Under review as a conference paper at ICLR 2025

A LLAZY HESSIAN EVALUATION FRAMEWORK FOR AC-
CELERATING STOCHASTIC BILEVEL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Bilevel optimization has recently gained popularity because of its applicability in
many machine learning applications. Hypergradient-based algorithms have been
widely used for solving bilevel optimization problems because of their strong theo-
retical and empirical performance in many applications. However, computing these
hypergradients requires the evaluation of Hessians (or Hessian-vector products) of
the lower-level objective, which presents a major computational bottleneck. To
address this challenge, in this paper, we propose LazyBLO (Lazy Hessian Evalu-
ation in Bilevel Optimization), an algorithmic framework that allows infrequent
Hessian computation during the execution of the algorithm for solving stochastic
bilevel problems. This allows the algorithm to execute faster compared to the state-
of-the-art (SOTA) algorithms that evaluate either a single or multiple Hessians in
each iteration. We theoretically establish the performance of vanilla SGD-based
LazyBLO and show that, despite the additional errors incurred by the infrequent
Hessian evaluations, LazyBLO surprisingly matches the computation complexity of
the existing SGD-based bilevel algorithms. Extensive experiments further demon-
strate that LazyBLO enjoys significant gains in numerical performance compared
to the SOTA approaches. To our knowledge, this is the first work to theoretically
establish that multiple Hessian computations are not necessary within each iteration
to guarantee the convergence of stochastic bilevel algorithms.

1 INTRODUCTION

Bilevel optimization refers to the class of problems with two levels of hierarchy, wherein the solution
of the upper-level problem depends on the minimizer of the lower-level problem. Formally, a bilevel
problem is stated as:

min {£(x) £ £ (x5 (%)) £ Eeur, [f (x,y°(:)] }

x€eRv

sty () = arg min {gloe.y) 2 Ecor, o6 201 M
where f(x,y) : R* x Rl = R and g(x,y) : R* x Rl — R are upper (UL) and lower-level (LL)
objectives, respectively. Both the UL and LL objectives are assumed to be smooth while the LL
objective is strongly convex with respect to y. Moreover, { ~ m¢ (resp. { ~ my) represents a sample
of the UL (resp. LL) objective from distribution 7y (resp. 7).

Stochastic bilevel problems in (I) have recently gained prominence as many popular machine
learning problems can be modeled in this form. A few typical examples include hyperparameter
optimization (Franceschi et al.|[2018};\Shaban et al.,2019; Bao et al.,2021), meta-learning (Franceschi
et al.| 2018} |[Rajeswaran et al.,2019; Ji et al.,|2020), adversarial training (L1 et al.,[2019; Tian et al.|
2021;/Zhang et al., 2022)), reinforcement learning (Konda & Tsitsiklis| 1999} Hong et al., 2020), neural
architecture search (Liu et al.|[2018;|Hu et al.,[2020; Lian et al.|2019)), data hyper-cleaning (Franceschi
et al.,|2018; Shaban et al.l|2019), dictionary learning (Mairal et al., 2011 Lecouat et al., 2020a3b)),
and more recently, the pretraining-finetuning pipeline (L1 et al., 2024; |Wu et al.| [2024) and data
reweighting (Pan et al.,|2024) in large language models (LLMs). Consequently, a major research
effort has been focused on developing efficient algorithms for solving stochastic bilevel optimization
problems.

Under review as a conference paper at ICLR 2025

Among all existing methods for stochastic bilevel optimization (see Section2]for detailed discussions),
a state-of-the-art (SOTA) approach is the approximate implicit differentiation (AID) method, which
relies on directly computing the approximate implicit gradient of the objective ¢(-) using the implicit
function theorem (Ghadimi & Wang, [2018)). Because of its ease of implementation, AID is usually
the algorithm of choice for many machine learning applications. A typical AID algorithm updates
the LL variable using standard stochastic gradient descent (SGD) while the UL variable is updated
in each iteration using: x* = x — ah?, where the descent direction hf (also often referred to as
hypergradient) is an approximation of the implicit gradient, i.e.,

W V(%) = Vi f(x,y" (%)) = V2,906 y* (%)) [V2,006 7" ()] T Vy 6,y (%) @)

Although AID has been widely adopted for stochastic bilevel optimization in the literature, the

computation of the hypergradient i/ in AID faces two major challenges:

@ The hypergradient in Eq. requires multiple Hessian-vector product (HVP) evaluations for
approximating the Hessian inverse in each iteration. This creates a major computational bottleneck
for solving the problem in Eq. (I since the explicit Hessian evaluations are computationally
expensive. For example, the Hessian contains one million elements even for a moderately sized
problem of dimension d = 1000. What is worse is that inverting such a Hessian typically
has a computation complexity of O(d?), which is time-consuming even for a moderately sized
problem. Some modern automatic differentiation tools (e.g., Pearlmutter trick (Pearlmutter, 1994)
and Jax (Bradbury et al. 2018)) have been proposed to accelerate the Hessian computation,
and HVP computation may not be a major computational bottleneck in some situations where
extremely computationally powerful GPUs are available. However, for many resource-constrained
and computation-constrained settings (e.g., using small or edge-based devices without GPUs),
HVP computation is still a computational bottleneck. For example, each HVP computation
could be at least two to six times more expensive than gradient computation using Jax when
performed on CPUs, which is still non-trivial, and the cost due to HVP remains not negligible
in such systems. Moreover, we note that one Hessian inverse estimation needs multiple HVP
computations (Ghadimi & Wang, 2018} Hong et al., [2020). As a result, the total cost of the
HVP computation depends on the Hessian-inverse estimation accuracy. This would make the
computational cost even higher.

@ The hypergradient in Eq. (2) depends on the optimal solution of the LL problem y*(x). However,
solving the LL problem often requires an iterative method. Thus, solving the LL problem to
optimality to obtain an exact value of y*(x) may be expensive or even infeasible in practice.

We note that, although Challenge @ has been intensively studied in the literature and addressed to
some extent (e.g., the hypergradient is approximated with y*(x) being replaced by y ™ ~ y*(x)),
Challenge @remains under-explored. So far, a foundational open problem in the theory of stochastic
bilevel optimization naturally arises:

(Q): Can we design algorithms that require fewer Hessian evaluations compared to SOTA, and is it
feasible to guarantee any theoretical performance for such algorithms?

In this paper, we answer the above question by developing a new algorithmic framework
called LazyBLO (Lazy Hessian Evaluation in Bilevel Optimization), which allows infrequent
Hessian (Hessian-vector product) evaluations in solving stochastic bilevel problems. Thus,
LazyBLO alleviates the computational bottleneck in stochastic bilevel optimization. Specifically, in
our LazyBLO approach, a stale version of Hessian is used for multiple iterations while new gradients
are computed at each step, thus leading to computational savings. The intuition behind LazyBLO is
that, for iterations that are not separated too far from each other, the parameter values usually do not
vary significantly. This implies that the Hessians evaluated at these points are highly correlated. Thus,
a stale Hessian can still be used to approximate a new one.

However, due to the additional errors accumulated because of the use of these stale Hessians,
approximate Hessian (HVP) evaluations, and the coupling hierarchical structure of the bilevel
problems, it is unclear whether LazyBLO will converge or not. Somewhat surprisingly, we prove that,
despite the previously mentioned accumulated errors, LazyBLO not only converges but also achieves
the same convergence rate as those of the SOTA non-lazy bilevel algorithms. To our knowledge, this
is the first work that uses infrequent Hessian computations for computational savings but still can
achieve convergence guarantee in solving stochastic bilevel problems.

Our major contributions in this work are summarized as follows:

2

Under review as a conference paper at ICLR 2025

* We develop a new algorithmic framework LazyBLO that allows the stochastic bilevel algorithms
to compute HVPs infrequently. Specifically, the proposed framework updates the HVPs only over
a subset of training iterations, while using stale Hessian information in the rest of the iterations.

» We theoretically establish the performance of LazyBLO when the UL and LL updates are performed
using vanilla SGD-type updates. We show that the proposed lazy approach, which is supposed to
perform worse due to stale Hessian information, can actually match the convergence performance
of the SOTA bilevel algorithms. Specifically, we show that to achieve an e-stationary point,
LazyBLO requires O(e~?) partial gradient and HVP evaluations. Moreover, thanks to the less
frequent Hessian evaluations, the wall-clock time of LazyBLO is significantly reduced compared
to the SOTA approaches.

* We corroborate our theoretical findings via numerical experiments on data hyper-cleaning and
deep hyper-representation tasks with real-world datasets. Our numerical results verify that the
infrequent evaluations of HVP lead to considerable computational savings.

2 RELATED WORK

In this section, we provide a brief overview of several areas of the most related work: @ AID-based
bilevel optimization, @ Hessian-free bilevel optimization, and ® other uses of infrequent Hessian
evaluations, thus putting our work into comparative perspective to highlight our novelty. Due to space
limitation, we give a summary of other related bilevel optimization methods in Appendix [A]

@ AID-Based Bilevel Optimization: In Ta- Table 1:
ble[I] we compare existing AID-based stochas-
tic bilevel algorithms. BSA (Ghadimi &
'Wang|, 2018) provided the first finite-time con-
vergence guarantees for bilevel optimization.
The stochastic bilevel algorithms (e.g., BSA
in (Ghadimi & Wang, 2018)), stocBiO in (J1
et al.l 2021), AmIGO in (Arbel & Mairal,
2022)) that use vanilla-SGD updates require

Comparison of stochastic bilevel algo-
rithms (TTSA (Hong et al., |2020), BSA (Ghadimi
& Wang, 2018), stocBiO (Ji et al) [2021),
SOBA (Dagréou et al.l 2022), ALSET (Chen
et al., 2021), AmIGO (Arbel & Mairal, 2022),
MSTSA (Khanduri et al.,[2021al), SUSTAIN (Khan-
duri et al.l 2021b), MRBO (Yang et al., 2021,
SEMA (Yang et al.|[2021), SVRB (Guo et al.| 2021),
MA-SOBA (Chen et al., 2024)), VRBO (Yang et al.,

O (6_2) for both partial gradient evaluations [2021)), FSLA (Li et al., [2022)).

and HVP evaluations to reach an e-stationary

point. Meanwhile, several works (e.g., SUS- # of PG #of HVP Update
TAIN in (Khanduri et all [2021b), SVRB 25 25
. 4 > TTSA D
in (Guo et al., 2021), MRBO and VRBO BSi o EE)) ggz,g)) ggD
in (Yang et al 2021)) utilize momentum- t0cBiO O O (2 SGD
based approaches and/or variance reduction ;8% 1; o (6 2 o ‘., SGD
approaches to accelerate the convergence ¢ 2 6_2
; ; L ALSET O (e O (e SGD
of vanilla SGD-based algorithms, achieving A 2 2
15 . . . mIGO O (e O (e SGD
O (e~ %) for both partial gradient evaluations 2 s
) LazyBLO O (¢~ 0(e?) SGD
and HVP evaluations. Although these works A0 o
guarantee finite-time convergence, the prac- MSTSA O (e 1)5 9 (6_1)5 Momentum
tical numerical performance of these bilevel SUSTOAIN g (e” L 5) g (671' 5) Momentum
algorithms is slow since they require multi- MRB (e 9) ~ (6_2) Momentum
ple Hessian (or HVP) evaluations of the LL ~ SEMA O (e 1)5 o G_L)s Momentum
objective in each iteration to approximate the i/[\j\RB BA 8 () g ‘.,) ﬁomentum
Hessian inverse. In this work, we show that -50 (671)5 . 671)5 omentum
the Hessian computations can be skipped and VRBO g) © 5672) VR
stale Hessian information computed from the _Fo-A O(c?) 0 W

PG: Partial gradient evaluation

previous rounds can be used without hurting] A
VR: Variance Reduction

the convergence performance while allowing
the algorithms to execute much faster.

@ Hessian-Free Bilevel Optimization: To avoid the expensive Hessian evaluations, several Hessian-
free bilevel algorithms have been proposed. For example, FO-MAML (Finn et al.|[2017; Nichol et al.|
2018)) ignores the Hessian computation but does not offer any performance guarantee (Antoniou et al.}
2018} [Fallah et al.; 2020). Several approaches have also been proposed to replace the LL problem with
optimality-based constraints (Chen et al.,[2023b; |Liu et al.,|2022a; |Shen & Chen, [2023). However,
these methods mostly focus on deterministic settings rather than stochastic ones. Several zeroth-order

Under review as a conference paper at ICLR 2025

methods have been proposed to approximate the hypergraident (e.g., ES-MAML (Song et al.,|2019),
HOZOG (Gu et al.,[2021)), and PZOBO (Sow et al.,[2022)). However, ES-MAML and HOZOG do
not provide any theoretical convergence guarantee, while PZOBO achieves O (d2€72) to reach an

e-stationary point, where d is the problem dimension. Recently, F>SA and F*SA (momentum-based
version of F2SA) (Kwon et al,[2023) have been proposed, which are two first-order methods based
on the value-function-based lower-level problem reformulation. To reach an e-stationary point, F>SA
and F*SA require O (¢7%5) and O (e~*9) iterations, respectively. The work in (Chen et al., 2023a)
improves the convergence rate for F°SA, resulting in a rate of O (6_2 log(1/ e)) However, this
improved rate is still slower than that of our proposed LazyBLO approach by a logarithmic factor.
Compared to (Kwon et al.,[2023)), our proposed LazyBLO algorithm strikes a good balance in terms
of the use of Hessian information: On one hand, we leverage Hessian information to maintain good
convergence performance; on the other hand, we infrequently use Hessian information to signficantly
reduce the wall-clock time.

@ Other Uses of Infrequent Hessian Evaluations: We note that infrequent Hessian evaluations have
also been used for speeding up second-order methods for single-level optimization problems (Shaman
skiil [1967; |Adler et al.; 2020; Doikov et al.|[2022; Lampariello & Sciandronel |2001; Wang et al.| 2006
Fan| 2013). However, in bilevel optimization, the Hessian information necessarily emerges due to the
hypergradient computation, rather than as a “second-order” option in single-level optimization. Also,
due to the complex problem structure, analyzing the use of infrequent Hessian in bilevel optimization
is far more challenging than in a single-level setting.

3 PRELIMINARIES

In this section, we provide some preliminaries for solving Problem (I). We first state a set of
assumptions that are needed to establish the convergence of LazyBLO:

Assumption 3.1 (UL Objective). f (x,y) satisfies:

1) For any (x,y) € R* x R, V, f (x,y) is Lipschitz continuous (w.r.t. y) with constant Ly >0,
and Vy f (x,y) is Lipschitz continuous (w.r.t. both x and y) with constant Ly, > 0.

2) Forany (x,y) € R* x R', we have | Vy f (x,y)|| < By, for some constant By, > 0.
Assumption 3.2 (LL Objective). g (x,y) satisfies:

1) For any x € R", g (x,) is p4-strongly convex with respect to y for some p, > 0.

2) Forany (x,y) € R* x R!, V, g (x,y) is Lipschitz continuous (w.r.t. y) with constant L, > 0,
and V,z(y g (x,y) and V?,y g (x,y) are Lipschitz continuous (w.r.t. both x and y) with constants
Ly,, >0and L, > 0, respectively.

3) Forany (x,y) € R* x R!, we have ||V g (x,y)|| < By,, for some constant By, > 0.

Note that all the above assumptions are standard in the analysis of bilevel optimization prob-
lems (e.g., (Ghadimi & Wang (2018); Hong et al.| (2020); |[Khanduri et al.| (2021b); [Liu et al.
(2022b); \Q1u et al. (2022)). With the above assumptions and using implicit function theo-
rem (Rudin et al.| |1976), the hypergradient of £(-) can be computed as V/(x) = Vx f (x,y"(x)) —

V2,9 (%,y* (%)) [V2,9 (x, 7" (x)] ' Vy f (x,5"(x)).

Instead of computing the Hessian inverse explicitly, there are different ways to approximate the
Hessian inverse or HVPs in bilevel optimization, such as conjugate gradient (CG) (Pedregosa,
2016) and Neumann series (Ghadimi & Wang, [2018)) methods. For example, stocBiO (Ji et al.|
2021)) uses Neumann series, while AID-BiO (Ji et al.l 2021), AID-CG (Grazzi et al., [2020) and
AmIGO (Arbel & Mairal, [2022)) implement CG. In this paper, we use CG to efficiently estimate the
HVPs ([V3, 9 (x,y*(x))] - Vy f (x,y*(x))), which finds the minimizer of a quadratic function
by solving a linear system derived from the hypergradient. The quadratic optimization problem is
formulated as follows:
. 1

min q(x,y,z) = §ZTV§yg(x, y)z+2' Vyf(x,y). 3)
For the function (-, -, -) defined in Eq. (3), the following lemma together with Assumption
implies that ¢(x,y, z) is pg-strongly convex and L,-Lipschitz smooth.

Under review as a conference paper at ICLR 2025

Lemma 3.3 (Quadratic Problem). For any (x,y, z), the quadratic problem q(x,y, z) with respect to
z is Lipschitz-smooth with constant Ly > 0.

The admitted unique minimizer z* (x,y) of Eq. (3) can then be utilized to compute the hypergradient
estimate as V{(x) = Vx f (x,y*(x)) + Viyg (x,y*(x)) z* (x,y*(x)). Since it is challenging to
obtain y* (x) and z* (x,y) in closed form, it is natural to consider their approximations. Specifically,
let y and z be some approximations of y* (x) and z* (x,y), respectively. Then, we have the
approximation for V¢(x) defined as follows:

Vf(x¥,2) = Vuf (x,7) + Viyg (x,¥) Z.)

Since Problem (/1)) can potentially be a large-scale stochastic optimization problem, computing a full
gradient approximation in Eq. () can be computationally expensive. To address this challenge, a com-
mon approach for evaluating Eq. (@) is to build a stochastic gradient estimator. Define stochastic ap-
proximations as f (x,y: DY) £ 1y Yeeps f(x.¥5€) and g (x,y: D) £ b 3o 9(x,¥:),
where Df and DY are the batches of independent and identically distributed samples with sizes
|Df } > 1and |DY] > 1, respectively. Then, a stochastic estimator of Eq. (4) can be computed as:

Vf(x,y,2; D/, DIv) = Vi f (x,y: D7) + Viyg (x,y; D7)z

Here, for simplicity, we slightly abuse the notations y and z as y and z in the above equation and the

rest of the paper as long as there is no confusion from the context. For V f(x,y, z; D/, D9%v) and

Vyg(x,y; D%), we make the following typical assumption in stochastic optimization analysis.

Assumption 3.4 (Stochastic Gradients). For any (x,y) € R* x R’ and data batch D=, Dfs,

DIv, Dgzy and D9, define 03 2 53 [DF+|7, 02 2 52 |Dh|T, o2 & 52
2

-1 2 A x2 |1 ~2 ~2 <2 =2 ~2
Gzy = Jyy
O'gxy gzy |D | s and Ugyy O'gyy |D | B where Ufm’ O'fy, Ugy, ngy and O'gyy represent the

variance of a single sample of the corresponding functions. The gradient estimates V, f (x, y; Df=),
Vyf(x,y;DIv), Vyg(x,y; D), V2, g(x,y; D%v) and V3 g(x,y; D) are unbiased and have
bounded variances:

E[|Vxf(x,y: D) = Vy f(x,¥)|°] < U?’.ﬂ E[|Vy f(x,y; D7) = Vy f(x,¥)|°] < U?z,
E[|Vyg(x,y;D%) — Vyg(x,y)|*] <05, E[|Viy9(xy; Dg”) Viyd(xy)*l <op

E[|IV3,9(x,y; D%) — Vi g(x,y)[*] <

ny

Lastly, we define the following performance metrics for solving the Problem (T).

Definition 3.5 (e-Stationary Point). Point x is an e-stationary point if E[|| V£ (x) \\2} < €, where
x is the output of a stochastic algorithm, and the expectation is taken over all randomness of the
algorithm.

Definition 3.6 (e-Optimal Point). Point X is an e-optimal point if E [¢ (x) — £*] < ¢, where (* £
mingeg« £ (x), and x is the output of a stochastic algorithm. The expectation is taken over all
randomness of the algorithm.

4 THE LazyBLO ALGORITHM

In this section, we propose a new algorithmic framework called LazyBLO to solve the bilevel
optimization problem in Eq. (I)). Our goal is to reduce the computation of the HVPs, and our key
idea is to update the HVP periodically on a subset of the entire training iterations while using stale
Hessian information in the remaining iterations.

The most basic algorithm in the LazyBLO framework incorporates SGD-style updates, which is
illustrated in Algorithm[I] We note that more sophisticated algorithms in the LazyBLO framework can
include advanced algorithmic techniques, such as momentum and/or variance reduction to accelerate
the convergence and enhance other performances. As shown in Algorithm/[I} the LazyBLO framework
uses a double-loop structure and constructs iterates x;’, y;* and z;, where the inner iteration counter
n goes from 0 to IV — 1 and the outer iteration counter ¢ runs from 0 to 7' — 1, so that x}' approaches
a stationary point of £ (-), and y}" and z; keep track of the quantities y* (x}) and z* (x{*,y}). In

Under review as a conference paper at ICLR 2025

Algorithm 1 The LazyBLO Algorithmic Framwork with Basic SGD-type Updates.

Input: Initial parameters xJ, yJ, Zo, and stepsize {at}zﬂ:_ol, {B: tT:_Ol, {7 tT:_Ol
fort=0to7 — 1do
forn=0to N — 1do
Initialize x? = x ; and y¥ =y,
Sample data batches D¢, , D{= and DJ*¥

t,n> t,n> t,n

Compute the gradient estimate h{ ,, using (6) and update y;'** = y* — Bih{
Compute the gradient estimate h{’n using li and update X7 = x7 — oy h{m

end for

Sample data batches DY*? and D;"

Compute the gradient estimate h{ , using (7) and update z;11 = z; — vih{
end for

the inner loop, the algorithm updates x}' and y;' using the stochastic gradient estimators h{ , and
h{ ,, defined as:

B = Vi (%0315 D) + Vigg (X0 yis DI 2, 5)
hin=Vyg (x',¥{; D) - ©6)

The variable z; in Eq. (5) is updated in the outer loop using a stochastic gradient estimator h{ as:
Wt = Vg (e vl DY e + Vy f (v DI, @

Note that, compared to h,{ », and h?m» only A contains the HVP, and is computed infrequently after
every N inner loop iterations. In addition, N needs to be chosen with a tolerable approximation
error of the HVP. If NV gets too large, the error of the HVP approximation would also increase,
thus inevitably degrading the performance of LazyBLO. With less frequent Hessian computations,
LazyBLO executes faster per iteration in terms of wall-clock time compared to standard bilevel
algorithms that require multiple Hessian/vector evaluations in each round of updates (Ghadimi &
‘Wangl 2018} |Arbel & Mairal, 2022; Ji et al., [2021; |Chen et al., [2021)), resulting in a significant

reduction in computational cost and savings in implementation time.

Another insightful remark on the Jacobian-vector product in (3)) is also in order. To date, most
of the existing bilevel algorithms compute only one single Jacobian-vector product (JVP) in each
iteration, whereas HVPs are computed multiple times in each iteration even in some single-loop
bilevel algorithms (e.g., SUSTAIN (Khanduri et al.,2021b), TTSA (Hong et al.,2020), BSA (Ghadimi1
& Wang| 2018)), and ALSET (Chen et al.,|2021)). Due to this difference between JVP and HVP in
bilevel optimization algorithms, reducing the number of HVP computations is far more important
than reducing the computations of JVPs. Therefore, we only focus on reducing the HVP in this paper.
We further note that reducing the computation of JVPs can be done in a similar manner as the HVPs
established in our work.

5 THEORETICAL PERFORMANCE ANALYSIS

In this section, we conduct the theoretical convergence analysis for the LazyBLO framework for
solving the bilevel optimization problem in Eq. (). Note that, although LazyBLO executes faster per
iteration, we have a noisier hypergradient due to the use of stale Hessian information. As a result,
it remains unclear whether LazyBLO can converge and, if yes, what theoretical convergence rate
(i.e., iteration complexity) it can achieve. Intuitively, due to the lazy Hessian information updates,
one can expect that the theoretical convergence rate of LazyBLO cannot outperform its non-lazy
counterpart. Surprisingly, in this paper, we show that LazyBLO achieves the same convergence rate as
their non-lazy counterpart. This, together with the much lower per-iteration wall-clock time, implies
that LazyBLO will enjoy a much faster speed in terms of wall-clock time. This will also be verified
by our experiments in Section [6]

The convergence analysis for LazyBLO is highly non-trivial due to the following technical challenges:

i) The use of lazy Hessian evaluation increases the error of stochastic gradient estimator htf7 » for
the upper-level function; ii) Due to the hierarchical and coupled structure of bilevel optimization

problems, the error resulting from the stochastic gradient estimator h,{ », With stale Hessian information

Under review as a conference paper at ICLR 2025

further propagates to and increases the approximation error of y* (x) and the approximation error of
z* (x,y). What is even worse is that z* (x,y) is also associated with y* (x). All the above complex
couplings of laziness-induced errors and the complications associated with these approximation errors
are unseen in bilevel optimization algorithm analysis, which significantly increases the difficulty of
analyzing the convergence of LazyBLO and necessitate new proof techniques.

5.1 SUPPORTING LEMMAS

Toward this end, we first state two basic lemmas needed for the convergence analysis of LazyBLO.

Lemma 5.1 (Lemma 2.2 in (Ghadimi & Wang|, 2018)), Proposition 6 in (Arbel & Mairall 2022)).
Under Assumptions[3.1and[3.2] we have

IVIi(xy,2) = VI < Li ([ly =y &) + 2 = 2" (x,3)ID),
ly* (x1) =y" () < Ly o = xaofl, [VEGa) = VE(x)|| < Li[[x1 — %o,

forall x,x1,%x € RY, and y,% € R, where the Lipschitz constants above are defined as:

Lf:maX{wa+(Lgmnyy/Mg)+B9myLZ7Bgzy}7 Ll:Lf+(LfBzzy/l’l’(7)’ L?/:Bszy/lu’g7

and where L/f =Lys + (LfyBgzy/ﬂg) + By, [(Lg,, /1g) + (Lyg,, gzy/:u’g)]

We note that Lemma [5.1| plays a key role in the analysis of AID-based bilevel algorithms. First of all,

it characterizes the bias of the implicit gradient as a function of approximation error in y and z (see

Eq.). It also ensures the Lipschitzness of the mapping y*(x) in characterizing the behavior of the

LL problem’s iterates. Most importantly, Lemma [5.1] establishes the Lipschitz-smoothness of the

implicit function £(+), which allows the development of SGD-type algorithms for solving stochastic

bilevel problems. To complement Lemma ﬂj, next result states the properties of the optimal solution
z* (x,y) of the quadratic problem in Eq.

Lemma 5.2 (Proposition 6 in(Arbel & Mairal, 2022))). Under Assumptions[3.1jand[3.2) V x,x1, X2 €
R and y,y1,y2 € R, we have
2" (x1,¥1) — 2" (x2,y2)[| < L. (IIx1 — %2l + [[y1 — y2ll), lz" (x,)|l < By, /g,

where L, = (L By, /uﬁ) + Ly, /1g-

Gyy

Lemma|[5.2]also plays a key role in the analysis of LazyBLO as it is utilized to bound the drift in the
Hessain vector product estimates (see Eq. (3)). Next, we present the main results of the paper.

5.2 MAIN RESULTS

® The Non-convex / (x) Setting: By leveraging Lemmas [5.1] and we establish the main
convergence result of the proposed LazyBLO for non-convex ¢ (x) in Theorem

Theorem 5.3 (Non-Convex Z(x)). Under Assumptions with step-sizes ay = o = O (3),
Bt & cpa =0 NQ) and vy = cyoo = O (1) forall t € {0,1,...,T — 1}, where cg and c., are
defined in Eq.[22|in Appendix|C] Then, the iterates generated by LazyBLO satisfy:

T—1N-1 NA
e S SB[V = (T“)+0(o§y+o§m+oi+o§w+oi)v

t=0 n=

where Ao = (£(x)—4*)+||y8— (017 + lzo — 2 (x5, y0)II*

The proof of Theorem [5.3]can be found in Appendix [C] Theorem [5.3]establishes the convergence of
LazyBLO under the most general setting, where the implicit function £(-) can be non-convex. The
result characterizes the effect of different parameters on the convergence of LazyBLO. Specifically,
as IV increases, the performance of LazyBLO degrades. This is unsurprising since more stale Hessian
information is expected to slow the convergence. Hence, N should be chosen below a certain
threshold to maintain the accuracy of the hypergradient estimations. On the other hand, to enjoy the
benefits of the LazyBLO approach, N is supposed to be strictly larger than 1. We can potentially
choose N = 1, and our algorithm, which becomes fully single-loop, recovers standard results for

Under review as a conference paper at ICLR 2025

bilevel algorithms under the same assumptions as ours (e.g., the guarantees achieved in (Arbel &
Mairall, 2022))). Interestingly, under an appropriate /N-value, the N-dependent slowdown effect in
LazyBLO can be offset by Hessian computations skippings, allowing LazyBLO to run even faster
than non-lazy approaches in terms of wall-clock time.

Our next result characterizes the computation complexity of LazyBLO.

Corollary 5.4 (Computation Complexity). Under the setting of Theorem choose
|DI=|,|DIv|,|D9v|,|DI=v|,|D9vs| = © (¢7'). Then, LazyBLO requires O(¢~?) partial gradi-
ent and HVP evaluations to reach an e-stationary point.

We note that, when e is small, the batch sizes in Corollary @]could be large. However, it is worth
noting that the use of large batch sizes is not a consequence of the proposed LazyBLO algorithm
design; rather, these batch size choices are common in the literature, as the above guarantees are the
same as those achieved in standard SGD-based bilevel algorithms (e.g., (Arbel & Mairall, [2022; Ji
et al., 2021; Huang et al.,[2022)) that require the computation of (multiple) Hessian/HVPs in each
iteration. It is also worth noting that the large batch sizes are required only for theoretical analysis
and can be eliminated by using a third-order Lipschitz assumption, as done by SOBA (Dagréou et al.|
2022). In our experiments, we use a small batch size instead, and our algorithm still outperforms the
baseline algorithms.

Given that LazyBLO can converge and even matches the performance of SOTA non-lazy bilevel
methods, another question also arises: under which settings could LazyBLO theoretically outperform
current bilevel approaches? The next result shows that if the LL problem is deterministic, we can, in
fact, improve upon the current approaches and reduce the HVP evaluations from O(e=2) to O(e™1).

Corollary 5.5 (Computation Complexity for Deterministic LL. Problems). Suppose the lower-level
problem is deterministic. Under the condition of Theorem LazyBLO requires O(¢~') for HVP
evaluations to achieve an e-stationary point.

Corollary [5.5] suggests that LazyBLO significantly reduces the HVP evaluations. In contrast, for
standard bilevel optimization algorithms, the HVPs stay the same as the total number of rounds
required by an algorithm to achieve the e-stationary solution. For example, under the same deter-
ministic setting, the baseline methods BSA (Ghadimi & Wang, [2018)), stocBiO (Ji et al.,[2021) and
AmIGO (Arbel & Mairal, 2022) require O(e~?) gradient computations and TTSA (Hong et al.,
2020) requires O(e~ =) gradient computations, which is equivalent to the number of outer function’s
gradients evaluated during the execution of the algorithm.

So far, our results characterize the performance of LazyBLO in the non-convex settings. However,
for some problems (e.g., quadratic UL and LL problems), the implicit function may have additional
structures that might lead to better convergence of LazyBLO. Next, we characterize the performance
of LazyBLO when the implicit function is strongly convex, which is often of interest for applications
in robust and inverse optimization, optimal control in robotics and aerospace with quadratic cost, etc.

@ The Strongly Convex / (x) Setting: Under the setting where £ (-) is u¢-strongly convex, we
provide a stronger performance guarantee for the convergence of LazyBLO, which is stated as follows:
Theorem 5.6 (Strongly Convex ¢ (x)). Suppose the upper-level function £ (X) is i ¢-strongly-convex.
Under Assumptions choose the step-sizes oy = o = O (%), Bt & éga=0 (%) and v, &
ey =0 (§z) forallt € {0,1,...,T — 1}, where ¢ and é., are defined in Eq. in Appendix@
Then, the iterates generated by LazyBLO satisfy:

N—-1
1 o . 1 1 1
¥ E[ﬁ (xi') —¢ } < (1= pga) Ao+ O(“ﬁwy + 0%+ 1% T §aoh Naﬁy),
n=0

A N—-1 N—-1 2 |2
foranyt > 1, where Do = 5 37,25 (0(x3) —)+ 5 X020 Iy6 — v)II” + % llz0 — z5I™

The detailed proof of Theorem [5.6]is provided in Appendix D] due to space limitations. Theo-
rem [5.6]demonstrates that, under the strongly convex setting, LazyBLO achieves a much faster linear
convergence rate. Theorem[5.6also immediately implies the following computation complexity:

Corollary 5.7 (Computation Complexity). Under the setting of Theorem choosing | D
|D9=v| = © (6_1), |D9v| = O (N_le_l), and |’Df7/ = |D9%w| =0 (N_4e_1 , LazyBLO requires

Under review as a conference paper at ICLR 2025

20.0 —— LazyBLO 20.0 oo —— LazyBLO 5 —— LazyBLO 5 —— LazyBLO
w175 — AmIGO N 17.5 75 — AmIGO " — AmIGO " — AmIGO
2150 —— stocBiO 2150 L —— stocBiO 24 — F25A 8a
S S . S S
©12.5 MRBO ?12_5 2 — MRBO ?3 F3SA ?3
£ 10.0 T BSA £10.0 — BSA c c
® T 75 52 52
= (S = =

5.0 1 o 1
25
20 40 60 80 160130140 160 50 100 150 200 250 3060 20 40 60 80 100 %050 100 130 260 250 300
Running Time (s) # of Hessian Comput. Running Time (s) # of Hessian Comput.
(a) Wall-clock time. (b) # of Hessian comput. (a) Wall-clock time. (b) # of Hessian comput.

Figure 1: Comparison for data hyper-cleaning on Figure 2: Training loss for deep hyper-
MNIST (corruption rate p = 0.1, 10 repetitions). representation on CIFAR-10 (10 repetitions).

O(e~tlog e 1) partial gradient evaluations and O(N ~*e~*log e~1) HVP evaluations to reach an
e-optimal point.

Corollary shows that LazyBLO significantly reduces the number of HVP evaluations. Again,
note that the complexity of partial gradient evaluations in Corollary [5.7| matches the same guarantee
achieved in (Arbel & Mairall |2022), which is obtained by multiple Hessian evaluations per iteration.

6 NUMERICAL RESULTS

In this section, we verify the theoretical performance of LazyBLO on different optimization tasks
and with two different datasets: 1) data hyper-cleaning on the MNIST dataset, and 2) deep hyper-
representation with the ResNet network on the CIFAR-10 dataset. Due to space limitations, additional
experimental details and results are included in Appendix

Task 1) Data Hyper-Cleaning on the MNIST Dataset: We conduct experiments on a data hyper-
cleaning task with MNIST dataset (LeCun et al.,|1998). Data hyper-cleaning aims to train a classifier
on a corrupted dataset. We compare LazyBLO with stochastic bilevel algorithms AmIGO (Arbel &
Mairall, [2022)), stocBiO (Ji et al., 2021), BSA (Ghadimi & Wang| 2018), and MRBO (Yang et al.|
2021) as baselines. We also perform data hyper-cleaning with fully single-loop bilevel algorithms
TTSA (Hong et al., 2020), SOBA (Dagréou et al.| 2022), and MA-SOBA (Chen et al., [2024)).

Table [2 shows that TTSA, SOBA, and MA-SOBA all need an exceedingly long time to converge.
Specifically, the convergence of TTSA, SOBA, and MA-SOBA are 74, 73, and 82 x slower, respec-
tively, than LazyBLO. In addition, TTSA, SOBA, and MA-SOBA require 390, 126, and 150 x more
Hessian computations, respectively, compared to LazyBLO. Given the significantly slow convergence
of these fully single-loop bilevel algorithms, we exclude them from the following comparison.

From Fig. []__a]y WE Table 2: Convergence performance of TTSA, SOBA, and MA-SOBA
can sec tha't AmIGO compared with our LazyBLO on data hyper-cleaning on MNIST (corrup-
and stocBiO have tjon rate p = 0.1, average over 10 repetitions).

similar conver-
gence performance. _ALGORITHM | WALL-CLOCK TIME _ # OF HESSIAN TRAINING LOSS
LazyBLO outperforms gg;ﬁ 35?8 S 1693500 ;gg
11 baseli thod S :
. terilsse :)nfe w:fﬁclgcli MA-SOBA 4740's 750 3.05
LazyBLO 58s 5 2.35

time, which shows the
advantages of LazyBLO. Specifically, it only takes LazyBLO approximately 60 seconds to converge,
while AmIGO and stocBiO converge in around 100 seconds. This much-improved wall-clock
time is due to the fact that LazyBLO uses stale Hessian information and saves a lot of Hessian
computation time. It is worth pointing out that the comparison with MRBO is not entirely fair since
MRBO is equipped with more sophisticated momentum techniques to accelerate convergence, while
LazyBLO only uses vanilla-SGD updates. LazyBLO can also be equipped with momentum-based
SGD updates to further accelerate the convergence. Furthermore, the training loss of LazyBLO is
similar to those of AmIGO, stocBiO, and BSA, which use up-to-date Hessian information during
the training. This result is surprising because LazyBLO with stale Hessian information can still
match the methods with non-lazy Hessian updates. This implies that the Hessian information evolves
gradually during the training, and one may use stale Hessians to construct good approximations of
the hypergradient in bilevel optimization.

It can be seen in Fig.[Tb|that the convergence speed with respect to the number of Hessian evaluations
for LazyBLO is much faster compared with all the baseline algorithms (see the zoomed-in area in

Under review as a conference paper at ICLR 2025

Fig. @]) Table E] also demonstrates that, to achieve the same convergence training loss, AmIGO,
stocBiO and BSA all need 252 Hessian computations, while LazyBLO only needs 5 Hessian compu-
tations (i.e., 50x faster). Note that we do not include MRBO in this table since it has a higher error
floor compared to other algorithms. As a consequence, it can not reach the same training loss as the
other algorithms.

Fig. [3| captures the effect of N on the perfor- 127
mance of LazyBLO. Specifically, we observe 10
that as we increase the value of NV, the execu-
tion of the algorithm becomes faster and faster.
However, we note that increasing N beyond

a certain threshold may not yield additional —amOShey

benefits and could even lead to performance ® % RunningTme (s ® % of Hessian Comput.
degradation. This is because, as N increases, (a) Wall-clock time. (b) # of Hessian comput.

the difference between stale and fresh Hes- Figure 3: Comparison of LazyBLO on data hyper-

sian information becomes larger, potentially cjeaning on MNIST at a different # of x-updates (V).
causing the hypergradient h[», to become less

accurate and adversely affecﬁng the training loss of LazyBLO.

Task 2) Deep Hyper-Representation with ResNet-20 on the CIFAR-10 Dataset: To demonstrate
the effectiveness of LazyBLO in training neural networks, we conduct experiments on a deep hyper-
representation task (Yang et al.;[2023;|Sow et al.|2022) with the ResNet-20 model (He et al.,|2016)) on
CIFAR-10 dataset (Krizhevsky et al.,|2009)), which aims to classify CIFAR-10 images. We compare
LazyBLO with a standard stochastic bilevel algorithm AmIGO (Arbel & Mairall [2022), and two
fully first-order (Hessian/Jacobian-free) stochastic bilevel algorithms F>?SA (Kwon et al., 2023)) and
F?SA (Kwon et al.,2023) as baselines. We do not compare LazyBLO with other baselines from the
previous data hyper-cleaning experiments since stocBiO performs almost identically to AmIGO, and
they both outperform MRBO in terms of training loss and BSA in terms of wall-clock time.

—— LazyBLO N=2
—— LazyBLO N=8 10
—— LazyBLO N=16

LazyBLO N=32

—— LazyBLO N=2
— LazyBLO N=8
—— LazyBLO N=16

LazyBLO N=32

Training Loss
Training Loss

LS

As shown in Fig.[2a] LazyBLO converges Table 3: The number of hypergradient computations and
faster in terms of wall-clock time com- Hegsjan computations required by various algorithms to
pared to AmIGO, F*SA and F’SA. In ad- ychieve the same training loss in data hyper-cleaning ex-
dition, Fig. [2a]indicates that the training perjments (Task 1) and hyper-representation experiments

loss of LazyBLO is smaller than those (Task 2) (average over 10 repetitions).
of F?SA and F°SA. The superior per-

formance of LazyBLO in comparison to ALGORITHM | # OF HGC _ # OF HESSIAN
F?SA and F3SA establishes the neces- AMIGO 42 252
sity of Hessian/Jacobian evaluations in TASK 1 STOCBIO 42 252

L .o . BSA 21 252
stochastic bilevel optimization. Without

LazyBLO 40 5

them, both the convergence speed and the AMIGO 361 7575
training loss would degrade as demon- TASK2 LazyBLO 640 320

strated by the experiments. Fig. 2] il- ~{GC: HYPERGRADIENT COMPUTATION
lustrates the convergence performance of

LazyBLO compared to AmIGO in terms of the number of Hessian computations. Note that we
do not include F>SA and F3SA in this figure since they are Hessian-free. Fig. [2bl demonstrates
that with the same number of Hessian evaluations, LazyBLO has a lower training loss compared
to AmIGO. Furthermore, as shown in Table 3] to reach the same training loss, LazyBLO uses 320
Hessian computations, while AmIGO uses 722 Hessian computations. This significantly reduces
computational costs, especially for large-scale problems.

7 CONCLUSION

In this paper, we proposed the LazyBLO algorithmic framework for solving bilevel optimization prob-
lems. Compared to existing works, LazyBLO reduces the Hessian-vector product (HVP) evaluations
by updating them periodically and less frequently. Although LazyBLO uses stale HVP evaluations
that introduce additional errors, our theoretical analysis demonstrated that LazyBLO not only sur-
prisingly enjoys the same convergence rate guarantee, but also achieves a much faster wall-clock
time performance. Specifically, to reach an e-stationary point, LazyBLO requires O(e~2) for both
partial gradient evaluations and HVP evaluations, which matches the SOTA non-lazy methods. We
conducted experiments on multi-hyperparameter optimization tasks to verify our theoretical findings.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Ilan Adler, Zhiyue T Hu, and Tianyi Lin. New proximal newton-type methods for convex optimization.
In 2020 59th IEEE Conference on Decision and Control (CDC), pp. 4828-4835. IEEE, 2020.

Gemayqzel Bouza Allende and Georg Still. Solving bilevel programs with the kkt-approach. Mathe-
matical programming, 138(1):309-332, 2013.

G Anandalingam and DJ White. A solution method for the linear static stackelberg problem using
penalty functions. IEEE Transactions on automatic control, 35(10):1170-1173, 1990.

Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml. arXiv preprint
arXiv:1810.09502, 2018.

Michael Arbel and Julien Mairal. Amortized implicit differentiation for stochastic bilevel optimization.
In International Conference on Learning Representations, 2022.

Fan Bao, Guoqiang Wu, Chongxuan Li, Jun Zhu, and Bo Zhang. Stability and generalization of
bilevel programming in hyperparameter optimization. Advances in neural information processing
systems, 34:4529-4541, 2021.

Jerome Bracken and James T McGill. Mathematical programs with optimization problems in the
constraints. Operations Research, 21(1):37-44, 1973.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/ jax.

Lesi Chen, Yaohua Ma, and Jingzhao Zhang. Near-optimal fully first-order algorithms for finding
stationary points in bilevel optimization. arXiv preprint arXiv:2306.14853,2023a.

Lesi Chen, Jing Xu, and Jingzhao Zhang. On bilevel optimization without lower-level strong
convexity. arXiv preprint arXiv:2301.00712, 2023b.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. Tighter analysis of alternating stochastic gradient method
for stochastic nested problems. arXiv preprint arXiv:2106.13781, 2021.

Xuxing Chen, Tesi Xiao, and Krishnakumar Balasubramanian. Optimal algorithms for stochastic
bilevel optimization under relaxed smoothness conditions. Journal of Machine Learning Research,
25(151):1-51, 2024.

Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. A framework for bilevel
optimization that enables stochastic and global variance reduction algorithms. arXiv preprint
arXiv:2201.13409, 2022.

Stephan Dempe and Jonathan F Bard. Bundle trust-region algorithm for bilinear bilevel programming.
Journal of Optimization Theory and Applications, 110(2):265-288, 2001.

Nikita Doikov, El Mahdi Chayti, and Martin Jaggi. Second-order optimization with lazy hessians.
arXiv preprint arXiv:2212.00781, 2022.

Justin Domke. Generic methods for optimization-based modeling. In Artificial Intelligence and
Statistics, pp. 318-326. PMLR, 2012.

Bothina El-Sobky and Yousria Abo-Elnaga. A penalty method with trust-region mechanism for
nonlinear bilevel optimization problem. Journal of Computational and Applied Mathematics, 340:
360-374, 2018.

James E Falk and Jiming Liu. On bilevel programming, part i: general nonlinear cases. Mathematical
Programming, 70(1):47-72, 1995.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence theory of gradient-based
model-agnostic meta-learning algorithms. In International Conference on Artificial Intelligence
and Statistics, pp. 1082-1092. PMLR, 2020.

11

http://github.com/google/jax

Under review as a conference paper at ICLR 2025

Jinyan Fan. A shamanskii-like levenberg-marquardt method for nonlinear equations. Computational
Optimization and Applications, 56(1):63-80, 2013.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126-1135. PMLR, 2017.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In International Conference on Machine Learning,
pp- 1165-1173. PMLR, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In International Conference on
Machine Learning, pp. 1568—1577. PMLR, 2018.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv preprint
arXiv:1802.02246, 2018.

Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and Edison
Guo. On differentiating parameterized argmin and argmax problems with application to bi-level
optimization. arXiv preprint arXiv:1607.05447, 2016.

Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration com-
plexity of hypergradient computation. In International Conference on Machine Learning, pp.
3748-3758. PMLR, 2020.

Bin Gu, Guodong Liu, Yanfu Zhang, Xiang Geng, and Heng Huang. Optimizing large-scale
hyperparameters via automated learning algorithm. arXiv preprint arXiv:2102.09026, 2021.

Zhishuai Guo, Quangi Hu, Lijun Zhang, and Tianbao Yang. Randomized stochastic variance-reduced
methods for multi-task stochastic bilevel optimization. arXiv preprint arXiv:2105.02266, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale framework for bilevel
optimization: Complexity analysis and application to actor-critic. arXiv preprint arXiv:2007.05170,
2020.

Yibo Hu, Xiang Wu, and Ran He. Tf-nas: Rethinking three search freedoms of latency-constrained
differentiable neural architecture search. In European Conference on Computer Vision, pp. 123—139.
Springer, 2020.

Minhui Huang, Xuxing Chen, Kaiyi Ji, Shigian Ma, and Lifeng Lai. Efficiently escaping saddle
points in bilevel optimization. arXiv preprint arXiv:2202.03684, 2022.

Kaiyi Ji and Yingbin Liang. Lower bounds and accelerated algorithms for bilevel optimization. arXiv
preprint arXiv:2102.03926, 2021.

Kaiyi Ji, Jason D Lee, Yingbin Liang, and H Vincent Poor. Convergence of meta-learning with
task-specific adaptation over partial parameters. Advances in Neural Information Processing
Systems, 33:11490-11500, 2020.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced
design. In International Conference on Machine Learning, pp. 4882-4892. PMLR, 2021.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A
momentum-assisted single-timescale stochastic approximation algorithm for bilevel optimization.
arXiv preprint arXiv:2102.07367v1, 2021a.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A

near-optimal algorithm for stochastic bilevel optimization via double-momentum. Advances in
Neural Information Processing Systems, 34:30271-30283, 2021b.

12

Under review as a conference paper at ICLR 2025

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D Nowak. A fully first-order method
for stochastic bilevel optimization. In International Conference on Machine Learning, pp. 18083—
18113. PMLR, 2023.

Francesco Lampariello and Marco Sciandrone. Global convergence technique for the newton method

with periodic hessian evaluation. Journal of optimization theory and applications, 111:341-358,
2001.

Bruno Lecouat, Jean Ponce, and Julien Mairal. Designing and learning trainable priors with non-
cooperative games. 2020a.

Bruno Lecouat, Jean Ponce, and Julien Mairal. A flexible framework for designing trainable priors

with adaptive smoothing and game encoding. Advances in Neural Information Processing Systems,
33:15664-15675, 2020b.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Jiaxiang Li, Siliang Zeng, Hoi To Wai, Chenliang Li, Alfredo Garcia, and Mingyi Hong. Getting
more juice out of the SFT data: Reward learning from human demonstration improves SFT for
LLM alignment. In ICML 2024 Workshop on Theoretical Foundations of Foundation Models,
2024.

Junyi Li, Bin Gu, and Heng Huang. A fully single loop algorithm for bilevel optimization without
hessian inverse. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
7426-7434, 2022.

Yi Li, Lingxiao Song, Xiang Wu, Ran He, and Tieniu Tan. Learning a bi-level adversarial network
with global and local perception for makeup-invariant face verification. Pattern Recognition, 90:
99-108, 2019.

Dongze Lian, Yin Zheng, Yintao Xu, Yanxiong Lu, Leyu Lin, Peilin Zhao, Junzhou Huang, and
Shenghua Gao. Towards fast adaptation of neural architectures with meta learning. In International
Conference on Learning Representations, 2019.

Renjie Liao, Yuwen Xiong, Ethan Fetaya, Lisa Zhang, KiJung Yoon, Xaq Pitkow, Raquel Urtasun, and
Richard Zemel. Reviving and improving recurrent back-propagation. In International Conference
on Machine Learning, pp. 3082-3091. PMLR, 2018.

Bo Liu, Mao Ye, Stephen Wright, Peter Stone, and Qiang Liu. Bome! bilevel optimization made
easy: A simple first-order approach. Advances in Neural Information Processing Systems, 35:
17248-17262, 2022a.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Risheng Liu, Xuan Liu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A value-function-based
interior-point method for non-convex bi-level optimization. In International Conference on
Machine Learning, pp. 6882—-6892. PMLR, 2021.

Zhuqing Liu, Xin Zhang, Prashant Khanduri, Songtao Lu, and Jia Liu. Interact: achieving low sample
and communication complexities in decentralized bilevel learning over networks. In Proceedings
of the Twenty-Third International Symposium on Theory, Algorithmic Foundations, and Protocol
Design for Mobile Networks and Mobile Computing, pp. 61-70, 2022b.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by
implicit differentiation. In International Conference on Artificial Intelligence and Statistics, pp.
1540-1552. PMLR, 2020.

13

Under review as a conference paper at ICLR 2025

Matthew MacKay, Paul Vicol, Jon Lorraine, David Duvenaud, and Roger Grosse. Self-tuning
networks: Bilevel optimization of hyperparameters using structured best-response functions. arXiv
preprint arXiv:1903.03088, 2019.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimization
through reversible learning. In International conference on machine learning, pp. 2113-2122.
PMLR, 2015.

Julien Mairal, Francis Bach, and Jean Ponce. Task-driven dictionary learning. IEEE transactions on
pattern analysis and machine intelligence, 34(4):791-804, 2011.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Rui Pan, Jipeng Zhang, Xingyuan Pan, Renjie Pi, Xiaoyu Wang, and Tong Zhang. Scalebio: Scalable
bilevel optimization for llm data reweighting. arXiv preprint arXiv:2406.19976, 2024.

Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):147-160,
1994.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International
conference on machine learning, pp. 737-746. PMLR, 2016.

Peiwen Qiu, Yining Li, Zhuqing Liu, Prashant Khanduri, Jia Liu, Ness B Shroff, Elizabeth Ser-
ena Bentley, and Kurt Turck. Diamond: Taming sample and communication complexities in
decentralized bilevel optimization. arXiv preprint arXiv:2212.02376, 2022.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with implicit
gradients. Advances in neural information processing systems, 32, 2019.

Walter Rudin et al. Principles of mathematical analysis, volume 3. McGraw-hill New York, 1976.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation
for bilevel optimization. In The 22nd International Conference on Artificial Intelligence and
Statistics, pp. 1723-1732. PMLR, 2019.

VE Shamanskii. A modification of newton’s method. Ukrainian Mathematical Journal, 19(1):
118-122, 1967.

Han Shen and Tianyi Chen. On penalty-based bilevel gradient descent method. arXiv preprint
arXiv:2302.05185, 2023.

Ankur Sinha, Samish Bedi, and Kalyanmoy Deb. Bilevel optimization based on kriging approxima-
tions of lower level optimal value function. In 2018 IEEE congress on evolutionary computation
(CEC), pp. 1-8. IEEE, 2018.

Ankur Sinha, Tharo Soun, and Kalyanmoy Deb. Using karush-kuhn-tucker proximity measure for
solving bilevel optimization problems. Swarm and evolutionary computation, 44:496-510, 2019.

Xingyou Song, Wenbo Gao, Yuxiang Yang, Krzysztof Choromanski, Aldo Pacchiano, and Yunhao
Tang. Es-maml: Simple hessian-free meta learning. arXiv preprint arXiv:1910.01215, 2019.

Daouda Sow, Kaiyi Ji, and Yingbin Liang. On the convergence theory for hessian-free bilevel
algorithms. Advances in Neural Information Processing Systems, 35:4136-4149, 2022.

Yuesong Tian, Li Shen, Guinan Su, Zhifeng Li, and Wei Liu. Alphagan: Fully differentiable
architecture search for generative adversarial networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 44(10):6752-6766, 2021.

Luis Vicente, Gilles Savard, and Joaquim Judice. Descent approaches for quadratic bilevel program-
ming. Journal of Optimization theory and applications, 81(2):379-399, 1994.

Zhongping Wan, Lijun Mao, and Guangmin Wang. Estimation of distribution algorithm for a class of
nonlinear bilevel programming problems. Information Sciences, 256:184-196, 2014.

14

Under review as a conference paper at ICLR 2025

Chang-yu Wang, Yuan-yuan Chen, and Shou-qiang Du. Further insight into the shamanskii modifica-
tion of newton method. Applied mathematics and computation, 180(1):46-52, 2006.

Douglas J White and G Anandalingam. A penalty function approach for solving bi-level linear
programs. Journal of Global Optimization, 3(4):397-419, 1993.

Feijie Wu, Zitao Li, Yaliang Li, Bolin Ding, and Jing Gao. Fedbiot: Llm local fine-tuning in federated
learning without full model. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 3345-3355, 2024.

Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimization.
Advances in Neural Information Processing Systems, 34:13670-13682, 2021.

Yifan Yang, Peiyao Xiao, and Kaiyi Ji. Achieving O (¢~!-*) complexity in hessian/jacobian-free
stochastic bilevel optimization. Advances in Neural Information Processing Systems, 2023.

Alain B Zemkoho and Shenglong Zhou. Theoretical and numerical comparison of the karush—kuhn—
tucker and value function reformulations in bilevel optimization. Computational Optimization and
Applications, 78(2):625-674, 2021.

Yihua Zhang, Guanhua Zhang, Prashant Khanduri, Mingyi Hong, Shiyu Chang, and Sijia Liu.
Revisiting and advancing fast adversarial training through the lens of bi-level optimization. In
International Conference on Machine Learning, pp. 26693-26712. PMLR, 2022.

15

Under review as a conference paper at ICLR 2025

A ADDITIONAL RELATED WORK

Bilevel Optimization: The history of bilevel optimization dates back to 1973 (Bracken & McGill,
1973). Some early attempts for solving bilevel problems include: value function (Liu et al., 2021}
Sinha et al., [2018; Zemkoho & Zhou, [2021)), Karush—Kuhn—Tucker conditions based reformula-
tions (Allende & Still,|2013; |Sinha et al., [2019; Zemkoho & Zhou, [2021), penalty function (White &
‘Anandalingam, |1993; |/Anandalingam & White, |1990; Wan et al.,2014)), approximate descent (Falk
& Liul [1995; [Vicente et al.l [1994)), and trust region methods (Dempe & Bard, 2001} |[El1-Sobky &
Abo-Elnagal [2018). Among these approaches, approximate descent methods have gained promi-
nence recently because of their ease of implementation as well as strong theoretical and empirical
performance in many machine learning applications. Two standard descent-based approaches to
tackle problems of form (E]) are iterative differentiation (ITD) (Domke} [2012; Maclaurin et al., {2015}
Franceschi et al., |2017; 2018} [Shaban et al.l 2019; |Grazzi et al., [2020; [MacKay et al.,|2019) and ap-
proximate implicit differentiation (AID) (Domkel 2012} Pedregosa) 2016} Liao et al., 2018;|Ghadimi
& Wang| 2018}, |Grazzi et al.| 2020} [Lorraine et al., 20205 |Gould et al.| 20165 Ji & Liang| 2021}
MacKay et al.| 2019; Khanduri et al., [2021a; |Hong et al., [2020). The basic idea of I'TD is to obtain
an approximate hypergradient of the loss function ¢(x) in Eq. by differentiating the unrolled
iterates of the LL problem. Consequently, ITD-based approaches need to store all the LL iterates in
the memory (Shaban et al.,[2019). On the other hand, AID relies on the implicit function theorem
to compute the implicit gradient of ¢(x) without the need to maintain the sequence of LL iterates.
Instead of differentiating the iterates of the LL problem, AID computes the implicit gradient by
approximately solving a linear system of equations using HVPs. In this work, we focus on AID-based
approaches for solving stochastic bilevel problems.

B ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

B.1 SPECIFICATIONS OF THE BASELINE ALGORITHMS IN SECTION 6]

In this section, we provide more description of the baseline algorithms used in our experiments, as
follows:

* AmIGO (Arbel & Mairall 2022)): a double-loop stochastic AID-based bilevel algorithm that uses
conjugate gradient to estimate the Hessian inverse.

* stocBiO (Ji et al., 2021): a two timescale stochastic AID-based bilevel approach that uses
Neumann Series to estimate the Hessian inverse. The repository of stocBiO is available
at https://github.com/Junjie Yang97/StocBio.

* BSA (Ghadimi & Wang, [2018)): an AID-based bilevel method that uses single-sample sampling.

* MRBO (Yang et al.| [2021)): a single-loop AID-based stochastic bilevel algorithm that uses
momentum-based SGD to accelerate convergence. The implementation of MRBO is available
at https://github.com/Junjie Yang97/MRVRBO.

» F2SA (Kwon et all[2023): a fully first-order (Hessian/Jacobian-free) stochastic bilevel method,
which is doulbe-loop.

» F3SA (Kwon et al.,[2023): a fully first-order stochastic bilevel approach that uses momentum-based
SGD to accelerate convergence and is single timescale.

B.2 EXPERIMENTAL DETAILS FOR DATA HYPER-CLEANING

In this section, we describe the details of the experiments on data hyper-cleaning. The goal of data
hyper-cleaning is to train a classifier on a potentially corrupt dataset. To make fair comparison,
we follow the same implementation as in (J1 et al.| 2021} |Yang et al.l [2021)) and apply it to other
algorithms. The objective function can be written as follows:

1
in L A w*) = L(w*x4,y;
Hl)}n le(, W) |Dval| Z (w X Y)
(%x4,¥i)EDyai

1

st w'= argmin(Z o (M) L(wx;,y:) + C’r|w||2>7
w DT
| ¢ |(X'ia)"i)eDtr

16

https://github.com/JunjieYang97/StocBio
https://github.com/JunjieYang97/MRVRBO

Under review as a conference paper at ICLR 2025

where (x;,y;) represents the data samples, D,,; and D;, correspond to the validation data and the
training data, £ denotes the cross-entropy loss, o represents the sigmoid function, and C'. is the
regularization parameter. Note that the training loss corresponds to the upper-level loss. We choose
C, = 0.001 in our experiments, which is the same as (Shaban et al,[2019; [Ji et al.| [2021]). We conduct
experiments on the MNIST dataset (LeCun et al.,|1998), which is corrupted by replacing the training
data label with a uniformly random one. Such replacement has a probability p, referred to as the
corruption rate. We run the experiments with corruption rates of p = {0.1, 0.15, 0.2, 0.25, 0.3}.

We compare the performance of LazyBLO with AmIGO (Arbel & Mairall [2022), stocBiO (Ji et al.}
2021)), BSA (Ghadimi & Wang] [2018]), and MRBO (Yang et al.;[2021). For all algorithms, we tune the
parameters using grid search to achieve the best convergence performance based on the training loss
as the metric. As a result, we set the batch size to 1000 for AmIGO, stocBiO, MRBO and LazyBLO .
We set both the outer stepsize « and the inner stepsize /3 as 0.1, and the Hessian update stepsize 7 as
0.5 for AmIGO, stocBiO and MRBO. We choose both the outer stepsize « and the inner stepsize S to
be 0.01, and the Hessian update stepsize «y to be 0.1 for BSA. For LazyBLO, We set 0.5 as the inner
stepsize /3, and 0.1 as both the outer stepsize « and the Hessian update stepsize . We set the number
of inner-loop iterations for y-update to 64 for AmIGO, stocBiO and BSA. We choose the number of
iterations for Hessian inverse evaluations to be 6 for AmIGO and stocBiO, and 12 for MRBO and
BSA. For LazyBLO, we set 8 as the inner-loop iteration number N for x- and y-update. We conduct
10 repetitions for the experiments using different random seeds. The solid line shows the average
training loss, and the shaded area represents the variance containing the maximum and the minimum
values. We run the data hyper-cleaning experiments using NVIDIA GeForce RTX 3060 GPU.

B.3 EXPERIMENTAL DETAILS FOR DEEP HYPER-REPRESENTATION

In this section, we show the details of the experiments on deep hyper-representation, which aims to
classify the images. The objective function is given by:

. . 1 "
min £, (A w") = 5 Yo L f (%), yi)
val (X-;,yi)GDual
1
s.t. w* = argmin L(wf(MNx:),¥:),
iy 2 L0003
xu}'z)EDtr

where (x;,y;) denotes the data samples, D,,; and Dy, are the validation data and the training data, £
corresponds to the cross-entropy loss, f (\; x;) represents the features extracted from the data sample.
We run the experiments with ResNet-20 network (He et al., 2016) on CIFAT-10 dataset (Krizhevsky
et al.| |2009) using a batch size of 128. We treat the last two layers in ResNet-20 as the LL parameters
w with a dimension of 5, 130, and all remaining layers as the UL parameters A with a dimension of
11,168, 832.

We compare LazyBLO with AmIGO (Arbel & Mairall 2022), F>’SA (Kwon et al. 2023) and
F?SA (Kwon et al.l [2023). To ensure the best performance of all the algorithms, we fine tune
the parameters using grid search with the goal of finding the lowest training loss. Consequently, for
AmIGO, we set all the stepsize for updating x, y and z to 0.01. We choose the number of y-update
iterations to be 8 and the number of z-update iterations to be 2. For LazyBLO, we choose the stepsize
o and vy to be 0.01, and /3 to be 0.05. We set 2 as the inner-loop iteration number N. Following
the same notations as in (Kwon et al., [2023)), for F2SA, we choose the stepsize « as 0.1 and v as
0.01. We set both the step-size ratio & and the Lagrangian multiplier A to 0.5. We choose the number
of inner-loop iterations to be 1. For F3SA, we set 0.05 as «, 0.01 as v, 0.1 as £, 0.5 as A, and 0.9
as momentum-weight 1. We repeat the experiments 10 times with different random seeds, where
the solid line represents the average training loss or test accuracy, and the shaded area shows the
variance containing the maximum and the minimum values. We run the deep hyper-representation
experiments using NVIDIA Tesla V100 GPU.

B.4 ADDITIONAL EXPERIMENT RESULTS

B.4.1 DATA HYPER-CLEANING

We can see in Table 4] that the test accuracy of LazyBLO is comparable to the SOTA baseline
algorithms although LazyBLO uses stale Hessian information. In addition, the number of Hessian

17

Under review as a conference paper at ICLR 2025

Table 4: Convergence performance of different bilevel algorithms on data hyper-cleaning on MNIST
dataset (corruption rate p = 0.1, average over 10 repetitions).

LazyBLO AMIGO stocBiO MRBO BSA

TEST ACCURACY (%) 72.31 72.12 72.75 69.46 72.92
OF HESSIAN 6 60 60 1440 720
20.0 f —— LazyBLO p=0.10
" 17.5 “ —— LazyBLO p=0.15
815.0 —— LazyBLO p=0.20
>12.5 LazyBLO p=0.25

— LazyBLO p=0.30

0 20 40 60 80 100 120 140
Running Time (s)

Figure 4: Comparison of LazyBLO on data hyper-cleaning on MNIST dataset with different corruption
rates (p).

computations required for LazyBLO to converge is significantly reduced, which is ten times fewer
than AmIGO and stocBiO, 240 times fewer than MRBO, and 120 times fewer than BSA.

Figure[d]illustrates the robustness of LazyBLO against corrupted datasets. We can see from Figure 4]
that when the corruption rate p (the probability that a training data label is replaced by a uniformly
random one) is larger, the training loss becomes higher, which is natural since with larger corruption
rate the classification problem becomes challenging. However, the convergence speed of LazyBLO is
similar regardless of the corruption rate p.

B.4.2 DEEP HYPER-REPRESENTATION

1.0 1.0
.08 ..0.8
9] e
g ' g
506 : | 506
9 ot
< 0.4 o V LazyBLO <04
5 Ve W — AmIGO g
Fo2 — F2sA F o2 —— LazyBLO
F3SA —— AmIGO
0.0 0.0
0 200 40 60 80 100 0 50 100 150 200 250 300
Running Time (s) # of Hessian Comput.
(a) Wall-clock time. (b) # of Hessian comput.

Figure 5: Test accuracy of different bilevel algorithms on deep hyper-representation on CIFAR-10
dataset (10 repetitions).

Figure [5a illustrates the test accuracy of LazyBLO compared with the baseline algorithms, and it
demonstrates that LazyBLO converges faster in terms of wall-clock time compared to both F2SA
and F>SA. Figure [Sb| shows the test accuracy of LazyBLO compared to AmIGO in terms of the

number of Hessian computations, and it indicates that with the same number of Hessian evaluations,
LazyBLO has a higher test accuracy compared to AmIGO.

C PROOF OF THEOREM [5.3] NON-CONVEX / (x)

C.1 PROOF SKETCHES

Here, we provide a detailed proof sketch of Theorem [5.3] The detailed proof is provided in Ap-
pendix [C.2] The proof is organized into five key steps:

18

Under review as a conference paper at ICLR 2025

Step 1) Descent in the upper-level objective function: First, we show the bound for the per-iterate
descent of the UL problem as follows:

Lemma C.1. Under Assumptions[3.1H3.4] the following inequality holds for successive iterations
of Algorithm I}

E [¢(x n+1) 0(xp)] < ,%E {HV“X?)HQ} - <O;t B 0‘%21’[) £ U

2 B2
~2 Ty
tn :| +4ngy Mg Qg

N-1
2
+8L2L2aiN Y E Mh{

| + 20038 [Iye -y I + 207,00+ 1623 L2502

=0
+ (40 Lo+ 4Lfat) E [||zt — zf||2} + 16L?L§5§Nat Z E {Hvyg (Xi,yi)H } ,
i=0

forallt € {0,1,..., T — 1} andn € {0,1,..., N — 1}, where the expectation is taken over the
stochasticity of the algorithm.

Lemma|C.]|indicates that the descent in the upper-level objective function depends on i) the stochastic
gradient estimator IE[Hh{n [|?], ii) the full gradient E[||Vy g (x}',y?) ||?], iii) the approximation error
of y* (x), which is E[|ly” — y* (x7)||*] and will be bounded in Step 2), and iv) the approximation
gap of z* (x,y), which is E[||z; — z;]||?] and will be bounded in Step 3).

Step 2) Descent in the error of y* (x): We bound the approximation error of y* (x) as follows:

Lemma C.2. Under Assumptions the approximation error of y* (x) for Algorithmsatisﬁes
the following inequality:

E [yt =y ()] < 04 e) (14) (1 - W) E[lly? - y* ()]

tg + Lg
+ (1 + 611) L2JE {Hh{n 2} + (1 +e1)(1+e) (6? - 2@) E [IIVyg (X?,y?)llz}
+(1+C1)< >ﬁt Ogy,>

tg + Lyg
forallt € {0,1,...,T — 1} andn € {0,1,..., N — 1} with some constants cy, cz > 0, where the
expectation is taken over the randomness of the algorithm.

Lemma shows that the approximation error of y* (x) is affected by the full gradient

E[[|[Vyg (x7,¥7) ||?], and the stochastic gradient estimator E[||h{nH2], which is due to the cou-
pled structure of the bilevel optimization problem.

Step 3) Descent in the error of z* (x,y): Next, we demonstrate that the approximation error of
z* (x,y) can be bounded as follows:

Lemma C.3. Under Assumptions[3.1H3.4] the following inequality of the approximation error of
z* (x,y) holds for Algorlthml

2
E [l -z |*] < 0+ e2) (14 e) (%2 - ”) E [Vaa (x5,)]
pg + Lq

ety L 1
+ ((1 +e3) (1 + cq) (1 - M%’qu) +402 2 (1 + c3) (1 +)) E {Hzt - z:||2}
g q

+2 <1+)Li ?NZ |:Hh{,n 2} ()LQBtNZ {Hvyg (xi' yi)ll }
B2
+207, (1+¢) (1 + 04) v +doy, Mg’ (1+) (1 + 04) v +4 (1 + 03> LipiN*a,,
forallt € {0,1,..., T — 1} andn € {0,1,...,N — 1} with some constants cs,cy > 0, where

Z: = Z (xgJ ,yto) and z; = z* (xg ,y?). The expectation is taken over the stochasticity of the
algorithm.

19

Under review as a conference paper at ICLR 2025

Lemma shows that the approximation error of z* (x,y) is influenced by the full gradients

E[[|Vyg (x',y7) |12 and E[||[Vq (x, ¥}, ;) ||?]. and the stochastic gradient estimator E[| 4] ,[|?],
which is due to the coupled structure of the quadratic problem in (3).

Step 4) Descent in the potential function: We define the potential function IW; as follows:
W= (x0) + Ky ||y =y () |F 4+ K [z (0. v9) = 27 (. 99) [

To demonstrate the descent in the potential function, we prove the following lemma.
BeL BeL YeL

t e L
Lemma C.4. Setc, = 5= @ o y €2 = 1o 25, , C3 = quq) and ¢4 = ﬁ Under
the same conditions as described in TheOrem@and using Lemmas the iterates generated
by Algorithm[l|satisfies: for all t € {0,1,. -1}

N

Gyy

o
E[Wyt — W] < — 2t Z]E [Hw (x™)||] 02 a,Cy,, N + 0% a,Cp,N + 02, uC.

1
+ O-ngatcny + O'SyOét (OQIN + Cg2 N)

where the constant values ngy, Cy,, Cy,, Cy,, Cy, . and ny, which are independent of N, are

yy

defined in (I8) of Appendix|[C]
With the proper parameter choices, the coefficients of E[||y? —y* (x1)||*], E[||z; — z7|*].
2
E[|Vyg (x},¥7) Hht »ll] and E[Hqu (xV, vy, 2z H are made to be non-positive within

the ranges of v, Bt and Y-

Step 5) Proof of Theorem[5.3} Choose a constant step-size o, = «.. Under the same conditions as
described in Theorem[5.3] telescoping the result in Lemma[C.4]from 0 to 7" — 1 yields:

1 &« 2 (Wo — %)
0 —
TN Z {HV[] = aNT +2 (Uj%chz + UJQ‘nyy + 031, <Cg1 + Cy, NQ)
t=0 n=0
+0§yycgyy gzycgl“y) ’

where Wy = £ (x§) + K, |ly§ — y* (20) ||2 + K. ||z0 — z* (x0,y9) H2 The proof ofTheorem
is completed.

C.2 DETAILED PROOF
C.2.1 DESCENT IN THE UPPER-LEVEL OBJECTIVE FUNCTION

Lemma C.5. Under Assumptions[3.1H3.4} the following inequality holds for successive iterations of
Algorithm|I}
]

E 6 (™) =)
a ny(2 ar _ ofLy 2 272 3 ~
<-SE[IVeEIP] - (G - S0) E|[0la] | +823220in Y E||
=0

+ 200 L3E [y = y*)] + (402, a0+ 4L30) B [l - 20| + 203,

f
hi ;

N-1 B2
+16L3L23?Ney Y E U|Vyg (%t yt) HQ} +16LLIGIN oy oy + 4oy | HQJ
1=0 g

forallt € {0,1,...,T —1} andn € {0,1,..., N — 1}, where the expectation is taken over the
stochasticity of the algorithm.

20

Under review as a conference paper at ICLR 2025

Proof. We have
E [0 (x}*) — ¢ (x})]

B (V) i =) + 5 it = x|
[af<w<xt>hzn> -]

+ ‘w (xP) — hf

2

@n«:{ g (x| ’htn ! +%Hh£n

2
} , o (8)
where (a) uses the Lipschitz continuous gradients of £ (see Lemma @ (b) follows from the update

rule ofAlgorithm (c) is because of (z,y) = 1 lz)|* + 1 lyl|* — 1z — yll.

Next, we bound the third term on the right in (8)) above. Before that, we bound th —X; || and
lyi =2
h;

f
||xt —xt h’tz

; ©))

() n—1
< afnz ’ < aZN Z ’
=0
where (a) is because of the update rule of Algorithm (b)isdueto ||z 4 - - + 2| < k|lz1|* +
Sl

Similarly,

HYt _YtH <5tNZ ||h (10)

Considering E [HVE (x})

2
in],wehave

2 2
B [|[vee) - 1L~ B[|vees - vrovroa + vr ot -]
(@) f n .n 2 n .n ny |2
<E|2 ht,n =V yszd)|| 20V iz — VO ||

(®) 2
<E [2 1l = V£ G vz + 223 (lye =y (o) + 2t = 2 <x?,y?>>2}
2
<E [2 | = V1 yia| + 483 Iye -y)P + 423 |12, - 2° <x?,yf>||2]

<E|2

2
no,n n * 1 omy |2 %12
B = VI oy z)|| AL Iye =y I + 8L |20 — 2]

4813 [l (0.59) — 2 (v

[n n ny |12 w112
<E(2|nf, - V1 oyiz)| + AL e -yt 6P 8L e - |

+8L3L2 (%0 — 7| + 19 - v2[)]

2
n * ny |12 w112
+4L3¢' lyy—y* () +8L3: ||z —zf || +16L3«L3 th —X; ||

<B |2t -7 (720

+16L3L2 [lyi — v]

() 2 * 2 * (12
< E[2 [d = Vf Gyt m)|| 413 ly? = y* I + 8L e — 25 |

21

Under review as a conference paper at ICLR 2025

N—-1
FI6L3L22N S Hh{;i
=0
)
<E 2’

N-1 N-1
+16L3L%a3N Y Hh{i g B2L2L26N S ||hY, — Vg (i yi) |

=0 1=0

2 N—-1)
P26 S g]
=0

. 2
2 2
W = V)| +4L7 Iyi =y ()N +8LF |lze — 2|

N-1
i oi)||2
+32L?‘Lgﬂt2N Z ||Vy9 (met)H
=0
(g) f n n 2 2 n * ny |2 2 (12
< E 20k, = V(v z)|| 4Ly Iye =y (x0)I7 +8L% [z — = ||
N-1 2 N-1] .
+16L3L2a7N Y ‘h{ +32L5L2BIN > ||Vyg (x5, yi)||7| +32L3L28iN?02 (1)
=0 =0

where z;, = z (x0,y?) and z; = z* (x0,y?). (a), (¢) and (f) follow from ||z + y|* < 2||z|* +
2ly||* and ||V,2(yg (x,y)| < By,, - (b) utilizes the Lipschitzness of V f (x,y, z) (see Lemma,

and (d) is due to the Lipschitzness of z*(x,y) (see Lemma . (e) uses equations @[) and . (g)
is because of the bounded variance in Assumption [3.4]
]

Then, we bound the term E U h{n —Vf(xy,y7,2t)

dl]

(a) n .n ;p n o.n zy n o.n n .n
=E |:Hva (Xt » Yt 7D{,n) + V?(yg (Xt » Yt 7Df,n) Zy — va (Xt » Yt) - v)2<yg (Xt y Yt)Zt

hi, = VYD z)

|

2
‘ +lzel? || V2,9 (xPyi, D)~ Vi (X?J?)HQ]

<28 [Vt (xt 92 DL) ~f (1, 30)
(b)
<E[202 Izl +20% |

(2]}3 4 2 %12 4 2 * (12) 2
< E oy, llze — 27" + 4oy N1z + 207%,

Jay
(d) B3
<E [403 lze — 27| + 402, —2x 4203 | (12)
o 2 ,

where (a) uses the definitions of h{, nand Vf (x}, y?, 2z:). (b) utilizes the bounded variance in

Assumption (©) uses ||z +y||> < 2||z||* + 2 ||y||*, and (d) is due to the bound of z*(x,y) in
Lemma

Combining (8), (IT) and (12)) completes the proof of the lemma. O

C.2.2 DESCENT IN THE ERROR OF y* (x)

Lemma C.6. Under Assumptions the approximation error of y* (x) of Algorithm|l| satisfies
the following inequality:

B[y =y ()]

L 1
< (14) (1+co) (1 - wﬂ’gL) E|llye - y*)] + (1 + 1) (1 +) Biag,
]

hi,

2 1
Fara)) (8- 2 B[00 vt + (14 1) Lotz |

22

Under review as a conference paper at ICLR 2025

forallt € {0,1,...,T —1}andn € {0,1,..., N — 1} with some constants cy,cy > 0, where the
expectation is taken over the stochasticity of the algorithm.

Proof. We have
2 [l - ()]
(a) ntl |2 1 *(om % (gn+1y (|2
SE|(re) [y =y GO+ {1+ 2)y e —y" (|

(b) n g % /o ny |2 1 2 n+1 n||?
<E (1+01)HYt *ﬂtht,n*y (Xt)H + 1+a Ly”Xt *XtH

—

c

<(14ca)(1+e)E [Ily? — BtVyg (x¢',y1) —y" (X?)IIQ]

1 1 -
+(1+a) (1 + cz) B2 [[|nf,, — Ty (xiy|[] + (1 + 01> [2%E [Hh{n

N

]

(@) . 1
< (14er) (14e2) E[lyd — 890 (i v3) —v* ()] + (1+Cl) L307E [Hhin

]
1
+(14¢1) (1+) Bio? | (13)
C2 v
where (a) results from Young’s inequality. (b) is because of the update rule of Algorithm[I]and the

Lipschitzness of y* (-) (see Lemma . (c) follows from Young’s inequality and the update rule of
Algorithm[T] (d) uses the bounded variance in Assumption [3.4]

To bound the first term on the right, we have
n n n * ny |12
||Yt — BtVyyg (Xt ayt) -y (Xt)”
n * ny |2 n <n\|2 n .n n * n
= HYt -y (Xt)H "‘5:&2 ||vyg(xt7Yt)|| —2p4 <vy9 (Xt7Yt)7Yt -y (Xt)>

(a) Lo L 2 204 2
(- Iyt =y P + (58 = 2) 19 (el

g+ Ly

where (a) is due to 14-strongly convexity and L4-smoothness of the lower-level function g (x,y)
(see Assumption[3.2)), which implies

n n n * n MQLQ n * ny|12 1 n ny|12
v , Yy — > 4 - — |V , .
(Vyg (x(,y0) yi —y" (x1)) > lig + Ly vy —y" (=)™ + 1ty + Ly IVyg (xi' y)ll
The Lemma is proved by substituting (T4) in (T3). O

C.2.3 DESCENT IN THE ERROR OF z* (X,y)

Lemma C.7. Under Assumptions[3.1H3.4] the following inequality of the approximation error of
z* (x,y) holds for Algorithm|[I}

E [Jcss — 5t]

27t,ugl;q 9 9 1 9
< 1+c3)(1+ 1—-——=) +4o 1+ 14+ — IE{ -z }
> ((03)(C4) (. [q gyy Tt (03) o ||Zt ZtH

2 1
+(1+c3) (1+ca) (%2 - Mg_th() I MVZ‘I (Xiv’yyazt)HQ} +4 (1 + Cg) LﬁﬁfN%gy

1 N-1
+2(14 =) L2a2N EU
(15 v

B? 1)
4 2 fy 1 1 = 2 2 2 1 1 = 2
+ Ugyy /’[’3 (+ 03) (+ 84) Vi + O'fy (+ 03) —+ o Vs

hi,

N-1

2 1

[+a(142) 2atn X B [Ivs0 vl
n=0

23

Under review as a conference paper at ICLR 2025

forallt € {0,1,...,T -1} andn € {0,1,..
z, = z(x),y?) and z; =
algorithm.

., N — 1} with some constants c3,cy > 0, where
z* (xg , y?). The expectation is taken over the stochasticity of the

Proof. We have

E {Hztﬂ _Zt*ﬂ’ﬂ
(@ T . 1
e[+l 517+ (14 2) o

® T
<E

(eyt) -2 ()]
1
(1+c3) |ze1 — 27> + (1 + C) L2 ([fxia = x| + [y = Y?||)1
© T
<E (1+03)||zt+1z’{|2+2<1+)LQHXt —xI|” +2(1+ >L2||yt ytH
2a E *2211L22N7Ehf2
< Wt eE [z -zl +2 (14 2) oV 30 E |41,
1 = 2
L) 2, g
2 <1+ C3> LzﬂtN;]E 17207
)
< (@ e [l — 1] 44 1+)L%NZ (1959 6,321
+4< >L2/8tNZ [tn_ yg(X?,y?)HQ}—&—Q(l-F)Li ENZ {Hh{,
B E A2 w2 (1+ L) 22 2‘NN_llE wl |
< 1+ B [la -] +2 (14 1) 22 >)]
1
co(ie D) nw X e ot +o (14 1) st as)

where (a) follows from Young’s inequality. (b) is due to the Lipschitzness of z* (-, -) (see Lemman

(c) and (e) result from ||z + y||* < 2 ||z||* + 2|jy||>. (d) is because of equations @) and . (f) uses
the bounded variance in Assumption

I

Next, we bound the first term on the right:
Elzes1 - 2;1°) @ E [l — whf - 2]

b)
g [(1 T ea) ||z — Vg (<, v, 20) —

12 4 (1+Cl4> || Vaa (< v 24) —h?HQ]

=E |1+ 1) (lz = 207 + 22 [[Vaa (< 3 20) | = 290 (T (5,37 2) 20 = 27)) |
(1) B [[[Vaq (< v) — 1]

<

L 1
< (1+e) <1 - 2%M) E |z — 2] + (1 + C4> WRE || Vag (< v 20) - h|°]

2
(Lt e) (%2 o th) E[|[Vaq (<52 20)[]. (16)

where (a) results from the update rule of Algorithm[I] and (b) uses Young’s inequality. (c) follows
from fu,-strongly convexity and L,-smoothness of ¢ (x,y, z), which implies

+

—
N

L 1
<qu (Xi\f?yivuzt) y 4t _Z:> 2 ﬁ ||Zt - Z>tk||2 + Iig +Lq Hvzq (xiv7yév7zt)H2 :

24

Under review as a conference paper at ICLR 2025

Then, we bound the second term on the right as follows:

B [[|Vaq (¥, v) =]

9| [V2y0 (v 2+ Vot (v = (Vi G v D2%) 4 Wy (550)]
<o [llztn V200 (< 9) = Viagg (< v D) P+ |V £ (68 3 =T f (30 91s Df)M
(?E[M |z —z*+z*\|2+202]

= gyy 1198 L2 T8¢ Iy

(d)
< E 402, 2 — 7| + 402, 271 + 203,

9yy

(e) B2

< 402 E ||z — ;|| + 402, =2
Yy vy /"Lg

9 a7y

where (a) follows from the definitions of ¢ and V¢ (x,y, z). (b) and (d) are because of ||z + y||*

2|z]|* 4 2 ||y]|*. (c) results from the bounded variances in Assumption (e) utilizes the bound of
z*(x,y) in Lemma[5.2}

Substituting (T7) in (T6) and then substituting the result in (T3), the lemma is proved. O
C.2.4 DESCENT IN THE POTENTIAL FUNCTION
We define the potential function W as follows:
* 2 * 2
Wi = £(x)) + Ky [[y? =y (@) [|” + K[|z (<, v) =27 (0 v7) |

_ Bt L BtL/,Lg _ 'YtL/,Lq _ ’YtL,uq
Lemma C.8. Setc; = oTeE ﬁt L Cy = T 28,1, €3 = 3=, L) and ¢y = T 27 Ly Under
the same conditions as described in Theoremand using Lemmas the iterates generated

by Algarithmsatisﬁes: forallt € {0,1,...,T — 1},

(6]
E[Wi — W] < — 5" > E [Hw (xg)“?} +o7 aCq, N +07 0,Cr, N +02 oyCy N

n=0
1
+ O-JQCyathyN + O'Sy(lt (CQIN + ng N))

where the constant values ngy, Cy,, Cy,, Cy,, ngy and ny, which are independent of N, are
defined as:

4B? 2c5K, SL2ANK
ngy = ny, sz =2, Cg1 = Gy + =0 Z,
Mg Ly, CyLp, (18)
_ L%c% _ SBJ%ychz _ 4e, K,
2 " 16L3L2’ 9w = 2L, N T LN

where K, and K, are defined in (@) of Theorem

Proof. From Lemma|[C.I} we have

N—-1
STE[CT — 0] =E[0(x0,) — £ (x?)]
n=0
o N-—1 5 ay OL2L[N-L
<=5 Y E[Iweer] + (-2 + 28 4 sugnzan?) ;)E[Hhm |+ 203 o

—1
+ (402, Ny +AL3Nay) E [z — 2| +16L3L252N 0 Z (1959 (<1 v]

n=0

25

Under review as a conference paper at ICLR 2025

32
n Ty -1 fy 3
+ 20,12 § E [lyi -y ()IP| + 452, 1D 5 Naw + 1613 L2 6PN .
g

Choosing o s and using the definition of 8; = cgay, we get

L;
< 16L2L2N

El(x,) —¢(x))] < —= Z E [|w X7 ||2] (4a§myNat +4L§.Nat) E {Hzt _ Z;Hz}
N—-1 9 -

+ (** + Olt) E U :| + 204th« Z E {Hy? — y* (X?)HQ} + QO'J%mNat
n=0 n=0
N-1 L2 123 szc

+16L7LIc5N Z [Ilvyg (vl } m oo +40, N (19)

g

With the result from Lemma[C.2] we have

N-1

SOE [yt -yt ()P lyi vt P =E [yfa -yt ()= v -yt ()]

n=0

< (reyare (1-2m-Late) 1) NZ E[lyi v 6]

N-1
1 2 1 B
+ <1+C1> L2} E [Hh{n } +(1+e1) (1+62> 5252 (Do~ N
n=0
N-1

2
Fe) (e (- 2) S8 (19,0 0yl

Denote L, = tsls Choose ¢1 and ¢ such that

pg+Lg
L
(I+c)(Q+e) (1—2BLy,) =1- @27“9
Let 8 L
t 1
(+62)(Bt ;g) BtLy, Ca = 1—25tL Bt_QL
Thus,
ﬂtLHy
= —F——--2——.
2(1=BiLy,)
Moreover, this implies that
1 1—-25,L 1 1 2(1— 3L 2
TRE R P k. L LT Coap Lo 20k :
C2 5tL[Lg BtL/Lg C1 /BtL/I.g BtL;Lg
Use the definition of 8; = cga;. Substituting ¢; and ¢z and choosing f; < ﬁ, we have
)) csl N-1
* * g * 2
E {[ly?n v () [* = Iv? =" D7) < =520 YO B Iyt - v ()]
n=0

2L Ozt N

1
E Hh
CBL/L nzzo [

2 cgo
} _opar_ ZE[nvyg Y] + csondd, N (0)

I"g

26

Under review as a conference paper at ICLR 2025

According to Lemma[C.3] we have

E|[l201 = 2t |” - 12 - 2517

—E [z (<011 500) = 2* (<08 [= 12 (. v9) — 2 (0. 97)|]
2 L 1

<(are e (s M”L) 402,98 (1t ea) (14) = 1) B [l = 2]

2 1

ke (8 = 2 B (|9 oy)] + 4 (14 1) 22080

thg + Lq
1 N-1 9
2 (14 2) 2w Som ||l] +a 1+)LQ@NZ (199 Gy
n=0

2
1
+20%, (1+4c3) <1 + c4> Vi + 4ol

B 1
Iy 2
1+ 1+ — .
v 527(C3)< C4>'Yt

Similar as ¢; and cg, we choose

_ ,ytLHq _ ’Ytqu
3= o7~ 7 C4= T 7
20— Lpy) [
where v; < T and we denote L, = u g L . This implies that
1 1 1 2
1+ —< 1+ —< .
Cyq ’ytLuq C3 ’ytL;Lq

According to the definitions of 3; = cga; and v, = c,ay, substituting c3 and c4 and choosing
1
Yt S Hg+Lg’ we get

E {Hz (X?+17yg+1) —z" (X?+17y?+1)||2 - ||Z (X?,y?) —z" (X?,y?)lﬂ

c L 8 CH O 2
< <_72“qat + %Ug?”’c’yat) E [Hzt —zf||] ﬁE [Hvzq (xiv,yiv,zt)H]

4L20,N = 2] 8L2c2a,N V2 .
PR S, E th TR E[\V4 n’ n :| L2 2 N2 9
s e DRl | A e e SR (N A e o = R
: 5, »
G T T A0, T e o
Adding equations (I9), (20) and 21)), we get

E Wiy — Wi

<—fZE[|vz xt)|*] + ¢, ZE[ny y* (<0IP] + CE [l — 7]

0, Y B[1950 (v + Z E|
n=0

2 _
. } 4O [V (v)]

L2C% 9) ny
TOTATIN oot + ok e+ 20] N + Ky 2o, N
B? 4 8
fy 2 Cy 9 9 9 o
" KZ (MgL“q gw G - LM Uf ot C'yLHq LZCﬁatN ng ’

where

_ cgL
Oy =20, L% - Ty K,

27

Under review as a conference paper at ICLR 2025

cyL
C. =405 N+4LiNa; — 72’““1 oK. +

8
2
7 T ey K,
n

q

~ 272 272 3 Cp 8 2 2
Cy =16L3 L caN oy — g+ L, + oL LicgaNK,

2 4
Ch=0ofL— — + ——L2uK, + —— L2, NK.
2 cply, Cy g
= C~ Ot
Ci=—""-K.<0.
! tg + Lyg

4L
To ensure C’ < 0, we choose K, > L
rg

To ensure C, < 0, we have

cyL
C. =4a;0; N +4L}Noy — ”2“‘1 oK, +

8
2
i UgyyCyOéth
N

q

cy L 8
= darog, N +4LiNay — = “ton K + Z 2 D9 | ey K,
(a) ¢, L ¢y L cy L cy L
S 'YGHq tK 4 ’Y6#q tK _ 'Y2P*q tK 4 Y Hq

a K, =0,

. 2402 N 24L2N 485 5
where (a) utilizes K, > max ey £ and |D9vv| > —% which is the data batch.
eyLig 7 eyliyg

To ensure C’g < 0, we have

Cy = 16L3L2AN) — —P_[¢, 4

L’ NK

g+ Ly ¥ cyLy, 20p i e
(“) 1 cpoy cpoy 1 cpoy —0
2l‘g+L po+Lg Y 2pg+ Ly YT

16 Ly)L2csNK,
where (a) results from o, < \/ 5 and ¢y, > (ng+Lg)LicsNK:

K,
32(pg+ Ly)L?Lﬁc[;N KyLu,

To ensure C}, < 0, we have

4
Oy — a2, - & LPoyK,+ ——L*a;NK,
h QL 2 + ﬂL'ug yat Yy + C’pr,q 20
@ o o o oo
< = - —+—==0
=% 5 + 6 + 6)
where (a) is due to a; < G%Z, cg > 712531@ and ¢y > %LE#

Hq

As a summary, to ensure the descent of the potential function, we choose

RN O 1 1 1 1 Ly

« min ¢ —, ,))))

b= 6L;" cp (g + Ly) ¢ (tg + Lg) 2L, c5 2L, ¢, 16L2L2 N2
B8 \Mg g v \Hg q Mg OB pq &y Flz

Ky
32 (pg + Lyg) L?LENQC[? 7

Cﬂ = %, C’)’ = Imax 24L§NKZ7 192 (Iug * Lg) LgNKZLZ ’ y = i)
Ly, L, Ly, Ly, V3L,

240; N 24L5N 4857
K, = max = R
cyLy, cyLy, L

Hq

28

Under review as a conference paper at ICLR 2025

Then, we get

e 1l 5
E[Wi1 — W] < -5 Z [||Vl x|l } 16L2L2N03 oy +4a§wy ,u; Noy + QJ?mNozt
n=0 g

2 8B} 4 8
+ K, Lcﬁ ataguN + K, (Lfy agwc,yat + Lﬁafcuat + 7 LgcﬁatN20§y .
Iy pg Ly, " Bq Cylipg '

Therefore, the lemma is proved. O

C.2.5 PROOF OF THEOREM [3.3]

Theorem C.9 (Non-Convex ¢(x)). Under Assumptions choose step-sizes oy = a, By = ca,
and v, 2 cyaforallt€{0,1,..., T} with

7 QULANK, 192 (uy+ Ly) [ANK.L? ”
B = 7 ’ v =max T ’ . L y (22)
Hg Hq Hg~Hq
where
2 2

Ko i e U5, N UGN gLy by

Yy \/’ z = max L ’ L ’ g T +L,’ Hq = + L.

L, Cylopg — Cylipg g T Fog g T Hq

Moreover, choose o such that

1 1 1 1 1 L
6L1" c5 (pg + Ly) ey (g + Lg) 2Ly c5° 2L,,,¢," 16LFLEN?’

Ky
32 (g + Ly) L2LEN?c; [

Then, the iterates generated by LazyBLO satisfy:

TE:INE:IE[HVE (x|] (

t=0 n=0

where Ao = (£(x0) — £*) + [ly§ — y*(x0) 1> + l|zo — 2* (x5, ¥0) I

a <min{—

2 2 2 2
>+O(Jg +U +0fz+ogyy+afy)’

Gy

Proof. Choose « as a constant stepsize oy = . Summing the result in Lemma[C.4]from ¢ = 0 to
T — 1, and then dividing by N'T" on both sides, we get

]E[W W T—-1N-1 o
T — Wo , , ,
NT = 2TN Z Z [va x|l] + N (UfmcfoJrafnyyNJragw Cy,, N

Gzy

+og, (CglN+ CQZN> +a, C N)

Rearranging the terms and multiplying by 2/« on both sides, we have

T—-1N-1

e S SB[V)]
t=0 n=0
2K [Wy — ¢¥] 9 9))
< T AUNT +2 <Ufwcfm +Ofycfy + Ty, Cq, +Co,— N2 + T g0 quy yCme
2 (Wy — £%)

W + 2 (O-;chz +U?ycfy +0—3y (Cgl + 092 N2> +J§yy Gyy + U;chgzy> ’
where Wo = £ (x) + K, [|y§ — y* («3) || + K- |20 — 2* (x3,¥6) "

29

Under review as a conference paper at ICLR 2025

Therefore,
| ToIN-1
2 D E|IVee)I]
t=0 n=0

o (W) Lo <Hy8 —Ny;c(yx8>|>2> Lo (HZO - z;(;aB,yB)HQ)

2 2 2 2 2
+O (ngy +oj, +o,, +o5 + agy> .

The proof of the theorem is completed.

D PROOF OF THEOREM 5.6} STRONGLY-CONVEX / (x)

D.1 DESCENT IN THE UPPER-LEVEL OBJECTIVE FUNCTION

Lemma D.1. Under Assumptions For strongly-convex and smooth { (x), the following
inequality holds for successive iterations of Algorithm/[I}
2 Nl 2
] +8L2L2adN Y E [Hh{n }
n=0

E[l(x;™) - 0]
" o a?L
< (- a0 Bl - 01— (5 - 20 Yol
+ 20 L3E [y = y* ()] + (402, a0+ 48300) E [z — ;|| +16L3L262N%02 o

2 2

N—-1 B2
+ 16L?L§ﬂt2Nat Z E [||Vyg (x?,yf)”ﬂ + 20;104 + 40311[HJ;” oy,
n=0 g

forallt € {0,1,...,T —1} andn € {0,1,..., N — 1}, where the expectation is taken over the
stochasticity of the algorithm.

Proof. From Lemmal|C.1] we have
E[¢(x}) —¢(x})]

< - 2g [jve)] - (% - L) o,

2 N—-1
} +8L2L2aiN Y E D’h{n
n=0

200 L3E [y —y* 0)I°] + (407, 00 + 4L30) B [llze — 2] + 20, 0

|

N—-1 B2
+16L3L253Nay Y B [[Vyg (<7, yi)I°] + 1613 L2682 N%02 ay + 402 | M{} a. (24)
n=0 g

For a strongly convex function ¢ (x), we have the fact that for all x € R",

IVEx)|” > 2up (6(x) — £7). (25)

Substitute (23) in (24) and subtract £* from both sides. After rearranging the terms, the lemma is
proved. O

D.2 DESCENT IN THE ERROR OF y* (x)

Lemma D.2. Under Assumptions the approximation error of y* (x) of Algorithm|l|satisfies
the following inequality:

E [y -y ()]

30

Under review as a conference paper at ICLR 2025

S (L 4cr) (1= 2Bip) E {IIY? =y ()IP| +267 (1 +) B || Vyg (<7 y7)II”

+(1+)L2 2EU

SJorallt € {0,1,..., T —1}andn € {0,1,..., N — 1} with a constant ¢c; > 0, where the expecta-
tion is taken over the stochasticity of the algorithm.

2
in } +2(1+c1)Bio;

Proof.

E [yt -y (g)]

(1
%E{(+op) [yt -y (x?)]|2+<1+61)|

y* () =yt (xp) Hﬂ

©]
<E[<1+cl>||y:l—@hf,n—y*(xnn (1+)Lzuxnﬂ x:bnﬂ

c * n 1 ?
(—’E[(lm)llyrﬂthzny <xt>||2+(1+c>L2a2 ton } (26)

where (a) results from Young’s inequality. (b) is because of the update rule of Algorithm [I]and the
Lipschitzness of y* (+) (see Lemman (c) follows from the update rule of Algorlthml

Next, we bound the first term of the above inequality.
E[llyi = Bt~y @0)]’]

—E[lly? —y* GIP] + BEE [[[1,]°] - 28 [(d v = y* (x0))]

<E|lly? -y)IP] +262E [[|nf,, — Ty <2, y)|| + 2828 |19y (2 v
—28,E [(h{,, y7 — " (x}))]

(a)

< E[lyr -y)| +267E (|1, — Vg (' y0) |*] + 2678 [I1Vyg (e v]
- 2BtE [<vyg (Xlla Y?) aY? - y>k (X?)H

(b)
< (1-28u10) E [Ily7 =y ()| +267E [[|f,,— Vg (<, v ||*] +267E [y (2, 7)1

c

< (1=280) E [lyy' = y* (x| + 262 [0y (x1', i)l] + 26302, @7)

—
N

A

where (a) uses the fact that E [h{, |F'] = Vyg(x},y}"), and F* £ o {y0.x],--- ,y/" x}'}
is defined as the sigma algebra generated by the iteration sequence of Algorithm [I] (b) utilizes
the fact that for pg-strongly convex g (x,y), we have (Vyg (x,¥1) — Vyg (X,¥2),¥1 — y2) >

Lo lly1 —y2 I%. (c) is because of the bounded variance in Assumption

Substituting (27) in (26) yields the lemma. O

D.3 DESCENT IN THE ERROR OF z* (X,y)

Lemma D.3. Under Assumptions[3.1H3.4] the following inequality of the approximation error of
z* (x,y) holds for Algorithm|[I}

B [l sl

< (1+c¢3) (1 — 2V p1g + 8‘73“,%2) E [Hzt —zf|| } <2 + > L*aiN Z {Hht n

]
+ 297 (1+ ea) B [|| Vg (91, 2)] +4<)LQBtNZ (190 (v 2]

31

Under review as a conference paper at ICLR 2025

2

1 B3
+4 <1+03> LQﬁtNQUg —|—40f (14 c3)? —|—8ogyy M?, Y (14 c3) 77,

forallt € {0,1,...,T — 1} andn € {0,1,..., N — 1} with some constants c3,cy > 0, where the
expectation is taken over the stochasticity of the algorithm.

Proof. With the results from the proof of Lemma|[C.7] we have
) 1 N-1 5
E 201 - 2]|”] < (1+ e) E |21 — 25| +2 (1 -) L20{N) E [Hh{,n }
3
n=0

N-1
+4()LQ/th Y E [||Vyg(xt7yt)|| }+4 <1+)LQBtN203y7

n=0

(28)

Then, we consider the first term on the right:

a) * 2 *
E|lzeer - 217] @ E [ll2e - 2 17] ++2E [InfI°] - 20E [f, 2 - 2)]

<E [l — 27 1] + 2078 [0 = Vg (<, 71, 2)] + 2028 [Vo (<, 57 20)]
— 24E[(h{, 2. — 2)]

(b)

< E [la— 2 °] + 202E |0 - Vaa (<, 5, 2) |*] + 202E [Vaq (< 5 2) |
—2nE [(qu (Xt » Yt ,Zt) y 4t — 2y >]

(c)
< (1-271) E |2 = 2 *] +297E [[|nf = Vg (xY, ¥, 20)] +292E [||Va (Y v 20)]
(29

where (a) is due to the update rule of Algorithm [1} (b) follows from the fact that E [h]|F;] =
Vz2q (x{v N ,zt), and (c) utilizes the fact that for p,-strongly convex ¢ (x,y,z), we have

<qu (an7Z1) - qu (Xay7z2) y 41 — Z2> Z Mg HZ1 - Z2||2'
Next, we consider the second term E [th — Vg (x{v Ly, zt) HQ] of the above inequality:
2
E [th ~Vaa (' ¥)]
2
U || Va5 et T ()~ (Vi (e oys D) 2 f (vl)]

<2E |:||Zt Hvyyg (Xt 'Yt) viyg (Xi\f’yt 7Dgw H +Hvyf Xt ' Yt)_Vyf (Xt 'Yt ’ny)H :|

() P * * (2 2
<E _ZUny llze — z; + z; || } + 207,

2 2
<E [40§yy |z — 25|12 + 402, |z |] +20%

Gy gyy

(c) B2
< 402 E [||zt el } + 402 J; +20% (30)
g

where (a) results from the definitions of A{ and V,q (xiv , y,fv , zt). (b) uses the bounded variance in
Assumption (c) is because of the bound of z*(x,y) in Lemma

Substituting (30) into (29) and then substituting the obtained inequality into (28) proves the lemma.
O

32

<E

B2
+16L} L3¢50

Under review as a conference paper at ICLR 2025

D.4 DESCENT IN THE POTENTIAL FUNCTION

We define a different potential function W, as follows

N-1 N-1
hy n * ny|2 %2
Wo=> () =)+ Y lIyr =y DI + 2 — =]
n=0 n=0

Lemma D.4. Choose c; = m, and c3 = % Under the same conditions as described
in Theorem[D.3and utilizing Lemmas BJD.1} B

the iterates generated by Algorithm||satisfies:

. B2
E |:Wt+1:| <(1—proy)E [Wf] + 16L2L20[304t]\7‘3 2 + 40 - 7 N —|—46%a§yNozt2
g
B} 8
+ 80'f c 2+ 160 uf; A,QY 2 2¢2 N202 Ot
g

forallt € {0,1,...,T —1}.

Proof. With the results from Lemma|D.1] we have

n * Q?Ll Oy 272 3772 = f
(L(xp)—0%)+ 5 —?JrSLszatN h

n=0
N—-1
+ (402 o + L3N) ||z — 2| + 16L3L2B2aN? 3 |[Vyg (i, 1)
n=0
B2
+2L5ay Z Iy =y <)° | + 16L3 L2 B2 w N302 + 207 ouN + 4o, u];y N
g

e a?L; « i 2
(1— pgar) Z) —) (S 8L N2) > ||t
n=0 n=0

N-1
+ (403@0{#\7 + 4L?atN) |lz: — Z:||2 + (2L?at + 16L?L§ﬁfatN2L§) Z vy —y* (X?)2‘|
n=0
BZ
+16L5L2 37y NP0, + 40 N +20% N
g

2

N-1 2L a N-1
() 32 €0y~ + (P57 = G srirtain?) 32 [,
n=0

+ (2L o + 16L2L20ﬁafN2L2 Z ly? —y* (x1)]] 1

n (4a§zyatN + 4L§atN) |7 — 22|

tN?’a; + 402

N +20% N, (31)

where (a) uses the fact that Vg (x,y* (x)) = 0 and utilizes the the Lipschitzness of Vy g (x,y) (see
Assumption [3.2). (b) follows from the definition of 3; = égay

From Lemma[D.2] we have

Z [lyett =y ()P

33

Under review as a conference paper at ICLR 2025

(a) N-1 1 N-1 2
LB | (1= 280+ 28703) X I -y I+ (142 et X ol
n=0 n=0

+2(1+e1)Bio; N,

where (a) is because of the fact that Vy g (x,y* (x)) = 0 and follows from the the Lipschitzness of
Vyg (x,y) (see Assumption .

From the choice of ¢; =

B 1 2 ; He i
72(1—6:%)’ we have 1 + o < B Choosing 3; < 2ng and using the
definition of 5; = ¢z, we get

[||y"+1 (et }
(“gcﬁ“t>2nyt)P

Following from Lemma|[D.3] we have

=

0

3
Il

IN

E

atz\

+ 4@§a§y1va§. (32)

t.n

E {Hztﬂ - Zt*+1H2}

@ 272 (|2 LY 2 o - s
< (1+4c3) (1 2’ytug+8agw’yt+2’ytLq>]E{Hztfzt” }+2 1+a LzatNZ]E ‘htn
n=0
LY 7200 - ny (2 LY 720002 2 2
F4 (1) BROINES YR [y -yt (I] 44 (14) I26IN07, 0], (14es) 57
n=0
7
+8U§yy 2y (1+C3) ’YtQa
g

where (a) utilizes fact that Vyg (x,y* (x)) =0and V,q (x,y,z*) = 0. In addition, it uses the the
Lipschitzness of Vg (x,y) in Assumptlonnand V.q (X,y,z) proved as follows.

IVaq (x,y,zl)—qu(X,y,zQ @ || V2, 9(x, y)71 4+ Vy £(%,5) ~ V2, g(x, ¥)22— Vy f(x,)
= ||V, 9(x,y)| 21 — 22| S By,, ||lz1 — 22| © Ly ||lz1 — 22|,

where (a) follows from the definition of V,q (x,y,z). (b) assumes Hv‘iyg(a:, Y) H < By,,»and (c)
defines L, = B

Jyy *
Wy

> 1662
lﬁggy1

From the choice of c3 = we get 1 + == < —=—. Selecting v, < 3 L2 7t < and

Ythg
2(1—tpg)’ c3 = fig ’y
using the definition of 3; = ¢goy, v = ¢y, we have

E |:Hzt+1 _ Z:+1||2i| S E [(;UfgC'yOlt> ||

N—-1 B
. . 8 R
2ENL2ay S [lyp—y* (x)[°| +1602];yczaf+80f 202+ —— L2 N%02 oy
/~‘g n=0 /’Lg ,U/gCA/

(33)

Combining equations (31)), (32) and (33)), we get

R R R N-—1 2 R N-—-1
E W] < (1= pra) B[W] + CE | 3 o | + CE |3 yi -y <x;’>|2]
n=0 n=0
C.E : 1612230} N0 ny N +202 ;N + 46262 N
+ C.E |||z — 2t |)*| + segay Nooy +4 o arN + O'f arN + cﬂa o?
9

34

Under review as a conference paper at ICLR 2025

Bj 8
+ 16022 Ty 02at2 + 80f Zal + ——1I2 A2N202 Ot
Yo ,ug

2
9
where
e ale A 27203N2 4 2 2
Ch = +8LyLiayN*+ ——Lyay + —— L ou N,
2 2 HgCp HgCy
A C 8
Cy = 2020, + 1612123 N1 + pay — 2080 = 122N 120y,
2 fhgCry
C’z = 4a§wyat]\f + 4L?atN + ppoy — @.
To ensure éh < 0, we have
. 2r, 4
Ch = & at + 8L2L20[?N2 + = L2th + ngatN
2 2 I N HgCy
(a) Qi (673 (673 (673 (673
—— =4+ =4+ —=4+—=—=0
- 8 2 8 + 8 + 8 ’
. 1 1 . 16L2 R 3212
where (a) follows from o; < min {TL“ m}, ég > - and ¢, > o
To ensure C’y < 0, we have
¢ 8
Gy = 203, + 16L2 L2203 N2 L2 + pyoy — 2082 2 1222 N12q,
2 fgCry
27242 3n7272 ﬂgéﬂat 8 o, 2
(2Lf+uf) at +16L3 L cﬁafN Ly - MgCWL ¢gN Loy

@ polpar | pelpaus Mgéﬁat HgCpau
R 6

. 1212 +6uf R u?
where (a) is because of « f ,and ¢y > e
@) t 96L2L2L2N2 Y = 48LILINés

A . . 802 N+SLAN+2uy
To ensure C'; < 0, we utilize that ¢, > —*— ! .
g

207

As a summary, to ensure the descent of the potential function, we select

ap < min L L Hg Hg 2]] 2
- 4L;" 8LyL,N’ 96L2L2L2N205 2L205 3ugls’ 160 cv’4LgéW’3ugéw

o {16L2 12L2+6uf} {32L§ 2 sang+8L§N+2W}
Cp = max .

ty fg 48L§L§N‘5B7 Hg

Then, we get

2

p) N + 2aj2czatN

E {WH} < (1-pray)E [Wt] +16L3 L2503 N30% + 402,

2
g QCV

B} 8
+46%0% No? + 1602, uf v 207 + 802 ¢2a? + o L2&ZN?02 oy,
Therefore, the lemma is proved. O

D.5 PROOF OF THEOREM[3.6|

Theorem D.5 (Strongly Convex ¢ (x)). Suppose the upper-level function € (X) is (i p-strongly-convex.
Under Assumptions choose the step-sizes oy = «a, B = éga and v = e a for all

35

Under review as a conference paper at ICLR 2025

te{0,1,...,T — 1}, where

fn = max 16L2 6<2L2+uf) & — max 3212 I 8U§IyN+8L§N+2’uf
B Hg ’ Hg y Cy g ’48L§L3Néﬁ g

(34)

Moreover, choose o such that

a < min L 1 Hg Hg 2 Hg Mg 2
- 4L;" 8LyL,N’ 96L?CL§L§N2657 2L%¢5" 3pgcs’ 1603@131677 4126, Bugey |

Then, the iterates generated by LazyBLO satisfy:

. 1 B2 8
Y E [e (x1) — z*} <(1—ppa) Ag+ — (40395 N 1202 N+ —— L23N?0?)
ne0 27 Y g HgCy ¢

B3 160
+ (602 a2 1802 &2 4 4i30? N) L2L2A5N3
33 g ! Ky

forany t > 1, where Ay = Zg:_ol (L(xg)—£5)+ Z

2 2
o Iy8 =y Ge)I” + llzo — z51*

Proof. Selecting a constant step-size oy = a forallt € {0,1,--- ,7 — 1} and from Lemma|D.4] we
have

2
E {VAVt_H} <(1—-pra)E {Wt} + 16L2L205a3]\730§y + 402

g

B3
+ 1602 —Tra2a?
vy ug

Zé% N 20374 a.
Applying the above inequality recursively yields

t—1
B[] < (1 -) B [Wo] + 30 (1 = we) (+16L5L250° No], + 207, o + 4é5o], N
k=0

"2 2 BJ%y 2 2 8 o902 2 2 BJ%y
—|—8crf e’ +160 e 3 Gy + - LZCBN o a—|—40g
W JhgCry v Y
g g

(a) . 1 B2
< (1—-ppa)'E [Wo] +— <16L2L265a2N303y + 402) f;’ N +207 N + 4éBU§yNoz
Ky 7 ’

B2
+160§”];“ A%a + 80f c a+ 8A Lié%NQO'; ,
JYy l’l’ Mgc’y Yy

where (a) follows from the summation of a geometric progression

Utilizing the definition of the potential function Wt and Jenson’s inequality finishes the proof of the
theorem.

O

36

	Introduction
	Related Work
	Preliminaries
	The LazyBLO Algorithm
	Theoretical Performance Analysis
	Supporting Lemmas
	Main Results

	Numerical Results
	Conclusion
	Additional related work
	Additional experimental details and results
	Specifications of the baseline algorithms in Section 6
	Experimental details for data hyper-cleaning
	Experimental details for deep hyper-representation
	Additional experiment results
	Data hyper-cleaning
	Deep hyper-representation

	Proof of Theorem 5.3: non-convex (x)
	Proof sketches
	Detailed proof
	Descent in the upper-level objective function
	Descent in the error of y*(x)
	Descent in the error of z*(x,y)
	Descent in the potential function
	Proof of Theorem 5.3

	Proof of Theorem 5.6: strongly-convex (x)
	Descent in the upper-level objective function
	Descent in the error of y*(x)
	Descent in the error of z*(x,y)
	Descent in the potential function
	Proof of Theorem 5.6

