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ABSTRACT

Bilevel optimization has recently gained popularity because of its applicability in
many machine learning applications. Hypergradient-based algorithms have been
widely used for solving bilevel optimization problems because of their strong theo-
retical and empirical performance in many applications. However, computing these
hypergradients requires the evaluation of Hessians (or Hessian-vector products) of
the lower-level objective, which presents a major computational bottleneck. To
address this challenge, in this paper, we propose LazyBLO (Lazy Hessian Evalu-
ation in Bilevel Optimization), an algorithmic framework that allows infrequent
Hessian computation during the execution of the algorithm for solving stochastic
bilevel problems. This allows the algorithm to execute faster compared to the state-
of-the-art (SOTA) algorithms that evaluate either a single or multiple Hessians in
each iteration. We theoretically establish the performance of vanilla SGD-based
LazyBLO and show that, despite the additional errors incurred by the infrequent
Hessian evaluations, LazyBLO surprisingly matches the computation complexity of
the existing SGD-based bilevel algorithms. Extensive experiments further demon-
strate that LazyBLO enjoys significant gains in numerical performance compared
to the SOTA approaches. To our knowledge, this is the first work to theoretically
establish that multiple Hessian computations are not necessary within each iteration
to guarantee the convergence of stochastic bilevel algorithms.

1 INTRODUCTION

Bilevel optimization refers to the class of problems with two levels of hierarchy, wherein the solution
of the upper-level problem depends on the minimizer of the lower-level problem. Formally, a bilevel
problem is stated as:

min
x∈Ru

{
ℓ(x) ≜ f (x,y∗(x)) ≜ Eξ∼πf

[f (x,y∗(x); ξ)]
}

s.t. y∗(x) = arg min
y∈Rl

{
g(x,y) ≜ Eζ∼πg

[g(x,y; ζ)]
}
, (1)

where f(x,y) : Ru × Rl → R and g(x,y) : Ru × Rl → R are upper (UL) and lower-level (LL)
objectives, respectively. Both the UL and LL objectives are assumed to be smooth while the LL
objective is strongly convex with respect to y. Moreover, ξ ∼ πf (resp. ζ ∼ πg) represents a sample
of the UL (resp. LL) objective from distribution πf (resp. πg).

Stochastic bilevel problems in (1) have recently gained prominence as many popular machine
learning problems can be modeled in this form. A few typical examples include hyperparameter
optimization (Franceschi et al., 2018; Shaban et al., 2019; Bao et al., 2021), meta-learning (Franceschi
et al., 2018; Rajeswaran et al., 2019; Ji et al., 2020), adversarial training (Li et al., 2019; Tian et al.,
2021; Zhang et al., 2022), reinforcement learning (Konda & Tsitsiklis, 1999; Hong et al., 2020), neural
architecture search (Liu et al., 2018; Hu et al., 2020; Lian et al., 2019), data hyper-cleaning (Franceschi
et al., 2018; Shaban et al., 2019), dictionary learning (Mairal et al., 2011; Lecouat et al., 2020a;b),
and more recently, the pretraining-finetuning pipeline (Li et al., 2024; Wu et al., 2024) and data
reweighting (Pan et al., 2024) in large language models (LLMs). Consequently, a major research
effort has been focused on developing efficient algorithms for solving stochastic bilevel optimization
problems.
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Among all existing methods for stochastic bilevel optimization (see Section 2 for detailed discussions),
a state-of-the-art (SOTA) approach is the approximate implicit differentiation (AID) method, which
relies on directly computing the approximate implicit gradient of the objective ℓ(·) using the implicit
function theorem (Ghadimi & Wang, 2018). Because of its ease of implementation, AID is usually
the algorithm of choice for many machine learning applications. A typical AID algorithm updates
the LL variable using standard stochastic gradient descent (SGD) while the UL variable is updated
in each iteration using: x+ = x − αhf , where the descent direction hf (also often referred to as
hypergradient) is an approximation of the implicit gradient, i.e.,

hf ≈ ∇ℓ(x) = ∇xf(x,y
∗(x))−∇2

xyg(x,y
∗(x))

[
∇2

yyg(x,y
∗(x))

]−1∇yf(x,y
∗(x)). (2)

Although AID has been widely adopted for stochastic bilevel optimization in the literature, the
computation of the hypergradient hf in AID faces two major challenges:
① The hypergradient in Eq. (2) requires multiple Hessian-vector product (HVP) evaluations for

approximating the Hessian inverse in each iteration. This creates a major computational bottleneck
for solving the problem in Eq. (1) since the explicit Hessian evaluations are computationally
expensive. For example, the Hessian contains one million elements even for a moderately sized
problem of dimension d = 1000. What is worse is that inverting such a Hessian typically
has a computation complexity of O(d3), which is time-consuming even for a moderately sized
problem. Some modern automatic differentiation tools (e.g., Pearlmutter trick (Pearlmutter, 1994)
and Jax (Bradbury et al., 2018)) have been proposed to accelerate the Hessian computation,
and HVP computation may not be a major computational bottleneck in some situations where
extremely computationally powerful GPUs are available. However, for many resource-constrained
and computation-constrained settings (e.g., using small or edge-based devices without GPUs),
HVP computation is still a computational bottleneck. For example, each HVP computation
could be at least two to six times more expensive than gradient computation using Jax when
performed on CPUs, which is still non-trivial, and the cost due to HVP remains not negligible
in such systems. Moreover, we note that one Hessian inverse estimation needs multiple HVP
computations (Ghadimi & Wang, 2018; Hong et al., 2020). As a result, the total cost of the
HVP computation depends on the Hessian-inverse estimation accuracy. This would make the
computational cost even higher.

② The hypergradient in Eq. (2) depends on the optimal solution of the LL problem y∗(x). However,
solving the LL problem often requires an iterative method. Thus, solving the LL problem to
optimality to obtain an exact value of y∗(x) may be expensive or even infeasible in practice.

We note that, although Challenge ② has been intensively studied in the literature and addressed to
some extent (e.g., the hypergradient is approximated with y∗(x) being replaced by y+ ≈ y∗(x)),
Challenge ①remains under-explored. So far, a foundational open problem in the theory of stochastic
bilevel optimization naturally arises:

(Q): Can we design algorithms that require fewer Hessian evaluations compared to SOTA, and is it
feasible to guarantee any theoretical performance for such algorithms?

In this paper, we answer the above question by developing a new algorithmic framework
called LazyBLO (Lazy Hessian Evaluation in Bilevel Optimization), which allows infrequent
Hessian (Hessian-vector product) evaluations in solving stochastic bilevel problems. Thus,
LazyBLO alleviates the computational bottleneck in stochastic bilevel optimization. Specifically, in
our LazyBLO approach, a stale version of Hessian is used for multiple iterations while new gradients
are computed at each step, thus leading to computational savings. The intuition behind LazyBLO is
that, for iterations that are not separated too far from each other, the parameter values usually do not
vary significantly. This implies that the Hessians evaluated at these points are highly correlated. Thus,
a stale Hessian can still be used to approximate a new one.

However, due to the additional errors accumulated because of the use of these stale Hessians,
approximate Hessian (HVP) evaluations, and the coupling hierarchical structure of the bilevel
problems, it is unclear whether LazyBLO will converge or not. Somewhat surprisingly, we prove that,
despite the previously mentioned accumulated errors, LazyBLO not only converges but also achieves
the same convergence rate as those of the SOTA non-lazy bilevel algorithms. To our knowledge, this
is the first work that uses infrequent Hessian computations for computational savings but still can
achieve convergence guarantee in solving stochastic bilevel problems.

Our major contributions in this work are summarized as follows:
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• We develop a new algorithmic framework LazyBLO that allows the stochastic bilevel algorithms
to compute HVPs infrequently. Specifically, the proposed framework updates the HVPs only over
a subset of training iterations, while using stale Hessian information in the rest of the iterations.

• We theoretically establish the performance of LazyBLO when the UL and LL updates are performed
using vanilla SGD-type updates. We show that the proposed lazy approach, which is supposed to
perform worse due to stale Hessian information, can actually match the convergence performance
of the SOTA bilevel algorithms. Specifically, we show that to achieve an ϵ-stationary point,
LazyBLO requires O(ϵ−2) partial gradient and HVP evaluations. Moreover, thanks to the less
frequent Hessian evaluations, the wall-clock time of LazyBLO is significantly reduced compared
to the SOTA approaches.

• We corroborate our theoretical findings via numerical experiments on data hyper-cleaning and
deep hyper-representation tasks with real-world datasets. Our numerical results verify that the
infrequent evaluations of HVP lead to considerable computational savings.

2 RELATED WORK

In this section, we provide a brief overview of several areas of the most related work: ①AID-based
bilevel optimization, ② Hessian-free bilevel optimization, and ③ other uses of infrequent Hessian
evaluations, thus putting our work into comparative perspective to highlight our novelty. Due to space
limitation, we give a summary of other related bilevel optimization methods in Appendix A.

Table 1: Comparison of stochastic bilevel algo-
rithms (TTSA (Hong et al., 2020), BSA (Ghadimi
& Wang, 2018), stocBiO (Ji et al., 2021),
SOBA (Dagréou et al., 2022), ALSET (Chen
et al., 2021), AmIGO (Arbel & Mairal, 2022),
MSTSA (Khanduri et al., 2021a), SUSTAIN (Khan-
duri et al., 2021b), MRBO (Yang et al., 2021),
SEMA (Yang et al., 2021), SVRB (Guo et al., 2021),
MA-SOBA (Chen et al., 2024), VRBO (Yang et al.,
2021), FSLA (Li et al., 2022)).

# of PG # of HVP Update

TTSA O
(
ϵ−2.5

)
O

(
ϵ−2.5

)
SGD

BSA O
(
ϵ−2

)
Õ

(
ϵ−2

)
SGD

stocBiO O
(
ϵ−2

)
Õ

(
ϵ−2

)
SGD

SOBA O
(
ϵ−2

)
O

(
ϵ−2

)
SGD

ALSET O
(
ϵ−2

)
O

(
ϵ−2

)
SGD

AmIGO O
(
ϵ−2

)
O

(
ϵ−2

)
SGD

LazyBLO O
(
ϵ−2

)
O

(
ϵ−2

)
SGD

MSTSA O
(
ϵ−2

)
Õ

(
ϵ−2

)
Momentum

SUSTAIN Õ
(
ϵ−1.5

)
Õ

(
ϵ−1.5

)
Momentum

MRBO O
(
ϵ−1.5

)
Õ

(
ϵ−1.5

)
Momentum

SEMA Õ
(
ϵ−2

)
Õ

(
ϵ−2

)
Momentum

SVRB O
(
ϵ−1.5

)
O

(
ϵ−1.5

)
Momentum

MA-SOBA O
(
ϵ−2

)
O

(
ϵ−2

)
Momentum

VRBO Õ
(
ϵ−1.5

)
Õ

(
ϵ−1.5

)
VR

FSLA O
(
ϵ−2

)
O

(
ϵ−2

)
VR

PG: Partial gradient evaluation
VR: Variance Reduction

①AID-Based Bilevel Optimization: In Ta-
ble 1, we compare existing AID-based stochas-
tic bilevel algorithms. BSA (Ghadimi &
Wang, 2018) provided the first finite-time con-
vergence guarantees for bilevel optimization.
The stochastic bilevel algorithms (e.g., BSA
in (Ghadimi & Wang, 2018)), stocBiO in (Ji
et al., 2021), AmIGO in (Arbel & Mairal,
2022)) that use vanilla-SGD updates require
O
(
ϵ−2
)

for both partial gradient evaluations
and HVP evaluations to reach an ϵ-stationary
point. Meanwhile, several works (e.g., SUS-
TAIN in (Khanduri et al., 2021b), SVRB
in (Guo et al., 2021), MRBO and VRBO
in (Yang et al., 2021)) utilize momentum-
based approaches and/or variance reduction
approaches to accelerate the convergence
of vanilla SGD-based algorithms, achieving
O
(
ϵ−1.5

)
for both partial gradient evaluations

and HVP evaluations. Although these works
guarantee finite-time convergence, the prac-
tical numerical performance of these bilevel
algorithms is slow since they require multi-
ple Hessian (or HVP) evaluations of the LL
objective in each iteration to approximate the
Hessian inverse. In this work, we show that
the Hessian computations can be skipped and
stale Hessian information computed from the
previous rounds can be used without hurting
the convergence performance while allowing
the algorithms to execute much faster.

② Hessian-Free Bilevel Optimization: To avoid the expensive Hessian evaluations, several Hessian-
free bilevel algorithms have been proposed. For example, FO-MAML (Finn et al., 2017; Nichol et al.,
2018) ignores the Hessian computation but does not offer any performance guarantee (Antoniou et al.,
2018; Fallah et al., 2020). Several approaches have also been proposed to replace the LL problem with
optimality-based constraints (Chen et al., 2023b; Liu et al., 2022a; Shen & Chen, 2023). However,
these methods mostly focus on deterministic settings rather than stochastic ones. Several zeroth-order

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

methods have been proposed to approximate the hypergraident (e.g., ES-MAML (Song et al., 2019),
HOZOG (Gu et al., 2021), and PZOBO (Sow et al., 2022)). However, ES-MAML and HOZOG do
not provide any theoretical convergence guarantee, while PZOBO achieves O

(
d2ϵ−2

)
to reach an

ϵ-stationary point, where d is the problem dimension. Recently, F2SA and F3SA (momentum-based
version of F2SA) (Kwon et al., 2023) have been proposed, which are two first-order methods based
on the value-function-based lower-level problem reformulation. To reach an ϵ-stationary point, F2SA
and F3SA require O

(
ϵ−3.5

)
and O

(
ϵ−2.5

)
iterations, respectively. The work in (Chen et al., 2023a)

improves the convergence rate for F2SA, resulting in a rate of O
(
ϵ−2 log(1/ϵ)

)
. However, this

improved rate is still slower than that of our proposed LazyBLO approach by a logarithmic factor.
Compared to (Kwon et al., 2023), our proposed LazyBLO algorithm strikes a good balance in terms
of the use of Hessian information: On one hand, we leverage Hessian information to maintain good
convergence performance; on the other hand, we infrequently use Hessian information to signficantly
reduce the wall-clock time.

③ Other Uses of Infrequent Hessian Evaluations: We note that infrequent Hessian evaluations have
also been used for speeding up second-order methods for single-level optimization problems (Shaman-
skii, 1967; Adler et al., 2020; Doikov et al., 2022; Lampariello & Sciandrone, 2001; Wang et al., 2006;
Fan, 2013). However, in bilevel optimization, the Hessian information necessarily emerges due to the
hypergradient computation, rather than as a “second-order” option in single-level optimization. Also,
due to the complex problem structure, analyzing the use of infrequent Hessian in bilevel optimization
is far more challenging than in a single-level setting.

3 PRELIMINARIES

In this section, we provide some preliminaries for solving Problem (1). We first state a set of
assumptions that are needed to establish the convergence of LazyBLO:
Assumption 3.1 (UL Objective). f (x,y) satisfies:

1) For any (x,y) ∈ Ru × Rl, ∇xf (x,y) is Lipschitz continuous (w.r.t. y) with constant Lfx ≥ 0,
and ∇yf (x,y) is Lipschitz continuous (w.r.t. both x and y) with constant Lfy ≥ 0.

2) For any (x,y) ∈ Ru × Rl, we have ∥∇yf (x,y)∥ ≤ Bfy for some constant Bfy ≥ 0.
Assumption 3.2 (LL Objective). g (x,y) satisfies:

1) For any x ∈ Ru, g (x, ·) is µg-strongly convex with respect to y for some µg > 0.

2) For any (x,y) ∈ Ru × Rl, ∇yg (x,y) is Lipschitz continuous (w.r.t. y) with constant Lg ≥ 0,
and ∇2

xyg (x,y) and ∇2
yyg (x,y) are Lipschitz continuous (w.r.t. both x and y) with constants

Lgxy ≥ 0 and Lgyy ≥ 0, respectively.

3) For any (x,y) ∈ Ru × Rl, we have
∥∥∇2

xyg (x,y)
∥∥ ≤ Bgxy

for some constant Bgxy
> 0.

Note that all the above assumptions are standard in the analysis of bilevel optimization prob-
lems (e.g., Ghadimi & Wang (2018); Hong et al. (2020); Khanduri et al. (2021b); Liu et al.
(2022b); Qiu et al. (2022)). With the above assumptions and using implicit function theo-
rem (Rudin et al., 1976), the hypergradient of ℓ(·) can be computed as ∇ℓ(x) = ∇xf (x,y∗(x))−
∇2

xyg (x,y
∗(x))

[
∇2

yyg (x,y
∗(x))

]−1 ∇yf (x,y∗(x)).

Instead of computing the Hessian inverse explicitly, there are different ways to approximate the
Hessian inverse or HVPs in bilevel optimization, such as conjugate gradient (CG) (Pedregosa,
2016) and Neumann series (Ghadimi & Wang, 2018) methods. For example, stocBiO (Ji et al.,
2021) uses Neumann series, while AID-BiO (Ji et al., 2021), AID-CG (Grazzi et al., 2020) and
AmIGO (Arbel & Mairal, 2022) implement CG. In this paper, we use CG to efficiently estimate the
HVPs (

[
∇2

yyg (x,y
∗(x))

]−1 ∇yf (x,y∗(x))), which finds the minimizer of a quadratic function
by solving a linear system derived from the hypergradient. The quadratic optimization problem is
formulated as follows:

min
z∈Rl

q(x,y, z) ≜
1

2
z⊤∇2

yyg(x,y)z+ z⊤∇yf(x,y). (3)

For the function q(·, ·, ·) defined in Eq. (3), the following lemma together with Assumption 3.2
implies that q(x,y, z) is µg-strongly convex and Lq-Lipschitz smooth.
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Lemma 3.3 (Quadratic Problem). For any (x,y, z), the quadratic problem q(x,y, z) with respect to
z is Lipschitz-smooth with constant Lq ≥ 0.

The admitted unique minimizer z∗ (x,y) of Eq. (3) can then be utilized to compute the hypergradient
estimate as ∇ℓ(x) = ∇xf (x,y∗(x)) +∇2

xyg (x,y
∗(x)) z∗ (x,y∗(x)). Since it is challenging to

obtain y∗ (x) and z∗ (x,y) in closed form, it is natural to consider their approximations. Specifically,
let ȳ and z̄ be some approximations of y∗ (x) and z∗ (x,y), respectively. Then, we have the
approximation for ∇ℓ(x) defined as follows:

∇f(x, ȳ, z̄) = ∇xf (x, ȳ) +∇2
xyg (x, ȳ) z̄. (4)

Since Problem (1) can potentially be a large-scale stochastic optimization problem, computing a full
gradient approximation in Eq. (4) can be computationally expensive. To address this challenge, a com-
mon approach for evaluating Eq. (4) is to build a stochastic gradient estimator. Define stochastic ap-
proximations as f

(
x,y;Df

)
≜ 1

|Df |
∑

ξ∈Df f(x,y; ξ) and g (x,y;Dg) ≜ 1
|Dg|

∑
ζ∈Dg g(x,y; ζ),

where Df and Dg are the batches of independent and identically distributed samples with sizes∣∣Df
∣∣ ≥ 1 and |Dg| ≥ 1, respectively. Then, a stochastic estimator of Eq. (4) can be computed as:

∇f(x,y, z;Dfx ,Dgxy ) = ∇xf
(
x,y;Dfx

)
+∇2

xyg (x,y;Dgxy ) z.

Here, for simplicity, we slightly abuse the notations ȳ and z̄ as y and z in the above equation and the
rest of the paper as long as there is no confusion from the context. For ∇f(x,y, z;Dfx ,Dgxy ) and
∇yg(x,y;Dgy ), we make the following typical assumption in stochastic optimization analysis.

Assumption 3.4 (Stochastic Gradients). For any (x,y) ∈ Ru × Rl and data batch Dfx , Dfy ,
Dgy , Dgxy and Dgyy , define σ2

fx
≜ σ̃2

fx

∣∣Dfx
∣∣−1

, σ2
fy

≜ σ̃2
fy

∣∣Dfy
∣∣−1

, σ2
gy ≜ σ̃2

gy |D
gy |−1,

σ2
gxy

≜ σ̃2
gxy

|Dgxy |−1, and σ2
gyy

≜ σ̃2
gyy

|Dgyy |−1, where σ̃2
fx

, σ̃2
fy

, σ̃2
gy , σ̃2

gxy
and σ̃2

gyy
represent the

variance of a single sample of the corresponding functions. The gradient estimates ∇xf(x,y;Dfx),
∇yf(x,y;Dfy ), ∇yg(x,y;Dgy ), ∇2

xyg(x,y;Dgxy ) and ∇2
yyg(x,y;Dgyy ) are unbiased and have

bounded variances:

E[∥∇xf(x,y;Dfx)−∇yf(x,y)∥2] ≤ σ2
fx , E[∥∇yf(x,y;Dfy )−∇yf(x,y)∥2] ≤ σ2

fy ,

E[∥∇yg(x,y;Dgy )−∇yg(x,y)∥2] ≤ σ2
gy , E[∥∇2

xyg(x,y;Dgxy )−∇2
xyg(x,y)∥2] ≤ σ2

gxy
,

E[∥∇2
yyg(x,y;Dgyy )−∇2

yyg(x,y)∥2] ≤ σ2
gyy

.

Lastly, we define the following performance metrics for solving the Problem (1).

Definition 3.5 (ϵ-Stationary Point). Point x is an ϵ-stationary point if E
[
∥∇ℓ (x)∥2

]
≤ ϵ, where

x is the output of a stochastic algorithm, and the expectation is taken over all randomness of the
algorithm.

Definition 3.6 (ϵ-Optimal Point). Point x is an ϵ-optimal point if E [ℓ (x)− ℓ∗] ≤ ϵ, where ℓ∗ ≜
minx∈Ru ℓ (x), and x is the output of a stochastic algorithm. The expectation is taken over all
randomness of the algorithm.

4 THE LazyBLO ALGORITHM

In this section, we propose a new algorithmic framework called LazyBLO to solve the bilevel
optimization problem in Eq. (1). Our goal is to reduce the computation of the HVPs, and our key
idea is to update the HVP periodically on a subset of the entire training iterations while using stale
Hessian information in the remaining iterations.

The most basic algorithm in the LazyBLO framework incorporates SGD-style updates, which is
illustrated in Algorithm 1. We note that more sophisticated algorithms in the LazyBLO framework can
include advanced algorithmic techniques, such as momentum and/or variance reduction to accelerate
the convergence and enhance other performances. As shown in Algorithm 1, the LazyBLO framework
uses a double-loop structure and constructs iterates xn

t , yn
t and zt, where the inner iteration counter

n goes from 0 to N − 1 and the outer iteration counter t runs from 0 to T − 1, so that xn
t approaches

a stationary point of ℓ (·), and yn
t and zt keep track of the quantities y∗ (xn

t ) and z∗
(
xN
t ,yN

t

)
. In

5
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Algorithm 1 The LazyBLO Algorithmic Framwork with Basic SGD-type Updates.

Input: Initial parameters x0
0, y0

0, z0, and stepsize {αt}T−1
t=0 , {βt}T−1

t=0 , {γt}T−1
t=0

for t = 0 to T − 1 do
for n = 0 to N − 1 do

Initialize x0
t = xN

t−1 and y0
t = yN

t−1

Sample data batches Dg
t,n, Dfx

t,n, and Dgxy
t,n

Compute the gradient estimate hg
t,n using (6) and update yn+1

t = yn
t − βth

g
t,n

Compute the gradient estimate hf
t,n using (5) and update xn+1

t = xn
t − αth

f
t,n

end for
Sample data batches Dgyy

t and Dfy
t

Compute the gradient estimate hq
t,n using (7) and update zt+1 = zt − γth

q
t

end for

the inner loop, the algorithm updates xn
t and yn

t using the stochastic gradient estimators hf
t,n and

hg
t,n defined as:

hf
t,n = ∇xf

(
xn
t ,y

n
t ;D

fx
t,n

)
+∇2

xyg
(
xn
t ,y

n
t ;D

gxy

t,n

)
zt, (5)

hg
t,n = ∇yg

(
xn
t ,y

n
t ;D

g
t,n

)
. (6)

The variable zt in Eq. (5) is updated in the outer loop using a stochastic gradient estimator hq
t as:

hq
t = ∇2

yyg(x
N
t ,yN

t ;Dgyy

t )zt +∇yf(x
N
t ,yN

t ;Dfy
t ). (7)

Note that, compared to hf
t,n and hg

t,n, only hq
t contains the HVP, and is computed infrequently after

every N inner loop iterations. In addition, N needs to be chosen with a tolerable approximation
error of the HVP. If N gets too large, the error of the HVP approximation would also increase,
thus inevitably degrading the performance of LazyBLO. With less frequent Hessian computations,
LazyBLO executes faster per iteration in terms of wall-clock time compared to standard bilevel
algorithms that require multiple Hessian/vector evaluations in each round of updates (Ghadimi &
Wang, 2018; Arbel & Mairal, 2022; Ji et al., 2021; Chen et al., 2021), resulting in a significant
reduction in computational cost and savings in implementation time.

Another insightful remark on the Jacobian-vector product in (5) is also in order. To date, most
of the existing bilevel algorithms compute only one single Jacobian-vector product (JVP) in each
iteration, whereas HVPs are computed multiple times in each iteration even in some single-loop
bilevel algorithms (e.g., SUSTAIN (Khanduri et al., 2021b), TTSA (Hong et al., 2020), BSA (Ghadimi
& Wang, 2018), and ALSET (Chen et al., 2021)). Due to this difference between JVP and HVP in
bilevel optimization algorithms, reducing the number of HVP computations is far more important
than reducing the computations of JVPs. Therefore, we only focus on reducing the HVP in this paper.
We further note that reducing the computation of JVPs can be done in a similar manner as the HVPs
established in our work.

5 THEORETICAL PERFORMANCE ANALYSIS

In this section, we conduct the theoretical convergence analysis for the LazyBLO framework for
solving the bilevel optimization problem in Eq. (1). Note that, although LazyBLO executes faster per
iteration, we have a noisier hypergradient due to the use of stale Hessian information. As a result,
it remains unclear whether LazyBLO can converge and, if yes, what theoretical convergence rate
(i.e., iteration complexity) it can achieve. Intuitively, due to the lazy Hessian information updates,
one can expect that the theoretical convergence rate of LazyBLO cannot outperform its non-lazy
counterpart. Surprisingly, in this paper, we show that LazyBLO achieves the same convergence rate as
their non-lazy counterpart. This, together with the much lower per-iteration wall-clock time, implies
that LazyBLO will enjoy a much faster speed in terms of wall-clock time. This will also be verified
by our experiments in Section 6.

The convergence analysis for LazyBLO is highly non-trivial due to the following technical challenges:
i) The use of lazy Hessian evaluation increases the error of stochastic gradient estimator hf

t,n for
the upper-level function; ii) Due to the hierarchical and coupled structure of bilevel optimization
problems, the error resulting from the stochastic gradient estimator hf

t,n with stale Hessian information

6
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further propagates to and increases the approximation error of y∗ (x) and the approximation error of
z∗ (x,y). What is even worse is that z∗ (x,y) is also associated with y∗ (x). All the above complex
couplings of laziness-induced errors and the complications associated with these approximation errors
are unseen in bilevel optimization algorithm analysis, which significantly increases the difficulty of
analyzing the convergence of LazyBLO and necessitate new proof techniques.

5.1 SUPPORTING LEMMAS

Toward this end, we first state two basic lemmas needed for the convergence analysis of LazyBLO.
Lemma 5.1 (Lemma 2.2 in (Ghadimi & Wang, 2018), Proposition 6 in (Arbel & Mairal, 2022)).
Under Assumptions 3.1 and 3.2, we have

∥∇f(x, ȳ, z̄)−∇ℓ(x)∥ ≤ Lf (∥ȳ − y∗(x)∥+ ∥z̄− z∗(x, ȳ)∥) ,
∥y∗ (x1)− y∗ (x2)∥ ≤ Ly ∥x1 − x2∥ , ∥∇ℓ (x1)−∇ℓ (x2)∥ ≤ Ll ∥x1 − x2∥ ,

for all x,x1,x2 ∈ Ru, and ȳ, z̄ ∈ Rl, where the Lipschitz constants above are defined as:

Lf = max
{
Lfx +

(
LgxyBfy/µg

)
+BgxyLz, Bgxy

}
, Ll = L

′
f +

(
L

′
fB

2
gxy

/µg

)
, Ly = B2

gxy
/µg,

and where L
′

f = Lfx + (LfyB
2
gxy

/µg) +Bfy

[
(Lgxy

/µg) + (Lgyy
B2

gxy
/µ2

g)
]
.

We note that Lemma 5.1 plays a key role in the analysis of AID-based bilevel algorithms. First of all,
it characterizes the bias of the implicit gradient as a function of approximation error in ȳ and z̄ (see
Eq. (4)). It also ensures the Lipschitzness of the mapping y∗(x) in characterizing the behavior of the
LL problem’s iterates. Most importantly, Lemma 5.1 establishes the Lipschitz-smoothness of the
implicit function ℓ(·), which allows the development of SGD-type algorithms for solving stochastic
bilevel problems. To complement Lemma 5.1, next result states the properties of the optimal solution
z∗ (x,y) of the quadratic problem in Eq. (3).
Lemma 5.2 (Proposition 6 in(Arbel & Mairal, 2022)). Under Assumptions 3.1 and 3.2, ∀ x,x1,x2 ∈
Ru and y,y1,y2 ∈ Rl , we have

∥z∗ (x1,y1)− z∗ (x2,y2)∥ ≤ Lz (∥x1 − x2∥+ ∥y1 − y2∥) , ∥z∗ (x,y)∥ ≤ Bfy/µg,

where Lz =
(
Lgyy

Bfy/µ
2
g

)
+ Lfy/µg .

Lemma 5.2 also plays a key role in the analysis of LazyBLO as it is utilized to bound the drift in the
Hessain vector product estimates (see Eq. (3)). Next, we present the main results of the paper.

5.2 MAIN RESULTS

① The Non-convex ℓ (x) Setting: By leveraging Lemmas 5.1 and 5.2, we establish the main
convergence result of the proposed LazyBLO for non-convex ℓ (x) in Theorem 5.3.

Theorem 5.3 (Non-Convex ℓ(x)). Under Assumptions 3.1–3.4, with step-sizes αt = α = O
(

1
N2

)
,

βt ≜ cβα = O
(

1
N2

)
, and γt ≜ cγα = O (1) for all t ∈ {0, 1, . . . , T − 1}, where cβ and cγ are

defined in Eq. 22 in Appendix C. Then, the iterates generated by LazyBLO satisfy:

1

TN

T−1∑
t=0

N−1∑
n=0

E
[
∥∇ℓ (xn

t )∥
2
]
= O

(
N∆0

T

)
+O

(
σ2
gy + σ2

gxy
+ σ2

fx + σ2
gyy

+ σ2
fy

)
,

where ∆0 = (ℓ(x0
0)− ℓ∗) + ∥y0

0 − y∗(x0
0)∥2 + ∥z0 − z∗(x0

0,y
0
0)∥2.

The proof of Theorem 5.3 can be found in Appendix C. Theorem 5.3 establishes the convergence of
LazyBLO under the most general setting, where the implicit function ℓ(·) can be non-convex. The
result characterizes the effect of different parameters on the convergence of LazyBLO. Specifically,
as N increases, the performance of LazyBLO degrades. This is unsurprising since more stale Hessian
information is expected to slow the convergence. Hence, N should be chosen below a certain
threshold to maintain the accuracy of the hypergradient estimations. On the other hand, to enjoy the
benefits of the LazyBLO approach, N is supposed to be strictly larger than 1. We can potentially
choose N = 1, and our algorithm, which becomes fully single-loop, recovers standard results for

7
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bilevel algorithms under the same assumptions as ours (e.g., the guarantees achieved in (Arbel &
Mairal, 2022)). Interestingly, under an appropriate N -value, the N -dependent slowdown effect in
LazyBLO can be offset by Hessian computations skippings, allowing LazyBLO to run even faster
than non-lazy approaches in terms of wall-clock time.

Our next result characterizes the computation complexity of LazyBLO.
Corollary 5.4 (Computation Complexity). Under the setting of Theorem 5.3, choose∣∣Dfx

∣∣ , ∣∣Dfy
∣∣ , |Dgy | , |Dgxy | , |Dgyy | = Θ

(
ϵ−1
)
. Then, LazyBLO requires O(ϵ−2) partial gradi-

ent and HVP evaluations to reach an ϵ-stationary point.

We note that, when ϵ is small, the batch sizes in Corollary 5.4 could be large. However, it is worth
noting that the use of large batch sizes is not a consequence of the proposed LazyBLO algorithm
design; rather, these batch size choices are common in the literature, as the above guarantees are the
same as those achieved in standard SGD-based bilevel algorithms (e.g., (Arbel & Mairal, 2022; Ji
et al., 2021; Huang et al., 2022)) that require the computation of (multiple) Hessian/HVPs in each
iteration. It is also worth noting that the large batch sizes are required only for theoretical analysis
and can be eliminated by using a third-order Lipschitz assumption, as done by SOBA (Dagréou et al.,
2022). In our experiments, we use a small batch size instead, and our algorithm still outperforms the
baseline algorithms.

Given that LazyBLO can converge and even matches the performance of SOTA non-lazy bilevel
methods, another question also arises: under which settings could LazyBLO theoretically outperform
current bilevel approaches? The next result shows that if the LL problem is deterministic, we can, in
fact, improve upon the current approaches and reduce the HVP evaluations from O(ϵ−2) to O(ϵ−1).
Corollary 5.5 (Computation Complexity for Deterministic LL Problems). Suppose the lower-level
problem is deterministic. Under the condition of Theorem 5.3, LazyBLO requires O(ϵ−1) for HVP
evaluations to achieve an ϵ-stationary point.

Corollary 5.5 suggests that LazyBLO significantly reduces the HVP evaluations. In contrast, for
standard bilevel optimization algorithms, the HVPs stay the same as the total number of rounds
required by an algorithm to achieve the ϵ-stationary solution. For example, under the same deter-
ministic setting, the baseline methods BSA (Ghadimi & Wang, 2018), stocBiO (Ji et al., 2021) and
AmIGO (Arbel & Mairal, 2022) require O(ϵ−2) gradient computations and TTSA (Hong et al.,
2020) requires O(ϵ−2.5) gradient computations, which is equivalent to the number of outer function’s
gradients evaluated during the execution of the algorithm.

So far, our results characterize the performance of LazyBLO in the non-convex settings. However,
for some problems (e.g., quadratic UL and LL problems), the implicit function may have additional
structures that might lead to better convergence of LazyBLO. Next, we characterize the performance
of LazyBLO when the implicit function is strongly convex, which is often of interest for applications
in robust and inverse optimization, optimal control in robotics and aerospace with quadratic cost, etc.

② The Strongly Convex ℓ (x) Setting: Under the setting where ℓ (·) is µf -strongly convex, we
provide a stronger performance guarantee for the convergence of LazyBLO, which is stated as follows:
Theorem 5.6 (Strongly Convex ℓ (x)). Suppose the upper-level function ℓ (x) is µf -strongly-convex.
Under Assumptions 3.1–3.4, choose the step-sizes αt = α = O

(
1
N

)
, βt ≜ ĉβα = O

(
1
N

)
and γt ≜

ĉγα = O
(

1
N2

)
for all t ∈ {0, 1, . . . , T − 1}, where ĉβ and ĉγ are defined in Eq. 34 in Appendix D.

Then, the iterates generated by LazyBLO satisfy:

1

N

N−1∑
n=0

E
[
ℓ (xn

t )− ℓ∗
]
≤ (1− µfα)

t
∆̂0 +O

(
σ2
gxy

+ σ2
fx +

1

N4
σ2
gyy

+
1

N4
σ2
fy +

1

N
σ2
gy

)
,

for any t ≥ 1, where ∆̂0 = 1
N

∑N−1
n=0 (ℓ (xn

0 )− ℓ∗)+ 1
N

∑N−1
n=0 ∥yn

0 − y∗ (xn
0 )∥

2
+ 1

N ∥z0 − z∗0∥
2.

The detailed proof of Theorem 5.6 is provided in Appendix D due to space limitations. Theo-
rem 5.6 demonstrates that, under the strongly convex setting, LazyBLO achieves a much faster linear
convergence rate. Theorem 5.6 also immediately implies the following computation complexity:
Corollary 5.7 (Computation Complexity). Under the setting of Theorem 5.6, choosing

∣∣Dfx
∣∣ =

|Dgxy | = Θ
(
ϵ−1
)
, |Dgy | = Θ

(
N−1ϵ−1

)
, and

∣∣Dfy
∣∣ = |Dgyy | = Θ

(
N−4ϵ−1

)
, LazyBLO requires
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Figure 1: Comparison for data hyper-cleaning on
MNIST (corruption rate p = 0.1, 10 repetitions).
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Figure 2: Training loss for deep hyper-
representation on CIFAR-10 (10 repetitions).

O(ϵ−1 log ϵ−1) partial gradient evaluations and O(N−4ϵ−1 log ϵ−1) HVP evaluations to reach an
ϵ-optimal point.

Corollary 5.7 shows that LazyBLO significantly reduces the number of HVP evaluations. Again,
note that the complexity of partial gradient evaluations in Corollary 5.7 matches the same guarantee
achieved in (Arbel & Mairal, 2022), which is obtained by multiple Hessian evaluations per iteration.

6 NUMERICAL RESULTS

In this section, we verify the theoretical performance of LazyBLO on different optimization tasks
and with two different datasets: 1) data hyper-cleaning on the MNIST dataset, and 2) deep hyper-
representation with the ResNet network on the CIFAR-10 dataset. Due to space limitations, additional
experimental details and results are included in Appendix B.

Task 1) Data Hyper-Cleaning on the MNIST Dataset: We conduct experiments on a data hyper-
cleaning task with MNIST dataset (LeCun et al., 1998). Data hyper-cleaning aims to train a classifier
on a corrupted dataset. We compare LazyBLO with stochastic bilevel algorithms AmIGO (Arbel &
Mairal, 2022), stocBiO (Ji et al., 2021), BSA (Ghadimi & Wang, 2018), and MRBO (Yang et al.,
2021) as baselines. We also perform data hyper-cleaning with fully single-loop bilevel algorithms
TTSA (Hong et al., 2020), SOBA (Dagréou et al., 2022), and MA-SOBA (Chen et al., 2024).

Table 2 shows that TTSA, SOBA, and MA-SOBA all need an exceedingly long time to converge.
Specifically, the convergence of TTSA, SOBA, and MA-SOBA are 74, 73, and 82× slower, respec-
tively, than LazyBLO. In addition, TTSA, SOBA, and MA-SOBA require 390, 126, and 150× more
Hessian computations, respectively, compared to LazyBLO. Given the significantly slow convergence
of these fully single-loop bilevel algorithms, we exclude them from the following comparison.

Table 2: Convergence performance of TTSA, SOBA, and MA-SOBA
compared with our LazyBLO on data hyper-cleaning on MNIST (corrup-
tion rate p = 0.1, average over 10 repetitions).

ALGORITHM WALL-CLOCK TIME # OF HESSIAN TRAINING LOSS
TTSA 4290 S 1950 3.95
SOBA 4210 S 630 3.28

MA-SOBA 4740 S 750 3.05
LazyBLO 58 s 5 2.35

From Fig. 1a, we
can see that AmIGO
and stocBiO have
similar conver-
gence performance.
LazyBLO outperforms
all baseline methods
in terms of wall-clock
time, which shows the
advantages of LazyBLO. Specifically, it only takes LazyBLO approximately 60 seconds to converge,
while AmIGO and stocBiO converge in around 100 seconds. This much-improved wall-clock
time is due to the fact that LazyBLO uses stale Hessian information and saves a lot of Hessian
computation time. It is worth pointing out that the comparison with MRBO is not entirely fair since
MRBO is equipped with more sophisticated momentum techniques to accelerate convergence, while
LazyBLO only uses vanilla-SGD updates. LazyBLO can also be equipped with momentum-based
SGD updates to further accelerate the convergence. Furthermore, the training loss of LazyBLO is
similar to those of AmIGO, stocBiO, and BSA, which use up-to-date Hessian information during
the training. This result is surprising because LazyBLO with stale Hessian information can still
match the methods with non-lazy Hessian updates. This implies that the Hessian information evolves
gradually during the training, and one may use stale Hessians to construct good approximations of
the hypergradient in bilevel optimization.

It can be seen in Fig. 1b that the convergence speed with respect to the number of Hessian evaluations
for LazyBLO is much faster compared with all the baseline algorithms (see the zoomed-in area in

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Fig. 1b). Table 3 also demonstrates that, to achieve the same convergence training loss, AmIGO,
stocBiO and BSA all need 252 Hessian computations, while LazyBLO only needs 5 Hessian compu-
tations (i.e., 50× faster). Note that we do not include MRBO in this table since it has a higher error
floor compared to other algorithms. As a consequence, it can not reach the same training loss as the
other algorithms.
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Figure 3: Comparison of LazyBLO on data hyper-
cleaning on MNIST at a different # of x-updates (N ).

Fig. 3 captures the effect of N on the perfor-
mance of LazyBLO. Specifically, we observe
that as we increase the value of N , the execu-
tion of the algorithm becomes faster and faster.
However, we note that increasing N beyond
a certain threshold may not yield additional
benefits and could even lead to performance
degradation. This is because, as N increases,
the difference between stale and fresh Hes-
sian information becomes larger, potentially
causing the hypergradient hf

t,n to become less
accurate and adversely affecting the training loss of LazyBLO.

Task 2) Deep Hyper-Representation with ResNet-20 on the CIFAR-10 Dataset: To demonstrate
the effectiveness of LazyBLO in training neural networks, we conduct experiments on a deep hyper-
representation task (Yang et al., 2023; Sow et al., 2022) with the ResNet-20 model (He et al., 2016) on
CIFAR-10 dataset (Krizhevsky et al., 2009), which aims to classify CIFAR-10 images. We compare
LazyBLO with a standard stochastic bilevel algorithm AmIGO (Arbel & Mairal, 2022), and two
fully first-order (Hessian/Jacobian-free) stochastic bilevel algorithms F2SA (Kwon et al., 2023) and
F3SA (Kwon et al., 2023) as baselines. We do not compare LazyBLO with other baselines from the
previous data hyper-cleaning experiments since stocBiO performs almost identically to AmIGO, and
they both outperform MRBO in terms of training loss and BSA in terms of wall-clock time.

Table 3: The number of hypergradient computations and
Hessian computations required by various algorithms to
achieve the same training loss in data hyper-cleaning ex-
periments (Task 1) and hyper-representation experiments
(Task 2) (average over 10 repetitions).

ALGORITHM # OF HGC # OF HESSIAN

TASK 1

AMIGO 42 252
STOCBIO 42 252

BSA 21 252
LazyBLO 40 5

TASK 2 AMIGO 361 722
LazyBLO 640 320

HGC: HYPERGRADIENT COMPUTATION

As shown in Fig. 2a, LazyBLO converges
faster in terms of wall-clock time com-
pared to AmIGO, F2SA and F3SA. In ad-
dition, Fig. 2a indicates that the training
loss of LazyBLO is smaller than those
of F2SA and F3SA. The superior per-
formance of LazyBLO in comparison to
F2SA and F3SA establishes the neces-
sity of Hessian/Jacobian evaluations in
stochastic bilevel optimization. Without
them, both the convergence speed and the
training loss would degrade as demon-
strated by the experiments. Fig. 2b il-
lustrates the convergence performance of
LazyBLO compared to AmIGO in terms of the number of Hessian computations. Note that we
do not include F2SA and F3SA in this figure since they are Hessian-free. Fig. 2b demonstrates
that with the same number of Hessian evaluations, LazyBLO has a lower training loss compared
to AmIGO. Furthermore, as shown in Table 3, to reach the same training loss, LazyBLO uses 320
Hessian computations, while AmIGO uses 722 Hessian computations. This significantly reduces
computational costs, especially for large-scale problems.

7 CONCLUSION

In this paper, we proposed the LazyBLO algorithmic framework for solving bilevel optimization prob-
lems. Compared to existing works, LazyBLO reduces the Hessian-vector product (HVP) evaluations
by updating them periodically and less frequently. Although LazyBLO uses stale HVP evaluations
that introduce additional errors, our theoretical analysis demonstrated that LazyBLO not only sur-
prisingly enjoys the same convergence rate guarantee, but also achieves a much faster wall-clock
time performance. Specifically, to reach an ϵ-stationary point, LazyBLO requires O(ϵ−2) for both
partial gradient evaluations and HVP evaluations, which matches the SOTA non-lazy methods. We
conducted experiments on multi-hyperparameter optimization tasks to verify our theoretical findings.
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A ADDITIONAL RELATED WORK

Bilevel Optimization: The history of bilevel optimization dates back to 1973 (Bracken & McGill,
1973). Some early attempts for solving bilevel problems include: value function (Liu et al., 2021;
Sinha et al., 2018; Zemkoho & Zhou, 2021), Karush–Kuhn–Tucker conditions based reformula-
tions (Allende & Still, 2013; Sinha et al., 2019; Zemkoho & Zhou, 2021), penalty function (White &
Anandalingam, 1993; Anandalingam & White, 1990; Wan et al., 2014), approximate descent (Falk
& Liu, 1995; Vicente et al., 1994), and trust region methods (Dempe & Bard, 2001; El-Sobky &
Abo-Elnaga, 2018). Among these approaches, approximate descent methods have gained promi-
nence recently because of their ease of implementation as well as strong theoretical and empirical
performance in many machine learning applications. Two standard descent-based approaches to
tackle problems of form (1) are iterative differentiation (ITD) (Domke, 2012; Maclaurin et al., 2015;
Franceschi et al., 2017; 2018; Shaban et al., 2019; Grazzi et al., 2020; MacKay et al., 2019) and ap-
proximate implicit differentiation (AID) (Domke, 2012; Pedregosa, 2016; Liao et al., 2018; Ghadimi
& Wang, 2018; Grazzi et al., 2020; Lorraine et al., 2020; Gould et al., 2016; Ji & Liang, 2021;
MacKay et al., 2019; Khanduri et al., 2021a; Hong et al., 2020). The basic idea of ITD is to obtain
an approximate hypergradient of the loss function ℓ(x) in Eq. (1) by differentiating the unrolled
iterates of the LL problem. Consequently, ITD-based approaches need to store all the LL iterates in
the memory (Shaban et al., 2019). On the other hand, AID relies on the implicit function theorem
to compute the implicit gradient of ℓ(x) without the need to maintain the sequence of LL iterates.
Instead of differentiating the iterates of the LL problem, AID computes the implicit gradient by
approximately solving a linear system of equations using HVPs. In this work, we focus on AID-based
approaches for solving stochastic bilevel problems.

B ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

B.1 SPECIFICATIONS OF THE BASELINE ALGORITHMS IN SECTION 6

In this section, we provide more description of the baseline algorithms used in our experiments, as
follows:

• AmIGO (Arbel & Mairal, 2022): a double-loop stochastic AID-based bilevel algorithm that uses
conjugate gradient to estimate the Hessian inverse.

• stocBiO (Ji et al., 2021): a two timescale stochastic AID-based bilevel approach that uses
Neumann Series to estimate the Hessian inverse. The repository of stocBiO is available
at https://github.com/JunjieYang97/StocBio.

• BSA (Ghadimi & Wang, 2018): an AID-based bilevel method that uses single-sample sampling.
• MRBO (Yang et al., 2021): a single-loop AID-based stochastic bilevel algorithm that uses

momentum-based SGD to accelerate convergence. The implementation of MRBO is available
at https://github.com/JunjieYang97/MRVRBO.

• F2SA (Kwon et al., 2023): a fully first-order (Hessian/Jacobian-free) stochastic bilevel method,
which is doulbe-loop.

• F3SA (Kwon et al., 2023): a fully first-order stochastic bilevel approach that uses momentum-based
SGD to accelerate convergence and is single timescale.

B.2 EXPERIMENTAL DETAILS FOR DATA HYPER-CLEANING

In this section, we describe the details of the experiments on data hyper-cleaning. The goal of data
hyper-cleaning is to train a classifier on a potentially corrupt dataset. To make fair comparison,
we follow the same implementation as in (Ji et al., 2021; Yang et al., 2021) and apply it to other
algorithms. The objective function can be written as follows:

min
λ

LDval
(λ,w∗) =

1

|Dval|
∑

(xi,yi)∈Dval

L (w∗xi,yi)

s.t. w∗ = argmin
w

(
1

|Dtr|
∑

(xi,yi)∈Dtr

σ (λi)L (wxi,yi) + Cr∥w∥2
)
,
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where (xi,yi) represents the data samples, Dval and Dtr correspond to the validation data and the
training data, L denotes the cross-entropy loss, σ represents the sigmoid function, and Cr is the
regularization parameter. Note that the training loss corresponds to the upper-level loss. We choose
Cr = 0.001 in our experiments, which is the same as (Shaban et al., 2019; Ji et al., 2021). We conduct
experiments on the MNIST dataset (LeCun et al., 1998), which is corrupted by replacing the training
data label with a uniformly random one. Such replacement has a probability p, referred to as the
corruption rate. We run the experiments with corruption rates of p = {0.1, 0.15, 0.2, 0.25, 0.3}.

We compare the performance of LazyBLO with AmIGO (Arbel & Mairal, 2022), stocBiO (Ji et al.,
2021), BSA (Ghadimi & Wang, 2018), and MRBO (Yang et al., 2021). For all algorithms, we tune the
parameters using grid search to achieve the best convergence performance based on the training loss
as the metric. As a result, we set the batch size to 1000 for AmIGO, stocBiO, MRBO and LazyBLO .
We set both the outer stepsize α and the inner stepsize β as 0.1, and the Hessian update stepsize γ as
0.5 for AmIGO, stocBiO and MRBO. We choose both the outer stepsize α and the inner stepsize β to
be 0.01, and the Hessian update stepsize γ to be 0.1 for BSA. For LazyBLO, We set 0.5 as the inner
stepsize β, and 0.1 as both the outer stepsize α and the Hessian update stepsize γ. We set the number
of inner-loop iterations for y-update to 64 for AmIGO, stocBiO and BSA. We choose the number of
iterations for Hessian inverse evaluations to be 6 for AmIGO and stocBiO, and 12 for MRBO and
BSA. For LazyBLO, we set 8 as the inner-loop iteration number N for x- and y-update. We conduct
10 repetitions for the experiments using different random seeds. The solid line shows the average
training loss, and the shaded area represents the variance containing the maximum and the minimum
values. We run the data hyper-cleaning experiments using NVIDIA GeForce RTX 3060 GPU.

B.3 EXPERIMENTAL DETAILS FOR DEEP HYPER-REPRESENTATION

In this section, we show the details of the experiments on deep hyper-representation, which aims to
classify the images. The objective function is given by:

min
λ

LDval
(λ,w∗) =

1

|Dval|
∑

(xi,yi)∈Dval

L (w∗f (λ;xi) ,yi)

s.t. w∗ = argmin
w

1

|Dtr|
∑

(xi,yi)∈Dtr

L (wf (λ,xi) ,yi) ,

where (xi,yi) denotes the data samples, Dval and Dtr are the validation data and the training data, L
corresponds to the cross-entropy loss, f (λ;xi) represents the features extracted from the data sample.
We run the experiments with ResNet-20 network (He et al., 2016) on CIFAT-10 dataset (Krizhevsky
et al., 2009) using a batch size of 128. We treat the last two layers in ResNet-20 as the LL parameters
w with a dimension of 5, 130, and all remaining layers as the UL parameters λ with a dimension of
11, 168, 832.

We compare LazyBLO with AmIGO (Arbel & Mairal, 2022), F2SA (Kwon et al., 2023) and
F3SA (Kwon et al., 2023). To ensure the best performance of all the algorithms, we fine tune
the parameters using grid search with the goal of finding the lowest training loss. Consequently, for
AmIGO, we set all the stepsize for updating x, y and z to 0.01. We choose the number of y-update
iterations to be 8 and the number of z-update iterations to be 2. For LazyBLO, we choose the stepsize
α and γ to be 0.01, and β to be 0.05. We set 2 as the inner-loop iteration number N . Following
the same notations as in (Kwon et al., 2023), for F2SA, we choose the stepsize α as 0.1 and γ as
0.01. We set both the step-size ratio ξ and the Lagrangian multiplier λ to 0.5. We choose the number
of inner-loop iterations to be 1. For F3SA, we set 0.05 as α, 0.01 as γ, 0.1 as ξ, 0.5 as λ, and 0.9
as momentum-weight η. We repeat the experiments 10 times with different random seeds, where
the solid line represents the average training loss or test accuracy, and the shaded area shows the
variance containing the maximum and the minimum values. We run the deep hyper-representation
experiments using NVIDIA Tesla V100 GPU.

B.4 ADDITIONAL EXPERIMENT RESULTS

B.4.1 DATA HYPER-CLEANING

We can see in Table 4 that the test accuracy of LazyBLO is comparable to the SOTA baseline
algorithms although LazyBLO uses stale Hessian information. In addition, the number of Hessian
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Table 4: Convergence performance of different bilevel algorithms on data hyper-cleaning on MNIST
dataset (corruption rate p = 0.1, average over 10 repetitions).

LAZYBLO AMIGO STOCBIO MRBO BSA
TEST ACCURACY (%) 72.31 72.12 72.75 69.46 72.92

# OF HESSIAN 6 60 60 1440 720
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Figure 4: Comparison of LazyBLO on data hyper-cleaning on MNIST dataset with different corruption
rates (p).

computations required for LazyBLO to converge is significantly reduced, which is ten times fewer
than AmIGO and stocBiO, 240 times fewer than MRBO, and 120 times fewer than BSA.

Figure 4 illustrates the robustness of LazyBLO against corrupted datasets. We can see from Figure 4
that when the corruption rate p (the probability that a training data label is replaced by a uniformly
random one) is larger, the training loss becomes higher, which is natural since with larger corruption
rate the classification problem becomes challenging. However, the convergence speed of LazyBLO is
similar regardless of the corruption rate p.

B.4.2 DEEP HYPER-REPRESENTATION
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(a) Wall-clock time.
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Figure 5: Test accuracy of different bilevel algorithms on deep hyper-representation on CIFAR-10
dataset (10 repetitions).

Figure 5a illustrates the test accuracy of LazyBLO compared with the baseline algorithms, and it
demonstrates that LazyBLO converges faster in terms of wall-clock time compared to both F2SA
and F3SA. Figure 5b shows the test accuracy of LazyBLO compared to AmIGO in terms of the
number of Hessian computations, and it indicates that with the same number of Hessian evaluations,
LazyBLO has a higher test accuracy compared to AmIGO.

C PROOF OF THEOREM 5.3: NON-CONVEX ℓ (x)

C.1 PROOF SKETCHES

Here, we provide a detailed proof sketch of Theorem 5.3. The detailed proof is provided in Ap-
pendix C.2. The proof is organized into five key steps:
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Step 1) Descent in the upper-level objective function: First, we show the bound for the per-iterate
descent of the UL problem as follows:
Lemma C.1. Under Assumptions 3.1–3.4, the following inequality holds for successive iterations
of Algorithm 1:

E
[
ℓ
(
xn+1
t

)
− ℓ (xn

t )
]
≤ −αt

2
E
[
∥∇ℓ (xn

t )∥
2
]
−
(
αt

2
− α2

tLl

2

)
E
[∥∥∥hf

t,n

∥∥∥2]+ 4σ̃2
gxy

B2
fy

µ2
g

αt

+ 8L2
fL

2
zα

3
tN

N−1∑
i=0

E
[∥∥∥hf

t,i

∥∥∥2]+ 2αtL
2
fE
[
∥yn

t − y∗ (xn
t )∥

2
]
+ 2σ2

fxαt + 16L2
fL

2
zβ

2
tN

2σ2
gyαt

+
(
4σ2

gxy
αt + 4L2

fαt

)
E
[
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2
]
+ 16L2

fL
2
zβ

2
tNαt

N−1∑
i=0

E
[∥∥∇yg

(
xi
t,y

i
t

)∥∥2] ,
for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1}, where the expectation is taken over the
stochasticity of the algorithm.

Lemma C.1 indicates that the descent in the upper-level objective function depends on i) the stochastic
gradient estimator E[∥hf

t,n∥2], ii) the full gradient E[∥∇yg (x
n
t ,y

n
t ) ∥2], iii) the approximation error

of y∗ (x), which is E[∥yn
t − y∗ (xn

t )∥
2
] and will be bounded in Step 2), and iv) the approximation

gap of z∗ (x,y), which is E[∥zt − z∗t ∥2] and will be bounded in Step 3).

Step 2) Descent in the error of y∗ (x): We bound the approximation error of y∗ (x) as follows:
Lemma C.2. Under Assumptions 3.2–3.4, the approximation error of y∗ (x) for Algorithm 1 satisfies
the following inequality:

E
[∥∥yn+1

t − y∗ (xn+1
t

)∥∥2] ≤ (1 + c1) (1 + c2)

(
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)
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2
gy ,

for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1} with some constants c1, c2 > 0, where the
expectation is taken over the randomness of the algorithm.

Lemma C.2 shows that the approximation error of y∗ (x) is affected by the full gradient
E[∥∇yg (x

n
t ,y

n
t ) ∥2], and the stochastic gradient estimator E[∥hf

t,n∥2], which is due to the cou-
pled structure of the bilevel optimization problem.

Step 3) Descent in the error of z∗ (x,y): Next, we demonstrate that the approximation error of
z∗ (x,y) can be bounded as follows:
Lemma C.3. Under Assumptions 3.1–3.4, the following inequality of the approximation error of
z∗ (x,y) holds for Algorithm 1:

E
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for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1} with some constants c3, c4 > 0, where
zt = z

(
x0
t ,y

0
t

)
and z∗t = z∗

(
x0
t ,y

0
t

)
. The expectation is taken over the stochasticity of the

algorithm.
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Lemma C.3 shows that the approximation error of z∗ (x,y) is influenced by the full gradients
E[∥∇yg (x

n
t ,y

n
t ) ∥2] and E[∥∇zq

(
xN
t ,yN

t , zt
)
∥2], and the stochastic gradient estimator E[∥hf

t,n∥2],
which is due to the coupled structure of the quadratic problem in (3).

Step 4) Descent in the potential function: We define the potential function Wt as follows:

Wt = ℓ
(
x0
t

)
+Ky

∥∥y0
t − y∗ (x0

t

)∥∥2 +Kz

∥∥zt (x0
t ,y

0
t

)
− z∗

(
x0
t ,y

0
t

)∥∥2 .
To demonstrate the descent in the potential function, we prove the following lemma.

Lemma C.4. Set c1 =
βtLµg

2(1−βtLµg )
, c2 =

βtLµg

1−2βtLµg
, c3 =

γtLµq

2(1−γtLµq )
, and c4 =

γtLµq

1−2γtLµq
. Under

the same conditions as described in Theorem 5.3 and using Lemmas C.1-C.3, the iterates generated
by Algorithm 1 satisfies: for all t ∈ {0, 1, . . . , T − 1},

E [Wt+1 −Wt] ≤− αt

2

N−1∑
n=0

E
[
∥∇ℓ (xn

t )∥
2
]
+ σ2

gxy
αtCgxyN + σ2

fxαtCfxN + σ2
gyy

αtCgyyN

+ σ2
fyαtCfyN + σ2

gyαt

(
Cg1N + Cg2

1

N

)
where the constant values Cgxy

, Cfx , Cg1 , Cg2 , Cgyy
and Cfy , which are independent of N, are

defined in (18) of Appendix C.

With the proper parameter choices, the coefficients of E[∥yn
t − y∗ (xn

t )∥
2
], E[∥zt − z∗t ∥

2
],

E[∥∇yg (x
n
t ,y

n
t )∥

2
], E[

∥∥∥hf
t,n

∥∥∥2] and E[
∥∥∇zq

(
xN
t ,yN

t , zt
)∥∥2] are made to be non-positive within

the ranges of αt, βt and γt.

Step 5) Proof of Theorem 5.3: Choose a constant step-size αt = α. Under the same conditions as
described in Theorem 5.3, telescoping the result in Lemma C.4 from 0 to T − 1 yields:

1
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,

where W0 = ℓ
(
x0
0

)
+Ky

∥∥y0
0 − y∗ (x0

0

)∥∥2 +Kz

∥∥z0 − z∗
(
x0
0,y

0
0

)∥∥2. The proof of Theorem 5.3
is completed.

C.2 DETAILED PROOF

C.2.1 DESCENT IN THE UPPER-LEVEL OBJECTIVE FUNCTION

Lemma C.5. Under Assumptions 3.1–3.4, the following inequality holds for successive iterations of
Algorithm 1:

E
[
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(
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)
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for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1}, where the expectation is taken over the
stochasticity of the algorithm.
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Proof. We have
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where (a) uses the Lipschitz continuous gradients of ℓ (see Lemma 5.1). (b) follows from the update
rule of Algorithm 1. (c) is because of ⟨x, y⟩ = 1

2 ∥x∥
2
+ 1

2 ∥y∥
2 − 1

2 ∥x− y∥2.

Next, we bound the third term on the right in (8) above. Before that, we bound
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where (a) is because of the update rule of Algorithm 1. (b) is due to ∥z1 + · · ·+ zk∥2 ≤ k ∥z1∥2 +
· · ·+ k ∥zk∥2.
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. (b) utilizes the Lipschitzness of ∇f (x,y, z) (see Lemma 5.1),
and (d) is due to the Lipschitzness of z∗(x,y) (see Lemma 5.2). (e) uses equations (9) and (10). (g)
is because of the bounded variance in Assumption 3.4.
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where (a) uses the definitions of hf
t,n and ∇f (xn

t ,y
n
t , zt). (b) utilizes the bounded variance in

Assumption 3.4. (c) uses ∥x+ y∥2 ≤ 2 ∥x∥2 + 2 ∥y∥2, and (d) is due to the bound of z∗(x,y) in
Lemma 5.2.

Combining (8), (11) and (12) completes the proof of the lemma.

C.2.2 DESCENT IN THE ERROR OF y∗ (x)

Lemma C.6. Under Assumptions 3.2–3.4, the approximation error of y∗ (x) of Algorithm 1 satisfies
the following inequality:
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for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1} with some constants c1, c2 > 0, where the
expectation is taken over the stochasticity of the algorithm.
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n
t )
∥∥2]+ (1 + 1

c1

)
L2
yα

2
tE
[∥∥∥hf

t,n

∥∥∥2]
(d)

≤ (1+c1) (1+c2)E
[
∥yn

t − βt∇yg (x
n
t ,y

n
t )− y∗ (xn

t )∥
2
]
+

(
1+

1

c1

)
L2
yα

2
tE
[∥∥∥hf

t,n

∥∥∥2]
+ (1+c1)

(
1+

1

c2

)
β2
t σ

2
gy , (13)

where (a) results from Young’s inequality. (b) is because of the update rule of Algorithm 1 and the
Lipschitzness of y∗ (·) (see Lemma 5.1). (c) follows from Young’s inequality and the update rule of
Algorithm 1. (d) uses the bounded variance in Assumption 3.4.

To bound the first term on the right, we have

∥yn
t − βt∇yg (x

n
t ,y

n
t )− y∗ (xn

t )∥
2

= ∥yn
t − y∗ (xn

t )∥
2
+ β2

t ∥∇yg (x
n
t ,y

n
t )∥

2 − 2βt ⟨∇yg (x
n
t ,y

n
t ) ,y

n
t − y∗ (xn

t )⟩
(a)

≤
(
1− 2βt

µgLg

µg + Lg

)
∥yn

t − y∗ (xn
t )∥

2
+

(
β2
t − 2βt

µg + Lg

)
∥∇yg (x

n
t ,y

n
t )∥

2
, (14)

where (a) is due to µg-strongly convexity and Lg-smoothness of the lower-level function g (x,y)
(see Assumption 3.2), which implies

⟨∇yg (x
n
t ,y

n
t ) ,y

n
t − y∗ (xn

t )⟩ ≥
µgLg

µg + Lg
∥yn

t − y∗ (xn
t )∥

2
+

1

µg + Lg
∥∇yg (x

n
t ,y

n
t )∥

2
.

The Lemma is proved by substituting (14) in (13).

C.2.3 DESCENT IN THE ERROR OF z∗ (x,y)

Lemma C.7. Under Assumptions 3.1–3.4, the following inequality of the approximation error of
z∗ (x,y) holds for Algorithm 1:

E
[∥∥zt+1 − z∗t+1

∥∥2]
≤
(
(1 + c3) (1 + c4)

(
1− 2γtµgLq

µg + Lq

)
+ 4σ2

gyy
γ2
t (1 + c3)

(
1 +

1

c4

))
E
[
∥zt − z∗t ∥

2
]

+ (1 + c3) (1 + c4)

(
γ2
t − 2γt

µg + Lq

)
E
[∥∥∇zq

(
xN
t ,yN

t , zt
)∥∥2]+ 4

(
1 +

1

c3

)
L2
zβ

2
tN

2σ2
gy

+ 2

(
1 +

1

c3

)
L2
zα

2
tN

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]+ 4

(
1 +

1

c3

)
L2
zβ

2
tN

N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t )∥

2
]

+ 4σ2
gyy

B2
fy

µ2
g

(1 + c3)

(
1 +

1

c4

)
γ2
t + 2σ2

fy (1 + c3)

(
1 +

1

c4

)
γ2
t ,
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for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1} with some constants c3, c4 > 0, where
zt = z

(
x0
t ,y

0
t

)
and z∗t = z∗

(
x0
t ,y

0
t

)
. The expectation is taken over the stochasticity of the

algorithm.

Proof. We have

E
[∥∥zt+1 − z∗t+1

∥∥2]
(a)

≤ E
[
(1 + c3) ∥zt+1 − z∗t ∥

2
+

(
1 +

1

c3

)∥∥z∗ (x0
t+1,y

0
t+1

)
− z∗

(
x0
t ,y

0
t

)∥∥2]
(b)

≤ E
[
(1 + c3) ∥zt+1 − z∗t ∥

2
+

(
1 +

1

c3

)
L2
z

(∥∥x0
t+1 − x0

t

∥∥+ ∥∥y0
t+1 − y0

t

∥∥)2]
(c)

≤ E
[
(1 + c3) ∥zt+1 − z∗t ∥

2
+ 2

(
1 +

1

c3

)
L2
z

∥∥xN
t − x0

t

∥∥2 + 2

(
1 +

1

c3

)
L2
z

∥∥yN
t − y0

t

∥∥2]
(d)

≤ (1 + c3)E
[
∥zt+1 − z∗t ∥

2
]
+ 2

(
1 +

1

c3

)
L2
zα

2
tN

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]

+ 2

(
1 +

1

c3

)
L2
zβ

2
tN

N−1∑
n=0

E
[∥∥hg

t,n

∥∥2]
(e)

≤ (1 + c3)E
[
∥zt+1 − z∗t ∥

2
]
+ 4

(
1 +

1

c3

)
L2
zβ

2
tN

N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t )∥

2
]

+ 4

(
1 +

1

c3

)
L2
zβ

2
tN

N−1∑
n=0

E
[∥∥hg

t,n −∇yg (x
n
t ,y

n
t )
∥∥2]+ 2

(
1 +

1

c3

)
L2
zα

2
tN

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]
(f)

≤ (1 + c3)E
[
∥zt+1 − z∗t ∥

2
]
+ 2

(
1 +

1

c3

)
L2
zα

2
tN

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]

+ 4

(
1 +

1

c3

)
L2
zβ

2
tN

N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t )∥

2
]
+ 4

(
1 +

1

c3

)
L2
zβ

2
tN

2σ2
gy , (15)

where (a) follows from Young’s inequality. (b) is due to the Lipschitzness of z∗ (·, ·) (see Lemma 5.2).
(c) and (e) result from ∥x+ y∥2 ≤ 2 ∥x∥2 +2 ∥y∥2. (d) is because of equations (9) and (10). (f) uses
the bounded variance in Assumption 3.4.

Next, we bound the first term on the right:

E
[
∥zt+1 − z∗t ∥

2
]

(a)
= E

[
∥zt − γth

q
t − z∗t ∥

2
]

(b)

≤ E
[
(1 + c4)

∥∥zt − γt∇zq
(
xN
t ,yN

t , zt
)
− z∗t

∥∥2 + (1 + 1

c4

)
γ2
t

∥∥∇zq
(
xN
t ,yN

t , zt
)
− hq

t

∥∥2]
= E

[
(1 + c4)

(
∥zt − z∗t ∥

2
+ γ2

t

∥∥∇zq
(
xN
t ,yN

t , zt
)∥∥2 − 2γt

〈
∇zq

(
xN
t ,yN

t , zt
)
, zt − z∗t

〉)]
+

(
1 +

1

c4

)
γ2
t E
[∥∥∇zq

(
xN
t ,yN

t , zt
)
− hq

t

∥∥2]
(c)

≤ (1 + c4)

(
1− 2γt

µgLq

µg + Lq

)
E
[
∥zt − z∗t ∥

2
]
+

(
1 +

1

c4

)
γ2
t E
[∥∥∇zq

(
xN
t ,yN

t , zt
)
− hq

t

∥∥2]
+ (1 + c4)

(
γ2
t − 2γt

µg + Lq

)
E
[∥∥∇zq

(
xN
t ,yN

t , zt
)∥∥2] , (16)

where (a) results from the update rule of Algorithm 1, and (b) uses Young’s inequality. (c) follows
from µg-strongly convexity and Lq-smoothness of q (x,y, z), which implies〈

∇zq
(
xN
t ,yN

t , zt
)
, zt − z∗t

〉
≥ µgLq

µg + Lq
∥zt − z∗t ∥

2
+

1

µg + Lq

∥∥∇zq
(
xN
t ,yN

t , zt
)∥∥2 .
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Then, we bound the second term on the right as follows:

E
[∥∥∇zq

(
xN
t ,yN

t , zt
)
− hq

t

∥∥2]
(a)
= E

[∥∥∥∇2
yyg

(
xN
t ,yN

t

)
zt +∇yf

(
xN
t ,yN

t

)
−
(
∇2

yyg
(
xN
t ,yN

t ;Dgyy

t

)
zt +∇yf

(
xN
t ,yN

t ;Dfy
t

))∥∥∥2]
(b)

≤ 2E
[
∥zt∥2

∥∥∇2
yyg

(
xN
t ,yN

t

)
−∇2

yyg
(
xN
t ,yN

t ;Dgyy

t

)∥∥2+∥∥∥∇yf
(
xN
t ,yN

t

)
−∇yf

(
xN
t ,yN

t ;Dfy
t

)∥∥∥2]
(c)

≤ E
[
2σ2

gyy
∥zt − z∗t + z∗t ∥

2
+ 2σ2

fy

]
(d)

≤ E
[
4σ2

gyy
∥zt − z∗t ∥

2
+ 4σ2

gyy
∥z∗t ∥

2
+ 2σ2

fy

]
(e)

≤ 4σ2
gyy

E
[
∥zt − z∗t ∥

2
]
+ 4σ2

gyy

B2
fy

µ2
g

+ 2σ2
fy , (17)

where (a) follows from the definitions of hq
t and ∇zq (x,y, z). (b) and (d) are because of ∥x+ y∥2 ≤

2 ∥x∥2 + 2 ∥y∥2. (c) results from the bounded variances in Assumption 3.4. (e) utilizes the bound of
z∗(x,y) in Lemma 5.2.

Substituting (17) in (16) and then substituting the result in (15), the lemma is proved.

C.2.4 DESCENT IN THE POTENTIAL FUNCTION

We define the potential function Wt as follows:

Wt = ℓ
(
x0
t

)
+Ky

∥∥y0
t − y∗ (x0

t

)∥∥2 +Kz

∥∥zt (x0
t ,y

0
t

)
− z∗

(
x0
t ,y

0
t

)∥∥2
Lemma C.8. Set c1 =

βtLµg

2(1−βtLµg )
, c2 =

βtLµg

1−2βtLµg
, c3 =

γtLµq

2(1−γtLµq )
, and c4 =

γtLµq

1−2γtLµq
. Under

the same conditions as described in Theorem C.9 and using Lemmas C.1-C.3, the iterates generated
by Algorithm 1 satisfies: for all t ∈ {0, 1, . . . , T − 1},

E [Wt+1 −Wt] ≤− αt

2

N−1∑
n=0

E
[
∥∇ℓ (xn

t )∥
2
]
+ σ2

gxy
αtCgxy

N + σ2
fxαtCfxN + σ2

gyy
αtCgyy

N

+ σ2
fyαtCfyN + σ2

gyαt

(
Cg1N + Cg2

1

N

)
,

where the constant values Cgxy
, Cfx , Cg1 , Cg2 , Cgyy

and Cfy , which are independent of N, are
defined as:

Cgxy
=

4B2
fy

µ2
g

, Cfx = 2, Cg1 =
2cβKy

Lµg

+
8L2

zc
2
βNKz

cγLµq

,

Cg2 =
L2
l c

2
β

16L2
fL

2
z

, Cgyy
=

8B2
fy
cγKz

µ2
gLµq

N
, Cfy =

4cγKz

Lµq
N

,

(18)

where Ky and Kz are defined in (23) of Theorem C.9.

Proof. From Lemma C.1, we have

N−1∑
n=0

E
[
ℓ
(
xn+1
t

)
− ℓ (xn

t )
]
= E

[
ℓ
(
x0
t+1

)
− ℓ

(
x0
t

)]
≤ −αt

2

N−1∑
n=0

E
[
∥∇ℓ (xn

t )∥
2
]
+

(
−αt

2
+

α2
tLl

2
+ 8L2

fL
2
zα

3
tN

2

)N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]+ 2σ2
fxNαt

+
(
4σ2

gxy
Nαt + 4L2

fNαt

)
E
[
∥zt − z∗t ∥

2
]
+ 16L2

fL
2
zβ

2
tN

2αt

N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t )∥

2
]
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+ 2αtL
2
f

N−1∑
n=0

E
[
∥yn

t − y∗ (xn
t )∥

2
]
+ 4σ̃2

gxy
|Dgxy |−1

B2
fy

µ2
g

Nαt + 16L2
fL

2
zβ

2
tN

3σ2
gyαt.

Choosing αt ≤ Ll

16L2
fL

2
zN

2 and using the definition of βt = cβαt, we get

E
[
ℓ
(
x0
t+1

)
− ℓ

(
x0
t

)]
≤ −αt

2

N−1∑
n=0

E
[
∥∇ℓ (xn

t )∥
2
]
+
(
4σ2

gxy
Nαt + 4L2

fNαt

)
E
[
∥zt − z∗t ∥

2
]

+
(
−αt

2
+ α2

tLl

)N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]+ 2αtL
2
f

N−1∑
n=0

E
[
∥yn

t − y∗ (xn
t )∥

2
]
+ 2σ2

fxNαt

+ 16L2
fL

2
zc

2
βN

2α3
t

N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t )∥

2
]
+

L2
l c

2
β

16L2
fL

2
zN

σ2
gyαt + 4σ2

gxy

B2
fy

µ2
g

Nαt. (19)

With the result from Lemma C.2, we have

N−1∑
n=0

E
[∥∥yn+1

t −y∗ (xn+1
t

)∥∥2−∥yn
t −y∗ (xn

t )∥
2
]
=E

[∥∥y0
t+1−y∗ (x0

t+1

)∥∥2−∥∥y0
t −y∗ (x0

t

)∥∥2]
≤
(
(1 + c1) (1 + c2)

(
1− 2βt

µgLg

µg + Lg

)
− 1

)N−1∑
n=0

E
[
∥yn

t − y∗ (xn
t )∥

2
]

+

(
1 +

1

c1

)
L2
yα

2
t

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]+ (1 + c1)

(
1 +

1

c2

)
β2
t σ̃

2
g |Dgy |−1

N

+ (1 + c1) (1 + c2)

(
β2
t − 2βt

µg + Lg

)N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t )∥

2
]
.

Denote Lµg
=

µgLg

µg+Lg
. Choose c1 and c2 such that

(1 + c1) (1 + c2)
(
1− 2βtLµg

)
= 1−

βtLµg

2
.

Let

(1 + c2)
(
1− 2βtLµg

)
= 1− βtLµg

=⇒ c2 =
βtLµg

1− 2βtLµg

& βt ≤
1

2Lµg

.

Thus,

c1 =
βtLµg

2
(
1− βtLµg

) .
Moreover, this implies that

1 +
1

c2
= 1 +

1− 2βtLµg

βtLµg

≤ 1

βtLµg

, 1 +
1

c1
=

2
(
1− βtLµg

)
βtLµg

≤ 2

βtLµg

.

Use the definition of βt = cβαt. Substituting c1 and c2 and choosing βt ≤ 1
µg+Lg

, we have

E
[∥∥y0

t+1 − y∗ (x0
t+1

)∥∥2 − ∥∥y0
t − y∗ (x0

t

)∥∥2] ≤ −
cβLµg

2
αt

N−1∑
n=0

E
[
∥yn

t − y∗ (xn
t )∥

2
]

+
2L2

yαt

cβLµg

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]− cβαt

µg + Lg

N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t )∥

2
]
+

2

Lµg

cβαtσ
2
gyN. (20)
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According to Lemma C.3, we have

E
[∥∥zt+1 − z∗t+1

∥∥2 − ∥zt − z∗t ∥
2
]

= E
[∥∥z (x0

t+1,y
0
t+1

)
− z∗

(
x0
t+1,y

0
t+1

)∥∥2 − ∥∥z (x0
t ,y

0
t

)
− z∗

(
x0
t ,y

0
t

)∥∥2]
≤
(
(1 + c3) (1 + c4)

(
1− 2γtµgLq

µg + Lq

)
+ 4σ2

gyy
γ2
t (1 + c3)

(
1 +

1

c4

)
− 1

)
E
[
∥zt − z∗t ∥

2
]

+ (1 + c3) (1 + c4)

(
γ2
t − 2γt

µg + Lq

)
E
[∥∥∇zq

(
xN
t ,yN

t , zt
)∥∥2]+ 4

(
1 +

1

c3

)
L2
zβ

2
tN

2σ2
gy

+ 2

(
1 +

1

c3

)
L2
zα

2
tN

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]+ 4

(
1 +

1

c3

)
L2
zβ

2
tN

N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t )∥

2
]

+ 2σ2
fy (1 + c3)

(
1 +

1

c4

)
γ2
t + 4σ2

gyy

B2
fy

µ2
g

(1 + c3)

(
1 +

1

c4

)
γ2
t .

Similar as c1 and c2, we choose

c3 =
γtLµq

2(1− γtLµq )
, c4 =

γtLµq

1− 2γtLµq

,

where γt ≤ 1
2Lµq

and we denote Lµq =
µgLq

µg+Lq
. This implies that

1 +
1

c4
≤ 1

γtLµq

, 1 +
1

c3
≤ 2

γtLµq

.

According to the definitions of βt = cβαt and γt = cγαt, substituting c3 and c4 and choosing
γt ≤ 1

µg+Lq
, we get

E
[∥∥z (x0

t+1,y
0
t+1

)
− z∗

(
x0
t+1,y

0
t+1

)∥∥2 − ∥∥z (x0
t ,y

0
t

)
− z∗

(
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t ,y

0
t

)∥∥2]
≤
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−
cγLµq
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8
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E
[
∥zt − z∗t ∥

2
]
− cγαt

µg + Lq
E
[∥∥∇zq

(
xN
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E
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2
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E
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]
+
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2
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fy

2

Lµq
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g

2

Lµq

cγαt. (21)

Adding equations (19), (20) and (21), we get
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(
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t ,yN
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+
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2
β
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2
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σ2
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g
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Lµg
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2
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+Kz

(
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Lµq
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8
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2
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)
,

where

C̄y = 2αtL
2
f −

cβLµg

2
αtKy
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C̄z = 4αtσ
2
gxy

N + 4L2
fNαt −

cγLµq

2
αtKz +

8

Lµq

σ2
gyy

cγαtKz

C̄g = 16L2
fL

2
zc

2
βN

2α3
t −

cβαt

µg + Lg
Ky +

8

cγLµq

L2
zc

2
βαtNKz

C̄h = α2
tLl −

αt

2
+

2

cβLµg

L2
yαtKy +

4

cγLµq

L2
zαtNKz

C̄q = − cγαt

µg + Lq
Kz ≤ 0.

To ensure C̄y ≤ 0, we choose Ky ≥ 4L2
f

cβLµg
.

To ensure C̄z ≤ 0, we have

C̄z = 4αtσ
2
gxy

N + 4L2
fNαt −

cγLµq

2
αtKz +

8

Lµq

σ2
gyy

cγαtKz

= 4αtσ
2
gxy

N + 4L2
fNαt −

cγLµq

2
αtKz +

8

Lµq

σ̃2
gyy

|Dgyy |−1
cγαtKz

(a)

≤
cγLµq

6
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cγLµq

6
αtKz −

cγLµq

2
αtKz +

cγLµq

6
αtKz = 0,

where (a) utilizes Kz ≥ max

{
24σ2

gxy
N

cγLµq
,
24L2

fN

cγLµq

}
and |Dgyy | ≥

48σ̃2
gyy

L2
µq

, which is the data batch.

To ensure C̄g ≤ 0, we have

C̄g = 16L2
fL

2
zc

2
βN

2α3
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µg + Lg
Ky +

8

cγLµq

L2
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2
βαtNKz

(a)

≤ 1

2

cβαt

µg + Lg
Ky −

cβαt

µg + Lg
Ky +

1

2

cβαt

µg + Lg
Ky = 0,

where (a) results from αt ≤
√

Ky

32(µg+Lg)L2
fL

2
zcβN

2 and cγ ≥ 16(µg+Lg)L
2
zcβNKz

KyLµq
.

To ensure C̄h ≤ 0, we have

C̄h = α2
tLl −

αt

2
+

2

cβLµg

L2
yαtKy +

4

cγLµq

L2
zαtNKz

(a)

≤ αt

6
− αt

2
+

αt

6
+

αt

6
= 0,

where (a) is due to αt ≤ 1
6Ll

, cβ ≥ 12L2
yKy

Lµg
and cγ ≥ 24L2

zNKz

Lµq
.

As a summary, to ensure the descent of the potential function, we choose

αt ≤ min

{
1

6Ll
,

1

cβ (µg + Lg)
,

1

cγ (µg + Lq)
,

1

2Lµgcβ
,

1

2Lµqcγ
,

Ll

16L2
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2
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2
,√
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32 (µg + Lg)L2
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2
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}
,

cβ =
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yKy

Lµg

, cγ = max

{
24L2
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Lµq

,
192 (µg + Lg)L

2
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2
y

Lµg
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}
, Ky =

Lf√
3Ly

,

Kz = max

{
24σ2
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N

cγLµq

,
24L2
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}
, |Dgyy | ≥
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.
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Then, we get

E [Wt+1 −Wt] ≤ −αt

2

N−1∑
n=0

E
[
∥∇l (xn

t )∥
2
]
+

L2
l c

2
β

16L2
fL

2
zN

σ2
gyαt + 4σ2

gxy

B2
fy

µ2
g

Nαt + 2σ2
fxNαt

+Ky
2cβ
Lµg

αtσ
2
gyN +Kz

(
8B2

fy

µ2
gLµq

σ2
gyy

cγαt +
4cγ
Lµq

σ2
fyαt +

8

cγLµq

L2
zc

2
βαtN

2σ2
gy

)
.

Therefore, the lemma is proved.

C.2.5 PROOF OF THEOREM 5.3

Theorem C.9 (Non-Convex ℓ(x)). Under Assumptions 3.1–3.4, choose step-sizes αt = α, βt ≜ cβα,
and γt≜cγα for all t∈{0, 1, . . . , T} with

cβ =
12L2

yKy

Lµg

, cγ=max

{
24L2

zNKz

Lµq

,
192 (µg + Lg)L

2
zNKzL

2
y

Lµg
Lµq

}
, (22)

where

Ky=
Lf√
3Ly

, Kz = max

{
24σ2

gxy
N

cγLµq

,
24L2

fN

cγLµq

}
, Lµg

=
µgLg

µg + Lg
, Lµq

=
µgLq

µg + Lq
. (23)

Moreover, choose α such that

α ≤ min { 1

6Ll
,

1

cβ (µg + Lg)
,

1

cγ (µg + Lq)
,

1

2Lµg
cβ

,
1

2Lµq
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,
Ll

16L2
fL

2
zN

2
,√
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2
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.

Then, the iterates generated by LazyBLO satisfy:

1

TN

T−1∑
t=0

N−1∑
n=0

E
[
∥∇ℓ (xn

t )∥
2
]
= O

(
∆0

NTα

)
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(
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gxy
+ σ2

fx + σ2
gyy

+ σ2
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)
,

where ∆0 = (ℓ(x0
0)− ℓ∗) + ∥y0

0 − y∗(x0
0)∥2 + ∥z0 − z∗(x0

0,y
0
0)∥2.

Proof. Choose αt as a constant stepsize αt = α. Summing the result in Lemma C.4 from t = 0 to
T − 1, and then dividing by NT on both sides, we get

E [WT −W0]

NT
≤− α

2TN
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N
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N

)
.

Rearranging the terms and multiplying by 2/α on both sides, we have

1
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E
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2
]
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,

where W0 = ℓ
(
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0

)
+Ky
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Therefore,

1

TN

T−1∑
t=0

N−1∑
n=0

E
[
∥∇ℓ (xn

t )∥
2
]

= O

(
ℓ
(
x0
0

)
− ℓ∗

NTα

)
+O

(∥∥y0
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0
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)
+O

(∥∥z0 − z∗
(
x0
0,y

0
0

)∥∥2
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(
σ2
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+ σ2
fx + σ2

gyy
+ σ2

fy + σ2
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)
.

The proof of the theorem is completed.

D PROOF OF THEOREM 5.6: STRONGLY-CONVEX ℓ (x)

D.1 DESCENT IN THE UPPER-LEVEL OBJECTIVE FUNCTION

Lemma D.1. Under Assumptions 3.1–3.4. For strongly-convex and smooth ℓ (x), the following
inequality holds for successive iterations of Algorithm 1:

E
[
ℓ
(
xn+1
t

)
− ℓ∗

]
≤ (1− µfαt)E [ℓ (xn
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n
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2
]
+ 2σ2
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B2
fy
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g

αt,

for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1}, where the expectation is taken over the
stochasticity of the algorithm.

Proof. From Lemma C.1, we have

E
[
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)
− ℓ (xn

t )
]

≤ −αt

2
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αt. (24)

For a strongly convex function ℓ (x), we have the fact that for all x ∈ Ru,

∥∇ℓ(x)∥2 ≥ 2µf (ℓ(x)− ℓ∗) . (25)

Substitute (25) in (24) and subtract ℓ∗ from both sides. After rearranging the terms, the lemma is
proved.

D.2 DESCENT IN THE ERROR OF y∗ (x)

Lemma D.2. Under Assumptions 3.2–3.4, the approximation error of y∗ (x) of Algorithm 1 satisfies
the following inequality:

E
[∥∥yn+1

t − y∗ (xn+1
t

)∥∥2]
30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

≤ (1 + c1) (1− 2βtµg)E
[
∥yn
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t )∥

2
]
+ 2β2
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2
]
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2
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[∥∥∥hf
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∥∥∥2]+ 2 (1 + c1)β
2
t σ

2
gy ,

for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1} with a constant c1 > 0, where the expecta-
tion is taken over the stochasticity of the algorithm.

Proof.
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where (a) results from Young’s inequality. (b) is because of the update rule of Algorithm 1 and the
Lipschitzness of y∗ (·) (see Lemma 5.1). (c) follows from the update rule of Algorithm 1.

Next, we bound the first term of the above inequality.
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where (a) uses the fact that E
[
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t,n|Fn

t

]
= ∇yg (x

n
t ,y

n
t ), and Fn

t ≜ σ
{
y0
0,x

0
0, · · · ,yn

t ,x
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}
is defined as the sigma algebra generated by the iteration sequence of Algorithm 1. (b) utilizes
the fact that for µg-strongly convex g (x,y), we have ⟨∇yg (x,y1)−∇yg (x,y2) ,y1 − y2⟩ ≥
µg ∥y1 − y2∥2. (c) is because of the bounded variance in Assumption 3.4.

Substituting (27) in (26) yields the lemma.

D.3 DESCENT IN THE ERROR OF z∗ (x,y)

Lemma D.3. Under Assumptions 3.1–3.4, the following inequality of the approximation error of
z∗ (x,y) holds for Algorithm 1:
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2
t ,

for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1} with some constants c3, c4 > 0, where the
expectation is taken over the stochasticity of the algorithm.

Proof. With the results from the proof of Lemma C.7, we have
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(28)

Then, we consider the first term on the right:

E
[
∥zt+1 − z∗t ∥

2
]

(a)
= E

[
∥zt − z∗t ∥

2
]
+ γ2

t E
[
∥hq

t∥
2
]
− 2γtE [⟨hq

t , zt − z∗t ⟩]

≤ E
[
∥zt − z∗t ∥

2
]
+ 2γ2

t E
[∥∥hq

t −∇zq
(
xN
t ,yN

t , zt
)∥∥2]+ 2γ2

t E
[∥∥∇zq

(
xN
t ,yN

t , zt
)∥∥2]

− 2γtE [⟨hq
t , zt − z∗t ⟩]

(b)

≤ E
[
∥zt − z∗t ∥

2
]
+ 2γ2

t E
[∥∥hq

t −∇zq
(
xN
t ,yN

t , zt
)∥∥2]+ 2γ2

t E
[∥∥∇zq

(
xN
t ,yN

t , zt
)∥∥2]

− 2γtE
[〈
∇zq

(
xN
t ,yN

t , zt
)
, zt − z∗t

〉]
(c)

≤ (1−2γtµg)E
[
∥zt−z∗t ∥

2
]
+2γ2

t E
[∥∥hq

t−∇zq
(
xN
t ,yN

t , zt
)∥∥2]+2γ2

t E
[∥∥∇zq

(
xN
t ,yN

t , zt
)∥∥2] ,
(29)

where (a) is due to the update rule of Algorithm 1. (b) follows from the fact that E [hq
t |Ft] =

∇zq
(
xN
t ,yN

t , zt
)
, and (c) utilizes the fact that for µg-strongly convex q (x,y, z), we have

⟨∇zq (x,y, z1)−∇zq (x,y, z2) , z1 − z2⟩ ≥ µg ∥z1 − z2∥2.

Next, we consider the second term E
[∥∥hq

t −∇zq
(
xN
t ,yN

t , zt
)∥∥2] of the above inequality:

E
[∥∥hq

t −∇zq
(
xN
t ,yN

t , zt
)∥∥2]

(a)
= E

[∥∥∥∇2
yyg

(
xN
t ,yN

t

)
zt+∇yf

(
xN
t ,yN

t

)
−
(
∇2

yyg
(
xN
t ,yN

t ;Dgyy

t

)
zt+∇yf

(
xN
t ,yN

t ;Dfy
t

))∥∥∥2]
≤ 2E

[
∥zt∥2

∥∥∇2
yyg

(
xN
t ,yN

t

)
−∇2

yyg
(
xN
t ,yN

t ;Dgyy

t

)∥∥2+∥∥∥∇yf
(
xN
t ,yN

t

)
−∇yf

(
xN
t ,yN

t ;Dfy
t

)∥∥∥2]
(b)

≤ E
[
2σ2

gyy
∥zt − z∗t + z∗t ∥

2
]
+ 2σ2

fy

≤ E
[
4σ2

gyy
∥zt − z∗t ∥

2
+ 4σ2

gyy
∥z∗t ∥

2
]
+ 2σ2

fy

(c)

≤ 4σ2
gyy

E
[
∥zt − z∗t ∥

2
]
+ 4σ2

gyy

B2
fy

µ2
g

+ 2σ2
fy , (30)

where (a) results from the definitions of hq
t and ∇zq

(
xN
t ,yN

t , zt
)
. (b) uses the bounded variance in

Assumption 3.4. (c) is because of the bound of z∗(x,y) in Lemma 5.2.

Substituting (30) into (29) and then substituting the obtained inequality into (28) proves the lemma.
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D.4 DESCENT IN THE POTENTIAL FUNCTION

We define a different potential function Ŵt as follows:

Ŵt =

N−1∑
n=0

(ℓ (xn
t )− ℓ∗) +

N−1∑
n=0

∥yn
t − y∗ (xn

t )∥
2
+ ∥zt − z∗t ∥

2
.

Lemma D.4. Choose c1 =
βtµg

2(1−βtµg)
, and c3 =

γtµg

2(1−γtµg)
. Under the same conditions as described

in Theorem D.5 and utilizing Lemmas B.D.1-B.D.3, the iterates generated by Algorithm 1 satisfies:

E
[
Ŵt+1

]
≤ (1− µfαt)E

[
Ŵt

]
+ 16L2

fL
2
z ĉ

2
βα

3
tN

3σ2
gy + 4σ2

gxy

B2
fy

µ2
g

αtN + 2σ2
fxαtN + 4ĉ2βσ

2
gyNα2

t

+ 8σ2
fy ĉ

2
γα

2
t + 16σ2

gyy

B2
fy

µ2
g

ĉ2γα
2
t +

8

µg ĉγ
L2
z ĉ

2
βN

2σ2
gyαt,

for all t ∈ {0, 1, . . . , T − 1}.

Proof. With the results from Lemma D.1, we have

N−1∑
n=0

E
[
ℓ
(
xn+1
t

)
− ℓ∗

]
≤ E

[
(1− µfαt)

N−1∑
n=0

(ℓ (xn
t )− ℓ∗) +

(
α2
tLl

2
− αt

2
+ 8L2

fL
2
zα

3
tN

2

)N−1∑
n=0

∥∥∥hf
t,n

∥∥∥2
+
(
4σ2

gxy
αtN + 4L2

fαtN
)
∥zt − z∗t ∥

2
+ 16L2

fL
2
zβ

2
t αtN

2
N−1∑
n=0

∥∇yg (x
n
t ,y

n
t )∥

2

+2L2
fαt

N−1∑
n=0

∥yn
t − y∗ (xn

t )∥
2

]
+ 16L2

fL
2
zβ

2
t αtN

3σ2
gy + 2σ2

fxαtN + 4σ2
gxy

B2
fy

µ2
g

αtN

(a)

≤ E

[
(1− µfαt)

N−1∑
n=0

(ℓ (xn
t )− ℓ∗) +

(
α2
tLl

2
− αt

2
+ 8L2

fL
2
zα

3
tN

2

)N−1∑
n=0

∥∥∥hf
t,n

∥∥∥2
+
(
4σ2

gxy
αtN + 4L2

fαtN
)
∥zt − z∗t ∥

2
+
(
2L2

fαt + 16L2
fL

2
zβ

2
t αtN

2L2
g

)N−1∑
n=0

∥yn
t − y∗ (xn

t )∥
2

]

+ 16L2
fL

2
zβ

2
t αtN

3σ2
gy + 4σ2

gxy

B2
fy

µ2
g

αtN + 2σ2
fxαtN

(b)

≤ E

[
(1− µfαt)

N−1∑
n=0

(ℓ (xn
t )− ℓ∗) +

(
α2
tLl

2
− αt

2
+ 8L2

fL
2
zα

3
tN

2

)N−1∑
n=0

∥∥∥hf
t,n

∥∥∥2
+
(
4σ2

gxy
αtN + 4L2

fαtN
)
∥zt − z∗t ∥

2
+
(
2L2

fαt + 16L2
fL

2
z ĉ

2
βα

3
tN

2L2
g

)N−1∑
n=0

∥yn
t − y∗ (xn

t )∥
2

]

+ 16L2
fL

2
z ĉ

2
βα

3
tN

3σ2
gy + 4σ2

gxy

B2
fy

µ2
g

αtN + 2σ2
fxαtN, (31)

where (a) uses the fact that ∇yg (x,y
∗ (x)) = 0 and utilizes the the Lipschitzness of ∇yg (x,y) (see

Assumption 3.2). (b) follows from the definition of βt = ĉβαt.

From Lemma D.2, we have

N−1∑
n=0

E
[∥∥yn+1

t − y∗ (xn+1
t

)∥∥2]
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(a)

≤ E

[
(1 + c1)

(
1− 2βtµg + 2β2

tL
2
g

)N−1∑
n=0

∥yn
t − y∗ (xn

t )∥
2
+

(
1 +

1

c1

)
L2
yα

2
t

N−1∑
n=0

∥∥∥hf
t,n

∥∥∥2]
+ 2 (1 + c1)β

2
t σ

2
gyN,

where (a) is because of the fact that ∇yg (x,y
∗ (x)) = 0 and follows from the the Lipschitzness of

∇yg (x,y) (see Assumption 3.2).

From the choice of c1 =
βtµg

2(1−βtµg)
, we have 1 + 1

c1
≤ 2

µgβt
. Choosing βt ≤ µg

2L2
g

and using the
definition of βt = ĉβαt, we get

N−1∑
n=0

E
[∥∥yn+1

t − y∗ (xn+1
t

)∥∥2]
≤ E

[(
1− µg ĉβαt

2

)N−1∑
n=0

∥yn
t − y∗ (xn

t )∥
2
+

2

µg ĉβ
L2
yαt

N−1∑
n=0

∥∥∥hf
t,n

∥∥∥2]+ 4ĉ2βσ
2
gyNα2

t . (32)

Following from Lemma D.3, we have

E
[∥∥zt+1 − z∗t+1

∥∥2]
(a)

≤ (1+c3)
(
1−2γtµg+8σ2

gyy
γ2
t +2γ2

tL
2
q

)
E
[
∥zt−z∗t ∥

2
]
+2

(
1+

1

c3

)
L2
zα

2
tN

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]

+ 4

(
1+

1

c3

)
L2
zβ

2
tNL2

g

N−1∑
n=0

E
[
∥yn

t − y∗ (xn
t )∥

2
]
+ 4

(
1+

1

c3

)
L2
zβ

2
tN

2σ2
gy + 4σ2

fy (1+c3) γ
2
t

+ 8σ2
gyy

B2
fy

µ2
g

(1 + c3) γ
2
t ,

where (a) utilizes fact that ∇yg (x,y
∗ (x)) = 0 and ∇zq (x,y, z

∗) = 0. In addition, it uses the the
Lipschitzness of ∇yg (x,y) in Assumption 3.2 and ∇zq (x,y, z) proved as follows.

∥∇zq (x,y, z1)−∇zq (x,y, z2)∥
(a)
=
∥∥∇2

yyg(x,y)z1+∇yf(x,y)−∇2
yyg(x,y)z2−∇yf(x,y)

∥∥
=
∥∥∇2

yyg(x,y)
∥∥ ∥z1 − z2∥

(b)

≤ Bgyy
∥z1 − z2∥

(c)
= Lq ∥z1 − z2∥ ,

where (a) follows from the definition of ∇zq (x,y, z). (b) assumes
∥∥∇2

yyg(x, y)
∥∥ ≤ Bgyy

, and (c)
defines Lq = Bgyy

.

From the choice of c3 =
γtµg

2(1−γtµg)
, we get 1 + 1

c3
≤ 2

µgγt
. Selecting γt ≤ µg

4L2
q

, γt ≤ µg

16σ2
gyy

and

using the definition of βt = ĉβαt, γt = ĉγαt, we have

E
[∥∥zt+1 − z∗t+1

∥∥2] ≤ E

[(
1− µg ĉγαt

2

)
∥zt − z∗t ∥

2
+

4

µg ĉγ
L2
zαtN

N−1∑
n=0

∥∥∥hf
t,n

∥∥∥2
+

8

µg ĉγ
L2
z ĉ

2
βNL2

gαt

N−1∑
n=0

∥yn
t −y∗ (xn

t )∥
2

]
+16σ2

gyy

B2
fy

µ2
g

ĉ2γα
2
t+8σ2

fy ĉ
2
γα

2
t+

8

µg ĉγ
L2
z ĉ

2
βN

2σ2
gyαt.

(33)

Combining equations (31), (32) and (33), we get

E
[
Ŵt+1

]
≤ (1− µfαt)E

[
Ŵt

]
+ ĈhE

[
N−1∑
n=0

∥∥∥hf
t,n

∥∥∥2]+ ĈyE

[
N−1∑
n=0

∥yn
t − y∗ (xn

t )∥
2

]

+ ĈzE
[
∥zt − z∗t ∥

2
]
+ 16L2

fL
2
z ĉ

2
βα

3
tN

3σ2
gy + 4σ2

gxy

B2
fy

µ2
g

αtN + 2σ2
fxαtN + 4ĉ2βσ

2
gyNα2

t
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+ 16σ2
gxy

B2
fy

µ2
g

ĉ2γα
2
t + 8σ2

fy ĉ
2
γα

2
t +

8

µg ĉγ
L2
z ĉ

2
βN

2σ2
gyαt,

where

Ĉh =
α2
tLl

2
− αt

2
+ 8L2

fL
2
zα

3
tN

2 +
2

µg ĉβ
L2
yαt +

4

µg ĉγ
L2
zαtN,

Ĉy = 2L2
fαt + 16L2

fL
2
z ĉ

2
βα

3
tN

2L2
g + µfαt −

µg ĉβαt

2
+

8

µg ĉγ
L2
z ĉ

2
βNL2

gαt,

Ĉz = 4σ2
gxy

αtN + 4L2
fαtN + µfαt −

µg ĉγαt

2
.

To ensure Ĉh ≤ 0, we have

Ĉh =
α2
tLl

2
− αt

2
+ 8L2

fL
2
zα

3
tN

2 +
2

µg ĉβ
L2
yαt +

4

µg ĉγ
L2
zαtN

(a)

≤ αt

8
− αt

2
+

αt

8
+

αt

8
+

αt

8
= 0,

where (a) follows from αt ≤ min
{

1
4Ll

, 1
8LfLzN

}
, ĉβ ≥ 16L2

y

µg
, and ĉγ ≥ 32L2

z

µg
.

To ensure Ĉy ≤ 0, we have

Ĉy = 2L2
fαt + 16L2

fL
2
z ĉ

2
βα

3
tN

2L2
g + µfαt −

µg ĉβαt

2
+

8

µg ĉγ
L2
z ĉ

2
βNL2

gαt

=
(
2L2

f + µf

)
αt + 16L2

fL
2
z ĉ

2
βα

3
tN

2L2
g −

µg ĉβαt

2
+

8

µg ĉγ
L2
z ĉ

2
βNL2

gαt

(a)

≤ µg ĉβαt

6
+

µg ĉβαt

6
− µg ĉβαt

2
+

µg ĉβαt

6
= 0,

where (a) is because of αt ≤
√

µg

96L2
fL

2
zL

2
gN

2ĉβ
, ĉβ ≥ 12L2

f+6µf

µg
, and ĉγ ≥ µ2

g

48L2
zL

2
gNĉβ

.

To ensure Ĉz ≤ 0, we utilize that ĉγ ≥
8σ2

gxy
N+8L2

fN+2µf

µg
.

As a summary, to ensure the descent of the potential function, we select

αt ≤ min

{
1

4Ll
,

1

8LfLzN
,

√
µg

96L2
fL

2
zL

2
gN

2ĉβ
,

µg

2L2
g ĉβ

,
2

3µg ĉβ
,

µg

16σ2
gyy

ĉγ
,

µg

4L2
q ĉγ

,
2

3µg ĉγ

}
,

ĉβ = max

{
16L2

y

µg
,
12L2

f+6µf

µg

}
, ĉγ = max

{
32L2

z

µg
,

µ2
g

48L2
zL

2
gNĉβ

,
8σ2

gxy
N+8L2

fN+2µf

µg

}
.

Then, we get

E
[
Ŵt+1

]
≤ (1− µfαt)E

[
Ŵt

]
+ 16L2

fL
2
z ĉ

2
βα

3
tN

3σ2
gy + 4σ2

gxy

B2
fy

µ2
g

αtN + 2σ2
fxαtN

+ 4ĉ2βσ
2
gyNα2

t + 16σ2
gxy

B2
fy

µ2
g

ĉ2γα
2
t + 8σ2

fy ĉ
2
γα

2
t +

8

µg ĉγ
L2
z ĉ

2
βN

2σ2
gyαt,

Therefore, the lemma is proved.

D.5 PROOF OF THEOREM 5.6

Theorem D.5 (Strongly Convex ℓ (x)). Suppose the upper-level function ℓ (x) is µf -strongly-convex.
Under Assumptions 3.1–3.4, choose the step-sizes αt = α, βt ≜ ĉβα and γt ≜ ĉγα for all
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t ∈ {0, 1, . . . , T − 1}, where

ĉβ = max

16L2
y

µg
,
6
(
2L2

f+µf

)
µg

 , ĉγ = max

{
32L2

z

µg
,

µ2
g

48L2
zL

2
gNĉβ

,
8σ2

gxy
N+8L2

fN+2µf

µg

}
.

(34)

Moreover, choose α such that

α ≤ min

{
1

4Ll
,

1

8LfLzN
,

√
µg

96L2
fL

2
zL

2
gN

2ĉβ
,

µg

2L2
g ĉβ

,
2

3µg ĉβ
,

µg

16σ2
gyy

ĉγ
,

µg

4L2
q ĉγ

,
2

3µg ĉγ

}
.

Then, the iterates generated by LazyBLO satisfy:

N−1∑
n=0

E
[
ℓ (xn

t )− ℓ∗
]
≤ (1− µfα)

t
∆̂0 +

1

µf

(
4σ2

gxy

B2
fy

µ2
g

N + 2σ2
fxN +

8

µg ĉγ
L2
z ĉ

2
βN

2σ2
gy

)

+
α

µf

(
16σ2

gyy

B2
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µ2
g

ĉ2γ + 8σ2
fy ĉ

2
γ + 4ĉ2βσ

2
gyN

)
+

16α2

µf
L2
fL

2
z ĉ

2
βN

3σ2
gy ,

for any t ≥ 1, where ∆̂0 =
∑N−1

n=0 (ℓ (xn
0 )− ℓ∗) +

∑N−1
n=0 ∥yn

0 − y∗ (xn
0 )∥

2
+ ∥z0 − z∗0∥

2.

Proof. Selecting a constant step-size αt = α for all t ∈ {0, 1, · · · , T − 1} and from Lemma D.4, we
have

E
[
Ŵt+1

]
≤ (1− µfα)E

[
Ŵt

]
+ 16L2

fL
2
z ĉ

2
βα

3N3σ2
gy + 4σ2

gxy

B2
fy
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g

αN + 2σ2
fxαN + 4ĉ2βσ

2
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+ 16σ2
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B2
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g

ĉ2γα
2 + 8σ2

fy ĉ
2
γα

2 +
8

µg ĉγ
L2
z ĉ

2
βN

2σ2
gyα.

Applying the above inequality recursively yields

E
[
Ŵt

]
≤ (1− µfα)

t E
[
Ŵ0

]
+

t−1∑
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(1− µfα)
k
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g
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)
(a)
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,

where (a) follows from the summation of a geometric progression.

Utilizing the definition of the potential function Ŵt and Jenson’s inequality finishes the proof of the
theorem.
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