
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A LAZY HESSIAN EVALUATION FRAMEWORK FOR AC-
CELERATING STOCHASTIC BILEVEL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Bilevel optimization has recently gained popularity because of its applicability in
many machine learning applications. Hypergradient-based algorithms have been
widely used for solving bilevel optimization problems because of their strong theo-
retical and empirical performance in many applications. However, computing these
hypergradients requires the evaluation of Hessians (or Hessian-vector products) of
the lower-level objective, which presents a major computational bottleneck. To
address this challenge, in this paper, we propose LazyBLO (Lazy Hessian Evalu-
ation in Bilevel Optimization), an algorithmic framework that allows infrequent
Hessian computation during the execution of the algorithm for solving stochastic
bilevel problems. This allows the algorithm to execute faster compared to the state-
of-the-art (SOTA) algorithms that evaluate either a single or multiple Hessians in
each iteration. We theoretically establish the performance of vanilla SGD-based
LazyBLO and show that, despite the additional errors incurred by the infrequent
Hessian evaluations, LazyBLO surprisingly matches the computation complexity of
the existing SGD-based bilevel algorithms. Extensive experiments further demon-
strate that LazyBLO enjoys significant gains in numerical performance compared
to the SOTA approaches. To our knowledge, this is the first work to theoretically
establish that multiple Hessian computations are not necessary within each iteration
to guarantee the convergence of stochastic bilevel algorithms.

1 INTRODUCTION

Bilevel optimization refers to the class of problems with two levels of hierarchy, wherein the solution
of the upper-level problem depends on the minimizer of the lower-level problem. Formally, a bilevel
problem is stated as:

min
x∈Ru

{
ℓ(x) ≜ f (x,y∗(x)) ≜ Eξ∼πf

[f (x,y∗(x); ξ)]
}

s.t. y∗(x) = arg min
y∈Rl

{
g(x,y) ≜ Eζ∼πg

[g(x,y; ζ)]
}
, (1)

where f(x,y) : Ru × Rl → R and g(x,y) : Ru × Rl → R are upper (UL) and lower-level (LL)
objectives, respectively. Both the UL and LL objectives are assumed to be smooth while the LL
objective is strongly convex with respect to y. Moreover, ξ ∼ πf (resp. ζ ∼ πg) represents a sample
of the UL (resp. LL) objective from distribution πf (resp. πg).

Stochastic bilevel problems in (1) have recently gained prominence as many popular machine
learning problems can be modeled in this form. A few typical examples include hyperparameter
optimization (Franceschi et al., 2018; Shaban et al., 2019; Bao et al., 2021), meta-learning (Franceschi
et al., 2018; Rajeswaran et al., 2019; Ji et al., 2020), adversarial training (Li et al., 2019; Tian et al.,
2021; Zhang et al., 2022), reinforcement learning (Konda & Tsitsiklis, 1999; Hong et al., 2020), neural
architecture search (Liu et al., 2018; Hu et al., 2020; Lian et al., 2019), data hyper-cleaning (Franceschi
et al., 2018; Shaban et al., 2019), dictionary learning (Mairal et al., 2011; Lecouat et al., 2020a;b),
and more recently, the pretraining-finetuning pipeline (Li et al., 2024; Wu et al., 2024) and data
reweighting (Pan et al., 2024) in large language models (LLMs). Consequently, a major research
effort has been focused on developing efficient algorithms for solving stochastic bilevel optimization
problems.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Among all existing methods for stochastic bilevel optimization (see Section 2 for detailed discussions),
a state-of-the-art (SOTA) approach is the approximate implicit differentiation (AID) method, which
relies on directly computing the approximate implicit gradient of the objective ℓ(·) using the implicit
function theorem (Ghadimi & Wang, 2018). Because of its ease of implementation, AID is usually
the algorithm of choice for many machine learning applications. A typical AID algorithm updates
the LL variable using standard stochastic gradient descent (SGD) while the UL variable is updated
in each iteration using: x+ = x − αhf , where the descent direction hf (also often referred to as
hypergradient) is an approximation of the implicit gradient, i.e.,

hf ≈ ∇ℓ(x) = ∇xf(x,y
∗(x))−∇2

xyg(x,y
∗(x))

[
∇2

yyg(x,y
∗(x))

]−1∇yf(x,y
∗(x)). (2)

Although AID has been widely adopted for stochastic bilevel optimization in the literature, the
computation of the hypergradient hf in AID faces two major challenges:
① The hypergradient in Eq. (2) requires multiple Hessian-vector product (HVP) evaluations for

approximating the Hessian inverse in each iteration. This creates a major computational bottleneck
for solving the problem in Eq. (1) since the explicit Hessian evaluations are computationally
expensive. For example, the Hessian contains one million elements even for a moderately sized
problem of dimension d = 1000. What is worse is that inverting such a Hessian typically
has a computation complexity of O(d3), which is time-consuming even for a moderately sized
problem. Some modern automatic differentiation tools (e.g., Pearlmutter trick (Pearlmutter, 1994)
and Jax (Bradbury et al., 2018)) have been proposed to accelerate the Hessian computation,
and HVP computation may not be a major computational bottleneck in some situations where
extremely computationally powerful GPUs are available. However, for many resource-constrained
and computation-constrained settings (e.g., using small or edge-based devices without GPUs),
HVP computation is still a computational bottleneck. For example, each HVP computation
could be at least two to six times more expensive than gradient computation using Jax when
performed on CPUs, which is still non-trivial, and the cost due to HVP remains not negligible
in such systems. Moreover, we note that one Hessian inverse estimation needs multiple HVP
computations (Ghadimi & Wang, 2018; Hong et al., 2020). As a result, the total cost of the
HVP computation depends on the Hessian-inverse estimation accuracy. This would make the
computational cost even higher.

② The hypergradient in Eq. (2) depends on the optimal solution of the LL problem y∗(x). However,
solving the LL problem often requires an iterative method. Thus, solving the LL problem to
optimality to obtain an exact value of y∗(x) may be expensive or even infeasible in practice.

We note that, although Challenge ② has been intensively studied in the literature and addressed to
some extent (e.g., the hypergradient is approximated with y∗(x) being replaced by y+ ≈ y∗(x)),
Challenge ①remains under-explored. So far, a foundational open problem in the theory of stochastic
bilevel optimization naturally arises:

(Q): Can we design algorithms that require fewer Hessian evaluations compared to SOTA, and is it
feasible to guarantee any theoretical performance for such algorithms?

In this paper, we answer the above question by developing a new algorithmic framework
called LazyBLO (Lazy Hessian Evaluation in Bilevel Optimization), which allows infrequent
Hessian (Hessian-vector product) evaluations in solving stochastic bilevel problems. Thus,
LazyBLO alleviates the computational bottleneck in stochastic bilevel optimization. Specifically, in
our LazyBLO approach, a stale version of Hessian is used for multiple iterations while new gradients
are computed at each step, thus leading to computational savings. The intuition behind LazyBLO is
that, for iterations that are not separated too far from each other, the parameter values usually do not
vary significantly. This implies that the Hessians evaluated at these points are highly correlated. Thus,
a stale Hessian can still be used to approximate a new one.

However, due to the additional errors accumulated because of the use of these stale Hessians,
approximate Hessian (HVP) evaluations, and the coupling hierarchical structure of the bilevel
problems, it is unclear whether LazyBLO will converge or not. Somewhat surprisingly, we prove that,
despite the previously mentioned accumulated errors, LazyBLO not only converges but also achieves
the same convergence rate as those of the SOTA non-lazy bilevel algorithms. To our knowledge, this
is the first work that uses infrequent Hessian computations for computational savings but still can
achieve convergence guarantee in solving stochastic bilevel problems.

Our major contributions in this work are summarized as follows:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We develop a new algorithmic framework LazyBLO that allows the stochastic bilevel algorithms
to compute HVPs infrequently. Specifically, the proposed framework updates the HVPs only over
a subset of training iterations, while using stale Hessian information in the rest of the iterations.

• We theoretically establish the performance of LazyBLO when the UL and LL updates are performed
using vanilla SGD-type updates. We show that the proposed lazy approach, which is supposed to
perform worse due to stale Hessian information, can actually match the convergence performance
of the SOTA bilevel algorithms. Specifically, we show that to achieve an ϵ-stationary point,
LazyBLO requires O(ϵ−2) partial gradient and HVP evaluations. Moreover, thanks to the less
frequent Hessian evaluations, the wall-clock time of LazyBLO is significantly reduced compared
to the SOTA approaches.

• We corroborate our theoretical findings via numerical experiments on data hyper-cleaning and
deep hyper-representation tasks with real-world datasets. Our numerical results verify that the
infrequent evaluations of HVP lead to considerable computational savings.

2 RELATED WORK

In this section, we provide a brief overview of several areas of the most related work: ①AID-based
bilevel optimization, ② Hessian-free bilevel optimization, and ③ other uses of infrequent Hessian
evaluations, thus putting our work into comparative perspective to highlight our novelty. Due to space
limitation, we give a summary of other related bilevel optimization methods in Appendix A.

Table 1: Comparison of stochastic bilevel algo-
rithms (TTSA (Hong et al., 2020), BSA (Ghadimi
& Wang, 2018), stocBiO (Ji et al., 2021),
SOBA (Dagréou et al., 2022), ALSET (Chen
et al., 2021), AmIGO (Arbel & Mairal, 2022),
MSTSA (Khanduri et al., 2021a), SUSTAIN (Khan-
duri et al., 2021b), MRBO (Yang et al., 2021),
SEMA (Yang et al., 2021), SVRB (Guo et al., 2021),
MA-SOBA (Chen et al., 2024), VRBO (Yang et al.,
2021), FSLA (Li et al., 2022)).

of PG # of HVP Update

TTSA O
(
ϵ−2.5

)
O

(
ϵ−2.5

)
SGD

BSA O
(
ϵ−2

)
Õ

(
ϵ−2

)
SGD

stocBiO O
(
ϵ−2

)
Õ

(
ϵ−2

)
SGD

SOBA O
(
ϵ−2

)
O

(
ϵ−2

)
SGD

ALSET O
(
ϵ−2

)
O

(
ϵ−2

)
SGD

AmIGO O
(
ϵ−2

)
O

(
ϵ−2

)
SGD

LazyBLO O
(
ϵ−2

)
O

(
ϵ−2

)
SGD

MSTSA O
(
ϵ−2

)
Õ

(
ϵ−2

)
Momentum

SUSTAIN Õ
(
ϵ−1.5

)
Õ

(
ϵ−1.5

)
Momentum

MRBO O
(
ϵ−1.5

)
Õ

(
ϵ−1.5

)
Momentum

SEMA Õ
(
ϵ−2

)
Õ

(
ϵ−2

)
Momentum

SVRB O
(
ϵ−1.5

)
O

(
ϵ−1.5

)
Momentum

MA-SOBA O
(
ϵ−2

)
O

(
ϵ−2

)
Momentum

VRBO Õ
(
ϵ−1.5

)
Õ

(
ϵ−1.5

)
VR

FSLA O
(
ϵ−2

)
O

(
ϵ−2

)
VR

PG: Partial gradient evaluation
VR: Variance Reduction

①AID-Based Bilevel Optimization: In Ta-
ble 1, we compare existing AID-based stochas-
tic bilevel algorithms. BSA (Ghadimi &
Wang, 2018) provided the first finite-time con-
vergence guarantees for bilevel optimization.
The stochastic bilevel algorithms (e.g., BSA
in (Ghadimi & Wang, 2018)), stocBiO in (Ji
et al., 2021), AmIGO in (Arbel & Mairal,
2022)) that use vanilla-SGD updates require
O
(
ϵ−2
)

for both partial gradient evaluations
and HVP evaluations to reach an ϵ-stationary
point. Meanwhile, several works (e.g., SUS-
TAIN in (Khanduri et al., 2021b), SVRB
in (Guo et al., 2021), MRBO and VRBO
in (Yang et al., 2021)) utilize momentum-
based approaches and/or variance reduction
approaches to accelerate the convergence
of vanilla SGD-based algorithms, achieving
O
(
ϵ−1.5

)
for both partial gradient evaluations

and HVP evaluations. Although these works
guarantee finite-time convergence, the prac-
tical numerical performance of these bilevel
algorithms is slow since they require multi-
ple Hessian (or HVP) evaluations of the LL
objective in each iteration to approximate the
Hessian inverse. In this work, we show that
the Hessian computations can be skipped and
stale Hessian information computed from the
previous rounds can be used without hurting
the convergence performance while allowing
the algorithms to execute much faster.

② Hessian-Free Bilevel Optimization: To avoid the expensive Hessian evaluations, several Hessian-
free bilevel algorithms have been proposed. For example, FO-MAML (Finn et al., 2017; Nichol et al.,
2018) ignores the Hessian computation but does not offer any performance guarantee (Antoniou et al.,
2018; Fallah et al., 2020). Several approaches have also been proposed to replace the LL problem with
optimality-based constraints (Chen et al., 2023b; Liu et al., 2022a; Shen & Chen, 2023). However,
these methods mostly focus on deterministic settings rather than stochastic ones. Several zeroth-order

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

methods have been proposed to approximate the hypergraident (e.g., ES-MAML (Song et al., 2019),
HOZOG (Gu et al., 2021), and PZOBO (Sow et al., 2022)). However, ES-MAML and HOZOG do
not provide any theoretical convergence guarantee, while PZOBO achieves O

(
d2ϵ−2

)
to reach an

ϵ-stationary point, where d is the problem dimension. Recently, F2SA and F3SA (momentum-based
version of F2SA) (Kwon et al., 2023) have been proposed, which are two first-order methods based
on the value-function-based lower-level problem reformulation. To reach an ϵ-stationary point, F2SA
and F3SA require O

(
ϵ−3.5

)
and O

(
ϵ−2.5

)
iterations, respectively. The work in (Chen et al., 2023a)

improves the convergence rate for F2SA, resulting in a rate of O
(
ϵ−2 log(1/ϵ)

)
. However, this

improved rate is still slower than that of our proposed LazyBLO approach by a logarithmic factor.
Compared to (Kwon et al., 2023), our proposed LazyBLO algorithm strikes a good balance in terms
of the use of Hessian information: On one hand, we leverage Hessian information to maintain good
convergence performance; on the other hand, we infrequently use Hessian information to signficantly
reduce the wall-clock time.

③ Other Uses of Infrequent Hessian Evaluations: We note that infrequent Hessian evaluations have
also been used for speeding up second-order methods for single-level optimization problems (Shaman-
skii, 1967; Adler et al., 2020; Doikov et al., 2022; Lampariello & Sciandrone, 2001; Wang et al., 2006;
Fan, 2013). However, in bilevel optimization, the Hessian information necessarily emerges due to the
hypergradient computation, rather than as a “second-order” option in single-level optimization. Also,
due to the complex problem structure, analyzing the use of infrequent Hessian in bilevel optimization
is far more challenging than in a single-level setting.

3 PRELIMINARIES

In this section, we provide some preliminaries for solving Problem (1). We first state a set of
assumptions that are needed to establish the convergence of LazyBLO:
Assumption 3.1 (UL Objective). f (x,y) satisfies:

1) For any (x,y) ∈ Ru × Rl, ∇xf (x,y) is Lipschitz continuous (w.r.t. y) with constant Lfx ≥ 0,
and ∇yf (x,y) is Lipschitz continuous (w.r.t. both x and y) with constant Lfy ≥ 0.

2) For any (x,y) ∈ Ru × Rl, we have ∥∇yf (x,y)∥ ≤ Bfy for some constant Bfy ≥ 0.
Assumption 3.2 (LL Objective). g (x,y) satisfies:

1) For any x ∈ Ru, g (x, ·) is µg-strongly convex with respect to y for some µg > 0.

2) For any (x,y) ∈ Ru × Rl, ∇yg (x,y) is Lipschitz continuous (w.r.t. y) with constant Lg ≥ 0,
and ∇2

xyg (x,y) and ∇2
yyg (x,y) are Lipschitz continuous (w.r.t. both x and y) with constants

Lgxy ≥ 0 and Lgyy ≥ 0, respectively.

3) For any (x,y) ∈ Ru × Rl, we have
∥∥∇2

xyg (x,y)
∥∥ ≤ Bgxy

for some constant Bgxy
> 0.

Note that all the above assumptions are standard in the analysis of bilevel optimization prob-
lems (e.g., Ghadimi & Wang (2018); Hong et al. (2020); Khanduri et al. (2021b); Liu et al.
(2022b); Qiu et al. (2022)). With the above assumptions and using implicit function theo-
rem (Rudin et al., 1976), the hypergradient of ℓ(·) can be computed as ∇ℓ(x) = ∇xf (x,y∗(x))−
∇2

xyg (x,y
∗(x))

[
∇2

yyg (x,y
∗(x))

]−1 ∇yf (x,y∗(x)).

Instead of computing the Hessian inverse explicitly, there are different ways to approximate the
Hessian inverse or HVPs in bilevel optimization, such as conjugate gradient (CG) (Pedregosa,
2016) and Neumann series (Ghadimi & Wang, 2018) methods. For example, stocBiO (Ji et al.,
2021) uses Neumann series, while AID-BiO (Ji et al., 2021), AID-CG (Grazzi et al., 2020) and
AmIGO (Arbel & Mairal, 2022) implement CG. In this paper, we use CG to efficiently estimate the
HVPs (

[
∇2

yyg (x,y
∗(x))

]−1 ∇yf (x,y∗(x))), which finds the minimizer of a quadratic function
by solving a linear system derived from the hypergradient. The quadratic optimization problem is
formulated as follows:

min
z∈Rl

q(x,y, z) ≜
1

2
z⊤∇2

yyg(x,y)z+ z⊤∇yf(x,y). (3)

For the function q(·, ·, ·) defined in Eq. (3), the following lemma together with Assumption 3.2
implies that q(x,y, z) is µg-strongly convex and Lq-Lipschitz smooth.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Lemma 3.3 (Quadratic Problem). For any (x,y, z), the quadratic problem q(x,y, z) with respect to
z is Lipschitz-smooth with constant Lq ≥ 0.

The admitted unique minimizer z∗ (x,y) of Eq. (3) can then be utilized to compute the hypergradient
estimate as ∇ℓ(x) = ∇xf (x,y∗(x)) +∇2

xyg (x,y
∗(x)) z∗ (x,y∗(x)). Since it is challenging to

obtain y∗ (x) and z∗ (x,y) in closed form, it is natural to consider their approximations. Specifically,
let ȳ and z̄ be some approximations of y∗ (x) and z∗ (x,y), respectively. Then, we have the
approximation for ∇ℓ(x) defined as follows:

∇f(x, ȳ, z̄) = ∇xf (x, ȳ) +∇2
xyg (x, ȳ) z̄. (4)

Since Problem (1) can potentially be a large-scale stochastic optimization problem, computing a full
gradient approximation in Eq. (4) can be computationally expensive. To address this challenge, a com-
mon approach for evaluating Eq. (4) is to build a stochastic gradient estimator. Define stochastic ap-
proximations as f

(
x,y;Df

)
≜ 1

|Df |
∑

ξ∈Df f(x,y; ξ) and g (x,y;Dg) ≜ 1
|Dg|

∑
ζ∈Dg g(x,y; ζ),

where Df and Dg are the batches of independent and identically distributed samples with sizes∣∣Df
∣∣ ≥ 1 and |Dg| ≥ 1, respectively. Then, a stochastic estimator of Eq. (4) can be computed as:

∇f(x,y, z;Dfx ,Dgxy) = ∇xf
(
x,y;Dfx

)
+∇2

xyg (x,y;Dgxy) z.

Here, for simplicity, we slightly abuse the notations ȳ and z̄ as y and z in the above equation and the
rest of the paper as long as there is no confusion from the context. For ∇f(x,y, z;Dfx ,Dgxy) and
∇yg(x,y;Dgy), we make the following typical assumption in stochastic optimization analysis.

Assumption 3.4 (Stochastic Gradients). For any (x,y) ∈ Ru × Rl and data batch Dfx , Dfy ,
Dgy , Dgxy and Dgyy , define σ2

fx
≜ σ̃2

fx

∣∣Dfx
∣∣−1

, σ2
fy

≜ σ̃2
fy

∣∣Dfy
∣∣−1

, σ2
gy ≜ σ̃2

gy |D
gy |−1,

σ2
gxy

≜ σ̃2
gxy

|Dgxy |−1, and σ2
gyy

≜ σ̃2
gyy

|Dgyy |−1, where σ̃2
fx

, σ̃2
fy

, σ̃2
gy , σ̃2

gxy
and σ̃2

gyy
represent the

variance of a single sample of the corresponding functions. The gradient estimates ∇xf(x,y;Dfx),
∇yf(x,y;Dfy), ∇yg(x,y;Dgy), ∇2

xyg(x,y;Dgxy) and ∇2
yyg(x,y;Dgyy) are unbiased and have

bounded variances:

E[∥∇xf(x,y;Dfx)−∇yf(x,y)∥2] ≤ σ2
fx , E[∥∇yf(x,y;Dfy)−∇yf(x,y)∥2] ≤ σ2

fy ,

E[∥∇yg(x,y;Dgy)−∇yg(x,y)∥2] ≤ σ2
gy , E[∥∇2

xyg(x,y;Dgxy)−∇2
xyg(x,y)∥2] ≤ σ2

gxy
,

E[∥∇2
yyg(x,y;Dgyy)−∇2

yyg(x,y)∥2] ≤ σ2
gyy

.

Lastly, we define the following performance metrics for solving the Problem (1).

Definition 3.5 (ϵ-Stationary Point). Point x is an ϵ-stationary point if E
[
∥∇ℓ (x)∥2

]
≤ ϵ, where

x is the output of a stochastic algorithm, and the expectation is taken over all randomness of the
algorithm.

Definition 3.6 (ϵ-Optimal Point). Point x is an ϵ-optimal point if E [ℓ (x)− ℓ∗] ≤ ϵ, where ℓ∗ ≜
minx∈Ru ℓ (x), and x is the output of a stochastic algorithm. The expectation is taken over all
randomness of the algorithm.

4 THE LazyBLO ALGORITHM

In this section, we propose a new algorithmic framework called LazyBLO to solve the bilevel
optimization problem in Eq. (1). Our goal is to reduce the computation of the HVPs, and our key
idea is to update the HVP periodically on a subset of the entire training iterations while using stale
Hessian information in the remaining iterations.

The most basic algorithm in the LazyBLO framework incorporates SGD-style updates, which is
illustrated in Algorithm 1. We note that more sophisticated algorithms in the LazyBLO framework can
include advanced algorithmic techniques, such as momentum and/or variance reduction to accelerate
the convergence and enhance other performances. As shown in Algorithm 1, the LazyBLO framework
uses a double-loop structure and constructs iterates xn

t , yn
t and zt, where the inner iteration counter

n goes from 0 to N − 1 and the outer iteration counter t runs from 0 to T − 1, so that xn
t approaches

a stationary point of ℓ (·), and yn
t and zt keep track of the quantities y∗ (xn

t) and z∗
(
xN
t ,yN

t

)
. In

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 The LazyBLO Algorithmic Framwork with Basic SGD-type Updates.

Input: Initial parameters x0
0, y0

0, z0, and stepsize {αt}T−1
t=0 , {βt}T−1

t=0 , {γt}T−1
t=0

for t = 0 to T − 1 do
for n = 0 to N − 1 do

Initialize x0
t = xN

t−1 and y0
t = yN

t−1

Sample data batches Dg
t,n, Dfx

t,n, and Dgxy
t,n

Compute the gradient estimate hg
t,n using (6) and update yn+1

t = yn
t − βth

g
t,n

Compute the gradient estimate hf
t,n using (5) and update xn+1

t = xn
t − αth

f
t,n

end for
Sample data batches Dgyy

t and Dfy
t

Compute the gradient estimate hq
t,n using (7) and update zt+1 = zt − γth

q
t

end for

the inner loop, the algorithm updates xn
t and yn

t using the stochastic gradient estimators hf
t,n and

hg
t,n defined as:

hf
t,n = ∇xf

(
xn
t ,y

n
t ;D

fx
t,n

)
+∇2

xyg
(
xn
t ,y

n
t ;D

gxy

t,n

)
zt, (5)

hg
t,n = ∇yg

(
xn
t ,y

n
t ;D

g
t,n

)
. (6)

The variable zt in Eq. (5) is updated in the outer loop using a stochastic gradient estimator hq
t as:

hq
t = ∇2

yyg(x
N
t ,yN

t ;Dgyy

t)zt +∇yf(x
N
t ,yN

t ;Dfy
t). (7)

Note that, compared to hf
t,n and hg

t,n, only hq
t contains the HVP, and is computed infrequently after

every N inner loop iterations. In addition, N needs to be chosen with a tolerable approximation
error of the HVP. If N gets too large, the error of the HVP approximation would also increase,
thus inevitably degrading the performance of LazyBLO. With less frequent Hessian computations,
LazyBLO executes faster per iteration in terms of wall-clock time compared to standard bilevel
algorithms that require multiple Hessian/vector evaluations in each round of updates (Ghadimi &
Wang, 2018; Arbel & Mairal, 2022; Ji et al., 2021; Chen et al., 2021), resulting in a significant
reduction in computational cost and savings in implementation time.

Another insightful remark on the Jacobian-vector product in (5) is also in order. To date, most
of the existing bilevel algorithms compute only one single Jacobian-vector product (JVP) in each
iteration, whereas HVPs are computed multiple times in each iteration even in some single-loop
bilevel algorithms (e.g., SUSTAIN (Khanduri et al., 2021b), TTSA (Hong et al., 2020), BSA (Ghadimi
& Wang, 2018), and ALSET (Chen et al., 2021)). Due to this difference between JVP and HVP in
bilevel optimization algorithms, reducing the number of HVP computations is far more important
than reducing the computations of JVPs. Therefore, we only focus on reducing the HVP in this paper.
We further note that reducing the computation of JVPs can be done in a similar manner as the HVPs
established in our work.

5 THEORETICAL PERFORMANCE ANALYSIS

In this section, we conduct the theoretical convergence analysis for the LazyBLO framework for
solving the bilevel optimization problem in Eq. (1). Note that, although LazyBLO executes faster per
iteration, we have a noisier hypergradient due to the use of stale Hessian information. As a result,
it remains unclear whether LazyBLO can converge and, if yes, what theoretical convergence rate
(i.e., iteration complexity) it can achieve. Intuitively, due to the lazy Hessian information updates,
one can expect that the theoretical convergence rate of LazyBLO cannot outperform its non-lazy
counterpart. Surprisingly, in this paper, we show that LazyBLO achieves the same convergence rate as
their non-lazy counterpart. This, together with the much lower per-iteration wall-clock time, implies
that LazyBLO will enjoy a much faster speed in terms of wall-clock time. This will also be verified
by our experiments in Section 6.

The convergence analysis for LazyBLO is highly non-trivial due to the following technical challenges:
i) The use of lazy Hessian evaluation increases the error of stochastic gradient estimator hf

t,n for
the upper-level function; ii) Due to the hierarchical and coupled structure of bilevel optimization
problems, the error resulting from the stochastic gradient estimator hf

t,n with stale Hessian information

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

further propagates to and increases the approximation error of y∗ (x) and the approximation error of
z∗ (x,y). What is even worse is that z∗ (x,y) is also associated with y∗ (x). All the above complex
couplings of laziness-induced errors and the complications associated with these approximation errors
are unseen in bilevel optimization algorithm analysis, which significantly increases the difficulty of
analyzing the convergence of LazyBLO and necessitate new proof techniques.

5.1 SUPPORTING LEMMAS

Toward this end, we first state two basic lemmas needed for the convergence analysis of LazyBLO.
Lemma 5.1 (Lemma 2.2 in (Ghadimi & Wang, 2018), Proposition 6 in (Arbel & Mairal, 2022)).
Under Assumptions 3.1 and 3.2, we have

∥∇f(x, ȳ, z̄)−∇ℓ(x)∥ ≤ Lf (∥ȳ − y∗(x)∥+ ∥z̄− z∗(x, ȳ)∥) ,
∥y∗ (x1)− y∗ (x2)∥ ≤ Ly ∥x1 − x2∥ , ∥∇ℓ (x1)−∇ℓ (x2)∥ ≤ Ll ∥x1 − x2∥ ,

for all x,x1,x2 ∈ Ru, and ȳ, z̄ ∈ Rl, where the Lipschitz constants above are defined as:

Lf = max
{
Lfx +

(
LgxyBfy/µg

)
+BgxyLz, Bgxy

}
, Ll = L

′
f +

(
L

′
fB

2
gxy

/µg

)
, Ly = B2

gxy
/µg,

and where L
′

f = Lfx + (LfyB
2
gxy

/µg) +Bfy

[
(Lgxy

/µg) + (Lgyy
B2

gxy
/µ2

g)
]
.

We note that Lemma 5.1 plays a key role in the analysis of AID-based bilevel algorithms. First of all,
it characterizes the bias of the implicit gradient as a function of approximation error in ȳ and z̄ (see
Eq. (4)). It also ensures the Lipschitzness of the mapping y∗(x) in characterizing the behavior of the
LL problem’s iterates. Most importantly, Lemma 5.1 establishes the Lipschitz-smoothness of the
implicit function ℓ(·), which allows the development of SGD-type algorithms for solving stochastic
bilevel problems. To complement Lemma 5.1, next result states the properties of the optimal solution
z∗ (x,y) of the quadratic problem in Eq. (3).
Lemma 5.2 (Proposition 6 in(Arbel & Mairal, 2022)). Under Assumptions 3.1 and 3.2, ∀ x,x1,x2 ∈
Ru and y,y1,y2 ∈ Rl , we have

∥z∗ (x1,y1)− z∗ (x2,y2)∥ ≤ Lz (∥x1 − x2∥+ ∥y1 − y2∥) , ∥z∗ (x,y)∥ ≤ Bfy/µg,

where Lz =
(
Lgyy

Bfy/µ
2
g

)
+ Lfy/µg .

Lemma 5.2 also plays a key role in the analysis of LazyBLO as it is utilized to bound the drift in the
Hessain vector product estimates (see Eq. (3)). Next, we present the main results of the paper.

5.2 MAIN RESULTS

① The Non-convex ℓ (x) Setting: By leveraging Lemmas 5.1 and 5.2, we establish the main
convergence result of the proposed LazyBLO for non-convex ℓ (x) in Theorem 5.3.

Theorem 5.3 (Non-Convex ℓ(x)). Under Assumptions 3.1–3.4, with step-sizes αt = α = O
(

1
N2

)
,

βt ≜ cβα = O
(

1
N2

)
, and γt ≜ cγα = O (1) for all t ∈ {0, 1, . . . , T − 1}, where cβ and cγ are

defined in Eq. 22 in Appendix C. Then, the iterates generated by LazyBLO satisfy:

1

TN

T−1∑
t=0

N−1∑
n=0

E
[
∥∇ℓ (xn

t)∥
2
]
= O

(
N∆0

T

)
+O

(
σ2
gy + σ2

gxy
+ σ2

fx + σ2
gyy

+ σ2
fy

)
,

where ∆0 = (ℓ(x0
0)− ℓ∗) + ∥y0

0 − y∗(x0
0)∥2 + ∥z0 − z∗(x0

0,y
0
0)∥2.

The proof of Theorem 5.3 can be found in Appendix C. Theorem 5.3 establishes the convergence of
LazyBLO under the most general setting, where the implicit function ℓ(·) can be non-convex. The
result characterizes the effect of different parameters on the convergence of LazyBLO. Specifically,
as N increases, the performance of LazyBLO degrades. This is unsurprising since more stale Hessian
information is expected to slow the convergence. Hence, N should be chosen below a certain
threshold to maintain the accuracy of the hypergradient estimations. On the other hand, to enjoy the
benefits of the LazyBLO approach, N is supposed to be strictly larger than 1. We can potentially
choose N = 1, and our algorithm, which becomes fully single-loop, recovers standard results for

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

bilevel algorithms under the same assumptions as ours (e.g., the guarantees achieved in (Arbel &
Mairal, 2022)). Interestingly, under an appropriate N -value, the N -dependent slowdown effect in
LazyBLO can be offset by Hessian computations skippings, allowing LazyBLO to run even faster
than non-lazy approaches in terms of wall-clock time.

Our next result characterizes the computation complexity of LazyBLO.
Corollary 5.4 (Computation Complexity). Under the setting of Theorem 5.3, choose∣∣Dfx

∣∣ , ∣∣Dfy
∣∣ , |Dgy | , |Dgxy | , |Dgyy | = Θ

(
ϵ−1
)
. Then, LazyBLO requires O(ϵ−2) partial gradi-

ent and HVP evaluations to reach an ϵ-stationary point.

We note that, when ϵ is small, the batch sizes in Corollary 5.4 could be large. However, it is worth
noting that the use of large batch sizes is not a consequence of the proposed LazyBLO algorithm
design; rather, these batch size choices are common in the literature, as the above guarantees are the
same as those achieved in standard SGD-based bilevel algorithms (e.g., (Arbel & Mairal, 2022; Ji
et al., 2021; Huang et al., 2022)) that require the computation of (multiple) Hessian/HVPs in each
iteration. It is also worth noting that the large batch sizes are required only for theoretical analysis
and can be eliminated by using a third-order Lipschitz assumption, as done by SOBA (Dagréou et al.,
2022). In our experiments, we use a small batch size instead, and our algorithm still outperforms the
baseline algorithms.

Given that LazyBLO can converge and even matches the performance of SOTA non-lazy bilevel
methods, another question also arises: under which settings could LazyBLO theoretically outperform
current bilevel approaches? The next result shows that if the LL problem is deterministic, we can, in
fact, improve upon the current approaches and reduce the HVP evaluations from O(ϵ−2) to O(ϵ−1).
Corollary 5.5 (Computation Complexity for Deterministic LL Problems). Suppose the lower-level
problem is deterministic. Under the condition of Theorem 5.3, LazyBLO requires O(ϵ−1) for HVP
evaluations to achieve an ϵ-stationary point.

Corollary 5.5 suggests that LazyBLO significantly reduces the HVP evaluations. In contrast, for
standard bilevel optimization algorithms, the HVPs stay the same as the total number of rounds
required by an algorithm to achieve the ϵ-stationary solution. For example, under the same deter-
ministic setting, the baseline methods BSA (Ghadimi & Wang, 2018), stocBiO (Ji et al., 2021) and
AmIGO (Arbel & Mairal, 2022) require O(ϵ−2) gradient computations and TTSA (Hong et al.,
2020) requires O(ϵ−2.5) gradient computations, which is equivalent to the number of outer function’s
gradients evaluated during the execution of the algorithm.

So far, our results characterize the performance of LazyBLO in the non-convex settings. However,
for some problems (e.g., quadratic UL and LL problems), the implicit function may have additional
structures that might lead to better convergence of LazyBLO. Next, we characterize the performance
of LazyBLO when the implicit function is strongly convex, which is often of interest for applications
in robust and inverse optimization, optimal control in robotics and aerospace with quadratic cost, etc.

② The Strongly Convex ℓ (x) Setting: Under the setting where ℓ (·) is µf -strongly convex, we
provide a stronger performance guarantee for the convergence of LazyBLO, which is stated as follows:
Theorem 5.6 (Strongly Convex ℓ (x)). Suppose the upper-level function ℓ (x) is µf -strongly-convex.
Under Assumptions 3.1–3.4, choose the step-sizes αt = α = O

(
1
N

)
, βt ≜ ĉβα = O

(
1
N

)
and γt ≜

ĉγα = O
(

1
N2

)
for all t ∈ {0, 1, . . . , T − 1}, where ĉβ and ĉγ are defined in Eq. 34 in Appendix D.

Then, the iterates generated by LazyBLO satisfy:

1

N

N−1∑
n=0

E
[
ℓ (xn

t)− ℓ∗
]
≤ (1− µfα)

t
∆̂0 +O

(
σ2
gxy

+ σ2
fx +

1

N4
σ2
gyy

+
1

N4
σ2
fy +

1

N
σ2
gy

)
,

for any t ≥ 1, where ∆̂0 = 1
N

∑N−1
n=0 (ℓ (xn

0)− ℓ∗)+ 1
N

∑N−1
n=0 ∥yn

0 − y∗ (xn
0)∥

2
+ 1

N ∥z0 − z∗0∥
2.

The detailed proof of Theorem 5.6 is provided in Appendix D due to space limitations. Theo-
rem 5.6 demonstrates that, under the strongly convex setting, LazyBLO achieves a much faster linear
convergence rate. Theorem 5.6 also immediately implies the following computation complexity:
Corollary 5.7 (Computation Complexity). Under the setting of Theorem 5.6, choosing

∣∣Dfx
∣∣ =

|Dgxy | = Θ
(
ϵ−1
)
, |Dgy | = Θ

(
N−1ϵ−1

)
, and

∣∣Dfy
∣∣ = |Dgyy | = Θ

(
N−4ϵ−1

)
, LazyBLO requires

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100 120 140 160
Running Time (s)

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Tr
ai

ni
ng

 L
os

s

LazyBLO
AmIGO
stocBiO
MRBO
BSA

(a) Wall-clock time.

0 50 100 150 200 250 300
of Hessian Comput.

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Tr
ai

ni
ng

 L
os

s

0 5 10
2.5

5.0

7.5

10.0 LazyBLO
AmIGO
stocBiO
MRBO
BSA

(b) # of Hessian comput.

Figure 1: Comparison for data hyper-cleaning on
MNIST (corruption rate p = 0.1, 10 repetitions).

0 20 40 60 80 100
Running Time (s)

0

1

2

3

4

5

Tr
ai

ni
ng

 L
os

s

LazyBLO
AmIGO
F2SA
F3SA

(a) Wall-clock time.

0 50 100 150 200 250 300
of Hessian Comput.

0

1

2

3

4

5

Tr
ai

ni
ng

 L
os

s

LazyBLO
AmIGO

(b) # of Hessian comput.

Figure 2: Training loss for deep hyper-
representation on CIFAR-10 (10 repetitions).

O(ϵ−1 log ϵ−1) partial gradient evaluations and O(N−4ϵ−1 log ϵ−1) HVP evaluations to reach an
ϵ-optimal point.

Corollary 5.7 shows that LazyBLO significantly reduces the number of HVP evaluations. Again,
note that the complexity of partial gradient evaluations in Corollary 5.7 matches the same guarantee
achieved in (Arbel & Mairal, 2022), which is obtained by multiple Hessian evaluations per iteration.

6 NUMERICAL RESULTS

In this section, we verify the theoretical performance of LazyBLO on different optimization tasks
and with two different datasets: 1) data hyper-cleaning on the MNIST dataset, and 2) deep hyper-
representation with the ResNet network on the CIFAR-10 dataset. Due to space limitations, additional
experimental details and results are included in Appendix B.

Task 1) Data Hyper-Cleaning on the MNIST Dataset: We conduct experiments on a data hyper-
cleaning task with MNIST dataset (LeCun et al., 1998). Data hyper-cleaning aims to train a classifier
on a corrupted dataset. We compare LazyBLO with stochastic bilevel algorithms AmIGO (Arbel &
Mairal, 2022), stocBiO (Ji et al., 2021), BSA (Ghadimi & Wang, 2018), and MRBO (Yang et al.,
2021) as baselines. We also perform data hyper-cleaning with fully single-loop bilevel algorithms
TTSA (Hong et al., 2020), SOBA (Dagréou et al., 2022), and MA-SOBA (Chen et al., 2024).

Table 2 shows that TTSA, SOBA, and MA-SOBA all need an exceedingly long time to converge.
Specifically, the convergence of TTSA, SOBA, and MA-SOBA are 74, 73, and 82× slower, respec-
tively, than LazyBLO. In addition, TTSA, SOBA, and MA-SOBA require 390, 126, and 150× more
Hessian computations, respectively, compared to LazyBLO. Given the significantly slow convergence
of these fully single-loop bilevel algorithms, we exclude them from the following comparison.

Table 2: Convergence performance of TTSA, SOBA, and MA-SOBA
compared with our LazyBLO on data hyper-cleaning on MNIST (corrup-
tion rate p = 0.1, average over 10 repetitions).

ALGORITHM WALL-CLOCK TIME # OF HESSIAN TRAINING LOSS
TTSA 4290 S 1950 3.95
SOBA 4210 S 630 3.28

MA-SOBA 4740 S 750 3.05
LazyBLO 58 s 5 2.35

From Fig. 1a, we
can see that AmIGO
and stocBiO have
similar conver-
gence performance.
LazyBLO outperforms
all baseline methods
in terms of wall-clock
time, which shows the
advantages of LazyBLO. Specifically, it only takes LazyBLO approximately 60 seconds to converge,
while AmIGO and stocBiO converge in around 100 seconds. This much-improved wall-clock
time is due to the fact that LazyBLO uses stale Hessian information and saves a lot of Hessian
computation time. It is worth pointing out that the comparison with MRBO is not entirely fair since
MRBO is equipped with more sophisticated momentum techniques to accelerate convergence, while
LazyBLO only uses vanilla-SGD updates. LazyBLO can also be equipped with momentum-based
SGD updates to further accelerate the convergence. Furthermore, the training loss of LazyBLO is
similar to those of AmIGO, stocBiO, and BSA, which use up-to-date Hessian information during
the training. This result is surprising because LazyBLO with stale Hessian information can still
match the methods with non-lazy Hessian updates. This implies that the Hessian information evolves
gradually during the training, and one may use stale Hessians to construct good approximations of
the hypergradient in bilevel optimization.

It can be seen in Fig. 1b that the convergence speed with respect to the number of Hessian evaluations
for LazyBLO is much faster compared with all the baseline algorithms (see the zoomed-in area in

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Fig. 1b). Table 3 also demonstrates that, to achieve the same convergence training loss, AmIGO,
stocBiO and BSA all need 252 Hessian computations, while LazyBLO only needs 5 Hessian compu-
tations (i.e., 50× faster). Note that we do not include MRBO in this table since it has a higher error
floor compared to other algorithms. As a consequence, it can not reach the same training loss as the
other algorithms.

0 20 40 60 80 100 120 140
Running Time (s)

2

4

6

8

10

12

Tr
ai

ni
ng

 L
os

s

LazyBLO N=2
LazyBLO N=8
LazyBLO N=16
LazyBLO N=32

(a) Wall-clock time.

0 5 10 15 20 25 30
of Hessian Comput.

2

4

6

8

10

12

Tr
ai

ni
ng

 L
os

s

LazyBLO N=2
LazyBLO N=8
LazyBLO N=16
LazyBLO N=32

(b) # of Hessian comput.
Figure 3: Comparison of LazyBLO on data hyper-
cleaning on MNIST at a different # of x-updates (N).

Fig. 3 captures the effect of N on the perfor-
mance of LazyBLO. Specifically, we observe
that as we increase the value of N , the execu-
tion of the algorithm becomes faster and faster.
However, we note that increasing N beyond
a certain threshold may not yield additional
benefits and could even lead to performance
degradation. This is because, as N increases,
the difference between stale and fresh Hes-
sian information becomes larger, potentially
causing the hypergradient hf

t,n to become less
accurate and adversely affecting the training loss of LazyBLO.

Task 2) Deep Hyper-Representation with ResNet-20 on the CIFAR-10 Dataset: To demonstrate
the effectiveness of LazyBLO in training neural networks, we conduct experiments on a deep hyper-
representation task (Yang et al., 2023; Sow et al., 2022) with the ResNet-20 model (He et al., 2016) on
CIFAR-10 dataset (Krizhevsky et al., 2009), which aims to classify CIFAR-10 images. We compare
LazyBLO with a standard stochastic bilevel algorithm AmIGO (Arbel & Mairal, 2022), and two
fully first-order (Hessian/Jacobian-free) stochastic bilevel algorithms F2SA (Kwon et al., 2023) and
F3SA (Kwon et al., 2023) as baselines. We do not compare LazyBLO with other baselines from the
previous data hyper-cleaning experiments since stocBiO performs almost identically to AmIGO, and
they both outperform MRBO in terms of training loss and BSA in terms of wall-clock time.

Table 3: The number of hypergradient computations and
Hessian computations required by various algorithms to
achieve the same training loss in data hyper-cleaning ex-
periments (Task 1) and hyper-representation experiments
(Task 2) (average over 10 repetitions).

ALGORITHM # OF HGC # OF HESSIAN

TASK 1

AMIGO 42 252
STOCBIO 42 252

BSA 21 252
LazyBLO 40 5

TASK 2 AMIGO 361 722
LazyBLO 640 320

HGC: HYPERGRADIENT COMPUTATION

As shown in Fig. 2a, LazyBLO converges
faster in terms of wall-clock time com-
pared to AmIGO, F2SA and F3SA. In ad-
dition, Fig. 2a indicates that the training
loss of LazyBLO is smaller than those
of F2SA and F3SA. The superior per-
formance of LazyBLO in comparison to
F2SA and F3SA establishes the neces-
sity of Hessian/Jacobian evaluations in
stochastic bilevel optimization. Without
them, both the convergence speed and the
training loss would degrade as demon-
strated by the experiments. Fig. 2b il-
lustrates the convergence performance of
LazyBLO compared to AmIGO in terms of the number of Hessian computations. Note that we
do not include F2SA and F3SA in this figure since they are Hessian-free. Fig. 2b demonstrates
that with the same number of Hessian evaluations, LazyBLO has a lower training loss compared
to AmIGO. Furthermore, as shown in Table 3, to reach the same training loss, LazyBLO uses 320
Hessian computations, while AmIGO uses 722 Hessian computations. This significantly reduces
computational costs, especially for large-scale problems.

7 CONCLUSION

In this paper, we proposed the LazyBLO algorithmic framework for solving bilevel optimization prob-
lems. Compared to existing works, LazyBLO reduces the Hessian-vector product (HVP) evaluations
by updating them periodically and less frequently. Although LazyBLO uses stale HVP evaluations
that introduce additional errors, our theoretical analysis demonstrated that LazyBLO not only sur-
prisingly enjoys the same convergence rate guarantee, but also achieves a much faster wall-clock
time performance. Specifically, to reach an ϵ-stationary point, LazyBLO requires O(ϵ−2) for both
partial gradient evaluations and HVP evaluations, which matches the SOTA non-lazy methods. We
conducted experiments on multi-hyperparameter optimization tasks to verify our theoretical findings.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ilan Adler, Zhiyue T Hu, and Tianyi Lin. New proximal newton-type methods for convex optimization.
In 2020 59th IEEE Conference on Decision and Control (CDC), pp. 4828–4835. IEEE, 2020.

Gemayqzel Bouza Allende and Georg Still. Solving bilevel programs with the kkt-approach. Mathe-
matical programming, 138(1):309–332, 2013.

G Anandalingam and DJ White. A solution method for the linear static stackelberg problem using
penalty functions. IEEE Transactions on automatic control, 35(10):1170–1173, 1990.

Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml. arXiv preprint
arXiv:1810.09502, 2018.

Michael Arbel and Julien Mairal. Amortized implicit differentiation for stochastic bilevel optimization.
In International Conference on Learning Representations, 2022.

Fan Bao, Guoqiang Wu, Chongxuan Li, Jun Zhu, and Bo Zhang. Stability and generalization of
bilevel programming in hyperparameter optimization. Advances in neural information processing
systems, 34:4529–4541, 2021.

Jerome Bracken and James T McGill. Mathematical programs with optimization problems in the
constraints. Operations Research, 21(1):37–44, 1973.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Lesi Chen, Yaohua Ma, and Jingzhao Zhang. Near-optimal fully first-order algorithms for finding
stationary points in bilevel optimization. arXiv preprint arXiv:2306.14853, 2023a.

Lesi Chen, Jing Xu, and Jingzhao Zhang. On bilevel optimization without lower-level strong
convexity. arXiv preprint arXiv:2301.00712, 2023b.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. Tighter analysis of alternating stochastic gradient method
for stochastic nested problems. arXiv preprint arXiv:2106.13781, 2021.

Xuxing Chen, Tesi Xiao, and Krishnakumar Balasubramanian. Optimal algorithms for stochastic
bilevel optimization under relaxed smoothness conditions. Journal of Machine Learning Research,
25(151):1–51, 2024.

Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. A framework for bilevel
optimization that enables stochastic and global variance reduction algorithms. arXiv preprint
arXiv:2201.13409, 2022.

Stephan Dempe and Jonathan F Bard. Bundle trust-region algorithm for bilinear bilevel programming.
Journal of Optimization Theory and Applications, 110(2):265–288, 2001.

Nikita Doikov, El Mahdi Chayti, and Martin Jaggi. Second-order optimization with lazy hessians.
arXiv preprint arXiv:2212.00781, 2022.

Justin Domke. Generic methods for optimization-based modeling. In Artificial Intelligence and
Statistics, pp. 318–326. PMLR, 2012.

Bothina El-Sobky and Yousria Abo-Elnaga. A penalty method with trust-region mechanism for
nonlinear bilevel optimization problem. Journal of Computational and Applied Mathematics, 340:
360–374, 2018.

James E Falk and Jiming Liu. On bilevel programming, part i: general nonlinear cases. Mathematical
Programming, 70(1):47–72, 1995.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence theory of gradient-based
model-agnostic meta-learning algorithms. In International Conference on Artificial Intelligence
and Statistics, pp. 1082–1092. PMLR, 2020.

11

http://github.com/google/jax

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jinyan Fan. A shamanskii-like levenberg-marquardt method for nonlinear equations. Computational
Optimization and Applications, 56(1):63–80, 2013.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In International Conference on Machine Learning,
pp. 1165–1173. PMLR, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In International Conference on
Machine Learning, pp. 1568–1577. PMLR, 2018.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv preprint
arXiv:1802.02246, 2018.

Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and Edison
Guo. On differentiating parameterized argmin and argmax problems with application to bi-level
optimization. arXiv preprint arXiv:1607.05447, 2016.

Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration com-
plexity of hypergradient computation. In International Conference on Machine Learning, pp.
3748–3758. PMLR, 2020.

Bin Gu, Guodong Liu, Yanfu Zhang, Xiang Geng, and Heng Huang. Optimizing large-scale
hyperparameters via automated learning algorithm. arXiv preprint arXiv:2102.09026, 2021.

Zhishuai Guo, Quanqi Hu, Lijun Zhang, and Tianbao Yang. Randomized stochastic variance-reduced
methods for multi-task stochastic bilevel optimization. arXiv preprint arXiv:2105.02266, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale framework for bilevel
optimization: Complexity analysis and application to actor-critic. arXiv preprint arXiv:2007.05170,
2020.

Yibo Hu, Xiang Wu, and Ran He. Tf-nas: Rethinking three search freedoms of latency-constrained
differentiable neural architecture search. In European Conference on Computer Vision, pp. 123–139.
Springer, 2020.

Minhui Huang, Xuxing Chen, Kaiyi Ji, Shiqian Ma, and Lifeng Lai. Efficiently escaping saddle
points in bilevel optimization. arXiv preprint arXiv:2202.03684, 2022.

Kaiyi Ji and Yingbin Liang. Lower bounds and accelerated algorithms for bilevel optimization. arXiv
preprint arXiv:2102.03926, 2021.

Kaiyi Ji, Jason D Lee, Yingbin Liang, and H Vincent Poor. Convergence of meta-learning with
task-specific adaptation over partial parameters. Advances in Neural Information Processing
Systems, 33:11490–11500, 2020.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced
design. In International Conference on Machine Learning, pp. 4882–4892. PMLR, 2021.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A
momentum-assisted single-timescale stochastic approximation algorithm for bilevel optimization.
arXiv preprint arXiv:2102.07367v1, 2021a.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A
near-optimal algorithm for stochastic bilevel optimization via double-momentum. Advances in
Neural Information Processing Systems, 34:30271–30283, 2021b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D Nowak. A fully first-order method
for stochastic bilevel optimization. In International Conference on Machine Learning, pp. 18083–
18113. PMLR, 2023.

Francesco Lampariello and Marco Sciandrone. Global convergence technique for the newton method
with periodic hessian evaluation. Journal of optimization theory and applications, 111:341–358,
2001.

Bruno Lecouat, Jean Ponce, and Julien Mairal. Designing and learning trainable priors with non-
cooperative games. 2020a.

Bruno Lecouat, Jean Ponce, and Julien Mairal. A flexible framework for designing trainable priors
with adaptive smoothing and game encoding. Advances in Neural Information Processing Systems,
33:15664–15675, 2020b.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jiaxiang Li, Siliang Zeng, Hoi To Wai, Chenliang Li, Alfredo Garcia, and Mingyi Hong. Getting
more juice out of the SFT data: Reward learning from human demonstration improves SFT for
LLM alignment. In ICML 2024 Workshop on Theoretical Foundations of Foundation Models,
2024.

Junyi Li, Bin Gu, and Heng Huang. A fully single loop algorithm for bilevel optimization without
hessian inverse. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
7426–7434, 2022.

Yi Li, Lingxiao Song, Xiang Wu, Ran He, and Tieniu Tan. Learning a bi-level adversarial network
with global and local perception for makeup-invariant face verification. Pattern Recognition, 90:
99–108, 2019.

Dongze Lian, Yin Zheng, Yintao Xu, Yanxiong Lu, Leyu Lin, Peilin Zhao, Junzhou Huang, and
Shenghua Gao. Towards fast adaptation of neural architectures with meta learning. In International
Conference on Learning Representations, 2019.

Renjie Liao, Yuwen Xiong, Ethan Fetaya, Lisa Zhang, KiJung Yoon, Xaq Pitkow, Raquel Urtasun, and
Richard Zemel. Reviving and improving recurrent back-propagation. In International Conference
on Machine Learning, pp. 3082–3091. PMLR, 2018.

Bo Liu, Mao Ye, Stephen Wright, Peter Stone, and Qiang Liu. Bome! bilevel optimization made
easy: A simple first-order approach. Advances in Neural Information Processing Systems, 35:
17248–17262, 2022a.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Risheng Liu, Xuan Liu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A value-function-based
interior-point method for non-convex bi-level optimization. In International Conference on
Machine Learning, pp. 6882–6892. PMLR, 2021.

Zhuqing Liu, Xin Zhang, Prashant Khanduri, Songtao Lu, and Jia Liu. Interact: achieving low sample
and communication complexities in decentralized bilevel learning over networks. In Proceedings
of the Twenty-Third International Symposium on Theory, Algorithmic Foundations, and Protocol
Design for Mobile Networks and Mobile Computing, pp. 61–70, 2022b.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by
implicit differentiation. In International Conference on Artificial Intelligence and Statistics, pp.
1540–1552. PMLR, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Matthew MacKay, Paul Vicol, Jon Lorraine, David Duvenaud, and Roger Grosse. Self-tuning
networks: Bilevel optimization of hyperparameters using structured best-response functions. arXiv
preprint arXiv:1903.03088, 2019.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimization
through reversible learning. In International conference on machine learning, pp. 2113–2122.
PMLR, 2015.

Julien Mairal, Francis Bach, and Jean Ponce. Task-driven dictionary learning. IEEE transactions on
pattern analysis and machine intelligence, 34(4):791–804, 2011.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Rui Pan, Jipeng Zhang, Xingyuan Pan, Renjie Pi, Xiaoyu Wang, and Tong Zhang. Scalebio: Scalable
bilevel optimization for llm data reweighting. arXiv preprint arXiv:2406.19976, 2024.

Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):147–160,
1994.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International
conference on machine learning, pp. 737–746. PMLR, 2016.

Peiwen Qiu, Yining Li, Zhuqing Liu, Prashant Khanduri, Jia Liu, Ness B Shroff, Elizabeth Ser-
ena Bentley, and Kurt Turck. Diamond: Taming sample and communication complexities in
decentralized bilevel optimization. arXiv preprint arXiv:2212.02376, 2022.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with implicit
gradients. Advances in neural information processing systems, 32, 2019.

Walter Rudin et al. Principles of mathematical analysis, volume 3. McGraw-hill New York, 1976.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation
for bilevel optimization. In The 22nd International Conference on Artificial Intelligence and
Statistics, pp. 1723–1732. PMLR, 2019.

VE Shamanskii. A modification of newton’s method. Ukrainian Mathematical Journal, 19(1):
118–122, 1967.

Han Shen and Tianyi Chen. On penalty-based bilevel gradient descent method. arXiv preprint
arXiv:2302.05185, 2023.

Ankur Sinha, Samish Bedi, and Kalyanmoy Deb. Bilevel optimization based on kriging approxima-
tions of lower level optimal value function. In 2018 IEEE congress on evolutionary computation
(CEC), pp. 1–8. IEEE, 2018.

Ankur Sinha, Tharo Soun, and Kalyanmoy Deb. Using karush-kuhn-tucker proximity measure for
solving bilevel optimization problems. Swarm and evolutionary computation, 44:496–510, 2019.

Xingyou Song, Wenbo Gao, Yuxiang Yang, Krzysztof Choromanski, Aldo Pacchiano, and Yunhao
Tang. Es-maml: Simple hessian-free meta learning. arXiv preprint arXiv:1910.01215, 2019.

Daouda Sow, Kaiyi Ji, and Yingbin Liang. On the convergence theory for hessian-free bilevel
algorithms. Advances in Neural Information Processing Systems, 35:4136–4149, 2022.

Yuesong Tian, Li Shen, Guinan Su, Zhifeng Li, and Wei Liu. Alphagan: Fully differentiable
architecture search for generative adversarial networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 44(10):6752–6766, 2021.

Luis Vicente, Gilles Savard, and Joaquim Júdice. Descent approaches for quadratic bilevel program-
ming. Journal of Optimization theory and applications, 81(2):379–399, 1994.

Zhongping Wan, Lijun Mao, and Guangmin Wang. Estimation of distribution algorithm for a class of
nonlinear bilevel programming problems. Information Sciences, 256:184–196, 2014.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Chang-yu Wang, Yuan-yuan Chen, and Shou-qiang Du. Further insight into the shamanskii modifica-
tion of newton method. Applied mathematics and computation, 180(1):46–52, 2006.

Douglas J White and G Anandalingam. A penalty function approach for solving bi-level linear
programs. Journal of Global Optimization, 3(4):397–419, 1993.

Feijie Wu, Zitao Li, Yaliang Li, Bolin Ding, and Jing Gao. Fedbiot: Llm local fine-tuning in federated
learning without full model. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 3345–3355, 2024.

Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimization.
Advances in Neural Information Processing Systems, 34:13670–13682, 2021.

Yifan Yang, Peiyao Xiao, and Kaiyi Ji. Achieving O
(
ϵ−1.5

)
complexity in hessian/jacobian-free

stochastic bilevel optimization. Advances in Neural Information Processing Systems, 2023.

Alain B Zemkoho and Shenglong Zhou. Theoretical and numerical comparison of the karush–kuhn–
tucker and value function reformulations in bilevel optimization. Computational Optimization and
Applications, 78(2):625–674, 2021.

Yihua Zhang, Guanhua Zhang, Prashant Khanduri, Mingyi Hong, Shiyu Chang, and Sijia Liu.
Revisiting and advancing fast adversarial training through the lens of bi-level optimization. In
International Conference on Machine Learning, pp. 26693–26712. PMLR, 2022.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A ADDITIONAL RELATED WORK

Bilevel Optimization: The history of bilevel optimization dates back to 1973 (Bracken & McGill,
1973). Some early attempts for solving bilevel problems include: value function (Liu et al., 2021;
Sinha et al., 2018; Zemkoho & Zhou, 2021), Karush–Kuhn–Tucker conditions based reformula-
tions (Allende & Still, 2013; Sinha et al., 2019; Zemkoho & Zhou, 2021), penalty function (White &
Anandalingam, 1993; Anandalingam & White, 1990; Wan et al., 2014), approximate descent (Falk
& Liu, 1995; Vicente et al., 1994), and trust region methods (Dempe & Bard, 2001; El-Sobky &
Abo-Elnaga, 2018). Among these approaches, approximate descent methods have gained promi-
nence recently because of their ease of implementation as well as strong theoretical and empirical
performance in many machine learning applications. Two standard descent-based approaches to
tackle problems of form (1) are iterative differentiation (ITD) (Domke, 2012; Maclaurin et al., 2015;
Franceschi et al., 2017; 2018; Shaban et al., 2019; Grazzi et al., 2020; MacKay et al., 2019) and ap-
proximate implicit differentiation (AID) (Domke, 2012; Pedregosa, 2016; Liao et al., 2018; Ghadimi
& Wang, 2018; Grazzi et al., 2020; Lorraine et al., 2020; Gould et al., 2016; Ji & Liang, 2021;
MacKay et al., 2019; Khanduri et al., 2021a; Hong et al., 2020). The basic idea of ITD is to obtain
an approximate hypergradient of the loss function ℓ(x) in Eq. (1) by differentiating the unrolled
iterates of the LL problem. Consequently, ITD-based approaches need to store all the LL iterates in
the memory (Shaban et al., 2019). On the other hand, AID relies on the implicit function theorem
to compute the implicit gradient of ℓ(x) without the need to maintain the sequence of LL iterates.
Instead of differentiating the iterates of the LL problem, AID computes the implicit gradient by
approximately solving a linear system of equations using HVPs. In this work, we focus on AID-based
approaches for solving stochastic bilevel problems.

B ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

B.1 SPECIFICATIONS OF THE BASELINE ALGORITHMS IN SECTION 6

In this section, we provide more description of the baseline algorithms used in our experiments, as
follows:

• AmIGO (Arbel & Mairal, 2022): a double-loop stochastic AID-based bilevel algorithm that uses
conjugate gradient to estimate the Hessian inverse.

• stocBiO (Ji et al., 2021): a two timescale stochastic AID-based bilevel approach that uses
Neumann Series to estimate the Hessian inverse. The repository of stocBiO is available
at https://github.com/JunjieYang97/StocBio.

• BSA (Ghadimi & Wang, 2018): an AID-based bilevel method that uses single-sample sampling.
• MRBO (Yang et al., 2021): a single-loop AID-based stochastic bilevel algorithm that uses

momentum-based SGD to accelerate convergence. The implementation of MRBO is available
at https://github.com/JunjieYang97/MRVRBO.

• F2SA (Kwon et al., 2023): a fully first-order (Hessian/Jacobian-free) stochastic bilevel method,
which is doulbe-loop.

• F3SA (Kwon et al., 2023): a fully first-order stochastic bilevel approach that uses momentum-based
SGD to accelerate convergence and is single timescale.

B.2 EXPERIMENTAL DETAILS FOR DATA HYPER-CLEANING

In this section, we describe the details of the experiments on data hyper-cleaning. The goal of data
hyper-cleaning is to train a classifier on a potentially corrupt dataset. To make fair comparison,
we follow the same implementation as in (Ji et al., 2021; Yang et al., 2021) and apply it to other
algorithms. The objective function can be written as follows:

min
λ

LDval
(λ,w∗) =

1

|Dval|
∑

(xi,yi)∈Dval

L (w∗xi,yi)

s.t. w∗ = argmin
w

(
1

|Dtr|
∑

(xi,yi)∈Dtr

σ (λi)L (wxi,yi) + Cr∥w∥2
)
,

16

https://github.com/JunjieYang97/StocBio
https://github.com/JunjieYang97/MRVRBO

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where (xi,yi) represents the data samples, Dval and Dtr correspond to the validation data and the
training data, L denotes the cross-entropy loss, σ represents the sigmoid function, and Cr is the
regularization parameter. Note that the training loss corresponds to the upper-level loss. We choose
Cr = 0.001 in our experiments, which is the same as (Shaban et al., 2019; Ji et al., 2021). We conduct
experiments on the MNIST dataset (LeCun et al., 1998), which is corrupted by replacing the training
data label with a uniformly random one. Such replacement has a probability p, referred to as the
corruption rate. We run the experiments with corruption rates of p = {0.1, 0.15, 0.2, 0.25, 0.3}.

We compare the performance of LazyBLO with AmIGO (Arbel & Mairal, 2022), stocBiO (Ji et al.,
2021), BSA (Ghadimi & Wang, 2018), and MRBO (Yang et al., 2021). For all algorithms, we tune the
parameters using grid search to achieve the best convergence performance based on the training loss
as the metric. As a result, we set the batch size to 1000 for AmIGO, stocBiO, MRBO and LazyBLO .
We set both the outer stepsize α and the inner stepsize β as 0.1, and the Hessian update stepsize γ as
0.5 for AmIGO, stocBiO and MRBO. We choose both the outer stepsize α and the inner stepsize β to
be 0.01, and the Hessian update stepsize γ to be 0.1 for BSA. For LazyBLO, We set 0.5 as the inner
stepsize β, and 0.1 as both the outer stepsize α and the Hessian update stepsize γ. We set the number
of inner-loop iterations for y-update to 64 for AmIGO, stocBiO and BSA. We choose the number of
iterations for Hessian inverse evaluations to be 6 for AmIGO and stocBiO, and 12 for MRBO and
BSA. For LazyBLO, we set 8 as the inner-loop iteration number N for x- and y-update. We conduct
10 repetitions for the experiments using different random seeds. The solid line shows the average
training loss, and the shaded area represents the variance containing the maximum and the minimum
values. We run the data hyper-cleaning experiments using NVIDIA GeForce RTX 3060 GPU.

B.3 EXPERIMENTAL DETAILS FOR DEEP HYPER-REPRESENTATION

In this section, we show the details of the experiments on deep hyper-representation, which aims to
classify the images. The objective function is given by:

min
λ

LDval
(λ,w∗) =

1

|Dval|
∑

(xi,yi)∈Dval

L (w∗f (λ;xi) ,yi)

s.t. w∗ = argmin
w

1

|Dtr|
∑

(xi,yi)∈Dtr

L (wf (λ,xi) ,yi) ,

where (xi,yi) denotes the data samples, Dval and Dtr are the validation data and the training data, L
corresponds to the cross-entropy loss, f (λ;xi) represents the features extracted from the data sample.
We run the experiments with ResNet-20 network (He et al., 2016) on CIFAT-10 dataset (Krizhevsky
et al., 2009) using a batch size of 128. We treat the last two layers in ResNet-20 as the LL parameters
w with a dimension of 5, 130, and all remaining layers as the UL parameters λ with a dimension of
11, 168, 832.

We compare LazyBLO with AmIGO (Arbel & Mairal, 2022), F2SA (Kwon et al., 2023) and
F3SA (Kwon et al., 2023). To ensure the best performance of all the algorithms, we fine tune
the parameters using grid search with the goal of finding the lowest training loss. Consequently, for
AmIGO, we set all the stepsize for updating x, y and z to 0.01. We choose the number of y-update
iterations to be 8 and the number of z-update iterations to be 2. For LazyBLO, we choose the stepsize
α and γ to be 0.01, and β to be 0.05. We set 2 as the inner-loop iteration number N . Following
the same notations as in (Kwon et al., 2023), for F2SA, we choose the stepsize α as 0.1 and γ as
0.01. We set both the step-size ratio ξ and the Lagrangian multiplier λ to 0.5. We choose the number
of inner-loop iterations to be 1. For F3SA, we set 0.05 as α, 0.01 as γ, 0.1 as ξ, 0.5 as λ, and 0.9
as momentum-weight η. We repeat the experiments 10 times with different random seeds, where
the solid line represents the average training loss or test accuracy, and the shaded area shows the
variance containing the maximum and the minimum values. We run the deep hyper-representation
experiments using NVIDIA Tesla V100 GPU.

B.4 ADDITIONAL EXPERIMENT RESULTS

B.4.1 DATA HYPER-CLEANING

We can see in Table 4 that the test accuracy of LazyBLO is comparable to the SOTA baseline
algorithms although LazyBLO uses stale Hessian information. In addition, the number of Hessian

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 4: Convergence performance of different bilevel algorithms on data hyper-cleaning on MNIST
dataset (corruption rate p = 0.1, average over 10 repetitions).

LAZYBLO AMIGO STOCBIO MRBO BSA
TEST ACCURACY (%) 72.31 72.12 72.75 69.46 72.92

OF HESSIAN 6 60 60 1440 720

0 20 40 60 80 100 120 140
Running Time (s)

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Tr
ai

ni
ng

 L
os

s

LazyBLO p=0.10
LazyBLO p=0.15
LazyBLO p=0.20
LazyBLO p=0.25
LazyBLO p=0.30

Figure 4: Comparison of LazyBLO on data hyper-cleaning on MNIST dataset with different corruption
rates (p).

computations required for LazyBLO to converge is significantly reduced, which is ten times fewer
than AmIGO and stocBiO, 240 times fewer than MRBO, and 120 times fewer than BSA.

Figure 4 illustrates the robustness of LazyBLO against corrupted datasets. We can see from Figure 4
that when the corruption rate p (the probability that a training data label is replaced by a uniformly
random one) is larger, the training loss becomes higher, which is natural since with larger corruption
rate the classification problem becomes challenging. However, the convergence speed of LazyBLO is
similar regardless of the corruption rate p.

B.4.2 DEEP HYPER-REPRESENTATION

0 20 40 60 80 100
Running Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

LazyBLO
AmIGO
F2SA
F3SA

(a) Wall-clock time.

0 50 100 150 200 250 300
of Hessian Comput.

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

LazyBLO
AmIGO

(b) # of Hessian comput.

Figure 5: Test accuracy of different bilevel algorithms on deep hyper-representation on CIFAR-10
dataset (10 repetitions).

Figure 5a illustrates the test accuracy of LazyBLO compared with the baseline algorithms, and it
demonstrates that LazyBLO converges faster in terms of wall-clock time compared to both F2SA
and F3SA. Figure 5b shows the test accuracy of LazyBLO compared to AmIGO in terms of the
number of Hessian computations, and it indicates that with the same number of Hessian evaluations,
LazyBLO has a higher test accuracy compared to AmIGO.

C PROOF OF THEOREM 5.3: NON-CONVEX ℓ (x)

C.1 PROOF SKETCHES

Here, we provide a detailed proof sketch of Theorem 5.3. The detailed proof is provided in Ap-
pendix C.2. The proof is organized into five key steps:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Step 1) Descent in the upper-level objective function: First, we show the bound for the per-iterate
descent of the UL problem as follows:
Lemma C.1. Under Assumptions 3.1–3.4, the following inequality holds for successive iterations
of Algorithm 1:

E
[
ℓ
(
xn+1
t

)
− ℓ (xn

t)
]
≤ −αt

2
E
[
∥∇ℓ (xn

t)∥
2
]
−
(
αt

2
− α2

tLl

2

)
E
[∥∥∥hf

t,n

∥∥∥2]+ 4σ̃2
gxy

B2
fy

µ2
g

αt

+ 8L2
fL

2
zα

3
tN

N−1∑
i=0

E
[∥∥∥hf

t,i

∥∥∥2]+ 2αtL
2
fE
[
∥yn

t − y∗ (xn
t)∥

2
]
+ 2σ2

fxαt + 16L2
fL

2
zβ

2
tN

2σ2
gyαt

+
(
4σ2

gxy
αt + 4L2

fαt

)
E
[
∥zt − z∗t ∥

2
]
+ 16L2

fL
2
zβ

2
tNαt

N−1∑
i=0

E
[∥∥∇yg

(
xi
t,y

i
t

)∥∥2] ,
for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1}, where the expectation is taken over the
stochasticity of the algorithm.

Lemma C.1 indicates that the descent in the upper-level objective function depends on i) the stochastic
gradient estimator E[∥hf

t,n∥2], ii) the full gradient E[∥∇yg (x
n
t ,y

n
t) ∥2], iii) the approximation error

of y∗ (x), which is E[∥yn
t − y∗ (xn

t)∥
2
] and will be bounded in Step 2), and iv) the approximation

gap of z∗ (x,y), which is E[∥zt − z∗t ∥2] and will be bounded in Step 3).

Step 2) Descent in the error of y∗ (x): We bound the approximation error of y∗ (x) as follows:
Lemma C.2. Under Assumptions 3.2–3.4, the approximation error of y∗ (x) for Algorithm 1 satisfies
the following inequality:

E
[∥∥yn+1

t − y∗ (xn+1
t

)∥∥2] ≤ (1 + c1) (1 + c2)

(
1− 2βtµgLg

µg + Lg

)
E
[
∥yn

t − y∗ (xn
t)∥

2
]

+

(
1 +

1

c1

)
L2
yα

2
tE
[∥∥∥hf

t,n

∥∥∥2]+ (1 + c1) (1 + c2)

(
β2
t − 2βt

µg + Lg

)
E
[
∥∇yg (x

n
t ,y

n
t)∥

2
]

+ (1 + c1)

(
1 +

1

c2

)
β2
t σ

2
gy ,

for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1} with some constants c1, c2 > 0, where the
expectation is taken over the randomness of the algorithm.

Lemma C.2 shows that the approximation error of y∗ (x) is affected by the full gradient
E[∥∇yg (x

n
t ,y

n
t) ∥2], and the stochastic gradient estimator E[∥hf

t,n∥2], which is due to the cou-
pled structure of the bilevel optimization problem.

Step 3) Descent in the error of z∗ (x,y): Next, we demonstrate that the approximation error of
z∗ (x,y) can be bounded as follows:
Lemma C.3. Under Assumptions 3.1–3.4, the following inequality of the approximation error of
z∗ (x,y) holds for Algorithm 1:

E
[∥∥zt+1 − z∗t+1

∥∥2] ≤ (1 + c3) (1 + c4)

(
γ2
t − 2γt

µg + Lq

)
E
[∥∥∇zq

(
xN
t ,yN

t , zt
)∥∥2]

+

(
(1 + c3) (1 + c4)

(
1− 2γtµgLq

µg + Lq

)
+ 4σ2

gyy
γ2
t (1 + c3)

(
1 +

1

c4

))
E
[
∥zt − z∗t ∥

2
]

+ 2

(
1 +

1

c3

)
L2
zα

2
tN

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]+ 4

(
1 +

1

c3

)
L2
zβ

2
tN

N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t)∥

2
]

+ 2σ2
fy (1 + c3)

(
1 +

1

c4

)
γ2
t + 4σ2

gyy

B2
fy

µ2
g

(1 + c3)

(
1 +

1

c4

)
γ2
t + 4

(
1 +

1

c3

)
L2
zβ

2
tN

2σ2
gy ,

for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1} with some constants c3, c4 > 0, where
zt = z

(
x0
t ,y

0
t

)
and z∗t = z∗

(
x0
t ,y

0
t

)
. The expectation is taken over the stochasticity of the

algorithm.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Lemma C.3 shows that the approximation error of z∗ (x,y) is influenced by the full gradients
E[∥∇yg (x

n
t ,y

n
t) ∥2] and E[∥∇zq

(
xN
t ,yN

t , zt
)
∥2], and the stochastic gradient estimator E[∥hf

t,n∥2],
which is due to the coupled structure of the quadratic problem in (3).

Step 4) Descent in the potential function: We define the potential function Wt as follows:

Wt = ℓ
(
x0
t

)
+Ky

∥∥y0
t − y∗ (x0

t

)∥∥2 +Kz

∥∥zt (x0
t ,y

0
t

)
− z∗

(
x0
t ,y

0
t

)∥∥2 .
To demonstrate the descent in the potential function, we prove the following lemma.

Lemma C.4. Set c1 =
βtLµg

2(1−βtLµg)
, c2 =

βtLµg

1−2βtLµg
, c3 =

γtLµq

2(1−γtLµq)
, and c4 =

γtLµq

1−2γtLµq
. Under

the same conditions as described in Theorem 5.3 and using Lemmas C.1-C.3, the iterates generated
by Algorithm 1 satisfies: for all t ∈ {0, 1, . . . , T − 1},

E [Wt+1 −Wt] ≤− αt

2

N−1∑
n=0

E
[
∥∇ℓ (xn

t)∥
2
]
+ σ2

gxy
αtCgxyN + σ2

fxαtCfxN + σ2
gyy

αtCgyyN

+ σ2
fyαtCfyN + σ2

gyαt

(
Cg1N + Cg2

1

N

)
where the constant values Cgxy

, Cfx , Cg1 , Cg2 , Cgyy
and Cfy , which are independent of N, are

defined in (18) of Appendix C.

With the proper parameter choices, the coefficients of E[∥yn
t − y∗ (xn

t)∥
2
], E[∥zt − z∗t ∥

2
],

E[∥∇yg (x
n
t ,y

n
t)∥

2
], E[

∥∥∥hf
t,n

∥∥∥2] and E[
∥∥∇zq

(
xN
t ,yN

t , zt
)∥∥2] are made to be non-positive within

the ranges of αt, βt and γt.

Step 5) Proof of Theorem 5.3: Choose a constant step-size αt = α. Under the same conditions as
described in Theorem 5.3, telescoping the result in Lemma C.4 from 0 to T − 1 yields:

1

TN

T−1∑
t=0

N−1∑
n=0

E
[
∥∇ℓ (xn

t)∥
2
]
≤2 (W0 − ℓ∗)

αNT
+ 2

(
σ2
fxCfx + σ2

fyCfy + σ2
gy

(
Cg1 + Cg2

1

N2

)
+σ2

gyy
Cgyy

+ σ2
gxy

Cgxy

)
,

where W0 = ℓ
(
x0
0

)
+Ky

∥∥y0
0 − y∗ (x0

0

)∥∥2 +Kz

∥∥z0 − z∗
(
x0
0,y

0
0

)∥∥2. The proof of Theorem 5.3
is completed.

C.2 DETAILED PROOF

C.2.1 DESCENT IN THE UPPER-LEVEL OBJECTIVE FUNCTION

Lemma C.5. Under Assumptions 3.1–3.4, the following inequality holds for successive iterations of
Algorithm 1:

E
[
ℓ
(
xn+1
t

)
− ℓ (xn

t)
]

≤ −αt

2
E
[
∥∇ℓ (xn

t)∥
2
]
−
(
αt

2
− α2

tLl

2

)
E
[∥∥∥hf

t,n

∥∥∥2]+ 8L2
fL

2
zα

3
tN

N−1∑
i=0

E
[∥∥∥hf

t,i

∥∥∥2]
+ 2αtL

2
fE
[
∥yn

t − y∗ (xn
t)∥

2
]
+
(
4σ2

gxy
αt + 4L2

fαt

)
E
[
∥zt − z∗t ∥

2
]
+ 2σ2

fxαt

+ 16L2
fL

2
zβ

2
tNαt

N−1∑
i=0

E
[∥∥∇yg

(
xi
t,y

i
t

)∥∥2]+ 16L2
fL

2
zβ

2
tN

2σ2
gyαt + 4σ2

gxy

B2
fy

µ2
g

αt,

for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1}, where the expectation is taken over the
stochasticity of the algorithm.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Proof. We have

E
[
ℓ
(
xn+1
t

)
− ℓ (xn

t)
]

(a)

≤ E
[〈
∇ℓ (xn

t) ,x
n+1
t − xn

t

〉
+

Ll

2

∥∥xn+1
t − xn

t

∥∥2]
(b)
= E

[
−αt

〈
∇ℓ (xn

t) , h
f
t,n

〉
+

α2
tLl

2

∥∥∥hf
t,n

∥∥∥2]
(c)
= E

[
−αt

2
∥∇ℓ (xn

t)∥
2 − αt

2

∥∥∥hf
t,n

∥∥∥2 + αt

2

∥∥∥∇ℓ (xn
t)− hf

t,n

∥∥∥2 + α2
tLl

2

∥∥∥hf
t,n

∥∥∥2] , (8)

where (a) uses the Lipschitz continuous gradients of ℓ (see Lemma 5.1). (b) follows from the update
rule of Algorithm 1. (c) is because of ⟨x, y⟩ = 1

2 ∥x∥
2
+ 1

2 ∥y∥
2 − 1

2 ∥x− y∥2.

Next, we bound the third term on the right in (8) above. Before that, we bound
∥∥xn

t − x0
t

∥∥2 and∥∥yn
t − y0

t

∥∥2.

∥∥xn
t − x0

t

∥∥2 (a)
= α2

t

∥∥∥∥∥
n−1∑
i=0

hf
t,i

∥∥∥∥∥
2

(b)

≤ α2
tn

n−1∑
i=0

∥∥∥hf
t,i

∥∥∥2 ≤ α2
tN

N−1∑
i=0

∥∥∥hf
t,i

∥∥∥2 , (9)

where (a) is because of the update rule of Algorithm 1. (b) is due to ∥z1 + · · ·+ zk∥2 ≤ k ∥z1∥2 +
· · ·+ k ∥zk∥2.

Similarly,

∥∥yn
t − y0

t

∥∥2 ≤ β2
tN

N−1∑
i=0

∥∥hg
t,i

∥∥2 . (10)

Considering E
[∥∥∥∇ℓ (xn

t)− hf
t,n

∥∥∥2], we have

E
[∥∥∥∇ℓ (xn

t)− hf
t,n

∥∥∥2] = E
[∥∥∥∇ℓ (xn

t)−∇f (xn
t ,y

n
t , zt) +∇f (xn

t ,y
n
t , zt)− hf

t,n

∥∥∥2]
(a)

≤ E
[
2
∥∥∥hf

t,n −∇f (xn
t ,y

n
t , zt)

∥∥∥2 + 2 ∥∇f (xn
t ,y

n
t , zt)−∇ℓ (xn

t)∥
2

]
(b)

≤ E
[
2
∥∥∥hf

t,n −∇f (xn
t ,y

n
t , zt)

∥∥∥2 + 2L2
f (∥yn

t − y∗ (xn
t)∥+ ∥zt − z∗ (xn

t ,y
n
t)∥)

2

]
≤ E

[
2
∥∥∥hf

t,n −∇f (xn
t ,y

n
t , zt)

∥∥∥2 + 4L2
f ∥yn

t − y∗ (xn
t)∥

2
+ 4L2

f ∥zt − z∗ (xn
t ,y

n
t)∥

2

]
(c)

≤ E
[
2
∥∥∥hf

t,n −∇f (xn
t ,y

n
t , zt)

∥∥∥2 + 4L2
f ∥yn

t − y∗ (xn
t)∥

2
+ 8L2

f ∥zt − z∗t ∥
2

+8L2
f

∥∥z∗ (x0
t ,y

0
t

)
− z∗ (xn

t ,y
n
t)
∥∥2]

(d)

≤ E
[
2
∥∥∥hf

t,n −∇f (xn
t ,y

n
t , zt)

∥∥∥2 + 4L2
f ∥yn

t − y∗ (xn
t)∥

2
+ 8L2

f ∥zt − z∗t ∥
2

+8L2
fL

2
z

(∥∥x0
t − xn

t

∥∥+ ∥∥y0
t − yn

t

∥∥)2]
≤ E

[
2
∥∥∥hf

t,n−∇f (xn
t ,y

n
t , zt)

∥∥∥2+4L2
f ∥yn

t −y∗ (xn
t)∥

2
+8L2

f ∥zt−z∗t ∥
2
+16L2

fL
2
z

∥∥xn
t −x0

t

∥∥2
+16L2

fL
2
z

∥∥yn
t − y0

t

∥∥2]
(e)

≤ E
[
2
∥∥∥hf

t,n −∇f (xn
t ,y

n
t , zt)

∥∥∥2 + 4L2
f ∥yn

t − y∗ (xn
t)∥

2
+ 8L2

f ∥zt − z∗t ∥
2

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

+16L2
fL

2
zα

2
tN

N−1∑
i=0

∥∥∥hf
t,i

∥∥∥2 + 16L2
fL

2
zβ

2
tN

N−1∑
i=0

∥∥hg
t,i

∥∥2]
(f)

≤ E
[
2
∥∥∥hf

t,n −∇f (xn
t ,y

n
t , zt)

∥∥∥2 + 4L2
f ∥yn

t − y∗ (xn
t)∥

2
+ 8L2

f ∥zt − z∗t ∥
2

+ 16L2
fL

2
zα

2
tN

N−1∑
i=0

∥∥∥hf
t,i

∥∥∥2 + 32L2
fL

2
zβ

2
tN

N−1∑
i=0

∥∥hg
t,i −∇yg

(
xi
t,y

i
t

)∥∥2
+32L2

fL
2
zβ

2
tN

N−1∑
i=0

∥∥∇yg
(
xi
t,y

i
t

)∥∥2]
(g)

≤ E
[
2
∥∥∥hf

t,n −∇f (xn
t ,y

n
t , zt)

∥∥∥2 + 4L2
f ∥yn

t − y∗ (xn
t)∥

2
+ 8L2

f ∥zt − z∗t ∥
2

+16L2
fL

2
zα

2
tN

N−1∑
i=0

∥∥∥hf
t,i

∥∥∥2 + 32L2
fL

2
zβ

2
tN

N−1∑
i=0

∥∥∇yg
(
xi
t,y

i
t

)∥∥2]+ 32L2
fL

2
zβ

2
tN

2σ2
gy , (11)

where zt = z
(
x0
t ,y

0
t

)
and z∗t = z∗

(
x0
t ,y

0
t

)
. (a), (c) and (f) follow from ∥x+ y∥2 ≤ 2 ∥x∥2 +

2 ∥y∥2 and
∥∥∇2

xyg (x,y)
∥∥ ≤ Bgxy

. (b) utilizes the Lipschitzness of ∇f (x,y, z) (see Lemma 5.1),
and (d) is due to the Lipschitzness of z∗(x,y) (see Lemma 5.2). (e) uses equations (9) and (10). (g)
is because of the bounded variance in Assumption 3.4.

Then, we bound the term E
[∥∥∥hf

t,n −∇f (xn
t ,y

n
t , zt)

∥∥∥2].

E
[∥∥∥hf

t,n −∇f (xn
t ,y

n
t , zt)

∥∥∥2]
(a)
= E

[∥∥∥∇xf
(
xn
t ,y

n
t ,D

fx
t,n

)
+∇2

xyg
(
xn
t ,y

n
t ,D

gxy

t,n

)
zt −∇xf (xn

t ,y
n
t)−∇2

xyg (x
n
t ,y

n
t) zt

∥∥∥2]
≤ 2E

[∥∥∥∇xf
(
xn
t ,y

n
t ,D

fx
t,n

)
−∇xf (xn

t ,y
n
t)
∥∥∥2+∥zt∥2

∥∥∇2
xyg

(
xn
t ,y

n
t ,D

gxy

t,n

)
−∇2

xyg (x
n
t ,y

n
t)
∥∥2]

(b)

≤ E
[
2σ2

gxy
∥zt∥2 + 2σ2

fx

]
(c)

≤ E
[
4σ2

gxy
∥zt − z∗t ∥

2
+ 4σ2

gxy
∥z∗t ∥

2
+ 2σ2

fx

]
(d)

≤ E

[
4σ2

gxy
∥zt − z∗t ∥

2
+ 4σ2

gxy

B2
fy

µ2
g

+ 2σ2
fx

]
, (12)

where (a) uses the definitions of hf
t,n and ∇f (xn

t ,y
n
t , zt). (b) utilizes the bounded variance in

Assumption 3.4. (c) uses ∥x+ y∥2 ≤ 2 ∥x∥2 + 2 ∥y∥2, and (d) is due to the bound of z∗(x,y) in
Lemma 5.2.

Combining (8), (11) and (12) completes the proof of the lemma.

C.2.2 DESCENT IN THE ERROR OF y∗ (x)

Lemma C.6. Under Assumptions 3.2–3.4, the approximation error of y∗ (x) of Algorithm 1 satisfies
the following inequality:

E
[∥∥yn+1

t − y∗ (xn+1
t

)∥∥2]
≤ (1 + c1) (1 + c2)

(
1− 2βt

µgLg

µg + Lg

)
E
[
∥yn

t − y∗ (xn
t)∥

2
]
+ (1 + c1)

(
1 +

1

c2

)
β2
t σ

2
gy

+ (1 + c1) (1 + c2)

(
β2
t − 2βt

µg + Lg

)
E
[
∥∇yg (x

n
t ,y

n
t)∥

2
]
+

(
1 +

1

c1

)
L2
yα

2
tE
[∥∥∥hf

t,n

∥∥∥2] ,
22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1} with some constants c1, c2 > 0, where the
expectation is taken over the stochasticity of the algorithm.

Proof. We have

E
[∥∥yn+1

t − y∗ (xn+1
t

)∥∥2]
(a)

≤ E
[
(1 + c1)

∥∥yn+1
t − y∗ (xn

t)
∥∥2 + (1 + 1

c1

)∥∥y∗ (xn
t)− y∗ (xn+1

t

)∥∥2]
(b)

≤ E
[
(1 + c1)

∥∥yn
t − βth

g
t,n − y∗ (xn

t)
∥∥2 + (1 + 1

c1

)
L2
y

∥∥xn+1
t − xn

t

∥∥2]
(c)

≤ (1 + c1) (1 + c2)E
[
∥yn

t − βt∇yg (x
n
t ,y

n
t)− y∗ (xn

t)∥
2
]

+ (1 + c1)

(
1 +

1

c2

)
β2
tE
[∥∥hg

t,n −∇yg (x
n
t ,y

n
t)
∥∥2]+ (1 + 1

c1

)
L2
yα

2
tE
[∥∥∥hf

t,n

∥∥∥2]
(d)

≤ (1+c1) (1+c2)E
[
∥yn

t − βt∇yg (x
n
t ,y

n
t)− y∗ (xn

t)∥
2
]
+

(
1+

1

c1

)
L2
yα

2
tE
[∥∥∥hf

t,n

∥∥∥2]
+ (1+c1)

(
1+

1

c2

)
β2
t σ

2
gy , (13)

where (a) results from Young’s inequality. (b) is because of the update rule of Algorithm 1 and the
Lipschitzness of y∗ (·) (see Lemma 5.1). (c) follows from Young’s inequality and the update rule of
Algorithm 1. (d) uses the bounded variance in Assumption 3.4.

To bound the first term on the right, we have

∥yn
t − βt∇yg (x

n
t ,y

n
t)− y∗ (xn

t)∥
2

= ∥yn
t − y∗ (xn

t)∥
2
+ β2

t ∥∇yg (x
n
t ,y

n
t)∥

2 − 2βt ⟨∇yg (x
n
t ,y

n
t) ,y

n
t − y∗ (xn

t)⟩
(a)

≤
(
1− 2βt

µgLg

µg + Lg

)
∥yn

t − y∗ (xn
t)∥

2
+

(
β2
t − 2βt

µg + Lg

)
∥∇yg (x

n
t ,y

n
t)∥

2
, (14)

where (a) is due to µg-strongly convexity and Lg-smoothness of the lower-level function g (x,y)
(see Assumption 3.2), which implies

⟨∇yg (x
n
t ,y

n
t) ,y

n
t − y∗ (xn

t)⟩ ≥
µgLg

µg + Lg
∥yn

t − y∗ (xn
t)∥

2
+

1

µg + Lg
∥∇yg (x

n
t ,y

n
t)∥

2
.

The Lemma is proved by substituting (14) in (13).

C.2.3 DESCENT IN THE ERROR OF z∗ (x,y)

Lemma C.7. Under Assumptions 3.1–3.4, the following inequality of the approximation error of
z∗ (x,y) holds for Algorithm 1:

E
[∥∥zt+1 − z∗t+1

∥∥2]
≤
(
(1 + c3) (1 + c4)

(
1− 2γtµgLq

µg + Lq

)
+ 4σ2

gyy
γ2
t (1 + c3)

(
1 +

1

c4

))
E
[
∥zt − z∗t ∥

2
]

+ (1 + c3) (1 + c4)

(
γ2
t − 2γt

µg + Lq

)
E
[∥∥∇zq

(
xN
t ,yN

t , zt
)∥∥2]+ 4

(
1 +

1

c3

)
L2
zβ

2
tN

2σ2
gy

+ 2

(
1 +

1

c3

)
L2
zα

2
tN

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]+ 4

(
1 +

1

c3

)
L2
zβ

2
tN

N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t)∥

2
]

+ 4σ2
gyy

B2
fy

µ2
g

(1 + c3)

(
1 +

1

c4

)
γ2
t + 2σ2

fy (1 + c3)

(
1 +

1

c4

)
γ2
t ,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1} with some constants c3, c4 > 0, where
zt = z

(
x0
t ,y

0
t

)
and z∗t = z∗

(
x0
t ,y

0
t

)
. The expectation is taken over the stochasticity of the

algorithm.

Proof. We have

E
[∥∥zt+1 − z∗t+1

∥∥2]
(a)

≤ E
[
(1 + c3) ∥zt+1 − z∗t ∥

2
+

(
1 +

1

c3

)∥∥z∗ (x0
t+1,y

0
t+1

)
− z∗

(
x0
t ,y

0
t

)∥∥2]
(b)

≤ E
[
(1 + c3) ∥zt+1 − z∗t ∥

2
+

(
1 +

1

c3

)
L2
z

(∥∥x0
t+1 − x0

t

∥∥+ ∥∥y0
t+1 − y0

t

∥∥)2]
(c)

≤ E
[
(1 + c3) ∥zt+1 − z∗t ∥

2
+ 2

(
1 +

1

c3

)
L2
z

∥∥xN
t − x0

t

∥∥2 + 2

(
1 +

1

c3

)
L2
z

∥∥yN
t − y0

t

∥∥2]
(d)

≤ (1 + c3)E
[
∥zt+1 − z∗t ∥

2
]
+ 2

(
1 +

1

c3

)
L2
zα

2
tN

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]

+ 2

(
1 +

1

c3

)
L2
zβ

2
tN

N−1∑
n=0

E
[∥∥hg

t,n

∥∥2]
(e)

≤ (1 + c3)E
[
∥zt+1 − z∗t ∥

2
]
+ 4

(
1 +

1

c3

)
L2
zβ

2
tN

N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t)∥

2
]

+ 4

(
1 +

1

c3

)
L2
zβ

2
tN

N−1∑
n=0

E
[∥∥hg

t,n −∇yg (x
n
t ,y

n
t)
∥∥2]+ 2

(
1 +

1

c3

)
L2
zα

2
tN

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]
(f)

≤ (1 + c3)E
[
∥zt+1 − z∗t ∥

2
]
+ 2

(
1 +

1

c3

)
L2
zα

2
tN

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]

+ 4

(
1 +

1

c3

)
L2
zβ

2
tN

N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t)∥

2
]
+ 4

(
1 +

1

c3

)
L2
zβ

2
tN

2σ2
gy , (15)

where (a) follows from Young’s inequality. (b) is due to the Lipschitzness of z∗ (·, ·) (see Lemma 5.2).
(c) and (e) result from ∥x+ y∥2 ≤ 2 ∥x∥2 +2 ∥y∥2. (d) is because of equations (9) and (10). (f) uses
the bounded variance in Assumption 3.4.

Next, we bound the first term on the right:

E
[
∥zt+1 − z∗t ∥

2
]

(a)
= E

[
∥zt − γth

q
t − z∗t ∥

2
]

(b)

≤ E
[
(1 + c4)

∥∥zt − γt∇zq
(
xN
t ,yN

t , zt
)
− z∗t

∥∥2 + (1 + 1

c4

)
γ2
t

∥∥∇zq
(
xN
t ,yN

t , zt
)
− hq

t

∥∥2]
= E

[
(1 + c4)

(
∥zt − z∗t ∥

2
+ γ2

t

∥∥∇zq
(
xN
t ,yN

t , zt
)∥∥2 − 2γt

〈
∇zq

(
xN
t ,yN

t , zt
)
, zt − z∗t

〉)]
+

(
1 +

1

c4

)
γ2
t E
[∥∥∇zq

(
xN
t ,yN

t , zt
)
− hq

t

∥∥2]
(c)

≤ (1 + c4)

(
1− 2γt

µgLq

µg + Lq

)
E
[
∥zt − z∗t ∥

2
]
+

(
1 +

1

c4

)
γ2
t E
[∥∥∇zq

(
xN
t ,yN

t , zt
)
− hq

t

∥∥2]
+ (1 + c4)

(
γ2
t − 2γt

µg + Lq

)
E
[∥∥∇zq

(
xN
t ,yN

t , zt
)∥∥2] , (16)

where (a) results from the update rule of Algorithm 1, and (b) uses Young’s inequality. (c) follows
from µg-strongly convexity and Lq-smoothness of q (x,y, z), which implies〈

∇zq
(
xN
t ,yN

t , zt
)
, zt − z∗t

〉
≥ µgLq

µg + Lq
∥zt − z∗t ∥

2
+

1

µg + Lq

∥∥∇zq
(
xN
t ,yN

t , zt
)∥∥2 .

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Then, we bound the second term on the right as follows:

E
[∥∥∇zq

(
xN
t ,yN

t , zt
)
− hq

t

∥∥2]
(a)
= E

[∥∥∥∇2
yyg

(
xN
t ,yN

t

)
zt +∇yf

(
xN
t ,yN

t

)
−
(
∇2

yyg
(
xN
t ,yN

t ;Dgyy

t

)
zt +∇yf

(
xN
t ,yN

t ;Dfy
t

))∥∥∥2]
(b)

≤ 2E
[
∥zt∥2

∥∥∇2
yyg

(
xN
t ,yN

t

)
−∇2

yyg
(
xN
t ,yN

t ;Dgyy

t

)∥∥2+∥∥∥∇yf
(
xN
t ,yN

t

)
−∇yf

(
xN
t ,yN

t ;Dfy
t

)∥∥∥2]
(c)

≤ E
[
2σ2

gyy
∥zt − z∗t + z∗t ∥

2
+ 2σ2

fy

]
(d)

≤ E
[
4σ2

gyy
∥zt − z∗t ∥

2
+ 4σ2

gyy
∥z∗t ∥

2
+ 2σ2

fy

]
(e)

≤ 4σ2
gyy

E
[
∥zt − z∗t ∥

2
]
+ 4σ2

gyy

B2
fy

µ2
g

+ 2σ2
fy , (17)

where (a) follows from the definitions of hq
t and ∇zq (x,y, z). (b) and (d) are because of ∥x+ y∥2 ≤

2 ∥x∥2 + 2 ∥y∥2. (c) results from the bounded variances in Assumption 3.4. (e) utilizes the bound of
z∗(x,y) in Lemma 5.2.

Substituting (17) in (16) and then substituting the result in (15), the lemma is proved.

C.2.4 DESCENT IN THE POTENTIAL FUNCTION

We define the potential function Wt as follows:

Wt = ℓ
(
x0
t

)
+Ky

∥∥y0
t − y∗ (x0

t

)∥∥2 +Kz

∥∥zt (x0
t ,y

0
t

)
− z∗

(
x0
t ,y

0
t

)∥∥2
Lemma C.8. Set c1 =

βtLµg

2(1−βtLµg)
, c2 =

βtLµg

1−2βtLµg
, c3 =

γtLµq

2(1−γtLµq)
, and c4 =

γtLµq

1−2γtLµq
. Under

the same conditions as described in Theorem C.9 and using Lemmas C.1-C.3, the iterates generated
by Algorithm 1 satisfies: for all t ∈ {0, 1, . . . , T − 1},

E [Wt+1 −Wt] ≤− αt

2

N−1∑
n=0

E
[
∥∇ℓ (xn

t)∥
2
]
+ σ2

gxy
αtCgxy

N + σ2
fxαtCfxN + σ2

gyy
αtCgyy

N

+ σ2
fyαtCfyN + σ2

gyαt

(
Cg1N + Cg2

1

N

)
,

where the constant values Cgxy
, Cfx , Cg1 , Cg2 , Cgyy

and Cfy , which are independent of N, are
defined as:

Cgxy
=

4B2
fy

µ2
g

, Cfx = 2, Cg1 =
2cβKy

Lµg

+
8L2

zc
2
βNKz

cγLµq

,

Cg2 =
L2
l c

2
β

16L2
fL

2
z

, Cgyy
=

8B2
fy
cγKz

µ2
gLµq

N
, Cfy =

4cγKz

Lµq
N

,

(18)

where Ky and Kz are defined in (23) of Theorem C.9.

Proof. From Lemma C.1, we have

N−1∑
n=0

E
[
ℓ
(
xn+1
t

)
− ℓ (xn

t)
]
= E

[
ℓ
(
x0
t+1

)
− ℓ

(
x0
t

)]
≤ −αt

2

N−1∑
n=0

E
[
∥∇ℓ (xn

t)∥
2
]
+

(
−αt

2
+

α2
tLl

2
+ 8L2

fL
2
zα

3
tN

2

)N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]+ 2σ2
fxNαt

+
(
4σ2

gxy
Nαt + 4L2

fNαt

)
E
[
∥zt − z∗t ∥

2
]
+ 16L2

fL
2
zβ

2
tN

2αt

N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t)∥

2
]

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

+ 2αtL
2
f

N−1∑
n=0

E
[
∥yn

t − y∗ (xn
t)∥

2
]
+ 4σ̃2

gxy
|Dgxy |−1

B2
fy

µ2
g

Nαt + 16L2
fL

2
zβ

2
tN

3σ2
gyαt.

Choosing αt ≤ Ll

16L2
fL

2
zN

2 and using the definition of βt = cβαt, we get

E
[
ℓ
(
x0
t+1

)
− ℓ

(
x0
t

)]
≤ −αt

2

N−1∑
n=0

E
[
∥∇ℓ (xn

t)∥
2
]
+
(
4σ2

gxy
Nαt + 4L2

fNαt

)
E
[
∥zt − z∗t ∥

2
]

+
(
−αt

2
+ α2

tLl

)N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]+ 2αtL
2
f

N−1∑
n=0

E
[
∥yn

t − y∗ (xn
t)∥

2
]
+ 2σ2

fxNαt

+ 16L2
fL

2
zc

2
βN

2α3
t

N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t)∥

2
]
+

L2
l c

2
β

16L2
fL

2
zN

σ2
gyαt + 4σ2

gxy

B2
fy

µ2
g

Nαt. (19)

With the result from Lemma C.2, we have

N−1∑
n=0

E
[∥∥yn+1

t −y∗ (xn+1
t

)∥∥2−∥yn
t −y∗ (xn

t)∥
2
]
=E

[∥∥y0
t+1−y∗ (x0

t+1

)∥∥2−∥∥y0
t −y∗ (x0

t

)∥∥2]
≤
(
(1 + c1) (1 + c2)

(
1− 2βt

µgLg

µg + Lg

)
− 1

)N−1∑
n=0

E
[
∥yn

t − y∗ (xn
t)∥

2
]

+

(
1 +

1

c1

)
L2
yα

2
t

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]+ (1 + c1)

(
1 +

1

c2

)
β2
t σ̃

2
g |Dgy |−1

N

+ (1 + c1) (1 + c2)

(
β2
t − 2βt

µg + Lg

)N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t)∥

2
]
.

Denote Lµg
=

µgLg

µg+Lg
. Choose c1 and c2 such that

(1 + c1) (1 + c2)
(
1− 2βtLµg

)
= 1−

βtLµg

2
.

Let

(1 + c2)
(
1− 2βtLµg

)
= 1− βtLµg

=⇒ c2 =
βtLµg

1− 2βtLµg

& βt ≤
1

2Lµg

.

Thus,

c1 =
βtLµg

2
(
1− βtLµg

) .
Moreover, this implies that

1 +
1

c2
= 1 +

1− 2βtLµg

βtLµg

≤ 1

βtLµg

, 1 +
1

c1
=

2
(
1− βtLµg

)
βtLµg

≤ 2

βtLµg

.

Use the definition of βt = cβαt. Substituting c1 and c2 and choosing βt ≤ 1
µg+Lg

, we have

E
[∥∥y0

t+1 − y∗ (x0
t+1

)∥∥2 − ∥∥y0
t − y∗ (x0

t

)∥∥2] ≤ −
cβLµg

2
αt

N−1∑
n=0

E
[
∥yn

t − y∗ (xn
t)∥

2
]

+
2L2

yαt

cβLµg

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]− cβαt

µg + Lg

N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t)∥

2
]
+

2

Lµg

cβαtσ
2
gyN. (20)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

According to Lemma C.3, we have

E
[∥∥zt+1 − z∗t+1

∥∥2 − ∥zt − z∗t ∥
2
]

= E
[∥∥z (x0

t+1,y
0
t+1

)
− z∗

(
x0
t+1,y

0
t+1

)∥∥2 − ∥∥z (x0
t ,y

0
t

)
− z∗

(
x0
t ,y

0
t

)∥∥2]
≤
(
(1 + c3) (1 + c4)

(
1− 2γtµgLq

µg + Lq

)
+ 4σ2

gyy
γ2
t (1 + c3)

(
1 +

1

c4

)
− 1

)
E
[
∥zt − z∗t ∥

2
]

+ (1 + c3) (1 + c4)

(
γ2
t − 2γt

µg + Lq

)
E
[∥∥∇zq

(
xN
t ,yN

t , zt
)∥∥2]+ 4

(
1 +

1

c3

)
L2
zβ

2
tN

2σ2
gy

+ 2

(
1 +

1

c3

)
L2
zα

2
tN

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]+ 4

(
1 +

1

c3

)
L2
zβ

2
tN

N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t)∥

2
]

+ 2σ2
fy (1 + c3)

(
1 +

1

c4

)
γ2
t + 4σ2

gyy

B2
fy

µ2
g

(1 + c3)

(
1 +

1

c4

)
γ2
t .

Similar as c1 and c2, we choose

c3 =
γtLµq

2(1− γtLµq)
, c4 =

γtLµq

1− 2γtLµq

,

where γt ≤ 1
2Lµq

and we denote Lµq =
µgLq

µg+Lq
. This implies that

1 +
1

c4
≤ 1

γtLµq

, 1 +
1

c3
≤ 2

γtLµq

.

According to the definitions of βt = cβαt and γt = cγαt, substituting c3 and c4 and choosing
γt ≤ 1

µg+Lq
, we get

E
[∥∥z (x0

t+1,y
0
t+1

)
− z∗

(
x0
t+1,y

0
t+1

)∥∥2 − ∥∥z (x0
t ,y

0
t

)
− z∗

(
x0
t ,y

0
t

)∥∥2]
≤
(
−
cγLµq

2
αt +

8

Lµq

σ2
gyy

cγαt

)
E
[
∥zt − z∗t ∥

2
]
− cγαt

µg + Lq
E
[∥∥∇zq

(
xN
t ,yN

t , zt
)∥∥2]

+
4L2

zαtN

cγLµq

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]+ 8L2
zc

2
βαtN

cγLµq

N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t)∥

2
]
+

8

cγLµq

L2
zc

2
βαtN

2σ2
gy

+ 2σ2
fy

2

Lµq

cγαt + 4σ2
gyy

B2
fy

µ2
g

2

Lµq

cγαt. (21)

Adding equations (19), (20) and (21), we get

E [Wt+1 −Wt]

≤ −αt

2

N−1∑
n=0

E
[
∥∇l (xn

t)∥
2
]
+ C̄y

N−1∑
n=0

E
[
∥yn

t − y∗ (xn
t)∥

2
]
+ C̄zE

[
∥zt − z∗t ∥

2
]

+ C̄g

N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t)∥

2
]
+ C̄h

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]+ C̄qE
[∥∥∇zq

(
xN
t ,yN

t , zt
)∥∥2]

+
L2
l c

2
β

16L2
fL

2
zN

σ2
gyαt + 4σ2

gxy

B2
fy

µ2
g

Nαt + 2σ2
fxNαt +Ky

2cβ
Lµg

αtσ
2
gyN

+Kz

(
8B2

fy

µ2
gLµq

σ2
gyy

cγαt +
4cγ
Lµq

σ2
fyαt +

8

cγLµq

L2
zc

2
βαtN

2σ2
gy

)
,

where

C̄y = 2αtL
2
f −

cβLµg

2
αtKy

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

C̄z = 4αtσ
2
gxy

N + 4L2
fNαt −

cγLµq

2
αtKz +

8

Lµq

σ2
gyy

cγαtKz

C̄g = 16L2
fL

2
zc

2
βN

2α3
t −

cβαt

µg + Lg
Ky +

8

cγLµq

L2
zc

2
βαtNKz

C̄h = α2
tLl −

αt

2
+

2

cβLµg

L2
yαtKy +

4

cγLµq

L2
zαtNKz

C̄q = − cγαt

µg + Lq
Kz ≤ 0.

To ensure C̄y ≤ 0, we choose Ky ≥ 4L2
f

cβLµg
.

To ensure C̄z ≤ 0, we have

C̄z = 4αtσ
2
gxy

N + 4L2
fNαt −

cγLµq

2
αtKz +

8

Lµq

σ2
gyy

cγαtKz

= 4αtσ
2
gxy

N + 4L2
fNαt −

cγLµq

2
αtKz +

8

Lµq

σ̃2
gyy

|Dgyy |−1
cγαtKz

(a)

≤
cγLµq

6
αtKz +

cγLµq

6
αtKz −

cγLµq

2
αtKz +

cγLµq

6
αtKz = 0,

where (a) utilizes Kz ≥ max

{
24σ2

gxy
N

cγLµq
,
24L2

fN

cγLµq

}
and |Dgyy | ≥

48σ̃2
gyy

L2
µq

, which is the data batch.

To ensure C̄g ≤ 0, we have

C̄g = 16L2
fL

2
zc

2
βN

2α3
t −

cβαt

µg + Lg
Ky +

8

cγLµq

L2
zc

2
βαtNKz

(a)

≤ 1

2

cβαt

µg + Lg
Ky −

cβαt

µg + Lg
Ky +

1

2

cβαt

µg + Lg
Ky = 0,

where (a) results from αt ≤
√

Ky

32(µg+Lg)L2
fL

2
zcβN

2 and cγ ≥ 16(µg+Lg)L
2
zcβNKz

KyLµq
.

To ensure C̄h ≤ 0, we have

C̄h = α2
tLl −

αt

2
+

2

cβLµg

L2
yαtKy +

4

cγLµq

L2
zαtNKz

(a)

≤ αt

6
− αt

2
+

αt

6
+

αt

6
= 0,

where (a) is due to αt ≤ 1
6Ll

, cβ ≥ 12L2
yKy

Lµg
and cγ ≥ 24L2

zNKz

Lµq
.

As a summary, to ensure the descent of the potential function, we choose

αt ≤ min

{
1

6Ll
,

1

cβ (µg + Lg)
,

1

cγ (µg + Lq)
,

1

2Lµgcβ
,

1

2Lµqcγ
,

Ll

16L2
fL

2
zN

2
,√

Ky

32 (µg + Lg)L2
fL

2
zN

2cβ

}
,

cβ =
12L2

yKy

Lµg

, cγ = max

{
24L2

zNKz

Lµq

,
192 (µg + Lg)L

2
zNKzL

2
y

Lµg
Lµq

}
, Ky =

Lf√
3Ly

,

Kz = max

{
24σ2

gxy
N

cγLµq

,
24L2

fN

cγLµq

}
, |Dgyy | ≥

48σ̃2
gyy

L2
µq

.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Then, we get

E [Wt+1 −Wt] ≤ −αt

2

N−1∑
n=0

E
[
∥∇l (xn

t)∥
2
]
+

L2
l c

2
β

16L2
fL

2
zN

σ2
gyαt + 4σ2

gxy

B2
fy

µ2
g

Nαt + 2σ2
fxNαt

+Ky
2cβ
Lµg

αtσ
2
gyN +Kz

(
8B2

fy

µ2
gLµq

σ2
gyy

cγαt +
4cγ
Lµq

σ2
fyαt +

8

cγLµq

L2
zc

2
βαtN

2σ2
gy

)
.

Therefore, the lemma is proved.

C.2.5 PROOF OF THEOREM 5.3

Theorem C.9 (Non-Convex ℓ(x)). Under Assumptions 3.1–3.4, choose step-sizes αt = α, βt ≜ cβα,
and γt≜cγα for all t∈{0, 1, . . . , T} with

cβ =
12L2

yKy

Lµg

, cγ=max

{
24L2

zNKz

Lµq

,
192 (µg + Lg)L

2
zNKzL

2
y

Lµg
Lµq

}
, (22)

where

Ky=
Lf√
3Ly

, Kz = max

{
24σ2

gxy
N

cγLµq

,
24L2

fN

cγLµq

}
, Lµg

=
µgLg

µg + Lg
, Lµq

=
µgLq

µg + Lq
. (23)

Moreover, choose α such that

α ≤ min { 1

6Ll
,

1

cβ (µg + Lg)
,

1

cγ (µg + Lq)
,

1

2Lµg
cβ

,
1

2Lµq
cγ

,
Ll

16L2
fL

2
zN

2
,√

Ky

32 (µg + Lg)L2
fL

2
zN

2cβ

}
.

Then, the iterates generated by LazyBLO satisfy:

1

TN

T−1∑
t=0

N−1∑
n=0

E
[
∥∇ℓ (xn

t)∥
2
]
= O

(
∆0

NTα

)
+O

(
σ2
gy + σ2

gxy
+ σ2

fx + σ2
gyy

+ σ2
fy

)
,

where ∆0 = (ℓ(x0
0)− ℓ∗) + ∥y0

0 − y∗(x0
0)∥2 + ∥z0 − z∗(x0

0,y
0
0)∥2.

Proof. Choose αt as a constant stepsize αt = α. Summing the result in Lemma C.4 from t = 0 to
T − 1, and then dividing by NT on both sides, we get

E [WT −W0]

NT
≤− α

2TN

T−1∑
t=0

N−1∑
n=0

E
[
∥∇ℓ (xn

t)∥
2
]
+

α

N

(
σ2
fxCfxN + σ2

fyCfyN + σ2
gyy

CgyyN

+σ2
gy

(
Cg1N + Cg2

1

N

)
+ σ2

gxy
Cgxy

N

)
.

Rearranging the terms and multiplying by 2/α on both sides, we have

1

TN

T−1∑
t=0

N−1∑
n=0

E
[
∥∇ℓ (xn

t)∥
2
]

≤ 2E [W0 − ℓ∗]

αNT
+ 2

(
σ2
fxCfx + σ2

fyCfy + σ2
gy

(
Cg1 + Cg2

1

N2

)
+ σ2

gyy
Cgyy

+ σ2
gxy

Cgxy

)
≤ 2 (W0 − ℓ∗)

αNT
+ 2

(
σ2
fxCfx + σ2

fyCfy + σ2
gy

(
Cg1 + Cg2

1

N2

)
+ σ2

gyy
Cgyy

+ σ2
gxy

Cgxy

)
,

where W0 = ℓ
(
x0
0

)
+Ky

∥∥y0
0 − y∗ (x0

0

)∥∥2 +Kz

∥∥z0 − z∗
(
x0
0,y

0
0

)∥∥2.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Therefore,

1

TN

T−1∑
t=0

N−1∑
n=0

E
[
∥∇ℓ (xn

t)∥
2
]

= O

(
ℓ
(
x0
0

)
− ℓ∗

NTα

)
+O

(∥∥y0
0 − y∗ (x0

0

)∥∥2
NTα

)
+O

(∥∥z0 − z∗
(
x0
0,y

0
0

)∥∥2
NTα

)
+O

(
σ2
gxy

+ σ2
fx + σ2

gyy
+ σ2

fy + σ2
gy

)
.

The proof of the theorem is completed.

D PROOF OF THEOREM 5.6: STRONGLY-CONVEX ℓ (x)

D.1 DESCENT IN THE UPPER-LEVEL OBJECTIVE FUNCTION

Lemma D.1. Under Assumptions 3.1–3.4. For strongly-convex and smooth ℓ (x), the following
inequality holds for successive iterations of Algorithm 1:

E
[
ℓ
(
xn+1
t

)
− ℓ∗

]
≤ (1− µfαt)E [ℓ (xn

t)− ℓ∗]−
(
αt

2
− α2

tLl

2

)
E
[∥∥∥hf

t,n

∥∥∥2]+ 8L2
fL

2
zα

3
tN

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]
+ 2αtL

2
fE
[
∥yn

t − y∗ (xn
t)∥

2
]
+
(
4σ2

gxy
αt + 4L2

fαt

)
E
[
∥zt − z∗t ∥

2
]
+ 16L2

fL
2
zβ

2
tN

2σ2
gyαt

+ 16L2
fL

2
zβ

2
tNαt

N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t)∥

2
]
+ 2σ2

fxαt + 4σ2
gxy

B2
fy

µ2
g

αt,

for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1}, where the expectation is taken over the
stochasticity of the algorithm.

Proof. From Lemma C.1, we have

E
[
ℓ
(
xn+1
t

)
− ℓ (xn

t)
]

≤ −αt

2
E
[
∥∇ℓ (xn

t)∥
2
]
−
(
αt

2
− α2

tLl

2

)
E
[∥∥∥hf

t,n

∥∥∥2]+ 8L2
fL

2
zα

3
tN

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]
+ 2αtL

2
fE
[
∥yn

t − y∗ (xn
t)∥

2
]
+
(
4σ2

gxy
αt + 4L2

fαt

)
E
[
∥zt − z∗t ∥

2
]
+ 2σ2

fxαt

+ 16L2
fL

2
zβ

2
tNαt

N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t)∥

2
]
+ 16L2

fL
2
zβ

2
tN

2σ2
gyαt + 4σ2

gxy

B2
fy

µ2
g

αt. (24)

For a strongly convex function ℓ (x), we have the fact that for all x ∈ Ru,

∥∇ℓ(x)∥2 ≥ 2µf (ℓ(x)− ℓ∗) . (25)

Substitute (25) in (24) and subtract ℓ∗ from both sides. After rearranging the terms, the lemma is
proved.

D.2 DESCENT IN THE ERROR OF y∗ (x)

Lemma D.2. Under Assumptions 3.2–3.4, the approximation error of y∗ (x) of Algorithm 1 satisfies
the following inequality:

E
[∥∥yn+1

t − y∗ (xn+1
t

)∥∥2]
30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

≤ (1 + c1) (1− 2βtµg)E
[
∥yn

t − y∗ (xn
t)∥

2
]
+ 2β2

t (1 + c1)E
[
∥∇yg (x

n
t ,y

n
t)∥

2
]

+

(
1 +

1

c1

)
L2
yα

2
tE
[∥∥∥hf

t,n

∥∥∥2]+ 2 (1 + c1)β
2
t σ

2
gy ,

for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1} with a constant c1 > 0, where the expecta-
tion is taken over the stochasticity of the algorithm.

Proof.

E
[∥∥yn+1

t − y∗ (xn+1
t

)∥∥2]
(a)

≤ E
[
(1 + c1)

∥∥yn+1
t − y∗ (xn

t)
∥∥2 + (1 + 1

c1

)∥∥y∗ (xn
t)− y∗ (xn+1

t

)∥∥2]
(b)

≤ E
[
(1 + c1)

∥∥yn
t − βth

g
t,n − y∗ (xn

t)
∥∥2 + (1 + 1

c1

)
L2
y

∥∥xn+1
t − xn

t

∥∥2]
(c)
= E

[
(1 + c1)

∥∥yn
t − βth

g
t,n − y∗ (xn

t)
∥∥2 + (1 + 1

c1

)
L2
yα

2
t

∥∥∥hf
t,n

∥∥∥2] , (26)

where (a) results from Young’s inequality. (b) is because of the update rule of Algorithm 1 and the
Lipschitzness of y∗ (·) (see Lemma 5.1). (c) follows from the update rule of Algorithm 1.

Next, we bound the first term of the above inequality.

E
[∥∥yn

t − βth
g
t,n − y∗ (xn

t)
∥∥2]

= E
[
∥yn

t − y∗ (xn
t)∥

2
]
+ β2

tE
[∥∥hg

t,n

∥∥2]− 2βtE
[〈
hg
t,n,y

n
t − y∗ (xn

t)
〉]

≤ E
[
∥yn

t − y∗ (xn
t)∥

2
]
+ 2β2

tE
[∥∥hg

t,n −∇yg (x
n
t ,y

n
t)
∥∥2]+ 2β2

tE
[
∥∇yg (x

n
t ,y

n
t)∥

2
]

− 2βtE
[〈
hg
t,n,y

n
t − y∗ (xn

t)
〉]

(a)

≤ E
[
∥yn

t − y∗ (xn
t)∥

2
]
+ 2β2

tE
[∥∥hg

t,n −∇yg (x
n
t ,y

n
t)
∥∥2]+ 2β2

tE
[
∥∇yg (x

n
t ,y

n
t)∥

2
]

− 2βtE [⟨∇yg (x
n
t ,y

n
t) ,y

n
t − y∗ (xn

t)⟩]
(b)

≤ (1−2βtµg)E
[
∥yn

t −y∗ (xn
t)∥

2
]
+2β2

tE
[∥∥hg

t,n−∇yg (x
n
t ,y

n
t)
∥∥2]+2β2

tE
[
∥∇yg (x

n
t ,y

n
t)∥

2
]

(c)

≤ (1− 2βtµg)E
[
∥yn

t − y∗ (xn
t)∥

2
]
+ 2β2

tE
[
∥∇yg (x

n
t ,y

n
t)∥

2
]
+ 2β2

t σ
2
gy , (27)

where (a) uses the fact that E
[
hg
t,n|Fn

t

]
= ∇yg (x

n
t ,y

n
t), and Fn

t ≜ σ
{
y0
0,x

0
0, · · · ,yn

t ,x
n
t

}
is defined as the sigma algebra generated by the iteration sequence of Algorithm 1. (b) utilizes
the fact that for µg-strongly convex g (x,y), we have ⟨∇yg (x,y1)−∇yg (x,y2) ,y1 − y2⟩ ≥
µg ∥y1 − y2∥2. (c) is because of the bounded variance in Assumption 3.4.

Substituting (27) in (26) yields the lemma.

D.3 DESCENT IN THE ERROR OF z∗ (x,y)

Lemma D.3. Under Assumptions 3.1–3.4, the following inequality of the approximation error of
z∗ (x,y) holds for Algorithm 1:

E
[∥∥zt+1 − z∗t+1

∥∥2]
≤ (1 + c3)

(
1− 2γtµg + 8σ2

gyy
γ2
t

)
E
[
∥zt − z∗t ∥

2
]
+

(
2 +

2

c3

)
L2
zα

2
tN

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]

+ 2γ2
t (1 + c3)E

[∥∥∇zq
(
xN
t ,yN

t , zt
)∥∥2]+ 4

(
1 +

1

c3

)
L2
zβ

2
tN

N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t)∥

2
]

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

+ 4

(
1 +

1

c3

)
L2
zβ

2
tN

2σ2
gy + 4σ2

fy (1 + c3) γ
2
t + 8σ2

gyy

B2
fy

µ2
g

(1 + c3) γ
2
t ,

for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1} with some constants c3, c4 > 0, where the
expectation is taken over the stochasticity of the algorithm.

Proof. With the results from the proof of Lemma C.7, we have

E
[∥∥zt+1 − z∗t+1

∥∥2] ≤ (1 + c3)E
[
∥zt+1 − z∗t ∥

2
]
+ 2

(
1 +

1

c3

)
L2
zα

2
tN

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]

+4

(
1+

1

c3

)
L2
zβ

2
tN

N−1∑
n=0

E
[
∥∇yg (x

n
t ,y

n
t)∥

2
]
+4

(
1+

1

c3

)
L2
zβ

2
tN

2σ2
gy ,

(28)

Then, we consider the first term on the right:

E
[
∥zt+1 − z∗t ∥

2
]

(a)
= E

[
∥zt − z∗t ∥

2
]
+ γ2

t E
[
∥hq

t∥
2
]
− 2γtE [⟨hq

t , zt − z∗t ⟩]

≤ E
[
∥zt − z∗t ∥

2
]
+ 2γ2

t E
[∥∥hq

t −∇zq
(
xN
t ,yN

t , zt
)∥∥2]+ 2γ2

t E
[∥∥∇zq

(
xN
t ,yN

t , zt
)∥∥2]

− 2γtE [⟨hq
t , zt − z∗t ⟩]

(b)

≤ E
[
∥zt − z∗t ∥

2
]
+ 2γ2

t E
[∥∥hq

t −∇zq
(
xN
t ,yN

t , zt
)∥∥2]+ 2γ2

t E
[∥∥∇zq

(
xN
t ,yN

t , zt
)∥∥2]

− 2γtE
[〈
∇zq

(
xN
t ,yN

t , zt
)
, zt − z∗t

〉]
(c)

≤ (1−2γtµg)E
[
∥zt−z∗t ∥

2
]
+2γ2

t E
[∥∥hq

t−∇zq
(
xN
t ,yN

t , zt
)∥∥2]+2γ2

t E
[∥∥∇zq

(
xN
t ,yN

t , zt
)∥∥2] ,
(29)

where (a) is due to the update rule of Algorithm 1. (b) follows from the fact that E [hq
t |Ft] =

∇zq
(
xN
t ,yN

t , zt
)
, and (c) utilizes the fact that for µg-strongly convex q (x,y, z), we have

⟨∇zq (x,y, z1)−∇zq (x,y, z2) , z1 − z2⟩ ≥ µg ∥z1 − z2∥2.

Next, we consider the second term E
[∥∥hq

t −∇zq
(
xN
t ,yN

t , zt
)∥∥2] of the above inequality:

E
[∥∥hq

t −∇zq
(
xN
t ,yN

t , zt
)∥∥2]

(a)
= E

[∥∥∥∇2
yyg

(
xN
t ,yN

t

)
zt+∇yf

(
xN
t ,yN

t

)
−
(
∇2

yyg
(
xN
t ,yN

t ;Dgyy

t

)
zt+∇yf

(
xN
t ,yN

t ;Dfy
t

))∥∥∥2]
≤ 2E

[
∥zt∥2

∥∥∇2
yyg

(
xN
t ,yN

t

)
−∇2

yyg
(
xN
t ,yN

t ;Dgyy

t

)∥∥2+∥∥∥∇yf
(
xN
t ,yN

t

)
−∇yf

(
xN
t ,yN

t ;Dfy
t

)∥∥∥2]
(b)

≤ E
[
2σ2

gyy
∥zt − z∗t + z∗t ∥

2
]
+ 2σ2

fy

≤ E
[
4σ2

gyy
∥zt − z∗t ∥

2
+ 4σ2

gyy
∥z∗t ∥

2
]
+ 2σ2

fy

(c)

≤ 4σ2
gyy

E
[
∥zt − z∗t ∥

2
]
+ 4σ2

gyy

B2
fy

µ2
g

+ 2σ2
fy , (30)

where (a) results from the definitions of hq
t and ∇zq

(
xN
t ,yN

t , zt
)
. (b) uses the bounded variance in

Assumption 3.4. (c) is because of the bound of z∗(x,y) in Lemma 5.2.

Substituting (30) into (29) and then substituting the obtained inequality into (28) proves the lemma.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

D.4 DESCENT IN THE POTENTIAL FUNCTION

We define a different potential function Ŵt as follows:

Ŵt =

N−1∑
n=0

(ℓ (xn
t)− ℓ∗) +

N−1∑
n=0

∥yn
t − y∗ (xn

t)∥
2
+ ∥zt − z∗t ∥

2
.

Lemma D.4. Choose c1 =
βtµg

2(1−βtµg)
, and c3 =

γtµg

2(1−γtµg)
. Under the same conditions as described

in Theorem D.5 and utilizing Lemmas B.D.1-B.D.3, the iterates generated by Algorithm 1 satisfies:

E
[
Ŵt+1

]
≤ (1− µfαt)E

[
Ŵt

]
+ 16L2

fL
2
z ĉ

2
βα

3
tN

3σ2
gy + 4σ2

gxy

B2
fy

µ2
g

αtN + 2σ2
fxαtN + 4ĉ2βσ

2
gyNα2

t

+ 8σ2
fy ĉ

2
γα

2
t + 16σ2

gyy

B2
fy

µ2
g

ĉ2γα
2
t +

8

µg ĉγ
L2
z ĉ

2
βN

2σ2
gyαt,

for all t ∈ {0, 1, . . . , T − 1}.

Proof. With the results from Lemma D.1, we have

N−1∑
n=0

E
[
ℓ
(
xn+1
t

)
− ℓ∗

]
≤ E

[
(1− µfαt)

N−1∑
n=0

(ℓ (xn
t)− ℓ∗) +

(
α2
tLl

2
− αt

2
+ 8L2

fL
2
zα

3
tN

2

)N−1∑
n=0

∥∥∥hf
t,n

∥∥∥2
+
(
4σ2

gxy
αtN + 4L2

fαtN
)
∥zt − z∗t ∥

2
+ 16L2

fL
2
zβ

2
t αtN

2
N−1∑
n=0

∥∇yg (x
n
t ,y

n
t)∥

2

+2L2
fαt

N−1∑
n=0

∥yn
t − y∗ (xn

t)∥
2

]
+ 16L2

fL
2
zβ

2
t αtN

3σ2
gy + 2σ2

fxαtN + 4σ2
gxy

B2
fy

µ2
g

αtN

(a)

≤ E

[
(1− µfαt)

N−1∑
n=0

(ℓ (xn
t)− ℓ∗) +

(
α2
tLl

2
− αt

2
+ 8L2

fL
2
zα

3
tN

2

)N−1∑
n=0

∥∥∥hf
t,n

∥∥∥2
+
(
4σ2

gxy
αtN + 4L2

fαtN
)
∥zt − z∗t ∥

2
+
(
2L2

fαt + 16L2
fL

2
zβ

2
t αtN

2L2
g

)N−1∑
n=0

∥yn
t − y∗ (xn

t)∥
2

]

+ 16L2
fL

2
zβ

2
t αtN

3σ2
gy + 4σ2

gxy

B2
fy

µ2
g

αtN + 2σ2
fxαtN

(b)

≤ E

[
(1− µfαt)

N−1∑
n=0

(ℓ (xn
t)− ℓ∗) +

(
α2
tLl

2
− αt

2
+ 8L2

fL
2
zα

3
tN

2

)N−1∑
n=0

∥∥∥hf
t,n

∥∥∥2
+
(
4σ2

gxy
αtN + 4L2

fαtN
)
∥zt − z∗t ∥

2
+
(
2L2

fαt + 16L2
fL

2
z ĉ

2
βα

3
tN

2L2
g

)N−1∑
n=0

∥yn
t − y∗ (xn

t)∥
2

]

+ 16L2
fL

2
z ĉ

2
βα

3
tN

3σ2
gy + 4σ2

gxy

B2
fy

µ2
g

αtN + 2σ2
fxαtN, (31)

where (a) uses the fact that ∇yg (x,y
∗ (x)) = 0 and utilizes the the Lipschitzness of ∇yg (x,y) (see

Assumption 3.2). (b) follows from the definition of βt = ĉβαt.

From Lemma D.2, we have

N−1∑
n=0

E
[∥∥yn+1

t − y∗ (xn+1
t

)∥∥2]

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

(a)

≤ E

[
(1 + c1)

(
1− 2βtµg + 2β2

tL
2
g

)N−1∑
n=0

∥yn
t − y∗ (xn

t)∥
2
+

(
1 +

1

c1

)
L2
yα

2
t

N−1∑
n=0

∥∥∥hf
t,n

∥∥∥2]
+ 2 (1 + c1)β

2
t σ

2
gyN,

where (a) is because of the fact that ∇yg (x,y
∗ (x)) = 0 and follows from the the Lipschitzness of

∇yg (x,y) (see Assumption 3.2).

From the choice of c1 =
βtµg

2(1−βtµg)
, we have 1 + 1

c1
≤ 2

µgβt
. Choosing βt ≤ µg

2L2
g

and using the
definition of βt = ĉβαt, we get

N−1∑
n=0

E
[∥∥yn+1

t − y∗ (xn+1
t

)∥∥2]
≤ E

[(
1− µg ĉβαt

2

)N−1∑
n=0

∥yn
t − y∗ (xn

t)∥
2
+

2

µg ĉβ
L2
yαt

N−1∑
n=0

∥∥∥hf
t,n

∥∥∥2]+ 4ĉ2βσ
2
gyNα2

t . (32)

Following from Lemma D.3, we have

E
[∥∥zt+1 − z∗t+1

∥∥2]
(a)

≤ (1+c3)
(
1−2γtµg+8σ2

gyy
γ2
t +2γ2

tL
2
q

)
E
[
∥zt−z∗t ∥

2
]
+2

(
1+

1

c3

)
L2
zα

2
tN

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]

+ 4

(
1+

1

c3

)
L2
zβ

2
tNL2

g

N−1∑
n=0

E
[
∥yn

t − y∗ (xn
t)∥

2
]
+ 4

(
1+

1

c3

)
L2
zβ

2
tN

2σ2
gy + 4σ2

fy (1+c3) γ
2
t

+ 8σ2
gyy

B2
fy

µ2
g

(1 + c3) γ
2
t ,

where (a) utilizes fact that ∇yg (x,y
∗ (x)) = 0 and ∇zq (x,y, z

∗) = 0. In addition, it uses the the
Lipschitzness of ∇yg (x,y) in Assumption 3.2 and ∇zq (x,y, z) proved as follows.

∥∇zq (x,y, z1)−∇zq (x,y, z2)∥
(a)
=
∥∥∇2

yyg(x,y)z1+∇yf(x,y)−∇2
yyg(x,y)z2−∇yf(x,y)

∥∥
=
∥∥∇2

yyg(x,y)
∥∥ ∥z1 − z2∥

(b)

≤ Bgyy
∥z1 − z2∥

(c)
= Lq ∥z1 − z2∥ ,

where (a) follows from the definition of ∇zq (x,y, z). (b) assumes
∥∥∇2

yyg(x, y)
∥∥ ≤ Bgyy

, and (c)
defines Lq = Bgyy

.

From the choice of c3 =
γtµg

2(1−γtµg)
, we get 1 + 1

c3
≤ 2

µgγt
. Selecting γt ≤ µg

4L2
q

, γt ≤ µg

16σ2
gyy

and

using the definition of βt = ĉβαt, γt = ĉγαt, we have

E
[∥∥zt+1 − z∗t+1

∥∥2] ≤ E

[(
1− µg ĉγαt

2

)
∥zt − z∗t ∥

2
+

4

µg ĉγ
L2
zαtN

N−1∑
n=0

∥∥∥hf
t,n

∥∥∥2
+

8

µg ĉγ
L2
z ĉ

2
βNL2

gαt

N−1∑
n=0

∥yn
t −y∗ (xn

t)∥
2

]
+16σ2

gyy

B2
fy

µ2
g

ĉ2γα
2
t+8σ2

fy ĉ
2
γα

2
t+

8

µg ĉγ
L2
z ĉ

2
βN

2σ2
gyαt.

(33)

Combining equations (31), (32) and (33), we get

E
[
Ŵt+1

]
≤ (1− µfαt)E

[
Ŵt

]
+ ĈhE

[
N−1∑
n=0

∥∥∥hf
t,n

∥∥∥2]+ ĈyE

[
N−1∑
n=0

∥yn
t − y∗ (xn

t)∥
2

]

+ ĈzE
[
∥zt − z∗t ∥

2
]
+ 16L2

fL
2
z ĉ

2
βα

3
tN

3σ2
gy + 4σ2

gxy

B2
fy

µ2
g

αtN + 2σ2
fxαtN + 4ĉ2βσ

2
gyNα2

t

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

+ 16σ2
gxy

B2
fy

µ2
g

ĉ2γα
2
t + 8σ2

fy ĉ
2
γα

2
t +

8

µg ĉγ
L2
z ĉ

2
βN

2σ2
gyαt,

where

Ĉh =
α2
tLl

2
− αt

2
+ 8L2

fL
2
zα

3
tN

2 +
2

µg ĉβ
L2
yαt +

4

µg ĉγ
L2
zαtN,

Ĉy = 2L2
fαt + 16L2

fL
2
z ĉ

2
βα

3
tN

2L2
g + µfαt −

µg ĉβαt

2
+

8

µg ĉγ
L2
z ĉ

2
βNL2

gαt,

Ĉz = 4σ2
gxy

αtN + 4L2
fαtN + µfαt −

µg ĉγαt

2
.

To ensure Ĉh ≤ 0, we have

Ĉh =
α2
tLl

2
− αt

2
+ 8L2

fL
2
zα

3
tN

2 +
2

µg ĉβ
L2
yαt +

4

µg ĉγ
L2
zαtN

(a)

≤ αt

8
− αt

2
+

αt

8
+

αt

8
+

αt

8
= 0,

where (a) follows from αt ≤ min
{

1
4Ll

, 1
8LfLzN

}
, ĉβ ≥ 16L2

y

µg
, and ĉγ ≥ 32L2

z

µg
.

To ensure Ĉy ≤ 0, we have

Ĉy = 2L2
fαt + 16L2

fL
2
z ĉ

2
βα

3
tN

2L2
g + µfαt −

µg ĉβαt

2
+

8

µg ĉγ
L2
z ĉ

2
βNL2

gαt

=
(
2L2

f + µf

)
αt + 16L2

fL
2
z ĉ

2
βα

3
tN

2L2
g −

µg ĉβαt

2
+

8

µg ĉγ
L2
z ĉ

2
βNL2

gαt

(a)

≤ µg ĉβαt

6
+

µg ĉβαt

6
− µg ĉβαt

2
+

µg ĉβαt

6
= 0,

where (a) is because of αt ≤
√

µg

96L2
fL

2
zL

2
gN

2ĉβ
, ĉβ ≥ 12L2

f+6µf

µg
, and ĉγ ≥ µ2

g

48L2
zL

2
gNĉβ

.

To ensure Ĉz ≤ 0, we utilize that ĉγ ≥
8σ2

gxy
N+8L2

fN+2µf

µg
.

As a summary, to ensure the descent of the potential function, we select

αt ≤ min

{
1

4Ll
,

1

8LfLzN
,

√
µg

96L2
fL

2
zL

2
gN

2ĉβ
,

µg

2L2
g ĉβ

,
2

3µg ĉβ
,

µg

16σ2
gyy

ĉγ
,

µg

4L2
q ĉγ

,
2

3µg ĉγ

}
,

ĉβ = max

{
16L2

y

µg
,
12L2

f+6µf

µg

}
, ĉγ = max

{
32L2

z

µg
,

µ2
g

48L2
zL

2
gNĉβ

,
8σ2

gxy
N+8L2

fN+2µf

µg

}
.

Then, we get

E
[
Ŵt+1

]
≤ (1− µfαt)E

[
Ŵt

]
+ 16L2

fL
2
z ĉ

2
βα

3
tN

3σ2
gy + 4σ2

gxy

B2
fy

µ2
g

αtN + 2σ2
fxαtN

+ 4ĉ2βσ
2
gyNα2

t + 16σ2
gxy

B2
fy

µ2
g

ĉ2γα
2
t + 8σ2

fy ĉ
2
γα

2
t +

8

µg ĉγ
L2
z ĉ

2
βN

2σ2
gyαt,

Therefore, the lemma is proved.

D.5 PROOF OF THEOREM 5.6

Theorem D.5 (Strongly Convex ℓ (x)). Suppose the upper-level function ℓ (x) is µf -strongly-convex.
Under Assumptions 3.1–3.4, choose the step-sizes αt = α, βt ≜ ĉβα and γt ≜ ĉγα for all

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

t ∈ {0, 1, . . . , T − 1}, where

ĉβ = max

16L2
y

µg
,
6
(
2L2

f+µf

)
µg

 , ĉγ = max

{
32L2

z

µg
,

µ2
g

48L2
zL

2
gNĉβ

,
8σ2

gxy
N+8L2

fN+2µf

µg

}
.

(34)

Moreover, choose α such that

α ≤ min

{
1

4Ll
,

1

8LfLzN
,

√
µg

96L2
fL

2
zL

2
gN

2ĉβ
,

µg

2L2
g ĉβ

,
2

3µg ĉβ
,

µg

16σ2
gyy

ĉγ
,

µg

4L2
q ĉγ

,
2

3µg ĉγ

}
.

Then, the iterates generated by LazyBLO satisfy:

N−1∑
n=0

E
[
ℓ (xn

t)− ℓ∗
]
≤ (1− µfα)

t
∆̂0 +

1

µf

(
4σ2

gxy

B2
fy

µ2
g

N + 2σ2
fxN +

8

µg ĉγ
L2
z ĉ

2
βN

2σ2
gy

)

+
α

µf

(
16σ2

gyy

B2
fy

µ2
g

ĉ2γ + 8σ2
fy ĉ

2
γ + 4ĉ2βσ

2
gyN

)
+

16α2

µf
L2
fL

2
z ĉ

2
βN

3σ2
gy ,

for any t ≥ 1, where ∆̂0 =
∑N−1

n=0 (ℓ (xn
0)− ℓ∗) +

∑N−1
n=0 ∥yn

0 − y∗ (xn
0)∥

2
+ ∥z0 − z∗0∥

2.

Proof. Selecting a constant step-size αt = α for all t ∈ {0, 1, · · · , T − 1} and from Lemma D.4, we
have

E
[
Ŵt+1

]
≤ (1− µfα)E

[
Ŵt

]
+ 16L2

fL
2
z ĉ

2
βα

3N3σ2
gy + 4σ2

gxy

B2
fy

µ2
g

αN + 2σ2
fxαN + 4ĉ2βσ

2
gyNα2

+ 16σ2
gyy

B2
fy

µ2
g

ĉ2γα
2 + 8σ2

fy ĉ
2
γα

2 +
8

µg ĉγ
L2
z ĉ

2
βN

2σ2
gyα.

Applying the above inequality recursively yields

E
[
Ŵt

]
≤ (1− µfα)

t E
[
Ŵ0

]
+

t−1∑
k=0

(1− µfα)
k
(
+16L2

fL
2
z ĉ

2
βα

3N3σ2
gy + 2σ2

fxαN + 4ĉ2βσ
2
gyNα2

+8σ2
fy ĉ

2
γα

2 + 16σ2
gyy

B2
fy

µ2
g

ĉ2γα
2 +

8

µg ĉγ
L2
z ĉ

2
βN

2σ2
gyα+ 4σ2

gxy

B2
fy

µ2
g

αN

)
(a)

≤ (1− µfα)
t E
[
Ŵ0

]
+

1

µf

(
16L2

fL
2
z ĉ

2
βα

2N3σ2
gy + 4σ2

gxy

B2
fy

µ2
g

N + 2σ2
fxN + 4ĉ2βσ

2
gyNα

+16σ2
gyy

B2
fy

µ2
g

ĉ2γα+ 8σ2
fy ĉ

2
γα+

8

µg ĉγ
L2
z ĉ

2
βN

2σ2
gy

)
,

where (a) follows from the summation of a geometric progression.

Utilizing the definition of the potential function Ŵt and Jenson’s inequality finishes the proof of the
theorem.

36

	Introduction
	Related Work
	Preliminaries
	The LazyBLO Algorithm
	Theoretical Performance Analysis
	Supporting Lemmas
	Main Results

	Numerical Results
	Conclusion
	Additional related work
	Additional experimental details and results
	Specifications of the baseline algorithms in Section 6
	Experimental details for data hyper-cleaning
	Experimental details for deep hyper-representation
	Additional experiment results
	Data hyper-cleaning
	Deep hyper-representation

	Proof of Theorem 5.3: non-convex (x)
	Proof sketches
	Detailed proof
	Descent in the upper-level objective function
	Descent in the error of y*(x)
	Descent in the error of z*(x,y)
	Descent in the potential function
	Proof of Theorem 5.3

	Proof of Theorem 5.6: strongly-convex (x)
	Descent in the upper-level objective function
	Descent in the error of y*(x)
	Descent in the error of z*(x,y)
	Descent in the potential function
	Proof of Theorem 5.6

