment, which also shows the generalization ability in the context333

space. We also provide reward visualization for reward learning baselines in Figure 6.334

Env/Method SDS (Ours) PDS UDS+RP Context-agnostic IQL
medium 70.5±8.7 47.5±6.5 14.8±5.8 18.8±5.5
large 55.0±9.3 44.8±8.4 10.1±3.5 17.8±3.7

Table 3: Average scores with standard errors over 5 random seeds from Random Cells. The score for
each run is the average success rate (%) of 5 random test contexts from the same training distribution.

SDS also works with a different test context distribution. We also test with a different dis-335

tribution of random cells that are far away from the start with some specified threshold in each336

environment. We can observe that when tested with this different context distribution, SDS still337

consistently outperforms reward learning baselines.338

Env/Method SDS (Ours) PDS UDS+RP Context-agnostic IQL
medium 63.8±11.9 31.5 ±18.0 2.2±0.9 4.3±1.7
large 62.6±6.4 44.6±7.6 1.1±0.6 0.8±0.8

Table 4: Average scores with standard errors over 5 random seeds from Random Cells. The score
for each run is the average success rate (%) of 5 random test contexts of cells far away from the start.

5 Conclusion and Limitation339

We propose a Simple Data Sharing technique for offline CGO problems. We prove SDS can learn340

near optimal policies so long as the offline data cover goal-reaching trajectories needed at the test341

time, without the need of negative labels. We also validate the efficacy of SDS experimentally,342

and we find it outperforms other reward-learning offline RL baselines across various CGO problem343

settings. We highlight SDS works under certain assumptions. As shown in our theoretical result in344

Section 3.3, the SDS technique would fail 1) if the dynamics dataset does not contain trajectories345

leading to the goal set of a given context, 2) the context-goal dataset does not cover the contexts346

and goals faced at test time, or 3) if the goal set does not cover reachable goals from initial states.347

While we believe SDS for its simplicity and theoretical guarantees would be useful in real-world348

settings (such as learning visual-language robot policies), our experimental setup is limited to low-349

dimensional simulation environments. Scaling up SDS empirically is an interesting future direction.350

9

References351

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob352

McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In353

NeurIPS, 2017.354

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado van Hasselt, and355

David Silver. Successor features for transfer in reinforcement learning. In NeurIPS, 2017.356

Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jacob Varley, Alex357

Irpan, Benjamin Eysenbach, Ryan C Julian, Chelsea Finn, et al. Actionable models: Unsupervised358

offline reinforcement learning of robotic skills. In ICML, 2021.359

Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor critic360

for offline reinforcement learning. In ICML, 2022.361

Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, and Jan Peters. Sharing knowl-362

edge in multi-task deep reinforcement learning. In ICLR, 2020.363

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep364

data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.365

Scott Fujimoto and Shixiang Gu. A minimalist approach to offline reinforcement learning. In366

NeurIPS, 2021.367

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without368

exploration. In ICML, 2019.369

Meera Hahn, Devendra Singh Chaplot, Shubham Tulsiani, Mustafa Mukadam, James M Rehg, and370

Abhinav Gupta. No rl, no simulation: Learning to navigate without navigating. In NeurIPS, 2021.371

Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov decision processes. arXiv372

preprint arXiv:1502.02259, 2015.373

Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R Zhang, and Jimmy Ba. Learn-374

ing domain invariant representations in goal-conditioned block mdps. In NeurIPS, 2021.375

Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt, and Hado376

Van Hasselt. Multi-task deep reinforcement learning with popart. In AAAI, 2019.377

Hao Hu, Yiqin Yang, Qianchuan Zhao, and Chongjie Zhang. The provable benefit of unsupervised378

data sharing for offline reinforcement learning. In ICLR, 2023.379

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In ICML,380

2021.381

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, 1993.382

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,383

Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic re-384

inforcement learning at scale. arXiv preprint arXiv:2104.08212, 2021.385

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-386

learning. In ICLR, 2021.387

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline388

reinforcement learning. In NeurIPS, 2020.389

Alexander C Li, Lerrel Pinto, and Pieter Abbeel. Generalized hindsight for reinforcement learning.390

In NeurIPS, 2020.391

Anqi Li, Byron Boots, and Ching-An Cheng. Mahalo: Unifying offline reinforcement learning and392

imitation learning from observations. In ICML, 2023a.393

Anqi Li, Dipendra Misra, Andrey Kolobov, and Ching-An Cheng. Survival instinct in offline rein-394

forcement learning. arXiv preprint arXiv:2306.03286, 2023b.395

10

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and396

Pierre Sermanet. Learning latent plans from play. In CORL, 2020.397

Yecheng Jason Ma, Jason Yan, Dinesh Jayaraman, and Osbert Bastani. Offline goal-conditioned398

reinforcement learning via f -advantage regression. In NeurIPS, 2022.399

Piotr Mirowski, Matthew Koichi Grimes, Mateusz Malinowski, Karl Moritz Hermann, Keith An-400

derson, Denis Teplyashin, Karen Simonyan, Koray Kavukcuoglu, Andrew Zisserman, and Raia401

Hadsell. Learning to navigate in cities without a map. In NeurIPS, 2018.402

Dipendra K Misra, Jaeyong Sung, Kevin Lee, and Ashutosh Saxena. Tell me dave: Context-sensitive403

grounding of natural language to manipulation instructions. International Journal of Robotics404

Research, 35(1-3):281–300, 2016.405

Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual406

reinforcement learning with imagined goals. In NeurIPS, 2018.407

Suraj Nair and Chelsea Finn. Hierarchical foresight: Self-supervised learning of long-horizon tasks408

via visual subgoal generation. In ICLR, 2019.409

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-410

tors. In ICML, 2015.411

Avi Singh, Albert Yu, Jonathan Yang, Jesse Zhang, Aviral Kumar, and Sergey Levine. Cog:412

Connecting new skills to past experience with offline reinforcement learning. arXiv preprint413

arXiv:2010.14500, 2020.414

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-415

based representations. In ICML, 2021.416

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui,417

James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han, Jiquan418

Ngiam, Hang Zhao, Aleksei Timofeev, Scott Ettinger, Maxim Krivokon, Amy Gao, Aditya Joshi,419

Yu Zhang, Jonathon Shlens, Zhifeng Chen, and Dragomir Anguelov. Scalability in perception for420

autonomous driving: Waymo open dataset. In CVPR, 2020.421

Yee Whye Teh, Victor Bapst, Wojciech Marian Czarnecki, John Quan, James Kirkpatrick, Raia422

Hadsell, Nicolas Heess, and Razvan Pascanu. Distral: robust multitask reinforcement learning.423

In NeurIPS, 2017.424

Homer Rich Walke, Kevin Black, Tony Z. Zhao, Quan Vuong, Chongyi Zheng, Philippe Hansen-425

Estruch, Andre Wang He, Vivek Myers, Moo Jin Kim, Max Du, Abraham Lee, Kuan Fang,426

Chelsea Finn, and Sergey Levine. Bridgedata v2: A dataset for robot learning at scale. In CORL,427

2023.428

Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Siddhesh Khandel-429

wal, Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes, Deva Ramanan,430

Peter Carr, and James Hays. Argoverse 2: Next generation datasets for self-driving perception431

and forecasting. In NeurIPS, 2021.432

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.433

arXiv preprint arXiv:1911.11361, 2019.434

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent435

pessimism for offline reinforcement learning. In NeurIPS, 2021.436

Rui Yang, Lin Yong, Xiaoteng Ma, Hao Hu, Chongjie Zhang, and Tong Zhang. What is essential437

for unseen goal generalization of offline goal-conditioned rl? In ICML, 2023.438

Albert Yu and Ray Mooney. Using both demonstrations and language instructions to efficiently learn439

robotic tasks. In ICLR, 2023.440

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn,441

and Tengyu Ma. Mopo: model-based offline policy optimization. In NeurIPS, 2020.442

11

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Sergey Levine, and Chelsea Finn.443

Conservative data sharing for multi-task offline reinforcement learning. In NeurIPS, 2021.444

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Chelsea Finn, and Sergey Levine.445

How to leverage unlabeled data in offline reinforcement learning. In ICML, 2022.446

Zhuangdi Zhu, Kaixiang Lin, Anil K Jain, and Jiayu Zhou. Transfer learning in deep reinforcement447

learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.448

12

A Detailed Related Work449

Goal-oriented RL GO RL has been extensively studied (Kaelbling, 1993). Existing work focus450

on two critical aspects of goal-oriented RL: (1) data relabeling and augmentation methods to make451

better use of available data and (2) learning reusable skills to solve long-horizon problems by chain-452

ing sub-goals or skills. For (1), hindsight relabeling methods (Andrychowicz et al., 2017; Li et al.,453

2020) are effective in improving the learning efficiency of agents by reusing visited states in the454

trajectories as successful goal examples. For (2), hierarchical methods for determining sub-goals,455

and training goal reaching policies have been effective in long-horizon problems (Nair & Finn,456

2019; Singh et al., 2020; Chebotar et al., 2021). Beyond data efficiency, another key objective of457

goal-oriented RL is generalization, wherein a common representation of target goals is learned. Pop-458

ular strategies for goal generalization include universal value function approximators (Schaul et al.,459

2015), unsupervised representation learning (Nair et al., 2018; Nair & Finn, 2019; Han et al., 2021),460

and pessimism induced generalization in offline GO formulations (Yang et al., 2023). Our CGO461

framing enables both data reuse and goal generalization, by using rich contextual representations of462

goals and a reduction to offline RL to combine dynamics and context-goal datasets.463

Offline RL Offline RL methods have proven to be effective in GO problems as it also allows464

learning a common set of sub-goals/skills (Chebotar et al., 2021; Ma et al., 2022; Yang et al., 2023).465

A variety of approaches are used to mitigate the distribution shift between the collected datasets and466

the trajectories likely to be generated by learnt policies: (1) constrain target policies to be close to the467

dataset distribution (Fujimoto et al., 2019; Wu et al., 2019; Fujimoto & Gu, 2021), (2) incorporate468

value pessimism for low-coverage or Out-Of-Distribution states and actions (Kumar et al., 2020; Yu469

et al., 2020; Jin et al., 2021) and (3) adversarial training via a two-player game (Xie et al., 2021;470

Cheng et al., 2022). Our SDS allows the use of generic offline RL algorithms to solve CGO problem471

offline. We demonstrate its applicability with PSPI (Xie et al., 2021) and IQL (Kostrikov et al., 2021)472

as our base offline RL algorithm in analyses (Section 3.3) and experiments (Section 4), respectively.473

Offline RL with unlabeled data Our CGO setting is a special case of offline RL with unlabeled474

data, or more broadly the offline policy learning from observations paradigm (Li et al., 2023a). There475

only a subset of the offline data is labeled with rewards (in our setting, that is the contexts dataset, as476

we don’t know which samples in the dynamics dataset are goals.). However, the MAHALO scheme477

in (Li et al., 2023a) is much more general than necessary for CGO problems, and we show instead478

that our simple data sharing scheme has better theoretical guarantees than MAHALO in Section 3.3.479

In our experiments, we compare CGO with several offline RL algorithms designed for unlabeled480

data: UDS (Yu et al., 2022) where unlabeled data is assigned zero rewards and PDS (Hu et al.,481

2023) where a pessimistic reward function is estimated from a labeled dataset.482

Data-sharing in RL Sharing information across multiple tasks is a promising approach to accel-483

erate learning and to identify transferable features across tasks. In RL, both multi-task and transfer484

learning settings have been studied under varying assumption on the shared properties and structures485

of different tasks (Zhu et al., 2023; Teh et al., 2017; Barreto et al., 2017; D’Eramo et al., 2020). For486

data sharing in CGO, we adopt the contextual MDP formulation (Hallak et al., 2015; Sodhani et al.,487

2021), which enables knowledge transfer via high-level contextual cues. Prior work on offline RL488

has also shown the utility of sharing data across tasks: hindsight relabeling and manual skill group-489

ing (Kalashnikov et al., 2021), inverse RL (Li et al., 2020), sharing Q-value estimates (Yu et al.,490

2021; Singh et al., 2020) and reward labeling (Yu et al., 2022; Hu et al., 2023).491

B SDS +PSPI: Theoretical Analysis492

In this section, we provide a detailed analysis for the instantiation of SDS using PSPI. We follow493

the same notation for the value functions, augmented MDP and extended function classes as stated494

in Section 2 and Section 3 in the main text.495

B.1 Equivalence relations between original and Augmented MDP496

We begin by showing that the optimal policy and any value function in the augmented MDP can497

be expressed using their analogue in the original MDP. With the augmented MDP defined as M :=498

13

(X̄ , Ā, R̄, P̄ , γ) in Section 3.1, we first define the value function in the augmented MDP. For a policy499

π̄ : X̄ → Ā, we define the Q function for the augmented MDP as500

Q̄π̄(x, a) := Eπ̄,P̄

[∞∑
t=0

γtR̄(x, a)|x0 = x, a0 = a

]
Notice that we don’t have a reaching time random variable T in this definition; instead the agent501

would enter an absorbing state s+ after taking a+ in the augmented MDP. We can define similarly502

V̄ π̄(s) := Q̄π̄(x, π̄).503

Remark B.1. Let Q̄π
R be the extension of Qπ based on R. We have, for x /∈ G, Q̄π

R(x, a) = Q̄π̄(x, a)504

∀a ∈ Ā, and for x ∈ G, Q̄π
R(x, a) = Q̄π̄(x, a+) = 1, ∀a ∈ Ā.505

By the construction of the augmented MDP, it is obvious that the following is true.506

Lemma B.2. Given π : X → ∆(A), let π̄ be its extension. For any h : X ×A → R, it holds507

Eπ,P

[
T∑

t=0

γth(x, a)

]
= Eπ̄,P̄

[∞∑
t=0

γth̃π(x, a)|x /∈ X+

]

where T is the goal-reaching time (random variable) and we define h̃π(x, a+) = h(x, π).508

We can now relate the value functions between the two MDPs.509

Proposition B.3. For a policy π : S → ∆(A), let π̄ be its extension (defined above). We have for510

all x ∈ X , a ∈ A,511

Qπ(x, a) ≥ Q̄π̄(x, a)

V π(x) = V̄ π̄(x)

Conversely, for a policy ξ : X̄ → ∆(Ā), define its restriction ξ on X and A by translating proba-512

bility of ξ originally on a+ to be uniform over A. Then we have for all s ∈ S, a ∈ A513

Qξ(x, a) ≥ Q̄ξ(x, a)

V ξ(x) ≥ V̄ ξ(x)

Proof. The first direction follows from Lemma B.2. For the latter, whenever ξ takes a+ at some514

x /∈ G, it has V̄ ξ(x) = 0 but V̄ ξ(x) ≥ 0 since there is no negative reward in the original MDP. By515

performing a telescoping argument, we can derive the second claim.516

By this lemma, we know the extension of π∗ (i.e., π̄∗) is also optimal to the augmented MDP and517

V ∗(x) = V̄ ∗(x) for x ∈ X . Furthermore, we have a reduction that we can solve for the optimal518

policy in the original MDP by the solving augmented MDP, since519

V ξ(d0)− V ∗(d0) ≤ V ξ(d0)− V̄ ∗(d0)

for all ξ : X̄ → ∆(A). In particular,520

Regret(π) := V π(d0)− V ∗(d0) = V π̄(d0)− V̄ ∗(d0) =: Regret(π̄) (5)

Since the augmented MDP replaces the random reaching time construction with an absorbing-state521

version, the Q function Q̄π̄ of the extended policy π̄ satisfies the Bellman equation522

Q̄π̄(x, a) = R̄(x, a) + γEx′∼P̄ (·|x,a)[Q̄
π(x′, π̄)]

=: T̄ πQ̄π(x, a) (6)

For x ∈ X and a ∈ A, we show how the above equation can be rewritten in Qπ and R.523

Proposition B.4. For x ∈ X and a ∈ A,524

Q̄π̄(x, a) = 0 + γEx′∼P̄ (·|x,a)[max(R(x′), Qπ(x′, π))]

For a = a+, Q̄π̄(x, a+) = R̄(x, a+) = R(x). For x ∈ X+, Q̄π̄(x, a) = 0.525

14

Proof. The proof follows from Lemma B.5 and the definition of P̄ .526

Lemma B.5. For x ∈ X , Q̄π̄(x, π̄) = max(R(x), Qπ(x, π))527

Proof. For x ∈ X ,528

Q̄π̄(x, π̄) =

{
Q̄π̄(x, a+), if x ∈ G

Q̄π̄(x, π), otherwise
(Because of definition of π̄)

=

{
Q̄π̄(x, a+), if x ∈ G

Qπ(x, π), otherwise
(Because of Proposition B.3)

=

{
R̄(x, a+), if x ∈ G

Qπ(x, π), otherwise
(Definition of augmented MDP)

=

{
R(x), if x ∈ G

Qπ(x, π), otherwise

= max(R(x), Qπ(x, π))

where in the last step we use R̄(x) = 1 for x ∈ G and R̄(x) = 0 otherwise.529

B.2 Function Approximator Assumptions530

In Theorem 3.1, we assume access to a policy class Π = {π : X → ∆(A)}. We also assume access531

to a function class F = {f : X × A → [0, 1]} and a function class G = {g : X → [0, 1]}. We can532

think of them as approximator for the Q function and the reward function of the original MDP.533

Recall the zero-reward Bellman backup operator T π with respect to P (s′|s, a) as defined in As-534

sumption 3.3:535

T πf(x, a) := γEx′∼P0(·|x,a)[f(x
′, π)]

where P0(x
′|x, a) := P (s′|s, a)1(c′ = c). Note this definition is different from the one with536

absorbing state s+ in Section 2.3. Using this modified backup operator, we can show that the537

following realizability assumption is true for the augmented MDP:538

Proposition B.6 (Realizability). By Assumption 3.2 and Assumption 3.3, there is f ∈ F and g ∈ G539

such that Q̄π̄ = f̄g .540

Proof. By Assumption 3.3, there is h ∈ F such that h(x, a) = max(R(x), Qπ(x, a)). By Proposi-541

tion B.4, we have for x ∈ X , a ̸= a+542

Q̄π̄(x, a) = 0 + γEx′∼P̄ (·|x,a)[max(R(x′), Qπ(x′, π))]

= 0 + γEx′∼P0(·|x,a)[h(x, π)]

= T πh ∈ F

For a = a∗, we have Q̄π̄(x, a∗) = R̄(x, a+) = R(x) ∈ G. Finally Q̄π̄(x+, a) = 0 for x+ ∈ X+.543

Therefore, Q̄π̄ = f̄g for some f ∈ F and g ∈ G.544

B.3 Algorithm545

In this section, we describe the instantiation of PSPI with SDS in detail along with the necessary546

notation. As discussed in Section 3.3, our algorithm is based on the idea of reduction, which turns547

the offline CGO problem into an standard offline RL problem in the augmented MDP. To this end,548

we construct augmented datasets D̄dyn and D̄goal in Algorithm 1 as follows:549

D̄dyn = {(xn, an, rn, x
′
n)|rn = 0, xn = (si, cj), x

′
n = (s′i, cj), an = ai, (si, ai, s

′
i) ∈ Ddyn, (·, cj) ∈ Dgoal}

D̄goal = {(xn, a
+, rn, x

+
n)|rn = 1, xn = (sn, cn), x

+
n = (s+, cn), (sn, cn) ∈ Dgoal}

For the analysis, we consider a simplified version of Algorithm 1 where we do not reuse the samples550

in Ddyn. Specifically, for each sample (si, ai, s
′
i) ∈ Ddyn, we pair it with one sample (·, cj) ∈ Dgoal551

and do not reuse the sample from Ddyn. This can be naively done by pairing observed transitions and552

15

context-goal pairs in both datasets when |Dgoal| ≥ |Ddyn|. In the analysis, we will state our results553

under this simplification.554

With this construction, we have: D̄dyn ∼ µdyn(s, a, s
′)µgoal(c) and D̄goal ∼ µgoal(c, s)1(a =555

a+)1(s′ = s+). With abuse of notation, we write µdyn(x, a, x
′) = µdyn(s, a, s

′)µgoal(c) and556

µgoal(x, a, x
′) = µgoal(c, s)1(a = a+)1(s′ = s+). Note that, |D̄goal| = |Dgoal| and |D̄dyn| = |Ddyn|557

as we are simply augmenting the observed states and actions without reusing samples. These two558

datasets have the standard tuple format, so we can run offline RL on D̄dyn
⋃
D̄goal.559

SDS +PSPI We consider the information theoretic version of PSPI (Xie et al., 2021) which can560

be summarized as follows: For an MDP (X ,A, R, P, γ), given a tuple dataset D = {(x, a, r, x′)},561

a policy class Π, and a value class F , it finds the policy through solving the two-player game:562

max
π∈Π

min
f∈F

f(d0, π) s.t. ℓ(f, f ;π,D)− min
f ′∈F

ℓ(f ′, f ;π,D) ≤ ϵb (7)

where f(d0, π) = Ex0∼d0
[f(x0, π)], ℓ(f, f ′;π,D) := 1

|D|
∑

(x,a,r,x′)∈D(f(x, a)− r− f ′(x′, π))2.563

The term ℓ(f, f ;π,D) − minf ′ ℓ(f ′, f ;π,D) in the constraint is an empirical estimation of the564

Bellman error on f with respect to π on the data distribution µ, i.e. Ex,a∼µ[(f(x, a)−T πf(x, a))2].565

It constrains the Bellman error to be small, since Ex,a∼µ[(Q
π(x, a)− T πQπ(x, a))2] = 0.566

Below we show how to run PSPI to solve the augmented MDP with offline dataset D̄dyn
⋃
D̄goal.567

To this end, we extend the policy class from Π to Π̄, and the value class from F to F̄G using the568

function class G based on the extensions defined in Section 3.1. One natural attempt is to implement569

equation 7 with the extended policy and value classes Π̄ and F̄ and D̄ = D̄dyn
⋃
D̄goal. This would570

lead to the two player game:571

max
π̄∈Π̄

min
f̄g∈F̄G

f̄g(d0, π̄) s.t. ℓ(f̄g, f̄g; π̄, D̄)− min
f̄ ′
g′∈F̄G

ℓ(f̄ ′
g′ , f̄g; π̄, D̄) ≤ ϵb (8)

However, equation 8 is not a well defined algorithm, because its usage of the extended policy π̄ in572

the constraint requires knowledge of G, which is unknown to the agent.573

Fortunately, we show that equation 8 can be slightly modified so that the implementation does not574

actually require knowing G. Here we use a property (Proposition B.4) that the Bellman equation of575

the augmented MDP:576

Q̄π̄(x, a) = R̄(x, a) + γEx′∼P̄ (·|x,a)[Q̄
π(x′, π̄)]

= 0 + γEx′∼P̄ (·|x,a)[max(R(x′), Qπ(x′, π))]

for x ∈ X and a ̸= a+, and Q̄π̄(x, a) = 1 for x ∈ G and a = a+.577

We apply these two equalities to D̄dyn and D̄goal to construct our Bellman error estimates. Let578

ϕ(Q̄π̄(x)) := max(R(x), Qπ(x, π)). We can rewrite the squared Bellman error on these two data579

distributions using the Bellman backup defined on the augmented MDP (see eq.6) as below:580

Ex,a∼µdyn [(Q̄
π̄(x, a)− T̄ π̄Q̄π̄(x, a))2] = Ex,a∼µdyn [(Q̄

π̄(x, a)− 0− γEx′∼P̄ (·|x,a)[ϕ(Q̄
π̄)(x′, π)])2]

581

Ex,a∼µgoal [(Q̄
π̄(x, a)− T̄ π̄Q̄π̄(x, a))2] = Ex,a∼µgoal [(Q̄

π̄(x, a+)− 1)2]

We can construct an approximator f̄g(x, a) for Q̄π̄(x, a). Substituting the estimator f̄g(x, a) for582

Q̄π̄(x, a) in the squared Bellman errors above and approximating them by finite samples, we derive583

the empirical losses below.584

ℓdyn(f̄g, f̄
′
g′ ; π̄) :=

1

|D̄dyn|
∑

(x,a,r,x′)∈D̄dyn

(f(x, a)− γmax(g′(x′), f ′(x′, π)))2 (9)

ℓgoal(f̄g) :=
1

|D̄goal|
∑

(x,a,r,x′)∈D̄goal

(g(x)− 1)2 (10)

where we use ϕ(f̄g)(x, a) = max(g(x), f(x, a)) and for x /∈ X+, f̄g(x, a) = f(x, a)1(a ̸=585

a+) + g(x)1(a = a+).586

16

Using this loss, we define the two-player game of PSPI for the augmented MDP:587

max
π∈Π

min
f̄g∈F̄

f̄g(d0, π̄) (11)

s.t. ℓdyn(f̄g, f̄g; π̄)− min
f̄ ′
g′∈F̄

ℓdyn(f̄
′
g′ , f̄g; π̄) ≤ ϵdyn

ℓgoal(f̄g) ≤ 0

Notice f̄g(d0, π̄) = f(d0, π). Therefore, this problem can be solved using samples from D without588

knowing G.589

B.4 Analysis590

Covering number We first define the covering number on the function classes F , G, and Π11. For591

F and G, we use the L∞ metric. We use N∞(F , ϵ) and N∞(G, ϵ) to denote the their ϵ-covering592

numbers. For Π, we use the L∞-L1 metric, i.e., ∥π1−π2∥∞,1 := supx∈X ∥π1(·|s)−π2(·|s)∥1. We593

use N∞,1(Π, ϵ) to denote its ϵ-covering number.594

High-probability Events First, we show Q̄π̄ has small empirical errors.595

Lemma B.7. With probability at least 1− δ, it holds for all π ∈ Π,596

ℓdyn(Q̄
π̄, Q̄π̄; π̄)− min

f̄ ′
g′∈F̄

ℓdyn(f̄
′
g′ , Q̄π̄; π̄) ≤ ϵdyn

ℓgoal(Q̄
π̄) ≤ 0

where12597

ϵdyn = O

 log
(
N∞

(
F , 1

|Ddyn|

)
N∞

(
G, 1

|Ddyn|

)
N∞,1

(
Π, 1

|Ddyn|

)
/δ
)

|Ddyn|


Proof. Note Q̄π̄ = f̄g for some f ∈ F and g ∈ G (Proposition B.6) and598

0 = Ex,a∼µdyn [(Q̄
π̄(x, a)− T̄ π̄Q̄π̄(x, a))2] = Ex,a∼µdyn [(Q̄

π̄(x, a)− 0− γEx′∼P̄ (·|x,a)[ϕ(Q̄
π̄)(x′, π)])2]

Following a similar proof of Theorem 8 of (Cheng et al., 2022), we can derive ϵdyn. On the other599

hand, ℓgoal(f̄g) = 0 because the reward R(x) is deterministic.600

Nest, we show that with high probability the empirical error can upper bound the population error.601

Lemma B.8. For all f ∈ F , g ∈ G satisfying602

ℓdyn(f̄g, f̄g; π̄)− min
f̄ ′
g′∈F̄

ℓdyn(f̄
′
g′ , f̄g; π̄) ≤ ϵdyn

ℓgoal(f̄g) ≤ 0

With probability at least 1− δ, for any f ∈ F ,g ∈ G603 ∥∥f̄g(x, a)− γEx′∼P̄ (·|x,a)[max(g(x′), f(x′, π))]
∥∥
µdyn

≤ O
(√

ϵdyn
)

∥g(x)− 1∥µgoal
≤ O


√√√√ log

N∞

(
G, 1

|Dgoal|

)
δ

|Dgoal|

 =:
√
ϵgoal

Proof. This follows from Theorem 9 of (Cheng et al., 2022).604

11For finite function classes, the resulting performance guarantee will depend on |F|, |G| and |Π| instead of
the covering numbers as stated in Theorem 3.1.

12Technically, we can remove N∞

(
G, 1

|Ddyn|

)
in the upper bound, but we include it here for a cleaner

presentation.

17

Pessimistic Estimate We show the empirical value estimate found in equation 11 is pessimistic.605

Lemma B.9. Given π, let f̄π
g denote the minimizer in equation 11. With high probability,606

f̄π
g (d0, π̄) ≤ Qπ(d0, π)607

Proof. By Lemma B.7, we have f̄π
g (d0, π̄) ≤ Q̄π

R(d0, π̄) = Qπ(d0, π).608

Next we bound the amount of underestimation.609

Lemma B.10. Suppose x0 ∼ d0 is not in G almost surely. For any π ∈ Π,610

Qπ(d0, π)− f̄π
g (d0, π̄)

≤ Eπ

[
T−1∑
t=0

γt (γmax(gπ(xt+1), f
π(xt+1, π))− fπ(xt, at)) + γT (R(xT)− gπ(xT))

]

Note that in a trajectory xT ∈ G whereas xt /∈ G for t < T by definition of T .611

Proof. Let f̄π
g = (fπ, gπ) be the empirical minimizer. By performance difference lemma, we can612

write613

(1− γ)Qπ(d0, π)− (1− γ)f̄π
g (d0, π̄)

= (1− γ)Q̄π(d0, π̄)− (1− γ)f̄π
g (d0, π̄)

= Ed̄π̄ [R̄(x, a) + γf̄π
g (x

′, π̄)− f̄π
g (x, a)]

where with abuse of notation we define d̄π̄(x, a, x′) := d̄π̄(x, a)P̄ (x′|x, a), where d̄π̄(x, a) is the614

average state-action distribution of π̄ in the augmented MDP.615

In the above expectation, for x ∈ G, we have a = a+ and x+ = (s+, c) after taking a+ at x = (s, c),616

which leads to617

R̄(x, a) + γf̄π
g (x

′, π̄)− f̄π
g (x, a) = R̄(x, a+) + γf̄π

g (x
+, π̄)− f̄π

g (x, a
+) = R(x)− gπ(x)

For x /∈ G and x /∈ X+, we have a ̸= a+ and x′ /∈ X+; therefore618

R̄(x, a) + γf̄π
g (x

′, π̄)− f̄π
g (x, a) = R(x) + γf̄π

g (x
′, π̄)− fπ(x, a)

≤ γmax(gπ(x′), fπ(x′, π))− fπ(x, a)

where the last step is because of the definition of f̄π
g . For x ∈ X+, we have x ∈ X+ and the reward619

is zero, so620

R̄(x, a) + γf̄π
g (x

′, π̄)− f̄π
g (x, a) = 0

Therefore, we can derive621

(1− γ)Qπ(x0, π)− (1− γ)f̄π
g (x0, π̄)

≤ Ed̄π̄ [γmax(gπ(x′), fπ(x′, π))− fπ(x, a)|x /∈ G, x /∈ X+] + Ed̄π̄ [R(x)− gπ(x)|x ∈ G]

Finally, using Lemma B.2 we can have the final upper bound.622

623

18

B.5 Main Result: Performance Bound624

Let π† be the learned policy and let f̄π†

g be the learned function approximators. For any comparator625

policy π, let f̄π
g = (fπ, gπ) be the estimator of π on the data. We have.626

V π(d0)− V π†
(d0)

= Qπ(d0, π)−Qπ†
(d0, π

†)

= Qπ(d0, π)− f̄π†

g (d0, π̄
†) + f̄π†

g (d0, π̄
†)−Qπ†

(d0, π
†)

≤ Qπ(d0, π)− f̄π†

g (d0, π̄
†)

≤ Qπ(d0, π)− f̄π
g (d0, π̄)

≤ Eπ,P

[
T−1∑
t=0

γt(γmax(gπ(xt+1), f
π(xt+1, π))− fπ(xt, at)) + γT (R(xT)− gπ(xT))

]

≤ Eπ,P

[
T−1∑
t=0

γt|γmax(gπ(xt+1), f
π(xt+1, π))− fπ(xt, at)|+ γT |R(xT)− gπ(xT)|

]
≤ Cdyn(π)Eµdyn [|γmax(gπ(x′), fπ(x′, π))− fπ(x, a)|] + Cgoal(π)Eµgoal [|g(x)− 1|]
≤ Cdyn(π)

√
ϵdyn ++Cgoal(π)

√
ϵgoal

where Cdyn(π) and Cgoal(π) are the concentrability coefficients defined in Definition 3.4.627

Theorem B.11. Let π† denote the learned policy of SDS + PSPI with datasets Ddyn and Dgoal,628

using value function classes F = {X × A → [0, 1]} and G = {X → [0, 1]}. Under realizability629

and completeness assumptions as stated in Assumption 3.2 and Assumption 3.3 respectively, with630

probability 1− δ, it holds, for any π ∈ Π,631

J(π)− J(π†) ≤ Cdyn(π)
√
ϵdyn + Cgoal(π)

√
ϵgoal

where632

ϵdyn = O

 log
(
N∞

(
F , 1

|Ddyn|

)
N∞

(
G, 1

|Ddyn|

)
N∞,1

(
Π, 1

|Ddyn|

)
/δ
)

|Ddyn|

 ,

and,633

ϵgoal = O

 log
(
N∞

(
G, 1

|Dgoal|

)
/δ
)

|Dgoal|


are statistical errors, and Cdyn(π) and Cgoal(π) are concentrability coefficients which decrease as634

the data coverage increases.635

C Experimental details636

C.1 Hyperparameters and experimental settings637

IQL. For IQL, we keep the hyperparameter of γ = 0.99, τ = 0.9, β = 10.0, and α = 0.005638

in Kostrikov et al. (2021), and tune other hyperparameters on the antmaze-medium-play-v2 envi-639

ronment and choose batch size = 1024 from candidate choices {256, 512, 1024, 2046}, learning rate640

= 10−4 from candidate choices {5 · 10−5, 10−4, 3 · 10−4} and 3 layer MLP with RuLU activating641

and 256 hidden units for all networks. We use the same set of IQL hyperparameters for both our642

methods and all the baseline methods included in Section 4.2, and apply it to all environments.643

RP. For naive reward prediction, we use the full context-goal dataset as positive data, and train644

a reward model with 3-layer MLP and ReLU activations, learning rate = 10−4, batch size = 1024,645

and training for 100 epochs for convergence. To label the transition dataset, we need to find some646

appropriate threshold to label states predicted as goals given contexts. We choose the percentile as647

19

5% in the reward distribution evaluated by the context-goal set as the threshold to label goals in the648

antmaze-medium-play-v2 environment, from candidate choices {0%, 5%, 10%}. Then we apply it649

to all environments. Another trick we apply for the reward prediction is that instead of predicting 0650

for the context-goal dataset, we let it predict 1 but shift the reward prediction by -1 during reward651

evaluation, which prevents the model from learning all 0 weights. Similar tricks are also used in652

other reward learning baselines.653

UDS+RP. We use the same structure and training procedure for the reward model as RP, except654

that we also randomly sample a minibatch of “negative” contextual transitions with the same batch655

size for a balanced distribution, which is constructed by randomly sampling combinations of a state656

in the trajectory-only dataset and a context from the context-goal dataset. To create a balanced657

distribution of positive and negative samples, we sample from each dataset with equal probability.658

For the threshold, we choose the percentile as 5% in the reward distribution evaluated by the context-659

goal set as the threshold to label goals in the antmaze-medium-play-v2 environment, from candidate660

choices {0%, 5%, 10%}. Then we apply it to all environments.661

PDS. We use the same structure and training procedure for the reward model as RP, except that662

we train an ensemble of 10 networks as in Hu et al. (2023). To select the threshold percentile and663

the pessimistic weight k, we choose the percentile as 0% in the reward distribution evaluated by the664

context-goal set as the threshold to label goals from candidate choices {0%, 5%, 10%}, and k = 15665

from the candidate choices {5,10,15,20} in the antmaze-medium-play-v2 environment. Then we666

apply them to all environments.667

SDS (ours). We do not require extra parameters other than the possibility of sampling from the668

real and fake transitions. Intuitively, we should sample from both datasets with the same probability669

to create an overall balanced distribution. Empirically, we also find that the balance distribution670

generates the best result.671

C.2 Reward model evaluation672

For reward learning baselines, we evaluate the learned reward model: we construct the positive673

dataset from context-goal examples, and the negative dataset from the combination of the context674

set and all states in the trajectory-only data, using the oracle context-goal function defined in the675

environment to filter out positive ones. We then evaluate the predicted reward on both positive and676

negative datasets, generating boxplots to visualize the distributions of the predicted reward for both677

datasets. The purpose of the reward model evaluation is to showcase whether the learned reward678

function can successfully capture context-goal relationships.679

D More reward model evaluations680

Here we present boxplots for reward models with experimental setups in Section 4.3, 4.4 and 4.5.681

(a) PDS (b) UDS+RP (c) RP

Figure 3: Reward model evaluation for the medium-diverse environment in Section 4.3. Green dots
are outliers.

20

(a) PDS (b) UDS+RP (c) RP

Figure 4: Reward model evaluation for the umaze-diverse environment in Section 4.3. Green dots
are outliers.

(a) Large, PDS (b) Large, UDS+RP (c) Medium, PDS (d) Medium, UDS+RP

Figure 5: Reward model evaluation for Four Rooms in Section 4.4. Green dots are outliers.

(a) Large, PDS (b) Large, UDS+RP (c) Medium, PDS (d) Medium, UDS+RP

Figure 6: Reward evaluation for Random Cells in Section 4.5 (the test context distribution is the
same as training). Green dots are outliers.

E Adding out-of-distribution (OOD) goal examples in the context-goal set682

We include another table with a slightly different setting compared with Section 4.4: for each goal683

set given the context in the training context-goal set, we add some extra random states that are out684

of the original range of the state space as out-of-distribution goal examples (which are not covered685

by the trajectory-only dataset). The results are shown in Table 5, which is similar to the results in686

Section 4.4, showing that these methods are robust to extra OOD goal examples.687

Env/Method Ours PDS UDS+RP
medium 78.9±1.6 23.5±1.2 13.4±1.2
large 70.0±5.7 9.0±2.6 22.5±0.9

Table 5: Average scores with standard errors over 5 random seeds from Four Rooms, with extra
OOD goal examples in the context-goal dataset. The reported score is the average success rate of
three rooms, and the evaluation of each room requires 100 episodes.

21

	Introduction
	Preliminaries
	Contextual Goal-Oriented (CGO) Problem
	Offline Learning
	Notation and Assumption

	Simple Data Sharing To Solve CGO Problems
	Action-Augmented MDP
	Practical Algorithm: Simple Data Sharing
	Analysis of SDS+PSPI: Information Theoretic Guarantee
	Algorithm: SDS+PSPI

	Experiments
	Environments and datasets
	Methods
	Original AntMaze
	Modified AntMaze: Four Rooms
	Modified AntMaze: Random Cells

	Conclusion and Limitation
	Detailed Related Work
	SDS +PSPI: Theoretical Analysis
	Equivalence relations between original and Augmented MDP
	Function Approximator Assumptions
	Algorithm
	Analysis
	Main Result: Performance Bound

	Experimental details
	Hyperparameters and experimental settings
	Reward model evaluation

	More reward model evaluations
	Adding out-of-distribution (OOD) goal examples in the context-goal set

