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Abstract

Zeroth-order optimization (ZOO) is an important framework for stochastic opti-
mization when gradients are unavailable or expensive to compute. A potential
limitation of existing ZOO methods is the bias inherent in most gradient estimators
unless the perturbation stepsize vanishes. In this paper, we overcome this biased-
ness issue by proposing a novel family of unbiased gradient estimators based solely
on function evaluations. By reformulating directional derivatives as a telescoping
series and sampling from carefully designed distributions, we construct estimators
that eliminate bias while maintaining favorable variance. We analyze their theo-
retical properties, derive optimal scaling distributions and perturbation stepsizes
of four specific constructions, and prove that SGD using the proposed estimators
achieves optimal complexity for smooth non-convex objectives. Experiments on
synthetic tasks and language model fine-tuning confirm the superior accuracy and
convergence of our approach compared to standard methods.

1 Introduction

In this paper, we consider the problem of zeroth-order optimization (ZOO), where our goal is to solve
the following stochastic optimization problem:

min f(2) := Eevaf (w3 €), (M

where f(x; &) is a smooth loss function evaluated on data £ drawn from a distribution =. In many
practical scenarios, gradient information is either unavailable or prohibitively expensive to compute.
Due to its versatility, ZOO has been widely adopted across various domains, including black-box
adversarial attacks on machine learning models [Chen et al., 2017, Kurakin et al., 2016, Papernot
etal., 2017, Cai et al., 2021, Zhao et al., 2020], physics-informed neural networks interfacing with
external PDE solvers [Shen et al., 2024, Ma et al., 2025], and reinforcement learning [Choromanski
etal., 2018, Lei et al., 2022, Suh et al., 2022]. Recent research on ZOO also focuses on enhancing
memory efficiency [Cai et al., 2022a,b, Li et al., 2024, Sugiura and Matsutani, 2025], motivated in
large part by fine-tuning large language models [Malladi et al., 2023, Zhang et al., 2024, Gautam
et al., 2024, Tang et al., 2024, Wang et al., 2024, 2025].

Unlike first-order methods that rely on stochastic gradients V f(x; &), ZOO uses only function
evaluations, without access to gradient information. To approximate gradients, several estimators

have been proposed, including the one-point estimate \Y f(x;8) = WU [Flaxman et al., 2005,
Shamir, 2013, Bach and Perchet, 2016, Nesterov and Spokoiny, 2017, Berahas et al., 2022] and
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two-point estimator \V/ flx; &) = %va [Ghadimi and Lan, 2013, Duchi et al., 2015,
Nesterov and Spokoiny, 2017] (see Appendix A.1 for further discussions). The random direction v is
typically drawn from a Gaussian or uniform spherical distribution, while alternative choices have
also gained increasing attention in recent years [Ghadimi and Lan, 2013, Duchi et al., 2015, Ji et al.,
2019, Sahu et al., 2019, Coope and Tappenden, 2020, Kozak et al., 2023, Rando et al., 2024a,b, Ma
and Huang, 2025, Mi et al., 2025].

However, despite these advancements, a critical limitation arises in zeroth-order gradient estimation;
that is, all widely used gradient estimators exhibit inherent bias. Specifically, unless the perturbation
step size p asymptotically tends to zero, these estimators yield persistently biased approximations of
the true gradient. This inherent bias motivates a central question explored in this paper:

Q1I: Is it possible to design an unbiased zeroth-order gradient estimator using
only function evaluations?

Contribution 1: In this paper, we answer Q1 affirmatively. Contrary to the belief that zeroth-order
gradient estimators must inherently be biased due to finite-step perturbations, we demonstrate that it
is indeed possible to construct unbiased gradient estimators using only function evaluations. Our key
idea is to express V,, f () (in the deterministic setting), the directional derivative along the direction
v, as a telescoping series:

f(@+ pnv) = f(2)

V(o) = Jim LI
_ ip’ [f(eruw)f(x) +1<f(x+un+1v)f(x) _f(erunv)f(:z:))] 2
n=1 " H1 Dn Hnt1 Ln '
Og [f(x ) < J@) 1 (f(x Fpnsr0) = F@) @t ) — f(:c)>]
Py p1 Pn fint1 fin

where the perturbation stepsize p, — 0 as n — oo, the sampling distribution {p, }>°_; form a
probability distribution (that is, 0 < p; < 1 for all 7« € N and Zfil p; = 1), and the expectation
representation (i) holds under mild regularity conditions (Proposition 2.1). This formulation allows us
to reinterpret the directional derivative as an expectation over n ~ {p,,}°_;, enabling the construction
of a unbiased gradient estimator family & (Definition 2.2):

@vf(x) = EnNPP(’I’L,’U),
where P(n, v) is an unbiased estimator of

flatmy) = fle) 1 (f(w+un+1v) —f) [l pav) - f(w)> _

H1 Pn Hn+1 Hn
Within this framework, we propose four specific estimators, denoted as Py-estimator fork = 1,2, 3,4,
corresponding to the number of function evaluations required in each estimation. To the best of our
knowledge, unbiased zeroth-order gradient estimators have received little attention in prior literature.
The only existing work we are aware of is the four-point estimator proposed by Chen [2020], which
shares the same telescoping structure and can be viewed as a special case of our P4-estimator.

Contribution 2: Building on our unbiased estimator construction, we conduct a rigorous variance
analysis on our proposed Pj-estimators. We first present a negative result for the P;-estimator;
although it requires fewer function evaluations, it may exhibit infinite variance under certain conditions
(Theorem 3.1 (a)), which aligns with the one-point estimator in the randomized smoothing [Flaxman
et al., 2005]. Next, we characterize the relation among the variance of the Pj-estimator (k = 2, 3, 4),
the perturbation stepsize sequence {(,, }°_, and the sampling distribution {p,,}**_; (Theorem 3.1
(b)). Identifying the optimal choice of {1y, }oo_; and {p, }_; leads us to the following non-convex
functional optimization problem:

2
min Enip,ye, (,u" ,Un+1> 3)

{pndr_iApnti_y Pn

[e¢] a0
subjectto 0 < p, < 1; an =1; Z Ly < 0.

n=1 n=1



We present an explicit analytical solution to this optimization problem (Theorem 3.2), which reveals
two key insights: (1) our constructed unbiased gradient estimators can achieve the same variance
as the classical two-point estimator without introducing additional bias, leading to the best-possible
complexity for SGD algorithm (Corollary 3.5); (2) a broad class of sampling distributions can achieve
the minimum variance, extending beyond the specific choices considered in prior work [Chen, 2020].
While our theoretical results establish strong guarantees, an important practical question remains:

o0 0

Q2: Given the optimal choice of {p,}>_, and {p,}>*_,, do the proposed
unbiased estimators empirically outperform existing zeroth-order methods?

Contribution 3: To address 92, we empirically validate our proposed approach across both synthetic
and practical tasks. On estimating the gradient of mean-square and logistic losses, our method
achieves significantly lower gradient estimation error compared to standard zeroth-order methods
(Section 4.1). Furthermore, when applied to fine-tuning large language models, the proposed
estimators demonstrate faster convergence and higher final accuracy under the same number of
function evaluations (Section 4.2). These results confirm the practical advantages of our unbiased
construction and underscore its effectiveness in modern zeroth-order optimization tasks.

2 The Derivation of Unbiased Zeroth-Order Estimators

We will start from the deterministic case then turn to the stochastic case in Section 3.3. In this section,
we formally derive a class of unbiased estimators for approximating the gradient V f () using only
function evaluations. We also provide a sufficient condition under which the telescoping series in
Eq. (4) admits the expectation representation. All proofs are provided in the appendix.

2.1 Telescoping Series and Expectation Representation

For a fixed direction v € R?, the directional derivative of a differentiable function f : R — R at x
along the direction v is defined as

Vo f(2) = limy f(x+,uz) — @)

Then for any decreasing sequence { i, }5°_; with lim,, o i, = 0, one can express this directional

flet+pnv)—f(z) }:

derivative as the limit of a convergent sequence { m

V(@) = lim f(@ + pav) = flx)

n—0o0 Hn

This convergent sequence canonically induces a telescoping series with the same limit:

flat+ o) = fl@) i [f($+un+1v) —f(@) [z +pav) = fz)
n=1

Vo f(z) =

] )
Hn1 Hn+1 Hn

Next, consider a probability mass function (PMF) {p,, }>°_; with p,, > 0 for all n and Zle Pn = 1.
When the series in Eq. (4) is absolutely convergent’, we can interpret it as an expectation over a
discrete random variable n. That is,

v, /() = i - [fu: + ) = fl@) 1 (f(x + pn+10) = @) f(@+ o) - f<x>>]

_|_
%51 Pn Hn+1 Hn

_p|fErmo)—f@) 1 f@tpga0) = f@)  flr+par) = f@)N]
| ( )

n=1

+
M1 Pn Hn+41 Hn

&)

*We follow the standard definition from Spivak [2008]: A series Zle an, is called convergent, if the limit
of its finite sum limy o 25:1 an exists. A series Y an is called absolutely convergent, if the series

>, lan] is convergent. See the formal definition in Appendix B.1.




On the Role of Absolute Convergence. The absolute convergence of the series in Eq. (4) plays
a critical role in interpreting the telescoping series as an expectation. This is due to the difference
between the series convergence and the existence of expectation:

* The series convergence: Consider the convergent series > ,._, p;x;. To evaluate its value, we
. 0 .
can calculate the finite-sum S,, := Y."" | p;z;; then we have Y. | p;x; = lim,,_,00 Sp,.

o The existence of expectation: Consider the random variable X with P(X = z;) = p; for
i € N. Its expectation E[ X ] is also written as 3 ;- | p;z;. However, the notion of expectation
must be well-defined independently of any ordering of outcomes. That is, for an arbitrary
permutation o : N — N, all series Zfil Po(i)Zo(;) Should represent the same value E[X].

As a result, a convergent series can yield different values depending on the order of summation (this
result is called the Riemann series theorem [Riemann, 1868, Spivak, 2008]); however, the outcomes
of a random variable requires a random variable’s expectation to be well-defined regardless of any
such ordering. While the expectation representation has been discussed in prior work (e.g., [Chen,
2020]), the lack of attention to absolute convergence has left the conditions ensuring unbiasedness
underexplored.

Due to this reason, we provide the following (mild) sufficient condition for ensuring the absolute
convergence with adding a slightly stronger requirement on the objective function f : R* — R and
the sequence {jn }5_q:

Proposition 2.1. If the second-order continuously differentiable function f : R® — R has L-Lipschitz
continuous gradient and Z;O:l L < OO, then the series

$p [Llatu) = f) | L (fiotimeat)= @) _ flo st 112)]

251 Pn Hm+1 - Hn

n=1

is absolutely convergent and its limit is V , f ().

2.2 The Construction of Unbiased Estimators
With the expectation representation in place, we are ready to define the class of unbiased estimators
explicitly.

Definition 2.2. Suppose that the function f : R? — R is continuously differentiable and {1, },,>1 is
a positive sequence with lim,,_,, u,, = 0 such that the telescoping series

fla+mo) = f@) <o [f@t peiw) = f@)  fle+pav) — flz)
n1 * 1;1 [ Hn41 Hn ]

is absolutely convergent, the sequence {p,, }°_; forms a PMF, and V is the distribution over R?. Then
the family of estimators &2 := Z(f, {{in}oq, {Pn}arq, V) denote the class of random variables
such that for every P(n,v) € £2, it satisfies

f@+ pv) — f(z) 4 1 (f(x + fin+10) — f(@) _ f(@ + pav) — f(x))
M1 Pn Hn41 Hn ’
where v is sampled from V, independent with n ~ {p,,}3°_;.

E[P(n,v) | n,v] =

In the following theorem, we formally prove that our proposed class & is exactly the unbiased
estimator of the gradient V f(z).

Theorem 2.3 (Unbiasedness). Let &2 := P(f, {tun}_1,{pn}ty, V) is defined as Definition 2.2.

n=1» n=1»

Then, for any estimator P(n,v) € 2, the following hold:

(a) E[P(n,v) | v] = V,f(x); that is, P(n,v) is an unbiased estimator of the directional
derivative V,, f ().

(b) If the random direction v is chosen independently of the sampling n. ~ {py }*_, and satisfies
E[vv'] = I, then

Ere{pn} o oV [P(n, v) v] =V f(x),

so that P(n,v) v is an unbiased estimator of the gradient V f (x).



2.3 Specific Constructions

In this subsection, we propose four concrete constructions from the estimator family (Definition 2.2)

P = g(fv {,Ltn};ozl,{pn}le,‘/)

based on the number of function evaluations used in estimating the gradient. These constructions
are designed to explore two main aspects: (1) the trade-off between the estimator variance and the
number of function evaluations, allowing flexibility depending on the computational budget; and (2)
a fundamental question purely driven by the theoretical interest: What is the minimum number of
function evaluations required to construct an unbiased gradient estimator?

P4-Estimator. This estimator corresponds to the four-point estimator originally proposed by Chen
[2020] with slightly generalizing the choice of the perturbation stepsize sequence {1, }°_; and the
sampling distribution {p, }>°_;. For a given direction v ~ V and n ~ {p, }>_;, the P4-estimator is
defined as

bty = J@ )~ f@) 1[

M1 Dn

[t ) = 1@)Je ) -5@]
Hn+1 Hn .

This construction requires four function evaluations at: x, © + p1v, * + ppv, and  + fy41v,
exhibiting the lowest variance and the most function evaluation counts among all members of &.

Ps;-Estimator. We can reduce one function evaluation by introducing a selection random variable
Uy ~ Uniform ({0, 1})*. The estimator is then defined as

SR G0 L (Co R lf(x + 1) = (@) f@+ ) = f(:r)](l_UQ).

M1 Pn

Hn41 Hn

(N
This construction randomly selects one of two pathways: With probability 1/2, it uses the first term
only and requires two function evaluations at x + p;v and x; otherwise, it uses the second term
and requires three function evaluations at z + p,v, * + [,+19, and z. This estimator maintains
unbiasedness as P4, with slightly higher variance.

P1- & Py-Estimator. The selection random variable can be naturally extended to construct P;- and
P5-estimators as follows:

flz + o) - f(z)

Pa(n,v) = ]I{U3=()} (®)
H1
1| f(z+ pns1v) — f(2) [+ pv) — (=)
+ — Lus=1y — Lus=2y |5
Pn Hn+1 Hn
+ Tiu,—13 — Lu,=
P (n,v) ~ LTIy = S vmo) ©)
M1
N 1| S pn0)u,—2y — f(@)u,—0p S+ pnv)u,—sy — f(@)u,—0y
Pn Hn+41 Hn 7

where Uz ~ Uniform ({0, 1,2}), Uy ~ Uniform ({0, 1,2,3}), and I4 is the indicator function,
which equals 1 if the event A occurs, and 0 otherwise. of the event A. Remarkably, the construction
of P;-estimator achieves unbiasedness using only a single function evaluation. However, we will
show that in the next section,P-estimator will have infinite variance under certain condition.

3 Variance Analysis of Unbiased Zeroth-Order Estimators

In this section, we provide a theoretical analysis of the variance behavior for the unbiased estimator
family & = P(f, {pn} 1, {pn}>_1, V) (Definition 2.2). While the unbiasedness has been shown

n=1>

*Here we use Uniform(A) to represent the uniform distribution over the finite or compact set A.



in Theorem 2.3, their variances can differ dramatically depending on the estimator construction. In
particular, we prove that the variance becomes unbounded (i.e., infinite) for certain constructions
such as P;-estimator. We also provide finite-variance bounds for Py-estimators (for k = 2, 3, 4) with
matching the optimal variance under specific choices of {p,,} and {u,,}.

3.1 Theoretical Analysis

In the following result, we adopt the same condition as Proposition 2.1 to ensure the expectation
representation.

Theorem 3.1. Let & := P(f,{pin}oq,{Pn}urq,V) is defined as Definition 2.2. Suppose that
f : R* — R is second-order continuously differentiable and has L-Lipschitz continuous gradient,
Zle pin < 0, and V is the uniform distribution over the sphere with the radius \/d. Define

L < Hn+1 =
W= 1, Z , and Z

n=1

Bl

Then the following statements hold:

(a) Ifthere exists a point x € R? such that the Hessian V2 f () is positive definite and f(x) # 0,
then the variances of the Py for estimating V f(x) is infinite.

(b) The variance of Py-estimator Py (n,v)v (k = 2, 3,4) for estimating V f (x) is given by

2

—dp.

L? 2
Var[Pg(n,v) ’U] < Var[P4(n, U) U] + 7d3u2 + Ede I .

3
L2 L?
Var[P3(n,v)v] < Var[P4(n,v)v] + §d3u2 + §d3g.

L2d3

5 &

VarlPa(n, )] < (d — DIVF @) + 2 +

Proof. Part (a) directly follows by analyzing the tail of L flatinv) gng leveraging the curvature

from a positive definite Hessian. For the part (b), we 51mp1y decompose the variance of Ps(n,v)v
and P3(n,v)v into the variance of estimating P4 (n, v)v using

Var[Pv] = dE[(P — P4(n,v))?] + Var[P4(n,v) v]

for arbitrary P := P(n,v) € &2. Then we apply the second-order Taylor expansions with the mean
value theorem to control the finite-difference noise. Full details and auxiliary lemmas are provided in
Appendix C. O

Comparison with Existing Literature. Theorem 3.1 reveals that while P; is unbiased, its variance
can be infinite under certain conditions, making them unsuitable for SGD. In contrast, Py-estimator
(k = 2,3,4) offer the finite variance when {1, }°_; and {p,}x_, are appropriately selected. We
will show it later that under the optimal setting, thelr variances match the optimal order of classical
two-point estimators [Nesterov and Spokoiny, 2017] but with zero bias:

Var[Py v] = O(d|Vf(z)|? + d*n?).

This variance will lead to the optimal function query complexity (’)(6%) for achieving e-accuracy in
the gradient norm |V f ()| [Duchi et al., 2015].

Comparison with the Noisy Oracle Setup In our work, we consider the exact function evaluation
setting with noiseless values. In this case, our variance scales as d> 2, which is worse than the d? 2
of some specific biased estimators, which is mitigated by choosing a small enough p; the overall
sample complexity remains optimal. However, in the noisy function evaluation setting, where each
function evaluation may return a noisy value, a smaller p amplifies the noise, leading to degraded
performance. Several recent works have provided more refined analysis under noisy setups with
improved variance behavior. Notably, Akhavan et al. [2024] demonstrated that for highly smooth
functions, the ¢; -randomization can reduce the variance scaling to d?u? with achieving the improved



performance for highly smooth objective functions, which extends the existing ¢;-randomization
proposed by Akhavan et al. [2022]. Earlier work by Gasnikov et al. [2017] analyzed the variance
behavior in single-point and multi-point bandit feedback settings, and more recent developments
further explore the impact of first-order smoothness in noisy black-box optimization [Gasnikov et al.,
2022]. Notably, all of these results achieve the optimal complexity derived by Duchi et al. [2015].

3.2 On the Optimal Choices of {1, }>°_; and {p,, }>

n=1

In previous section, Theorem 3.1 connects the perturbation stepsize sequence {1, }, the sampling
distribution {p,}, and the variance upper bounds of our constructed unbiased estimators, which
has received limited discussion in the existing literature To control the variance term, one must

ensure that o := >, (“"*;7”” (and p:=>" | p = for Py-estimator) is sufficiently small. This

observation naturally raises the question: What are the optimal sequences {,, }>°_; and {p,, }>°_; that
minimize this sum? The following theorem addresses this question:

Theorem 3.2. Let {11,,}%_, be a positive, decreasing sequence with > | i, < o0, and let {p, }*_,
be a PMF. Denote i := ,u1 Then the following statements hold:

(a) The lower bound of o is given by o0 > u%. Moreover, the equality holds if and only if

_ HMn—Hn+41
pp = Lot

2
(b) The lower bound of p is given by ¢ = (Zle un> > p2. Moreover; the equality holds if

and only if p, = S "#
L Bn

This result characterizes the choices of {u,}_; and {p,}°_; that minimizes ¢ (and ¢ for the
P,-estimator), leading to the variance upper bound of the form

max{Var[Py(n,v)v], Var[P3(n, v)v], Var[P4(n, v)v]} < O@d|V f(2)|> + d®u?).

Here, we can always choose {1, }°_; for the P-estimator such that 1 ~ 2712 L4y, to nearly match
the lower bound (~ ).

Sampling from the Optimal Sampling Distribution {p,,}"_,;. When the perturbation stepsize
sequence { i, }°_; is given, sampling the corresponding optimal distribution p,, = % could be

difficult; in most of cases, {p,, };°_; cannot be a ready -to-use distribution naively supported by existing
software. Fortunately, we can do it conversely: given an arbitrary PMF {p,, }°_,, the perturbation
stepsize takes the form

n=1°

pn = 1P(N = n),  where N ~ {pn}f:lv

providing a practical way to implement the unbiased zeroth-order gradient estimator. To illustrate
this point, we provide two concrete examples.

Example 3.3 (Geometric Pj-Estimators). We consider the geometric distribution n ~ Geom(c)
(c € (0,1)). Then p, = (1 —¢)c™* for all n € N. We define y,, by the recursion ji,, — fin+1 =
w1 pn = p1(1 —¢)e™ 1. Summing this relation leads to the closed-form solution

fin = pa ™
and the optimal value ¢ = 2. This construction recovers the geometric sampling scheme used by
Chen [2020]. We call the Py-estimator constructed on the geometric distribution as the geometric

2
Pi-estimator. It is easy to verify that the corresponding ¢ is given as ¢ = Zn 1 ‘; no— (1‘i 16)2.

Example 3. 4 (Zipf’s Py-Estimators). We consider the Zipf’s distribution n ~ Zipf(s) (s > 1). Then
Dn = C( 3 na for all n € N, where ( is the Riemannian zeta functlon defined as ((s) = Y. L.

n=1 ns
We define 1, by the recursion pi,, — fin+1 = 41 pn = H1g
closed-form solution

(S) ns . Summing this relation leads to the



This construction also leads to the optimal value ¢ = ;3. When estimating the upper bound of ¢,

we additionally assume s > 3. In this case, we have ¢ = Zle ﬁ—i < % u3. The detailed
calculation is put in Example C.7.

In both examples, we start with a well-known easy-to-sample distribution {p,, }°_,, and calculate the
associated perturbation stepsize sequence {11, }0_; either analytically (Geometric P-estimators) or
iteratively (Zipf’s Pj-estimators). While all estimators (i.e. Pg-estimator with & = 2, 3, 4) achieve
the optimal variance in the order with d and p, these examples indicate a key difference between
the Ps-estimator and the Py -estimator (for k£ = 3, 4): the variance bound of P3- and P4-estimator is
parameter-agnostic; that is, once {p,,} is specified, no additional tuning of distribution parameters is
required to attain the optimal bound p2. This distinction highlight the practical advantages of P3-
and P4-estimators.

3.3 Convergence of SGD with Unbiased Gradient Estimators

In this subsection, we consider the stochastic optimization setting described in Eq. (1), where the goal
is to estimate the stochastic gradient V f(z;£) rather than the full gradient. Under the optimal
sampling distribution {p,}%°_; and the corresponding perturbation stepsize sequence {i,}%_;,
the convergence upper bound of SGD follows directly from standard results for general unbiased
stochastic gradient methods.

Corollary 3.5 (Khaled and Richtarik [2022]). Consider the stochastic optimization problem in Eq. (1),
and suppose that the individual loss f(x; ) is second-order differentiable with L-Lipschitz continuous
gradient in x, uniformly over £ ~ Z. Assume the stochastic gradient is approximated using the Py,-
estimator Py (n,v) v for k = 2,3,4. Let the SGD iteration be defined as w11 = x¢ — NPk (ns, v4) v
where 1 € (0, ﬁ] is the stepsize. Then the iterates satisfy the following convergence guarantee:

2
~ 2 ¢ 3,2 “y
oJun B[V f(ze)|" < O(dn™n +dn + 77T)
Consequently, choosing 7 = ©(1/v/dT') and i = O(3) yields the optimal complexity T = ©(%) of
having ming<i<r—1 B[V f(71)|| < e

This complexity has matched the lower bound of solving a smooth non-convex optimization problem
using zeroth-order gradient-based method [Duchi et al., 2015] and cannot be further improved without
adding additional assumptions. Though we directly apply the result from Khaled and Richtérik [2022]
(which is applicable for all unbiased estimators), the zeroth-order estimation can result in an additional
dependence on the dimension d; this dependence has been reflected in our upper bound.

4 Experiments

To validate our theoretical results and demonstrate the effectiveness of the proposed unbiased zeroth-
order gradient estimators, we conduct experiments on two settings: synthetic objectives and language
model optimization. Details and hyperparameter configurations are provided in Appendix E.

4.1 Synthetic Examples

We first evaluate our estimators on two classic loss functions [James et al., 2013]: the quadratic loss
freg R? — R for linear regression and the logistic loss f., : R? — R for binary classification.

(@) = 2T ATAw, funla) = 3 log(1 + exp(—bi - (a] - )

i=1

where each entry of A € R9*? is independently sampled from the uniform distribution U[—1, 1],
each feature vector a; € R? is sampled from the standard normal distribution Normal(0, 1), and
b; € {—1, 1} are binary labels generated based on a Bernoulli distribution with the fixed sample size
n. The gradient of each objective function can be explicitly evaluated; we compare the performance
of different zeroth-order gradient estimator using the Mean-Square-Error (MSE), which is defined as

MSE(Vf(z)) := [Vf(z) — V()] [Vf(z) — Vf(2)]. (10)
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Figure 1: This figure presents the MSE error of four different estimators across various dimensions d
ranging from 16 to 4096. The left panel corresponds to the quadratic loss fi.e, while the right panel
illustrates results for the logistic loss f.;. Each box plot describes the distribution of the MSE error
across 100 random trials.

We compare the accuracy of estimating the gradient of two loss functions among four different
gradient estimators including Zipf’s Ps-estimator (Example 3.4), two-point estimator with Gaussian
or uniform random perturbations, and centralized two-point estimator with uniform perturbation
(the batch size of two-point estimators is adjusted to exactly 3 function evaluations). For detailed
hyper-parameter setting, we put in Appendix E. Several observations can be made from the results
shown in Figure 1. First, comparing the same estimator across different dimensions, the MSE error
for both objective functions generally increases with the dimension d, which is expected as higher-
dimensional settings pose greater estimation challenges. Second, comparing different estimators, the
Zipf’s P3-estimator consistently achieves lower MSE compared to others. These results collectively
demonstrate the effectiveness of our proposed estimator when estimating the gradient, especially in
high-dimensional settings, which will be further validate in the next experiment.

4.2 Language Model Optimization

In this section, we demonstrate the practical applicability of the unbiased gradient estimators in
optimizing the deep neural network. Particularly, we apply it to the task of fine-tuning a pre-trained
language model. Using zeroth-order optimization to fine-tune the LLMs has been an active research
field in recent years due to its effectiveness in saving memory [Malladi et al., 2023, Zhang et al., 2024,
Gautam et al., 2024, Guo et al., 2024]; it allows for fine-tuning model parameters without requiring
access to the full computational graph, which can be prohibitively large for modern language models.
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Figure 2: Comparison of training loss during fine-tuning of OPT-1.3B on SST-2 using different
zeroth-order gradient estimators. The right panel rescales iterations by the number of function
evaluations. The unbiased Zipf’s P3-, Zipf’s P4-, Geometric P3-, and Geometric P4-estimators
achieve faster convergence under the same number of function evaluations.



We conducted experiments using the OPT-1.3b model [Zhang et al., 2022] for sentiment classification
on the Stanford Sentiment Treebank (SST-2) dataset [Socher et al., 2013]. To ensure fair comparison,
we maintained consistent parameters across experiments: the learning rate n = 10~% and the
perturbation stepsize ;1 = 10~ (corresponding to y; in the proposed unbiased estimators), which
is taken from Malladi et al. [2023]’s Table 7 without additional tuning. For two-point estimators,
we have adjusted the batch size to align 4 function evaluations. Detailed experimental settings
are provided in Appendix E. As shown in Figure 2, zeroth-order optimization using the proposed
unbiased zeroth-order estimators achieved superior performance compared to other baseline methods.

Direct Comparison to the Two-Point Estimator (b = 1) Previously, we compare our proposed
methods against two-point estimators under the constraint of four function evaluations. It is also
interesting to consider a direct comparison with classical two-point estimators using a batch size of
b = 1, which corresponding to two function evaluations. Figure 3 presents this comparison.
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Figure 3: Comparison to the two-point estimator with b = 1 under the same setting as Figure 2. We
also include the performance of the first-order Adam and SGD in the left panel.

Choosing larger batch sizes gives more accurate gradient estimates, leading to lower training loss
when measured by the number of updates. However, we also observe that selecting the batch size as
b = 1 may also present its own advantage. Therefore, choosing the batch size can be non-trivial and
it requires to balance the variance of gradient estimation against the per-step cost.

5 Conclusion

In this work, we proposed a novel class of unbiased zeroth-order gradient estimators based on a tele-
scoping series expansion of directional derivatives. We established new theoretical results, including
a sufficient condition for the expectation representation (Proposition 2.1), the unbiasedness of the
proposed estimators (Theorem 2.3), a variance analysis for four specific constructions (Theorem 3.1),
and the characterization of the optimal sampling distribution and perturbation stepsize sequence
(Theorem 3.2). We further demonstrated that SGD equipped with our estimators achieves optimal
sample complexity and empirically outperforms existing mini-batch two-point estimators. These
results provide a principled foundation for a new class of estimators in zeroth-order optimization,
offering both theoretical insights and practical improvements.
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* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We exactly follow the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We have included this discussion in the appendix.
Guidelines:
» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have clearly cited the related papers of the code, data, and models.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All codes come with self-contained names and comments. The file,
README.md, is included as the documentation.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Backgrounds

A.1 Gradient Estimators in Zeroth-Order Optimization

One-Point Zeroth-Order Estimator One-point estimators represent the simplest class, needing
only a single function query per estimate. This construction makes them suitable when queries
are costly or limited, like in online settings [Flaxman et al., 2005]. A common form, motivated by
Gaussian smoothing [Nesterov and Spokoiny, 2017], is

- 1
(Single-Point) Ve f(z) = pf(a: + p)v,

where v is often drawn from Normal(0, I;). While the expectation E[ﬁ f(z+ pv)v] approximates the
gradient of the smoothed function V,, [Ev~Normal(07 ) f(@+ ;w)], the estimator is biased regarding
the true gradient V f (). This bias diminishes as the smoothing parameter ;» — 0 [Berahas et al.,
2022]. However, these estimators suffer from high variance, potentially scaling with d? and exploding
as ;. — 0 [Flaxman et al., 2005].
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Two-Point Zeroth-Order Estimator Two-point estimators improve on one-point methods by using
two function evaluations, often via a finite difference along a random direction [Shamir, 2017]. The
standard difference form is

fla+ ) = fla— )
2u
, - + pv) —
(One-Side) Visige f(z) = fo+ po) = fw) v,
I
requiring two queries [Shamir, 2017, Nesterov and Spokoiny, 2017]. This construction approximates
the directional derivative [Chen, 2020]. Their expectation exactly matches the gradient of a smoothed
function V, f,,(x) [Nesterov and Spokoiny, 2017] and maintains a O(y:)-level error [Ma and Huang,
2025]. Variance is significantly lower than one-point methods, often scaling linearly with dimension
d [Duchi et al., 2015, Berahas et al., 2022].

)

(Two-Side) Vaside (x) =

Multiple-Point Zeroth-Order Estimator Multiple-point estimators use more than two function
evaluations to further enhance gradient estimate quality. Common strategies include Finite-Difference
method [Dai, 2015] or mini-batch averaging [Duchi et al., 2015]. The finite-difference method
approximates the gradient using finite differences along each standard basis direction:

d
(Finite-Difference) Vinaitrf () = Z flat pes) 2’uf(x ei)
o1

€i,

requiring 2d queries, where e; is the ¢-th coordinate vector. Mini-batch averaging reduces variance
by averaging b independent two-point estimates:

b
(Mini-Batch) @batchf(x) = Z fla+ ,twi)2—Mf(x i) vy,
i=1

The finite-difference method offers low intrinsic variance but high query cost. Mini-batching reduces
base estimator variance by 1/b at a cost of b or 2b queries. These multi-point approaches can be
combined arbitrary directional derivative estimators.

A.2 Zeroth-Order SGD and Its Variants

Vanilla Zeroth-Order SGD The convergence of SGD has been extensively studied under various
settings. Ghadimi and Lan [2013] established complexity results for computing approximate solutions
using first-order and zeroth-order (gradient-free) information with Gaussian smoothing. For smooth
convex objective functions, Duchi et al. [2015] obtained the optimal convergence upper bound for
SGD under the zeroth-order optimization (ZOO) setting. Nesterov and Spokoiny [2017] provided the
optimal convergence upper bound for Gaussian smoothing. In the realm of nonconvex optimization,
Jiet al. [2019] proposed two new zeroth-order variance-reduced optimization algorithms, ZO-SVRG-
Coord-Rand and ZO-SPIDER-Coord, and provided improved analysis for the existing ZO-SVRG-
Coord algorithm. These methods achieved better convergence rates and function query complexities
than previous approaches. Berahas et al. [2022] derived convergence analyses for finite differences,
linear interpolation, Gaussian smoothing, and uniform sphere smoothing methods. Recent studies
have focused on non-smooth settings. Davis et al. [2022] and Zhang et al. [2020] established the
sample complexity for Lipschitz functions without assuming smoothness. Lin et al. [2022] derived the
complexity upper bound of SGD while noting a v/d scale compared to the smooth setting. Notably,
Rando et al. [2024a] and Kornowski and Shamir [2024] revealed that by applying certain techniques,
the non-smooth case is not inherently more challenging than the smooth case. A potential direction
for extending this line of research is to explore the intersection between zeroth-order SGD and random
reshuffling [Ma and Zhou, 2020, Mishchenko et al., 2020], minimax optimization [Chen et al., 2022],
or dependent data [Ma et al., 2022].

Variance-Reduced Zeroth-Order SGD A key bottleneck in vanilla zeroth-order SGD is the high
variance of gradient estimators, which arises from both stochastic data sampling and the inherent
randomness in the gradient estimation process. This high variance necessitates small stepsizes,
leading to slow convergence [Liu et al., 2020]. To address the variance from stochastic data sampling,
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variance reduction techniques—originally developed for first-order methods [Fang et al., 2018,
Defazio et al., 2014, Johnson and Zhang, 2013, Nguyen et al., 2017], have been adapted to the
zeroth-order setting. Algorithms such as ZO-SVRG [Liu et al., 2018, Huang et al., 2019, Gu et al.,
2021], ZO-SVRG/SPIDER-Coord [Ji et al., 2019], and ZO-SPIDER/SARAH [Fang et al., 2018, Ji
et al., 2019, Chen et al., 2023] leverage epoch-based updates with variance-reducing correction terms
or recursive estimator refinements. These methods significantly improve convergence by reducing
the iteration complexity.

Memory-Efficient Zeroth-Order SGD Standard SGD typically requires storing all intermediate
gradient across layers to enable chain-rule-based backpropagation, which incurs substantial memory
overhead, especially when training large models. To alleviate this, MeZO [Malladi et al., 2023]
introduces a memory-efficient approach wherein it suffices to store the random seed used to generate
the perturbation vector for each layer, dramatically reducing memory consumption. This principle
motivates algorithms such as Addax [Li et al., 2024], ElasticZO [Sugiura and Matsutani, 2025], and
Z02 [Wang et al., 2025], along with related benchmarking efforts [Zhang et al., 2024, Gautam et al.,
2024, Wang et al., 2024, Guo et al., 2024]. Additional strategies exploit sparsity to further reduce
memory usage; notable examples include ZORO [Cai et al., 2022b], the Extreme Sparsity framework
[Guo et al., 2024], and the One-Bit method [Cali et al., 2022a].

A.3 Discussions on the Forward Auto-Differentiation (AD) Approach

The forward gradient [Griewank and Walther, 2008] provides the exact directional derivative (with
exactly zero bias), while the zeroth-order approach offers only an approximation of the derivative
gradient. As a result, the zeroth-order approximation inherently introduces additional variance (even
if it can be unbiased). As pointed out by Zhang et al. [2024], this makes the Forward AD method
theoretically better in terms of estimator quality. However, there still multiple scenarios where the
zeroth-order method is preferable.

» Implementation Difficulty: The practical implementation of Forward AD heavily relies on
the availability of JVP (a.k.a. the Jacobian-Vector Product). A naive implementation will
not reduce the memory usage and potentially increase the computation cost.

* Memory usage: Forward AD can be memory-efficient when implemented properly. However,
it still presents a higher memory usage than the zeroth-order optimization. Therefore, for
the edge device or other extreme cases where the memory cost is sensitive, we may still
prefer the zeroth-order approach.

We also note that zeroth-order optimization is clearly advantageous in black-box settings where
the forward gradient is not available. Therefore, the forward auto-differentiation and zeroth-order
approaches are not mutually exclusive, but complementary, depending on the feasibility and the
device memory.

A.4 Discussions on the Difference Between Our Results and Chen [2020]

Although the telescoping structure is the same as the one used in Chen [2020] as we have commented
in the introduction section, we have developed more results to the unbiased zeroth-order gradient
estimator beyond this telescoping structure:

1. Identify when we can have an unbiased gradient estimator: We identify the condition under
which the telescoping structure admits a valid expectation representation (Proposition 2.1).
This condition is critical for constructing unbiased estimators, but has not been established
in Chen [2020].

2. More general unbiased gradient estimator & Reduce the number of function evaluations from
4 to 1: The estimator in Chen [2020] is a special case of our P4-estimator. Our framework
extends beyond this, answering a fundamental theoretical question: What is the minimal
number of function evaluations needed to construct an unbiased gradient estimator? We
improve the known answer from 4 give by Chen [2020] to 1.

3. Identify the necessary and sufficient condition of achieving the optimal variance: More-
over, one of our key focuses is identifying optimal parameter sequences {i,} and {p,}
(Theorem 3.1), rather than proposing a specific estimator.
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B Bias Analysis

B.1 Absolute Convergence

In this subsection, we derive a sufficient condition to guarantee the expectation representation of the
telescoping series introduced in Eq. (5). This requires ensuring the series is absolutely convergent,
a property essential for interpreting it as the expectation of a well-defined random variable. The

following definitions are directly taken from Folland [2002]:
-
a, 1s a convergent sequence; that is, limy_, o, Sy exists.

Definition B.1 (Convergent series). A series Y, ", a,, is said to be convergent if the sequence of

partial sums Sy = 2V

n=1
Definition B.2 (Absolutely convergent series). A series Zfil an, 1s said to be absolutely convergent
if the series >, |ay,| is convergent.

The following classical result, known as the Riemann series theorem [Riemann, 1868, Spivak, 2008],
highlights the necessity of absolute convergence when interpreting an infinite sum as a well-defined
value.

Theorem B.3 (Riemann Series Theorem). Let Z;O:l an, be a conditionally convergent series of real

numbers (i.e., convergent but not absolutely convergent). Then, for any real number r € R, there
. [00) .

exists a rearrangement o : N — N such that ), | a,(,) = r. Moreover, there exist rearrangements

such that the sum diverges to +00, —o0, or fails to converge at all.

This theorem underscores the critical distinction between conditional and absolute convergence:
a convergent series may yield different values under different summation orders. However, the
definition of expectation for a random variable does not permit such ambiguity, since the outcomes
have no inherent order. To guarantee a well-defined expectation, absolute convergence is required:
that is, for a random variable X with outcomes {z,,} and probabilities {p,}, it must hold that
E[X| = 3, [Zalpn < ©.

We now recap Proposition 2.1 describing the condition where the telescoping series is absolutely
convergent, enabling a valid expectation representation.

Proposition B.4. If the second-order continuously differentiable function f : R — R has L-
Lipschitz continuous gradient and Z,Zozl Un < 00, then the series

= fl@+pv) = fl@) 1 (f@+parv) — f(@)  fl@+pw) = f2)
an|: H1 + Pn ( Hn+1 Hn, >:|

n=1

is absolutely convergent and its limit is V., f ().

Proof. First, because Y. |an + by| < Yo |an| + X, |bal, it suffices to prove

O (L@t ) = @) @+ pav) — f(2)
Z < Hn+1 Hn )

is absolutely convergent. To prove its absolute convergence, we estimate the magnitude of the
difference term using Taylor’s theorem:

'f(x + 1) = f(2) [+ pav) = f(2)

n=1

Hn+1 Hn
@ |1 V(@) 0+ R@)pi . pa V(@) 0+ R (2)p,
/fvn+1 :un

(i) L

< 5 |,un+1 + Mn'

where (i) applies the Taylor theorem [Folland, 2002] with setting the integral form remainder
R(z) = Sé(l = 1) Xjaj=2 ﬁf(m + tpw) dt, (ii) assumes the global Lipschitz continuous
gradient, which results in the uniform estimate R(z) < % for all x € R%. Therefore, to ensure the

telescoping series is absolutely continuous, it suffices to require Zle < 00. The limit is directly
determined by the original convergent series. It concludes our proof. O
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In the following two examples, we present commonly used sequences {,, } that satisfy the condition
> | in < 00, ensuring the absolute convergence required in Proposition B.4.

Example B.5 (Exponential Decay). Let y,, = o™ for some constant 0 < o < 1. Then,

a0 e}
o= Yo" <.
Example B.6 (Polynomial Decay). Let u,, = ns for some constant s > 1. Then,
0 0 1
Hn = — < O,
712:11 nZ:]l n

which is well-known as the Riemann zeta function ¢ (s).

B.2 Unbiasedness of Zeroth-Order Estimators in &7-Family

We begin by recalling the definition of the unbiased zeroth-order gradient estimators, denoted
by P = P(f,{pn}trq,{pn}r_1,V), as given by Definition 2.2. Under suitable conditions
on the differentiable function f : R — R and the sequence {1,,}>_; (e.g., those provided by
Proposition 2.1), this definition naturally yields the desired expectation representatlon Moreover, the
random distributions {p, }:>_; and V" are independent. These conditions are sufficient to guarantee
the unbiasedness stated in the following result.

Theorem B.7 (Unbiasedness). Let & := P(f,{pn}>_1,{pn} 1, V) is defined as Definition 2.2.
Then, for any estimator P(n,v) € 2, the following hold:

(a) E[P(n,v) | v] = V,f(x); that is, P(n,v) is an unbiased estimator of the directional
derivative V,, f ().

(b) If the random direction v is chosen independently of the sampling n. ~ {py }*_, and satisfies
E[vv'] = I, then

E"N{pn}$=1771~v [P(n7 ’U) /Uj| = vf($)7
so that P(n,v) v is an unbiased estimator of the full gradient.

Proof. By Definition 2.2, the directional derivative V,, f (z) naturally has the expectation representa-
tion.

(a) Denote
x o f@tmy) - f@) 1 (f(w + ping1v) = f(@)  f(@ + pnv) — f(w))
" H1 DPn Hn41 Hn
Then by the tower property of the conditional expectation,
va(l‘) = ]En~{pn :le[Xn | U] = En~{pn le[E[P(n,v)m] | U] = E[P(nav) ‘ U]'

It concludes the proof.

(b) We consider the conditional expectation E[-|v]. We have
B[P o] = B [E[Pm. ) ol
=E [E[P(n v)‘v]v]
=E[V.f(z)v]
= V/f(z)

Therefore, we conclude that P(n, v)v is an unbiased estimator of the gradient V f(x).
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C Variance Analysis

In this section we present the proof of Theorem 3.1. Each subsection contains the proof of the
corresponding item. We recap its statement below:

Theorem C.1. Let & := P(f,{pn}o_q1,{pn}L_1, V) is defined as Definition 2.2. Suppose that
f : R¢ - R is second-order continuously differentiable and has L-Lipschitz continuous gradient,
Zle Ln, < 00, and V is the uniform distribution over the sphere with the radius \/d. Define

Bl

[i= i,

MS

0
u"+ L and Z

n=1

Then the following statements hold:

(a) If there exists a point x € R? such that the Hessian V? f () is positive definite and f(z) # 0,
then the variances of the P is infinite. That is,

Var[Py(n,v)v] = +c0.
(b) The variance of Py-estimator Po(n,v)v is given by

2 L? L?
Var[P2(n, v) v] < Var[P4(n,v) v] + ?d?’/f + Ed‘gg + ?d?’go.

(¢) The variance of P3-estimator Ps(n, v)v is given by

L? . 1.2
Var[Ps3(n,v)v] < Var[P4(n,v)v] + §d5H2 " "

d3o.
(d) The variance of P4-estimator P4(n,v)v is given by

L2d3
2

VarlPa(n, )] < (0~ DIV @) + 2 + T

Proof. For the item (a), we present the proof in Lemma C.2. For arbitrary P := P(n,v) € &2, we
have
Var[Pv] ZE[P?0T 0] — |V £(2)[2
=dE[(P — P4(n,v) + P4(n,v))*] = [V f(2)|

WAE[(P — Pa(n,v))*] + dE[P4(n, v)] — |V f(2)]?
=dE[(P — P4(n,v))*] + Var[P4(n,v) v]
where (i) applies the unbiasedness (Theorem 2.3) and (ii) applies the definition of &7 (P is an unbiased
estimator of P4). Therefore, we start with Var[P4 v], the variance of the P4-estimator. Then it suffices
to evaluate E[(Py(n,v) — P4(n,v))?] for k = 2 and k = 3. Therefore, we prove the item (d) first.

The detailed proof is included in Lemma C.3. Based on this result, we obtain the variance upper
bound of P5- and P3-estimators in Lemma C.4 and Lemma C.5, respectively.

C.1 Variance of P;-Estimator

Lemma C.2. Under the same setting as Theorem C.1, if there exists a point x € R? such that the
Hessian N f(x) is positive definite, then the variances of the P1—estimator at x is infinite.

Proof. Recall that for the random direction ﬁv ~ Uniform(S%1) and the random variable Uy ~
Uniform ({0, 1, 2, 3}), we have the P;-estimator defined as

fl@ + mo)lw,—1y = F(@) .oy
M1

Pi(n,v) =
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N 1| f@+ pnr0)u,—2y — f(@)u,—0y  f(@ + pav)u,—3) — f @)y, o)

Pn Hn+1 Hn

Since this estimator is unbiased (Theorem 2.3),
Var[Py(n,v)v] = dE[Pl(n7v)2] — |V f(z)]?,
so it suffices to show E[P1(n,v)?] = co. For brevity we write
Py := P1(n,v).

As the Hessian V2 f(z) is positive definite at the point z, it has V2 f () > Apin! for some Apin > 0.
We consider the event { N = n, Uz = 3}, one finds

Plz_f(ir"‘;“nv)

with probability p,, - i
Prnlin

Hence

Pr(N =n,Us = 3) (M)z

Prfpin
i (z+ unv 2
n=1 pn/’[/n

i < L@+ ) — f(@)] f(x))

pn/“‘[’n pn“%

MS

Ep~py [P1] =

3
I

w\H

w\)—*

Without loss of generality, we assume f(x) > 0. In the case f(x) < 0, we apply the L-smoothness
to obtain a lower bound instead. By the second-order Taylor expansion [Spivak, 2008] (or the strong
convexity near the point z),

fl@+mw) = f@) + Vi) v+ 5 p*Ammv v,
so we have

[f(x + pnv) = f(@)] f(z) _ V(x)Tv N dAmin f ()
pn/,L% - Pnlin 2pn ’
As the result, we have

LG 1 (@2 i (@)
En~{pn}, v~Un1form(Sd 1)[P%] > § Z i ( + .

My 2py,
As {p,} is a PMF, it must diverge to infinite. O
C.2 Variance of P,-Estimator

Lemma C.3. Under the same setting as Theorem C.1, the variance of P s-estimator P4(n,v) v is
upper bounded by

312432 L2d3 © -
Var[Pa(n,v)v] < (d = 1)[Vf(@)|* + — P 3 Iz +1p pnl®
n

n=1

Proof. Recall that
T+ pv) — f(x 1 T+ fnai1v) — f(@ T+ pnv) — f(x

oy ) = L) = S0) | L f (ot pat) = )t pe) S0

Our goal is to bound Var[P4(n,v) v]. For each n, define the remainder term
_ _ T
5n('U) :f(l‘ + Hn”) f(l') Hn Vf(df) v
fin
A, :f(x""ﬂnv)_f(x)

fin

= 6,(v) + Vf(x)Tv
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Then
On+1(v) = 0p(v)
Pn

Pa(n,v) = Vf(z) v+ 8 (v) +
Hence our vector estimator is

Ps(n,v)v =vv'Vf(z)+ [61(v) + Sn1 () =0n (v) (U)] .

Pn

Since we have shown that P4(n,v) v is unbiased (Theorem 2.3) and E[vv ] = I, we have
E[0y (v) + 22210=00) ] — g, (11)
The variance is given by

Var[P4(n,v) v] = dE[P4(n,v)*] — |V f(z)|?

o ) Bir(v) — 5,(0))?
— (A D)|Vf(z |+dE<al - )
Buir(0) — 3,(0)
+2dIEVf() ( 1(v) + o )
@, )2 v On+1(v) = n(v) ’
9 (4 1)|Vf()] +dE<51<>+ . )

= (d=1D|Vf(2)|* + dE5 (v)

+ 2dE[6;(U) (Bu1(v) = 8, (v) | +E[pd

2
n n

(Bus1(v) = 3n(0))’ |

D (= DIV + 3B 0) + B[ (ara(0) )

n

where (i) applies the unbiasedness Eq. (11) and (ii) applies the telescoping series Eq. (2). Now it
remains to upper bound the remainder term d,, (v) and the remainder difference term 8,41 (v) — 05, (v).

* Bound the remainder term §,,(v): By L-smoothness of f : R? — R, we have

Lys,
Fla+ pnv) = f(2) <V f () v+ =2 o],
i dLu?
© iV f(z) v+ %,
where (i) applies Evv " = I, (this condition ensures that [[v]? = Tr (Jv]?) = Tr (vo ") =
d). As the result,

Ld
5 (v) < - fin. (12)

or we may use the following almost-sure upper bound
L2d?

()] < k2.

* Bound the remainder difference term d,,. 1 (v) — d,,(v): We define the remainder term
as a function in y; that is,

It automatically gives



As ¢ : [tn+1, 4n] — R is a continuous differentiable function (by our assumption that
f : R® - R is second-order continuously differentiable), we can apply the mean-value
theorem [Folland, 2002]: There exists ¢ € [ft,41, f4n] Such that

O(pnt1) — i) = &' () (Hnt1 — pin)-

We again applying the L-smoothness of f : R¢ — R (essentially the bounded Hessian
assumption) to ¢’ (<), which leads to

Ld
|0n+1(v) = n(v)| < 7|Nn+1 = fin]- (13)

As the result, we obtain the upper bound as

=

i

3L2d32 & 2d [ Ld 2
VarlPa(n,v) o] £ (d— V|V (@) + SETHL Z(mm m)

—~

4 | D
3Ly | LPd® A | — pal?
< (= )|V + S DS s —pal”
4 2 = Dn,
where (i) applies the expectation over n ~ {p,, }>°_, which cancels out one pi. O

C.3 Variance of P,-Estimator
Lemma C.4. Under the same setting as Theorem C.1, the variance of Ps-estimator Po(n,v) v is
upper bounded by
L2 o & (i — tina)? 2 2 @ 2
Var[P2(n,v) v] < Var[P4(n,v) v] + EdS 2 Utn = pin1)”

n=1

Proof. Recall that P5(n, v) is defined as
[+ ) — f(z)
H1
1 [f(x + 1) — [ (@)

Pn

Pa(n,v) = H{U3:0}

I f(CE‘F,UJnU)*f(l')
{Us=1} —
Hn+1 Hn

+

H{U3=2}] ;
where Us ~ Uniform ({0, 1, 2}) is a selection variable. Then

E[(PZ(na U) - P4(7’l, U))Q | Tl,’U]
1 [f(w 4 pn10) = f@)  f@ o+ o) - f(:v>H2

Hn+1 Hn

2
+B(Us = 1) [f(““i) — @, ;[_ﬂwav) f<x>”

P(U; = 2) lf(“mv)—f(x) L1 [f(m+un+1v)—f(x)HQ

125} Pn Hn+1

H11

2
<§ 2 (n+1(v

2 2 1
) + 3 (100 +
5o + 5 = a0

(V) = f@+pnv)—f(2)—pn V() Tv
Hn

() + 5 (B +

L Grw) = 6u())? + 2

- [5n+1(v)]2)
1
3p

1
S0 + 5 =

2
3p
0y

where (i) applies (a + b)? < 2a® + 2b? and . As we have

bounded this term in Lemma C.3, we have

E[(P2(n,v) — Pa(n,v))* | v]
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— Py(n,v))? | n,v]

n=1
0 2 12 2 72 2 2 12
LB, L2 (i — ps)? | LA ]
< pn[ My + Ha,
7;1 3 M 12 2 3p?
L22oo(n Mn+1) L222L200M
—d —d n
THP A A LS
Therefore, we finally obtain
Var[Pa(n,v) v] =dE[(P2(n,v) — P4(n, v))Q] + Var[P4(n,v) v]
L? 3 Nn NnJrl) L 3 N“n
<Var[P4(n,v)v] + 12d HZ: TJr d Z .

ne1 Pn
It completes the proof.

C.4 Variance of P;-Estimator

Lemma C.5. Under the same setting as Theorem C.1, the variance of Ps-estimator Ps(n,v) v is
upper bounded by

12 0 S 2 12
Var[P3(n,v) v] < Var[P4(n,v)v] + §d3 Z=:1 W + §d3u§.
Proof. Recall that P3(n, v) is defined as
PS(na U)

S ) = 1@ S ) = 16 S ) = 1)
J751 Pn HUn+1 Hn ’

where Uy ~ Uniform ({0, 1}) is a selection variable. Then
E[(P3(n,v) — P4(n,v))* | n,v]

2
_P(U, = 0) ll [f(x i 10) = () @+ ) - f(w)] ) P4(n’v)1

DPn Hn41 Mn

R - 1y K0 = )

— Pu(n, v)r

1 ll lf(x b i) = (@) f b ) — f(x)”2 3 [flrm f(x)r |

2| pn Hnt1 Hn

As we have bounded this term in Lemma C.3, we have

E[(P?)(n’ U) - P4(7’L,’U)>2 | U]

Pu[(P3(n,v) — Py(n,v))? | n,v]

0
0
< 2 Pn |:p L28d2 ‘,un-‘rl Mn|2 + LQCéQM%]
n=1 n
% Z Hn ﬂn+1 %dQ,u,?.

Therefore, we finally obtain
Var[P3(n, v) v] =dE[(P3(n,v) — P4(n,v))?] + Var[P4(n, v) v]
L2 © n— ln 2 L2
<Var[Py(n,v)v] + —d? 2 (ttn = fin1)” + =d*ul.

= Pn 8
It concludes the proof.
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C.5 On the Optimal Sampling Distribution and the Perturbation Stepsize Sequence

We recap the full statement of Theorem 3.2.

Theorem C.6. Let {11,}>°_, be a positive, decreasing sequence with Y | p, < o0, and let {p, }**_;
be a PMF. Then the following statements hold:

(a) Define o0, = (””;7_”")2 The lower bound of o is given by

Hn—Hn+1

Moreover, equality holds if and only if p,, = i

2
(b) Define v, = ZJ. The lower bound of  is given by

[°s) 0 2
:Z@n>(ZMn) >;u'%'
n=1 n=1

Hn

Moreover, equality holds if and only if p, = S

Proof. Write a,, = i1 — in, SO Zf:1 an = pq and Y p, = 1. By Cauchy-Schwarz inequality,

(Slenl)” < (To) (Z2) - 3

which yields the claimed lower bound in (a). Equality occurs exactly when p,oc|ay,|, i.e. p, =
(b, — thn+1)/p1. Similarly, By Cauchy-Schwarz inequality,

2 2 O
Hay
(Se) = (25) (S0)- S
n n n n n=1
which yields the claimed lower bound in (b). O

In the following example, we include the omitted details of Example 3.4.
Example C.7. We consider the Zipf distribution n ~ Zipf(s) (s > 1). Then

1 1 Z 1
Pn = 7@.(8);7 ;1 e

We define {1, } by the recursion

1 1
Hn — HUn+1 = H1Pn = M1 @;7

so that summing gives the closed-form

Z?lff‘“)_ DI I
C(s) M)

A direct check shows this choice attains the lower bound ¢ = 12 on Y. (ptn, — pins1)?/Pn. Now we
turn to bound ¢:

SHrE

For s > 3, use the integral bound

i J8 < JOO x % dr = (-

j=n n—1

Hn :m(l—

—s

[°s) nel .—s © 2
s) Z ns<l— ij(ls; ) = pi¢ Z n ( Jg(nsj ) :

n=1 =1

\:w

S
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to get

2 2
oo M1 n2—s

pa (5= 1)2((s)

Since s > 3 the series Zle n?s = — 2) converges, giving the clean bound

=((s
vk =2
- r;l Dn s (s = 1)%¢(s) e

C.6 Discussions: Variance of Random Directional Derivative

In this subsection, we analyze the variance of a gradient estimate based on a random directional
derivative. Let v be a random vector uniformly sampled from the sphere with the dimension d. We
approximate the gradient V f(z) using the random directional derivative defined as

Vo f(x) := vo Vf(x).

Assuming that the expectation satisfies E[vv ] = I, it is essential to evaluate the variance of this
estimator. Specifically, we compute:

E[V () vo ooV f(2)] = E[|V f(2)[*[v]*]
= d|Vf(x)]*.
Thus, the variance is given by

Var[V,, f(2)] = d[Vf(2)|* = [Vf(@)|* = (d = D|VF(2)|*.

This result indicates that even when the exact directional derivative is available, the variance still
scales with O(d) relative to the gradient norm. Consequently, it is not avoidable to remove the
dependence on the dimension d.

D Convergence Analysis

In this section, we present the proof of Corollary 3.5. Recall that our goal is to solve the stochastic
optimization problem Eq. (1):

min f(z) := Eeos f(2;6),

zeR4

where the second-order continuously differentiable function f(-;¢) : R? — R has L-Lipschitz
gradient for every £&. We consider the convergence upper bound of the classical stochastic gradient
descent (SGD) algorithm with the constant learning rate n given the initialization xg:

T = 2 — ng(T4), (SGD)

where g () is an unbiased estimator of the full gradient V f ().

D.1 The Convergence Upper Bound

The full statement of Corollary 3.5 is given as follow:

Corollary D.1. Consider the stochastic optimization problem in Eq. (1), and suppose that the
individual loss f(x;€) is second-order differentiable with L-Lipschitz continuous gradient in z,
uniformly over £ ~ =. Assume the stochastic gradient is approximated using the Py-estimator
Pr(n,v) v for k = 2,3,4. Let the SGD iteration be defined as

Typ1 = Ty — PR (ng, vy) vg

where 1 € (0, L%d] is the stepsize. Then the iterates satisfy the following convergence guarantee:

2
. 2 3,2
o BIVIGOI < In[Cud’s? + 240" ~ Bevaf] + 6.
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B ke
where § := f(xg) — f* and C}, = % k=3, (k = 2,3,4) is the estimator-dependent
T
4 -
error term. Consequently, choosing 1 = ©(1/v/dT) and p = O(3) yields the optimal complexity

T = O(%) of having ming<y<7—1 E|V f(z,)] < .
Proof. Let g(x) = Pg(n,v)v for k = 2,3,4. By Lemma D.4, we have
Elg()| < dL|Vf(2)|* + Cxd’p® + 2dL(f* — Ee~= fE).
Then we set B = dL and C' = Cy.d*pi* + 2dL(f* — E¢.=f{) in Lemma D.3. As the result, when

n <+, we have

. 2
m%l_lEHVf(xt)HQ < L [Crd®p® + 2dL(f* — BeozfE)] + TTT(S'

0<t<

The complexity of making ming<;<7—1 E|V f(2¢)| < €is given by

126L Crd®p? + 2dL(f* — Ees f¥
T>—7 max{dL,Q ReH (2f < fg) .
€ €
Setting p = O(4), the optimal complexity is given by T' = @(6%). O

D.2 Supporting Lemmas

Lemma D.2. Let f* := min, f(z) and f¥ := min, f(x;§). If for each &, f(x;€) has L-Lipschitz
gradient, then
E|Vf(x;€)|? < LV f(@)|* + 2L(f* — Ee~zfE).

Proof. This lemma is directly taken from Proposition 2, Khaled and Richtérik [2022]. O

Lemma D.3. Let the second-order continuously differentiable function f(- ;¢) : R — R be lower
bounded by f* := min, f(x) and have L-Lipschitz gradient for every &, and g(x) be an unbiased
estimator of V f (x). Suppose that g(x) and f(x) satisfy the expected smoothness condition

Elg(2)* < B~ |[Vf(x)|*+ C.
If the learning rate n < ﬁ and define § := f(xg) — f*, then the T-th iteration of SGD satisfies

0

2
. 2 e
S?;ln 1IE||V f(xe)|* < LCn+ " d.

Proof. This lemma is directly taken from Theorem 2, Khaled and Richtarik [2022]. O

Lemma Dd4. Let g(z) be the Py-estimator (for k = 2,3,4), f* = min, f(z), and f§ =
min, f(x;&). Then the expected smoothness condition is given by

Elg(x)| < dL|V f(2)|* + Crd’p? + 2dL(f* — Ee~=fE).

where
28>
13 k=2,
Cp=1{ 3% k=3,
L% | =4,

4

is the error term introduced by the zeroth-order gradient estimation. For Ps-estimator, we choose
{pin} and {py} such that o = p? and ¢ < 2>



Proof. Let v f(z;€) be the Pg-estimator for k = 2, 3,4. First, we notice the following variance-
decomposition holds:

E|V f(x; &) = E|Vf(x;€) — Vf(x;€) + Vf(z; )
=E|Vf(2:)|* +E[Var [Py v | £]].

By Theorem 3.1 and Theorem 3.2, we set

Var [Py v | €] < (d = 1)[V f(2;€)|* + Crd’pi?,
where CY; is determined by the estimator; we also assume that the optimal distribution and perturba-
tions are taken obeying Theorem 3.2. As the result,

E|V/f(2:6)[* < EIVS(@:)|* + +E[(d ~ DIV (2;8)]* + Cud®si?]

dE|V f(z;€)[* + Crd’p®
< dL|Vf(@)|* + Cod’p? + 2dL(f* — E¢~zfE),

where (i) applies Lemma D.2. It completes the proof. O

E Experiments Details

In this section, we describe the detailed experiment setting and the hyperparameter configurations.

E.1 Synthetic Example

In the synthetic example, we compared gradient estimators across varying dimensions (d =
16, 64, 256, 1024, 4096) using both quadratic and logistic functions. For fair comparison, all es-
timators used a consistent number of function evaluations of 3 and the perturbation stepsize y = 10~°
(for P3-estimator, we set 13 = p). The P3-estimator was configured with parameter s = 2.0 and
followed the same perturbation stepsize scheduling as Example 3.4. We evaluated four gradient
estimators: Zipf’s Ps-estimator, one-side two-point estimator with the Gaussian smoothing, one-side
two-point estimator with the uniform smoothing, and two-side two-point estimator with the Gaussian
smoothing. Each configuration was tested over 100 independent trials with a fixed random seed for
reproducibility.

Code Availability and System Requirements All source code is included in the supplementary
materials. No specific hardware is required; any machine supporting Python 3.10.10 should suffice.
A Jupyter notebook version is also provided for convenient execution on Google Colab.

E.2 Language Model Optimization

In the language model optimization experiment, we compare the performance of different gradient
estimators within a vanilla SGD framework for fine-tuning a language model on a sentiment clas-
sification task. The learning rate of SGD is fixed at n = 104, the batch size of SGD is fixed at
16 (this batch size corresponds to the number of stochastic samples and is different from the batch
size in multiple-point zeroth-order estimator), and the perturbation stepsize is set to ;v = 10~ (for
our proposed unbiased estimators, we use (1 = ). Due to limitations in numerical precision, we
do not sample the extreme tail of the distribution. Instead, we truncate the sampling distribution by
enforcing p,, = 1073 to ensure numerical stability and avoid excessively small probabilities. All
remaining hyperparameters are summarized in Table 1.

Code Availability and System Requirements All source code and reproduction instructions are
provided in the supplementary materials. Experiments were conducted on a cluster running RHEL
8, equipped with dual AMD EPYC 7763 processors, 512 GB of memory, and seven NVIDIA RTX
5000 GPUs. To reproduce the language model optimization experiments, we recommend using a
CUDA-compatible GPU with at least 24 GB of VRAM.
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Table 1: Summary of gradient estimators used in the language model optimization experiment.

Estimation Method Estimator Formula Batch Size b # Function Calls Notes
b
One-Side Two-Point Estimator Z le 3 4 v Normal(0, I4)
— 1
i=1
b
Two-Side Two-Point Estimator Z flat “1)1)2 fla uvl)’v,; 2 4 v; A Normal(0, I;)
= iz
=1
Zipf’s P3-Estimator Eq. (7) 1 3 s = 1.5, Example 3.4
Geometric P3-Estimator Eq. (7) 1 3 c = 0.5, Example 3.3
Zipf’s P4-Estimator Eq. (6) 1 4 s = 1.5, Example 3.4
Geometric P4-Estimator Eq. (6) 1 4 ¢ = 0.5, Example 3.3

F Broader Impact

This work introduces a new class of unbiased zeroth-order gradient estimators that offer both
theoretical guarantees and practical advantages. By eliminating bias without increasing variance, our
method enhances the reliability of optimization in settings where gradient information is unavailable
or costly to obtain. These include fine-tuning large language models under memory constraints,
conducting black-box adversarial robustness evaluations, and solving scientific computing tasks
such as physics-informed neural networks. On the theoretical side, our estimators advance the
understanding of zeroth-order optimization and provide new tools for the zeroth-order gradient
estimation. This work opens a promising direction for future research in gradient-free optimization
and its broad applications in machine learning and beyond.

G Limitations

Despite the theoretical guarantees and empirical improvements demonstrated by our proposed
unbiased zeroth-order gradient estimators, several limitations remain. First, the estimators rely
on sampling from an infinite sequence of perturbation steps, but practical implementations must
truncate this sequence, which may reintroduce bias or affect variance control. Second, the proposed
estimators are based on directional derivatives, which inherently exhibit a dependence on the problem
dimension d; this dimensional dependence is generally unavoidable for this class of methods. Lastly,
while we validate the approach on synthetic tasks and language model fine-tuning, we have not
extensively evaluated its performance across a broader range of optimization problems, and the
observed empirical gains may not fully generalize to settings involving non-smooth objectives or
high levels of evaluation noise.

36



	Introduction
	The Derivation of Unbiased Zeroth-Order Estimators
	Telescoping Series and Expectation Representation
	The Construction of Unbiased Estimators
	Specific Constructions

	Variance Analysis of Unbiased Zeroth-Order Estimators
	Theoretical Analysis
	On the Optimal Choices of { n}n=1 and { pn}n=1
	Convergence of SGD with Unbiased Gradient Estimators

	Experiments
	Synthetic Examples
	Language Model Optimization

	Conclusion
	Appendix
	 Appendix
	Additional Backgrounds
	Gradient Estimators in Zeroth-Order Optimization
	Zeroth-Order SGD and Its Variants
	Discussions on the Forward Auto-Differentiation (AD) Approach
	Discussions on the Difference Between Our Results and chen2020unbiased

	Bias Analysis
	Absolute Convergence
	Unbiasedness of Zeroth-Order Estimators in P-Family

	Variance Analysis
	Variance of P1-Estimator
	Variance of P4-Estimator
	Variance of P2-Estimator
	Variance of P3-Estimator
	On the Optimal Sampling Distribution and the Perturbation Stepsize Sequence
	Discussions: Variance of Random Directional Derivative

	Convergence Analysis
	The Convergence Upper Bound
	Supporting Lemmas

	Experiments Details
	Synthetic Example
	Language Model Optimization

	Broader Impact
	Limitations


