
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

LIRA: A Learning-basedQuery-aware Partition Framework for
Large-scale ANN Search

Anonymous Author(s)

Abstract
Approximate nearest neighbor (ANN) search is fundamental in

various applications such as information retrieval. To enhance effi-

ciency, partition-based methods are proposed to narrow the search

space by probing partial partitions, yet they face two common is-

sues. First, in the query phase, a widely adopted strategy in existing

studies such as IVF is to probe partitions based on the distance ranks

of a query to partition centroids. This inevitably leads to irrelevant

partition probing, since data distribution is not considered. Second,

in the partition construction phase, all the partition-based methods

have the boundary problem that separates a query’s𝑘NN tomultiple

partitions and produces a long-tailed 𝑘NN distribution, degrading

the optimal 𝑛𝑝𝑟𝑜𝑏𝑒 (i.e., the number of probing partitions) and the

search efficiency. To address these problems, we propose LIRA, a
LearnIng-based queRy-aware pArtition framework. Specifically, we

propose a probing model to learn and directly probe the partitions

containing the 𝑘NN of a query. Probing partitions with the model

can reduce probing waste and allow for query-aware probing with

query-specific𝑛𝑝𝑟𝑜𝑏𝑒 . Moreover, we incorporate the probing model

into a learning-based redundancy strategy to mitigate the adverse

impact of the long-tailed 𝑘NN distribution on partition probing.

Extensive experiments on real-world vector datasets demonstrate

the superiority of LIRA in the trade-off among accuracy, latency,

and query fan-out. The results show that LIRA consistently re-

duces the latency and the query fan-out up to 30%. The codes are

available at https://anonymous.4open.science/r/Web-conference-

1603/README.md.

Keywords
Approximate nearest neighbor search, Learning-to-index

ACM Reference Format:
Anonymous Author(s). 2024. LIRA: A Learning-based Query-aware Partition

Framework for Large-scale ANN Search. In . ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
The nearest neighbor (NN) search is well studied in the community

of information retrieval [30, 38, 42, 47, 48]. By encoding unstruc-

tured data (e.g., texts and images) into vectors with embedding

models [23, 33], the semantic similarity of unstructured data can

be represented as the similarity of vectors [39, 41]. Hence, NN

search in the vector space is fundamental for efficiently retrieving

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

large-scale unstructured data in many applications [20, 36] such

as Large Language Models (LLM) and Retrieval-Augmented Gen-

eration (RAG) [5, 11, 37]. Given a dataset D consisting 𝑁 vectors

and a query vector q in the same vector space, the goal of 𝑘NN

search is to find the 𝑘 vectors nearest to q from the dataset. How-

ever, with the growth of dataset cardinalities and dimensions, the

exact NN search is too time-consuming to meet latency demands

in practice [2, 18]. Consequently, current works shift focus towards

approximate nearest neighbor (ANN) search [4, 26], which seeks a

trade-off between the acceptable latency and desired accuracy by

retrieving with indexing techniques.

1.1 Prior Approaches and Limitations
Partition-based methods are the backbone of ANN search in in-

dustry [5, 11, 34], which are suitable in disk-based and distributed

scenarios through partial data loading [10, 15]. For example, rather

than build one index on the whole dataset, Zilliz [34] separates the

dataset into partitions and builds an individual index for each parti-

tion. However, there is a trade-off between fewer probing partitions

and high recall. In detail, the 𝑘 nearest neighbors (𝑘NN) of a query

𝑞 can be separated into several partitions. We denote the partitions

containing the 𝑘NN of query 𝑞 as its 𝑘NN partitions, which means

these partitions should be probed to retrieve the exact top-k nearest

neighbors. A lower nprobe (i.e., the number of probing partitions,

also known as the query fan-out) is preferred in partition-based

scenarios for contributing to higher scalability [31, 44]. A naive way

to achieve a low 𝑛𝑝𝑟𝑜𝑏𝑒 can be partition pruning, but a trade-off

exists between the effectiveness and efficiency of a pruning method.

If the probing partitions do not cover the 𝑘NN partitions well, the

recall of retrieval results will degenerate. If some probing partitions

are not in the 𝑘NN partitions, there will be a waste of searching

partitions without 𝑘NN. We call this phenomenon the Curse of
Partition Pruning.

Here, we go through some partition-based ANN search methods

and illustrate their limitations of partition pruning. Considering the

low accuracy of tree-based [7, 13] and hash-based [32, 35, 38] meth-

ods, clustering methods are promising in dealing with the dilemma

of partition pruning. The inverted file (IVF) index [18] builds clus-

ters with the K-Means algorithm and then searches in fixed 𝑛𝑝𝑟𝑜𝑏𝑒

nearest partitions according to the distance rank between a
query and the cluster centroids. Further, BLISS [12] build parti-

tions with deep learning models but still set a fixed 𝑛𝑝𝑟𝑜𝑏𝑒 for all

queries to achieve the trade-off between search latency and recall.

However, since no fixed 𝑛𝑝𝑟𝑜𝑏𝑒 can fit all queries [46], there remain

limitations in search performance, such as the query fan-out for

probing partitions and the search latency.

Limit 1. Partition pruning with the distance rank to partition
centroids wastes 𝑛𝑝𝑟𝑜𝑏𝑒 . As shown in a toy example in Fig. 1,

suppose the data points of a dataset are divided into partitions.

The top 10 NNs of a query 𝑞 are distributed in three partitions (i.e.,

partition A, B, and C), which are ranked as the nearest, the second

1

https://anonymous.4open.science/r/Web-conference-1603/README.md
https://anonymous.4open.science/r/Web-conference-1603/README.md
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

𝐴

𝐵

𝐶
𝐷

𝐸

Distance Rank
Partition Rank to 𝑞

𝐴 1

𝐵 2

𝐶 5

𝐷 3

𝐸 4

𝑞 Long-tail

Probing Waste

Figure 1: Example for probing waste. The blue point is a
query, and the red points are the centroids of partitions. A
lower distance rank means a nearer centroid to the query.

nearest, and the fifth nearest partition of 𝑞, respectively. To ensure

all 10 NNs are included, the minimum number of probing partitions

based on the centroid distance rank is 𝑛𝑝𝑟𝑜𝑏𝑒 = 5. Alternatively, a

more cost-effectiveway is to directly probe the three𝑘NNpartitions,

resulting in the optimal 𝑛𝑝𝑟𝑜𝑏𝑒 to 3. Hence, pruning partitions

according to the centroid distance rank still wastes 𝑛𝑝𝑟𝑜𝑏𝑒 , and

such probing waste is ubiquitous in high-dimension datasets as

illustrated in Section 2.

Limit 2. Hard partitioning cannot inherently achieve low
𝑛𝑝𝑟𝑜𝑏𝑒 due to the long-tailed distribution of 𝑘NN. Partitioning
strategies aim to reduce the number of probing partitions, 𝑛𝑝𝑟𝑜𝑏𝑒 .

However, due to the curse of dimension and local density variations,

the 𝑘NN distribution with hard partitioning methods (i.e., each data

point is put in one partition) often exhibits the notorious long-tailed

characteristic. Specifically, while most 𝑘NN may be densely located

in a few partitions, the remaining 𝑘NN scatter across many other

partitions [14]. As the example shown in Fig. 1, consider a scenario

where the top-10 𝑘NN of a query 𝑞 are distributed as [5, 4, 1, 0, 0]
in five partitions. The scattered one 𝑘NN can be regarded as the

long-tail 𝑘NN in the whole 𝑘NN distribution, resulting in the search

process less efficient. Limited by the long-tailed 𝑘NN distribution

among one group of partitions, BLISS [12] and its variants [22]

construct four independent indexes and search in four groups of

partitions to achieve a high recall. Hence, the long-tailed distribu-

tion of 𝑘NN diminishes the cost-effectiveness of probing partitions

and increases the query fan-out undesirably.

1.2 Our Solution
We find that the essential issue of the limitations mentioned above

stems from the distribution of𝑘NN in partitions. Hence, we improve

the performance of partition-based ANN search from two aspects,

query process and index construction.

Insight 1. A meta index that directly probes the 𝑘NN par-
titions is required. To avoid confusion, we define the index for

inter-partitions that facilitates partition pruning as themeta index,
and the index for intra-partition (i.e., the index that only organizes

the data points within one partition) as internal index. In this

study, we focus on the optimization of meta index among the two-

level index for partitions, in which the internal index can apply

any existing index structure such as HNSW [27]. As mentioned in

Limit 1, the optimal number of probing partitions for a query 𝑞,

denoted as (𝑛𝑝𝑟𝑜𝑏𝑒𝑞)∗, is exactly the number of its 𝑘NN partitions.

When the context is clear, we refer to (𝑛𝑝𝑟𝑜𝑏𝑒𝑞)∗ as 𝑛𝑝𝑟𝑜𝑏𝑒∗ in

this paper for brevity. To address the probing waste through an

effective query process, the ideal meta index needs to directly probe

the 𝑘NN partitions of a query. Compared to IVF, the meta index

can achieve high recall while reducing the 𝑛𝑝𝑟𝑜𝑏𝑒 simultaneously.

Insight 2. Redundant partitioning is required to mitigate the
long-tailed 𝑘NN distribution and further reduce 𝑛𝑝𝑟𝑜𝑏𝑒∗. As
discussed in Limit 2, the search inefficiency often arises from the

long-tailed 𝑘NN distribution. To address this from the aspects of in-

dex construction, a feasible approach is to redundantly put a query’s

long-tail 𝑘NN into other densely distributed 𝑘NN partitions. For

instance, the initial optimal 𝑛𝑝𝑟𝑜𝑏𝑒 of 𝑞 in Fig. 1 is 𝑛𝑝𝑟𝑜𝑏𝑒∗𝑞 = 3. By

introducing redundancy - specifically, duplicating the single 𝑘NN

in partition C to another 𝑘NN partition (i.e., partition A or B) - the

revised optimal 𝑛𝑝𝑟𝑜𝑏𝑒 of 𝑞 can be further reduced to 𝑛𝑝𝑟𝑜𝑏𝑒∗𝑞 = 2,

since merely probing partitions A and B is enough to cover all the

top-10 𝑘NN of 𝑞. Hence, strategic redundancy can effectively re-

duce the number of probing partitions. However, instead of merely

reducing the 𝑛𝑝𝑟𝑜𝑏𝑒 , the objective in partition-based ANN search

is striking a better trade-off between latency and recall. As the

number of data replicas increases, the 𝑛𝑝𝑟𝑜𝑏𝑒∗ can be minimized

to one, resulting in all data in a single partition but an increased

search latency. Hence, we need an exquisite redundant partition

method to balance partition pruning and data redundancy.

Based on the above insights, we propose LIRA, a LearnIng-based
queRy-aware pArtition framework, which serves as a meta index

across partitions. In general, LIRA follows the “one size does not

fit all” principle and explores the power of adaption. After build-

ing initial partitions with K-Means, we utilize a learning model to

tell us where to probe for individual queries dynamically, which

data points need to be duplicated, and where to duplicate these

data points adaptively across partitions. Specifically, we first en-

hance query process by developing a probing model to predict

query-dependent 𝑘NN partitions, thereby enabling precise parti-

tion pruning with less probing waste. The probing model uses a

tunable threshold on its output probabilities, allowing for more

adaptive partition pruning and fine-grained tuning than the 𝑛𝑝𝑟𝑜𝑏𝑒

configuration in IVF. Second, we improve the construction of par-

titions by efficiently duplicating data points with the same model.

When building redundant partitions, we novelly transfer the task

from an exhaustive search for 𝑘NN of all data points globally to dis-

criminating data points individually. Finally, in the top-k retrieval

phase, LIRA leverages the model’s probing probabilities to guide

the search process across partitions, reducing query fan-out and

latency. To simulate the partition-based scenarios in practice, we

combine the LIRA as the meta index with the HNSW index as the

internal index. In summary, we make the following contributions.

• To save the probing waste in a query-specific way, we propose a

learning-based partition pruning strategy where a probing model

generates the probing probabilities of partitions for each query.

• To mitigate the effect of long-tailed 𝑘NN distribution by building

redundant partitions, we novelly transfer the problem of dupli-

cating data points globally to individually and then propose a

learning-based redundancy strategy with the probing model.

• We conduct extensive experiments on publicly available high-

dimensional vector datasets, demonstrating the superiority of

LIRA in recall, latency, and partition pruning.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

LIRA: A Learning-basedQuery-aware Partition Framework for Large-scale ANN Search Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2 Preliminaries
2.1 Definitions
Suppose D = {𝑣1, 𝑣2, . . . , 𝑣𝑁 } be a dataset of 𝑁 𝑑-dimension data

points separated in 𝐵 partitions, and 𝑑𝑖𝑠𝑡 (𝑣1, 𝑣2) is the function to

calculate the distance between data points 𝑣1 and 𝑣2. We define the

ANN search problem in the partition-based scenario as follows.

Definition 1 (𝑘NNCount Distribution). Given a query vector
𝑞, let 𝑆𝐺𝑇 = {𝑣1, 𝑣2, . . . , 𝑣𝑘 } be the ground truth (abbreviated as GT)
set of 𝑞’s 𝑘 nearest neighbors. Let 𝑛𝑞

𝑖
be the count of ground truth

𝑘NN of 𝑞 in the 𝑖-th partition, the 𝑘NN count distribution of a query
𝑞 can be defined as 𝑛𝑞 = [𝑛𝑞

1
, 𝑛

𝑞

2
, . . . , 𝑛

𝑞

𝐵
], where ∑𝑖=𝐵

𝑖=1 𝑛
𝑞

𝑖
= 𝑘 .

Definition 2 (Recall@k). Recall@𝑘 refers to the proportion of
the ground truth top-k nearest neighbors retrieved by an ANN search
method out of all ground truth 𝑘NN in the dataset.

Recall@𝑘 =
|𝑆 ∩ 𝑆𝐺𝑇 |

𝑘
× 100%. (1)

where 𝑆 is the retrieved results. A higher Recall@𝑘 value indicates a
greater number of exact top-k nearest neighbors are retrieved.

Definition 3 (Long-tail Data Point). Given a 𝑘NN count dis-
tribution of a query 𝑞, 𝑛𝑞 = [𝑛𝑞

1
, 𝑛

𝑞

2
, . . . , 𝑛

𝑞

𝐵
], we regard the part of

𝑘NN with 𝑛𝑞
𝑖
= 1 as the long-tail part in the 𝑘NN count distribution.

The specific data point served as the long-tail 𝑘NN of 𝑞 where 𝑛𝑞
𝑖
= 1

in the long-tail part is termed as a long-tail data point.

For a 𝑘NN count distribution 𝑛𝑞 , we term the partition that

contains the ground truth 𝑘NN as a 𝑘NN partition. We denote the

𝑘NN partition distribution 𝑝𝑞 = [𝑝𝑞
1
, 𝑝

𝑞

2
, . . . ,

𝑞

𝐵
] as a binary mask

over 𝑘NN count distribution, where 𝑘NN partitions are marked

with 1 while others with 0, and

∑𝑖=𝐵
𝑖=1 𝑝

𝑞

𝑖
= (𝑛𝑝𝑟𝑜𝑏𝑒𝑞)∗. In addition,

for a long-tailed 𝑘NN count distribution 𝑛𝑞 , we regard partitions

with 𝑛
𝑞

𝑖
> 1 as the replica partition (e.g., partition A and B in

Fig. 1). According to Insight 2, duplicating a long-tail data point

into its replica partitions can save one probing and reduce 𝑛𝑝𝑟𝑜𝑏𝑒∗

further. There may be other replica partitions of a data point, since it

can be in the long-tail part of the 𝑘NN distribution of other queries.

Definition 4 (Objective). Compared with baseline methods un-
der equivalent Recall@𝑘 , our objective is to optimize the partition
pruning and query latency. Our approach involves the refinement of
partition by integrating a learning-based redundancy strategy and
query-aware retrieval process with a learned probing model.

2.2 Motivation
We provide motivations through conducting preliminary studies on

the SIFT [2] dataset with 1 million data points and 10K queries. First,

we show the waste of probing cardinality, 𝑛𝑝𝑟𝑜𝑏𝑒 , caused by parti-

tion pruning with centroids distance ranks. Second, we illustrate

that the long-tail 𝑘NN is common in 𝑘NN count distributions.

Probing Waste with Distance Ranking. In IVF, the probing car-

dinality 𝑛𝑝𝑟𝑜𝑏𝑒 infers probing the nearest 𝑛𝑝𝑟𝑜𝑏𝑒 partitions. Ide-

ally, the optimal number of probing partitions, 𝑛𝑝𝑟𝑜𝑏𝑒∗, should be

no larger than 𝑘 for Recall@k. We define 𝑛𝑝𝑟𝑜𝑏𝑒∗
𝑑𝑖𝑠𝑡

as the maxi-

mum distance rank among the 𝑘NN partitions, which implies the

nearest 𝑛𝑝𝑟𝑜𝑏𝑒∗
𝑑𝑖𝑠𝑡

partitions need to be probed to cover all 𝑘NN.

0 1 2 3 4 5 6 7 8 9
of Extra nprobe

0

2500

5000

of

 Q
ue

rie
s

Extra nprobe with
SIFT1M, k = 10 and 100, B = 64

k = 10
k = 100

1 2 3 4 5
min(nq

b) except zeroes

0

2500

5000

of

 Q
ue

rie
s

Long-tail Phenomenon with
SIFT1M, k = 100

B = 64
B = 32
B = 16
B = 8

Figure 2: Extra probing with distance ranking (LEFT) and
common phenomenon of long-tail 𝑘NN (RIGHT).

However, we find that probing according to 𝑛𝑝𝑟𝑜𝑏𝑒∗
𝑑𝑖𝑠𝑡

wastes prob-

ing cardinality. For example, the 𝑛𝑝𝑟𝑜𝑏𝑒∗
𝑑𝑖𝑠𝑡

exceeds 20 for some

queries when retrieving top-10 𝑘NN and the waste of probing is

even worse with 𝑘 = 100 (See detailed description in Appendix B).

In addition, we show the extra 𝑛𝑝𝑟𝑜𝑏𝑒 for each query when probing

partitions according to the distance rank in Fig. 2 (LEFT). The extra

𝑛𝑝𝑟𝑜𝑏𝑒 is the difference between the optimal (𝑛𝑝𝑟𝑜𝑏𝑒𝑞)∗ and the

(𝑛𝑝𝑟𝑜𝑏𝑒𝑞)∗
𝑑𝑖𝑠𝑡

. Hence, these observations suggest an opportunity

to reduce the probing waste by refining the probing strategy during

the query phase.

Common Long-tail 𝑘NN. To discover the ubiquity of long-tailed

𝑘NN count distribution, we analyze the long-tail phenomenon by

calculating the minimum 𝑛
𝑞

𝑖
in a query 𝑞’s 𝑘NN count distribu-

tion expect zeros. Considering the 𝑘NN of a query can be more

congested with larger partition sizes, we set the number of parti-

tions 𝐵 ∈ {64, 32, 16, 8}, respectively. As depicted in Fig. 2 (RIGHT),

the long-tail phenomenon exists regardless of the number of par-

titions. In detail, as we can see in the horizontal axis with a value

of 1, thousands of queries have long-tailed 𝑘NN count distribution

among a total 10k queries. Hence, if valuable knowledge can be

extracted from the 𝑘NN count distributions, there are two oppor-

tunities to improve the ANN search by incorporating redundancy

during partition building. First, we can infer the latent long-tail

data points among the whole dataset. Second, we can predict the

replica partitions for long-tail data points. In Section. 3.3, we present

the time complexity of building redundant partitions with global

𝑘NN count distributions of all data, and then introduce an efficient

learning-based redundancy strategy.

3 Method
In this section, we first present an overview of LIRA. We then

introduce the partition pruning strategy with a learned probing

model. We illustrate the learning-based redundancy strategy by

identifying long-tail data points and duplicating them to replica

partitions with the probing model. Finally, we present 𝑘NN retrieval

across partitions by using the probing model as the meta index.

3.1 Framework Overview
The workflow of LIRA can be divided into two distinct processes:

the construction of redundant partitions and the top-k retrieval for

queries, which we illustrate through a toy example with 5 partitions

in Fig. 3 and 6, respectively. (1) Probing model training. After
initializing the 𝐵 partitions with the vanilla K-Means algorithm,

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Initialization

𝑫𝒔𝒖𝒃

1

2

𝑣$

𝑣

…

Model Training Redundancy

Probing
Probability

①
 P

ic
k

𝑫𝒑𝒊𝒄𝒌

1

2

𝑣)

𝑣*

…

1

2

𝑣$

𝑣+

…

𝑫

Pr
ob

in
g

M
od

el

Pr
ob

in
g

M
od

el

Model Training and Learning-based Redundancy

𝑏 = 1

𝑏 = 2

𝑏 = 3

𝑏 = 4

𝑏 = 5

②
 D

up
lic

at
e

𝑝,$

𝑝-$

𝑝.$

𝑝/$

𝑝0$

𝑝,)

𝑝-)

𝑝.)

𝑝/)

𝑝0)

Figure 3: Partition initialization (LEFT), the probingmodel training (MIDDLE) and learning-based redundancy strategy (RIGHT).

LIRA targets training a probing model to serve as the meta index

and to engage in building redundant partitions. Specifically, the

probing model is applied threefold in LIRA: learning the mapping

function 𝑓 (·) of data points to 𝑘NN partitions in training, providing

potential long-tail data points and replica partitions in learning-

based redundancy, and guiding the partition probing during the

query-aware retrieval process. (2) Learning-based redundancy.
During the redundancy phase, we aim to duplicate the potential

long-tailed data points to the replica partitions by using the probing

model. Finding the deep correlation between the 𝑘NN partitions

and the replica partitions, we novelly transform the problem of

picking and duplicating long-tailed data points from globally to

individually. First, we pick the data points with more predicted

𝑛𝑝𝑟𝑜𝑏𝑒 as the potential long-tail data points. Second, we choose the

partition with a high predicted possibility in 𝑝𝑣 to put the replica

of data point 𝑣 . We construct the internal indexes for each partition

individually after the redundant partitions are built (See detailed

algorithm of the two-level index in Appendix C). (3) Query-aware
retrieval process. Since the probing model can map a data point in

the vector space to its 𝑘NN partitions, we can use it to guide the top-

k retrieval across partitions. The predicted probabilities are utilized

along with a probability threshold in the inter-partition pruning,

and the internal indexes are used for inner-partition searching.

3.2 Probing Model Training
Probing Model. The model has two inputs: (1) the query vector

𝑞, and (2) the distances between 𝑞 and partitions centroids 𝐼 . We

can regard the probing model as a multivariate binary classifier

for whether to probe each partition. The output is the predicted

probability 𝑝 in the dimension of the number of partitions 𝐵. Hence,

the model can be represented as 𝑓 (𝑞, 𝐼) = 𝑝 . We convert the two

inputs as feature vectors 𝑥𝑞 and 𝑥𝐼 with individual networks, re-

spectively, and then concatenate the two feature vectors to generate

the predicted probing probabilities 𝑝 as follows.

𝑥𝑞 = 𝜙𝑞 (𝑞), 𝑥𝐼 = 𝜙𝐼 (𝐼), 𝑝 = 𝜙𝑝 (𝑥𝑞 ⊕ 𝑥𝐼) (2)

where 𝜙𝑞 , 𝜙𝐼 , 𝜙𝑝 are three independent multi-layer models, and the

output of 𝜙𝑝 is the predicted probabilities for probing partition 𝑝 .

As discussed in Section 2.2, an ideal probing model served as

the meta index should directly probe 𝑘NN partitions of a query

regardless of its distance rankings to cluster centers. Hence, the

labels of a 𝑞 are the same as the 𝑘NN partition distribution 𝑝𝑞 ,

where partitions with 𝑛
𝑞

𝑖
> 0 are regarded as positive and other

partitions with no 𝑘NN are labeled as negative. For example, the

labels of a 𝑘NN count distribution [5, 4, 1, 0, 0] is [1, 1, 1, 0, 0].
Network Training. We sample a subset of data from the whole

dataset 𝐷 as training data and use the provided queries of a dataset

to evaluate the effectiveness of LIRA (See detailed description on

scalability in Appendix C and D.2). For each training data, we

search the 𝑘NN from the training data to get the 𝑘NN partition

distribution 𝑝𝑞 . The output of the probing model 𝑝
𝑞

𝑏
in [0, 1] is the

possibility of probing each partition. We take the partition with

𝑝
𝑞

𝑏
≥ 𝜎 as a probing partition to support query-specific 𝑛𝑝𝑟𝑜𝑏𝑒 .

The 𝜎 is set as 0.5 in training and is tunable in the query process,

which provides fine-grained tuning in partition pruning than the

𝑛𝑝𝑟𝑜𝑏𝑒 configuration in IVF. Hence, we can solve the multivariate

binary classification problem with the cross-entropy loss:

L(𝑝𝑞, 𝑝𝑞) = −
𝐵∑︁

𝑏=1

(
𝑝
𝑞

𝑏
· log (𝑝𝑞

𝑏
) + (1 − 𝑝

𝑞

𝑏
) · log (1 − 𝑝

𝑞

𝑏
)
)

(3)

where the L(𝑝𝑞, 𝑝𝑞) is the loss of the probing model on a query 𝑞.

3.3 Learning-based Redundancy
Redundancy is a crucial step in LIRA since it helps refine the initial

hard partitions as redundant partitions. The aim of redundancy

is to reduce the side-effect of long-tailed 𝑘NN count distribution

by reasonably duplicating each long-tail data point into one of its

replica partitions. There are two important issues about redundancy.

(1) Under the initial partition, how do we identify data points that

tend to be the long-tail data points in the 𝑘NN count distribution of

queries? (2) To duplicate the long-tail data points, which partitions

should we transfer these data points into?

Pick Data Points. A data point 𝑣 might be a long-tail data point

for any query. To identify whether a data point is long-tail, it is nec-

essary to examine the 𝑘NN counts distribution, 𝑛𝑞 , for all queries.

Since the 𝑛𝑞 is unknown when building redundant partitions, we

can only use the 𝑘NN count distribution of the data itself, 𝑛𝑣 , which

involves finding the data points in the long-tail 𝑘NN parts of other

data’s 𝑘NN count distribution. Duplicating globally means comput-

ing the 𝑘NN of all data to identify whether a data point is long-tail.

However, the computation cost of getting 𝑘NN of the whole data

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

LIRA: A Learning-basedQuery-aware Partition Framework for Large-scale ANN Search Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

0 5 10 15 20
nprobe*

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
 o

f D
at

a
Po

in
ts

SIFT1M, k = 100, B = 64

Long-tailed
Not Long-tailed

0 10 20 30 40 50 60
Top-M Partitions

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l o

f
R

ep
lic

a
Pa

rti
tio

ns

SIFT1M, k = 100, B = 64

Model Output Rank
Random Rank

0 2 4 6 8 10 12 14 16 18 20 22
Top-M Partitions

0.4

0.6

0.8

1.0

H
it

R
at

e
of

R

ep
lic

a
Pa

rti
tio

ns

SIFT1M, k = 100, B = 64

Model Output Rank
Centroids Distance Rank

Figure 4: Ratio of long-tailed and not long-tailed data points under certain 𝑛𝑝𝑟𝑜𝑏𝑒∗ (LEFT). The recall (MIDDLE) and hit rate
(RIGHT) of replica partitions among top-M partitions with model output rank or centroids distance rank.

𝑣!
Centroids Distance Rank

Model Output Rank

Long-tailReplicate
Globally

Replicate
 Individually

𝑣"

𝑣#

𝑛𝑝𝑟𝑜𝑏𝑒∗

𝑣!

𝑣"

𝑣#

𝑘NN PartitionsReplica Partitions

1

3

4
3 1 2 4 5

4 3 5 1 2

1 4 2 3 5

2 1 3 5 4
5 3 2 1 4

2 1 3 4 5

others 𝑘NN

① Pick Data ② Duplicate Data

ego 𝑘NN

Located Partition Partition to Put Replica

Figure 5: Pick and duplicate potential long-tailed data points
individually with the probing model is more efficient than
using ground truth 𝑘NN count distribution globally.

𝑂 (𝑁 2 · 𝑑) is unacceptable in large-scale datasets. Consequently,

it is impractical to identify all the long-tail data points globally.

Innovatively, we circumvent this challenge and transfer the issue

of identifying long-tail data points from globally to individually.

Specifically, we observe an interesting phenomenon from em-

pirical analysis: Data points with a larger 𝑛𝑝𝑟𝑜𝑏𝑒∗ are more
likely to be long-tail data points. In detail, we record the 𝑘NN

count distribution and 𝑛𝑝𝑟𝑜𝑏𝑒∗ of individual data in SIFT and find

the long-tail 𝑘NN data points. Varying the specific 𝑛𝑝𝑟𝑜𝑏𝑒∗, we
calculate the ratio of data that identified as long-tail data points

versus those are not. As demonstrated in Fig. 4 (LEFT), an increase

in 𝑛𝑝𝑟𝑜𝑏𝑒∗ correlates with a higher ratio of long-tail data points.

The observation aligns with the spatial partitioning in vector space:

data points with 𝑘NN separated across multiple partitions are more

likely located at the boundaries of partitions and thus are more

prone to being long-tail.

In Fig. 5, we illustrate the transformation of picking data points

by using other data’s 𝑘NN globally to using ego 𝑘NN (i.e., the 𝑘NN

of a data point itself) individually. For example, long-tail data points,

𝑣2 and 𝑣3, exhibit a higher 𝑛𝑝𝑟𝑜𝑏𝑒∗ compared to the non-long-tail

data point 𝑣1. Leveraging the accurate prediction of the probing

model, we can reliably use it to estimate the 𝑛𝑝𝑟𝑜𝑏𝑒∗ of data points
and pick potential long-tail data points individually. We apply the

model to get the 𝑝 of all data points, selecting those within the upper

𝜂 percentile of predicted𝑛𝑝𝑟𝑜𝑏𝑒 . Hence, utilizing the probing model

obviates the need to find 𝑘NN on whole data globally, streamlining

the process of identifying long-tail data points.

Duplicate Data Points. After identifying data points requiring

duplication, the next challenge is selecting appropriate partitions to

put these replicas. Similar to the challenge of high computation cost

in picking data points, the replica partitions of each long-tail data

point are unknown if the global 𝑘NN count distribution is inacces-

sible. For all the long-tail data points, we record the 𝑘NN partitions

and replica partitions, and we observe an interesting phenomenon:

the replica partitions for duplicating a data point 𝑣 have a
strong relationship to its 𝑘NN partitions. In detail, most of the

replica partitions of 𝑣 align closely with its 𝑘NN partitions. As the

example in duplicating data of Fig. 5, the 𝑘NN partition (i.e., the

four partitions depicted in blue) of a long-tail data point, 𝑣2, can

cover its replica partitions (i.e., the three partitions shown in yel-

low). 𝑣1 has no replica partitions since it is not a long-tail data point.

This provides a promising approach to getting replica partitions by

leveraging predicted probing partitions from the model.

Another problem follows this insight: since the model can pro-

duce many probing partitions for a data point 𝑣 , which one should

be chosen to put the replica of 𝑣? Our analysis indicates that the
partition 𝑏 with higher probing probability 𝑝𝑣

𝑏
is more likely

to be a replica partition for 𝑣 . In detail, we first get the replica par-
titions of all the long-tail data points. Then, we calculate 𝑅𝑒𝑐𝑎𝑙𝑙𝑣𝑟𝑒𝑝 ,

the recall between replica partitions and the top-𝑀 predicted parti-

tions, where𝑀 ranges from 1 to 𝐵.

Recall
𝑣
𝑟𝑒𝑝 =

|𝑆𝑣
𝑚𝑜𝑑𝑒𝑙

∩ 𝑆𝑣𝑟𝑒𝑝 |
|𝑆𝑣𝑟𝑒𝑝 |

× 100%. (4)

where 𝑆𝑣
𝑚𝑜𝑑𝑒𝑙

is the set of top-M partitions in the model output

of data point 𝑣 , and 𝑆𝑣𝑟𝑒𝑝 is 𝑣 ’s set of the replica partitions. For

comparison, we also evaluate a random ranking of partitions rep-

resented by the blue line. (1) As shown in Fig. 4 (MIDDLE), we

can see that the predicted probing partitions can effectively cover

the replica partition, for 𝑅𝑒𝑐𝑎𝑙𝑙𝑟𝑒𝑝 increases to nearly 1 with just

𝑀 = 20. (2) In addition, the gradually decreasing slope of the red

line can support that partitions with high output probabilities tend

to be replica partitions. Hence, this insight informs our duplication

strategy, which utilizes output probing probability. As illustrated

in Fig. 5, if a long-tail data point is not in the partition with the

highest output rank, we duplicate it into this partition; otherwise,

we put it into the partition with the second-highest output rank.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

𝑸𝒖𝒆𝒓𝒚

1

2

𝑣!

𝑣"

…

Intra-Partition
Probing

Pr
ob

in
g

M
od

el

R
et

rie
va

l
R

es
ul

t

Inner-
Partition
Search

𝑝#
!

𝑝$
!

𝑝%
!

𝑝&
!

𝑝'
!

Figure 6: Retrieval process across partitions.

Furthermore, comparedwith duplicating long-tail data points
according to the distance rank of partition centroids, we ob-
serve that using the model output rank is more valid. Typi-
cally, centroid distance ranks are considered when duplicating data

points. For example, a data point can be duplicated up to 8 times in

the closure clustering assignment in SPANN [5]. As we highlight

in Limit 1, using centroid distance ranks often wastes 𝑛𝑝𝑟𝑜𝑏𝑒 for

retrieving 𝑘NN. This limitation also emerges when choosing parti-

tions to duplicate long-tail data points. For example, the long-tail

data point 𝑣3 in Fig. 5 has two replica partitions. The distance rank

of replica partitions for 𝑣3 is (2, 3), while the output rank can be (1,

2). We analyze the largest model output rank and centroid distance

rank in replica partitions of each long-tailed data point, respectively.

The hit rate with model output rank on data points 𝑣 is set to 1

if |𝑆𝑣
𝑚𝑜𝑑𝑒𝑙

∩ 𝑆𝑣𝑟𝑒𝑝 | ≠ ∅, otherwise it is set to 0. The hit rate with

centroid distance rank is calculated similarly by using 𝑆𝑣
𝑑𝑖𝑠𝑡

, the

top-M partitions in the centroid distance ranking of 𝑣 . As shown

in Fig. 4 (RIGHT), the model output rank can better indicate the

replica partitions for achieving a higher hit rate at the same𝑀 .

3.4 Query-aware Top-k Retrieval
Aftermodel training and learning-based redundancy, we can achieve

retrieval with the meta index alone or with two-level indexes (i.e.,

the internal indexes are required in large-scale datasets) [43]. We

store the probing model and redundant partitions to evaluate the

performance of LIRA as a meta index for partitions. In the following

part of this section, we give a detailed description of top-k retrieval

with a two-level index and regard an exhaustive search in a partition

if using meta index alone. As shown in Fig. 6, the retrieval process

includes two stages. In the first stage, we utilize the probing model

as the meta index to get the probing probabilities as the retrieval

guidance. In the second stage, we execute the searching in each

probing partition with internal indexes.

We illustrate the retrieval process with LIRA as the meta index

and HNSW as the internal index as an example. (1) In the first stage,

we utilize the probing model to obtain retrieval guidance. Similar to

the training process, we apply the trained model to query vectors

and get the probing probabilities 𝑖 .𝑒 ., 𝑝𝑞 . Instead of probing a fixed

number of partitions, LIRA supports adaptive𝑛𝑝𝑟𝑜𝑏𝑒 for each query

with the predicted 𝑝𝑞 , where only those partitions with 𝑝𝑞 > 𝜎

(𝜎 = 0.5 for default) are treated as probing partitions. Hence, LIRA
can prune more partitions and save more query fan-out compared

with a fixed 𝑛𝑝𝑟𝑜𝑏𝑒 . (2) In the second stage, LIRA executes the

retrieval process with the probing partitions predicted in the first

stage. When retrieving 𝑘 results in a probing partition for query

𝑞, we use the internal indexes without an exhaustive search in the

partition. After completing searches in all probing partitions, we

merge all the retrieved data points as a coarse candidate set. Then,

we rank the coarse candidate set according to the distance to the

query and generate a precise candidate set as the top-k results.

4 Experiment
4.1 Experiment Settings
Datasets. We conduct experiments on 5 high-dimensional ANN

benchmarks (See detailed description in Appendix D.1). Specifi-

cally, we evaluate LIRA on two small-scale datasets, SIFT [2] and

GloVe [29]. We also show the scalability of LIRA on three large-

scale datasets: Deep [3], BIGANN [17], and Yandex TI [40]. For the

constraint in the RAM source, we subsample 50M data points for

each large-scale dataset, following previous studies [12, 22].

Baselines.We evaluate LIRA as the meta index compared with four

baselines, IVF in Faiss [18], IVFPQ [16], IVFFuzzy and BLISS [12](See

detailed description in Appendix D.1). Specifically, we build the

IVFFuzzy index to show the effectiveness of redundancy through

centroid distance rank, where every data point is placed in the two

nearest clusters. BLISS is a learning-to-index method that builds

four groups of partitions, each with an independent model.

To simulate the practical two-level 𝑘NN search, we build two-

level indexes, LIRA-HNSW, and evaluate the effectiveness of LIRA
as the meta index among partitions. We build two-level indexes for

baselines similarly. To exclude the effect of the internal indexes,

we first evaluate the effectiveness of LIRA and baselines as the

meta index in small-scale datasets and then use two-level indexes

in large-scale datasets. The detailed experiments of convergence

validation and sensitivity analysis are in Appendix D.2 and D.3.

Settings. In LIRA, the number of partitions 𝐵 is set as 64 and 1024

for small-scale and large-scale datasets, respectively. The 𝑘 of 𝑘NN

is mainly set as 100 since we focus on addressing probing waste and

long-tailed 𝑘NN distribution. In index construction, the redundancy

percentage 𝜂 is set as 3% when using a meta index alone and is

set as 100% when using a two-level index (See detailed sensitivity

study on 𝜂 in Appendix D.3). In query process, we use threshold 𝜎

to choose partitions with 𝑝𝑞 > 𝜎 as probing partitions and tune 𝜎

from 0.1 to 1.0 with a step of 0.05.

The number of partitions of baselines is the same as LIRA. For
BLISS, we follow the original setting, build four groups of partitions

with four independent models in the index construction phase, and

search for four groups of partitions in the query phase. For two-

level indexes, the parameter of HNSW in graph building for limiting

the edge of a data point is set as 32, and the search parameter of

HNSW for limiting the length of the candidates set is set as 128.

Evaluation metrics. For the one-level meta index, we evaluate the

performance of LIRA and baselines threefold: accuracy, efficiency,

and query fan-out. (1) We use Recall@𝑘 to evaluate the search

accuracy. (2) We use the distance computations 𝑐𝑚𝑝 (i.e., the total

number of visited data points) in the probing partitions to indicate

the search efficiency. (3) We record the 𝑛𝑝𝑟𝑜𝑏𝑒 to reflect the query

fan-out and to reflect the effectiveness of partition pruning. For the

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

LIRA: A Learning-basedQuery-aware Partition Framework for Large-scale ANN Search Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Performance at Recall@k=0.98 with various k.

cmp IVF IVFPQ IVFFuzzy BLISS LIRA

𝑘 = 10 120641

120641

recall=0.70

119409

(-1.0%)

151911

(+25.9%)

83824
(-30.5%)

𝑘 = 50 137276

137276

recall=0.74

144120

(+4.9%)

151911

(+10.6%)

91431
(-33.3%)

𝑘 = 100 137276

137276

recall=0.76

144120

(+4.9%)

168778

(+22.9%)

96261
(-29.8%)

𝑘 = 200 153931

187410

recall=0.78

144120

(-6.3%)

168778

(+9.6%)

99279
(-35.5%)

nprobe IVF IVFPQ IVFFuzzy BLISS LIRA

𝑘 = 10 7

7

recall=0.70

4
(-42.8%)

8

(+14.2%)

4.8138

(-31.2%)

𝑘 = 50 8

8

recall=0.74

5
(-37.5%)

8

(0%)

5.2342

(-34.5%)

𝑘 = 100 8

8

recall=0.76

5
(-37.5%)

9

(+12.5%)

5.4648

(-31.6%)

𝑘 = 200 9

11

recall=0.78

5
(-44.4%)

10

(+11.1%)

5.6561

(-37.1%)

two-level index in large-scale datasets, apart from the Recall@𝑘

and 𝑛𝑝𝑟𝑜𝑏𝑒 , we additionally use query per second (QPS) to reflect

the general search efficiency.

4.2 Evaluation on Small Scale Datasets
In this section, we first show the performance of LIRA and baselines

when retrieving different 𝑘 nearest neighbors and illustrate the

superiority of LIRA with large 𝑘 settings. Second, we show the

trade-off between recall and distance computations and between

recall and 𝑛𝑝𝑟𝑜𝑏𝑒 on two small-scale datasets, SIFT and GloVe. For

a fair comparison, we present the average distance computations

executed by four individual models and partitions in BLISS.

Performance with various 𝑘 . To explore the performance on dif-

ferent retrieval requirements, we conduct experiments on SIFT with

various 𝑘 and calculate the minimum average distance computa-

tions and average 𝑛𝑝𝑟𝑜𝑏𝑒 to achieve Recall@𝑘 = 0.98. When IVFPQ

can hardly achieve the desired recall, we record the acceptable

distance computations with the corresponding recall value.

Table 1 shows that the 𝑐𝑚𝑝 increases monotonically with 𝑘 .

Moreover, as 𝑘 increases with more serious long-tailed 𝑘NN distri-

butions, the advantages of LIRA are gradually highlighted. There are

two reasons behind such an advantage. First, utilizing the strength

of adaptive probing from a query-aware view, LIRA focuses on

eliminating the probing waste by directly probing target 𝑘NN par-

titions with the model rather than probing according to distance

ranks to centroids. Second, LIRA reduces the long-tailed 𝑘NN dis-

tributions with reasonable replicas. Table 1 also shows the required

𝑛𝑝𝑟𝑜𝑏𝑒 for various 𝑘 , which gives an apparent advantage of LIRA
in saving query fan-out. When LIRA and other baselines except

IVFFuzzy achieve the same recall, LIRA needs less 𝑛𝑝𝑟𝑜𝑏𝑒 . This

result supports that the probing model in LIRA can prune partitions

effectively and accurately. Due to the strong advantage of LIRA in

a large 𝑘 , we mainly present the results for 𝑅𝑒𝑐𝑎𝑙𝑙@100 in the rest

of the experiments for brevity. IVFFuzzy is superior in reducing

𝑛𝑝𝑟𝑜𝑏𝑒 , but it performs comparably to IVF on 𝑐𝑚𝑝 , for the average

partition size in IVFFuzzy is double than that of other baselines.

60 80 100 120
Dist Computations (K)

0.7

0.8

0.9

1.0

R
ec

al
l@

10
0

SIFT, k=100, B=64

LIRA
BLISS
IVFFuzzy
IVF

50 100 150 200 250 300
Dist Computations (K)

0.6

0.7

0.8

0.9

1.0

R
ec

al
l@

10
0

GloVe, k=100, B=64

LIRA
BLISS
IVFFuzzy
IVF

Figure 7: Recall and 𝑐𝑚𝑝 on small-scale datasets.

2 4 6 8 10
nprobe

0.80

0.85

0.90

0.95

1.00

R
ec

al
l@

10
0

SIFT, k=100, B=64

LIRA
BLISS
IVFFuzzy
IVF

0 5 10 15
nprobe

0.6

0.7

0.8

0.9

1.0

R
ec

al
l@

10
0

GloVe, k=100, B=64

LIRA
BLISS
IVFFuzzy
IVF

Figure 8: Recall and 𝑛𝑝𝑟𝑜𝑏𝑒 on small-scale datasets.

For the suboptimal performance of IVFPQ compared with IVF, we

drop it from the remaining experiments.

Trade-off between recall and both 𝑛𝑝𝑟𝑜𝑏𝑒 and 𝑐𝑚𝑝. To manip-

ulate the recall with corresponding 𝑐𝑚𝑝 , we tune the 𝑛𝑝𝑟𝑜𝑏𝑒 in IVF,

IVFFuzzy, and BLISS, and 𝜎 for partition pruning in LIRA. As shown
in Fig 7 and Fig. 8, LIRA surpasses all the baselines in 𝑅𝑒𝑐𝑎𝑙𝑙@100.

(1) Compared with other partition-based methods, LIRA outper-

forms for two reasons. First, the well-built redundant partitions

in LIRA can naturally reduce the optimal 𝑛𝑝𝑟𝑜𝑏𝑒∗ and the probing

quantity for partitions with long-tail 𝑘NN. (2) Second, the probing

model can better adaptively narrow down the area of the probing

partition with the well-learned mapping from a data point in the

vector space to the 𝑘NN partitions. (3) Moreover, the gap between

LIRA and the baselines expands as the recall increases on GloVe.

This is because the baselines struggle to tackle the phenomenon

of the long-tailed 𝑘NN distribution, and the long-tail data points

mainly impact the trade-off between recall and search cost at a high

recall value. Hence, the advantage of LIRA is more outstanding

with a high recall requirement through an effective query-aware

partitioning pruning strategy. (4) As for performance on SIFT, when

recall is higher than 0.98, the gap between LIRA and the baselines

slightly shrinks. This is because LIRA does not fully address the

long-tailed 𝑘NN distribution for considering efficiency, resulting in

some long-tail data points without duplication.

It is also worth noting that the learning-based method, BLISS,

performs much worse than other methods on SIFT. There are two

main reasons for the inefficiency of BLISS. (1) BLISS builds partitions

with models from scratch instead of refining partitions based on

other clustering methods, e.g., the K-Means clustering algorithm.

The partitions built in BLISS tend to be unbalanced without fine-

tuned training, resulting in some partitions with a large number of

data points while some other partitions have no data points. These

unbalanced partitions may lead to suboptimal partition probing and

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: Performance of QPS, Recall@100, partition pruning rate and overall latency on large-scale datasets.

Metrics Query Per Second Recall@100 nprobe
Dataset IVF IVFFuzzy LIRA IVF IVFFuzzy LIRA IVF IVFFuzzy LIRA

Deep

126 93 117 0.8996 0.9604 0.9655 9 11 9.2586

227 338 354 0.8265 0.8354 0.8441 5 3 2.9567

BIGANN

62 104 118 0.9464 0.9607 0.9639 19 11 10.1043
173 230 257 0.8496 0.8860 0.8952 7 5 4.6465

Yandex TI

141 160 174 0.7673 0.8316 0.8386 9 8 7.7058
258 324 346 0.6847 0.7524 0.7732 5 4 3.8171

100 200
Dist Computations of IVF (K)

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 c
m

p

SIFT, k=100, B=64
LIRA
IVFFuzzy

5 10 15
nprobe of IVF

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 n
pr

ob
e

SIFT, k=100, B=64
LIRA
IVFFuzzy

Figure 9: Per query performance.

cause more distance computations, 𝑐𝑚𝑝 . (2) BLISS requires 4 groups

of partition-based indexes. The 𝑛𝑝𝑟𝑜𝑏𝑒 of BLISS is presented as the

fixed 𝑛𝑝𝑟𝑜𝑏𝑒 in one group of indexes, and the 𝑐𝑚𝑝 of BLISS denotes

the total number of candidates from four groups of partitions after

deduplication. This also causes awaste of 𝑐𝑚𝑝 since the four indexes

built by independent models differ.

Search performance per query. Fig. 9 presents the normalized

distance computations 𝑐𝑚𝑝 and 𝑛𝑝𝑟𝑜𝑏𝑒 of IVFFuzzy and LIRA over

IVF on a per-query basis, respectively. Take the figure on the left of

Fig. 9 as an example for a detailed explanation. The x-axis denotes

theminimum 𝑐𝑚𝑝 when IVF achieves the𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 = 0.98 for every

query. The y-axis presents the ratio between the 𝑐𝑚𝑝 of another

method to achieve a recall of 0.98 and the 𝑐𝑚𝑝 of IVF. A red point

below the normalized value of 1.0 infers that the query process of

this query with LIRA takes less retrieval cost than IVF, and a brown

plus sign infers the normalized cost of IVFFuzzy. We remove the

baseline BLISS from this experiment because it struggles to achieve

the target recall efficiently. This figure provides the performance

of individual queries, where we sample 100 queries from all the

queries of the dataset for display.

Overall, IVFFuzzy and LIRA reduce the 𝑐𝑚𝑝 compared with IVF

at the same recall. For IVF, there are easy queries and hard queries,

where hard queries require more probing partitions and distance

computation to achieve the target recall. (1) It is worth mentioning

in Fig. 9, LIRA optimizes most of the queries that need 𝑛𝑝𝑟𝑜𝑏𝑒 ⩾ 10

with IVF. This means that LIRA exhibits a significant reduction,

especially on hard queries. This is because there are more long-

tailed 𝑘NN distributions for hard queries, which results in more

probing waste. (2) For the IVFFuzzy, it is desired to achieve half

of IVF’s 𝑛𝑝𝑟𝑜𝑏𝑒 to achieve a comparable search efficiency in the

one-level meta index, because the number of data points contained

in one partition of IVFFuzzy is doubled compared to that of IVF.

However, the general normalized 𝑛𝑝𝑟𝑜𝑏𝑒 of IVFFuzzy is more than

0.5. This illustrates that the redundancy strategy in IVFFuzzy is

unable to achieve comparable search efficiency when IVFFuzzy is

used as a meta index alone.

4.3 Evaluation on Large Scale Datasets
This section presents the performance of LIRA and other baselines

on three large-scale datasets. We build two-level indexes with IVF,

IVFFuzzy and LIRA as the meta index, respectively. The HNSW in-

dex is used as the internal index for a fast inner-partition searching

process. We drop BLISS from evaluation on large-scale datasets for

out-of-memory with 4 groups of two-level indexes. Following pre-

vious study [12], Table 2 shows the performance in two scenarios

that demand high efficiency or high recall, respectively. Based on

the experiment results, we can make the following observations.

• Compared with non-learning methods, LIRA outperforms IVF

and IVFFuzzy in most cases, especially with high recall.

• Compared to the performance of a one-level index, the IVF-

Fuzzy becomes more efficient among the two-level indexes. With

HNSW as the internal index, search efficiency is enhanced largely

by avoiding exhaustive searches within a partition, and the large

number of redundant data points has less impact on efficiency.

• Due to the learning-based redundancy and the query-aware

adaptive 𝑛𝑝𝑟𝑜𝑏𝑒 generated by the effective probing model, LIRA
can achieve better partition pruning than the IVF and IVFFuzzy.

• The improvement of LIRA compared to IVFFuzzy varies among

different datasets, which may demonstrate that different 𝜂 is

required for different datasets. Hence, an opportunity exists for

LIRA to achieve a better redundancy with an adaptive number

of redundant data points on different datasets.

5 Conclusion
State-of-the-art partition-based ANN methods typically divide the

dataset into partitions and use query-to-centroid distance rankings

for search. However, they have limitations in probing waste and

long-tailed 𝑘NN distribution across partitions, which adversely af-

fects search accuracy and efficiency. To overcome these issues, we

propose LIRA, a LearnIng-based queRy-aware pArtition framework.

Specifically, we propose a probing model to achieve outstanding

partition pruning by reducing probing waste and providing query-

dependent 𝑛𝑝𝑟𝑜𝑏𝑒 . Moreover, we introduce a learning-based redun-

dancy strategy that utilizes the probing model to efficiently build

redundant partitions, thereby mitigating the effects of long-tailed

𝑘NN distribution. Our proposed method exhibits superior perfor-

mance compared with existing partition-based approaches in the

accuracy, latency, and query fan-out trade-offs.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

LIRA: A Learning-basedQuery-aware Partition Framework for Large-scale ANN Search Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Cecilia Aguerrebere, Ishwar Singh Bhati, Mark Hildebrand, Mariano Tepper, and

Theodore Willke. 2023. Similarity Search in the Blink of an Eye with Compressed

Indices. Proceedings of the VLDB Endowment 16, 11 (2023), 3433–3446.
[2] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. 2020. ANN-

Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms.

Information Systems 87 (2020), 101374.
[3] Artem Babenko and Victor Lempitsky. 2016. Efficient indexing of billion-scale

datasets of deep descriptors. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2055–2063.

[4] Patrick Chen, Wei-Cheng Chang, Jyun-Yu Jiang, Hsiang-Fu Yu, Inderjit Dhillon,

and Cho-Jui Hsieh. 2023. Finger: Fast inference for graph-based approximate

nearest neighbor search. In Proceedings of the ACM Web Conference 2023. 3225–
3235.

[5] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong

Li, Mao Yang, and Jingdong Wang. 2021. Spann: Highly-efficient billion-scale

approximate nearest neighbor search. arXiv preprint arXiv:2111.08566 (2021).
[6] Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. 2019. Learning space

partitions for nearest neighbor search. arXiv preprint arXiv:1901.08544 (2019).
[7] Karima Echihabi, Panagiota Fatourou, Kostas Zoumpatianos, Themis Palpanas,

and Houda Benbrahim. 2022. Hercules Against Data Series Similarity Search.

Proceedings of the VLDB Endowment (2022), 2005–2018.
[8] Cong Fu, Changxu Wang, and Deng Cai. 2021. High dimensional similarity

search with satellite system graph: Efficiency, scalability, and unindexed query

compatibility. IEEE Transactions on Pattern Analysis and Machine Intelligence 44,
8 (2021), 4139–4150.

[9] Jianyang Gao and Cheng Long. 2024. RaBitQ: Quantizing High-Dimensional

Vectors with a Theoretical Error Bound for Approximate Nearest Neighbor

Search. Proceedings of the ACM on Management of Data 2, 3 (2024), 1–27.
[10] Siddharth Gollapudi, Neel Karia, Varun Sivashankar, Ravishankar Krishnaswamy,

Nikit Begwani, Swapnil Raz, Yiyong Lin, Yin Zhang, NeelamMahapatro, Premku-

mar Srinivasan, et al. 2023. Filtered-diskann: Graph algorithms for approximate

nearest neighbor search with filters. In Proceedings of the ACM Web Conference
2023. 3406–3416.

[11] Rentong Guo, Xiaofan Luan, Long Xiang, Xiao Yan, Xiaomeng Yi, Jigao Luo,

Qianya Cheng, Weizhi Xu, Jiarui Luo, Frank Liu, et al. 2022. Manu: a cloud native

vector database management system. arXiv preprint arXiv:2206.13843 (2022).
[12] Gaurav Gupta, Tharun Medini, Anshumali Shrivastava, and Alexander J Smola.

2022. Bliss: A billion scale index using iterative re-partitioning. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
486–495.

[13] Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial searching.

In Proceedings of the 1984 ACM SIGMOD international conference on Management
of data. 47–57.

[14] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. 2015.

Query-aware locality-sensitive hashing for approximate nearest neighbor search.

Proceedings of the VLDB Endowment 9, 1 (2015), 1–12.
[15] Suhas Jayaram Subramanya, FnuDevvrit, Harsha Vardhan Simhadri, Ravishankar

Krishnawamy, and Rohan Kadekodi. 2019. Diskann: Fast accurate billion-point

nearest neighbor search on a single node. Advances in Neural Information
Processing Systems 32 (2019).

[16] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization

for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[17] Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. 2011.

Searching in one billion vectors: re-rank with source coding. In 2011 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
861–864.

[18] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity

search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.
[19] Conglong Li, Minjia Zhang, David G Andersen, and Yuxiong He. 2020. Improving

approximate nearest neighbor search through learned adaptive early termination.

In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 2539–2554.

[20] Guoliang Li, Xuanhe Zhou, and Lei Cao. 2021. AI meets database: AI4DB and

DB4AI. In Proceedings of the 2021 International Conference on Management of
Data. 2859–2866.

[21] Mingjie Li, Yuan-Gen Wang, Peng Zhang, Hanpin Wang, Lisheng Fan, Enxia

Li, and Wei Wang. 2022. Deep learning for approximate nearest neighbour

search: A survey and future directions. IEEE Transactions on Knowledge and Data
Engineering 35, 9 (2022), 8997–9018.

[22] Wuchao Li, Chao Feng, Defu Lian, Yuxin Xie, Haifeng Liu, Yong Ge, and Enhong

Chen. 2023. Learning balanced tree indexes for large-scale vector retrieval. In

Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 1353–1362.

[23] Defu Lian, Yongji Wu, Yong Ge, Xing Xie, and Enhong Chen. 2020. Geography-

aware sequential location recommendation. In Proceedings of the 26th ACM

SIGKDD international conference on knowledge discovery & data mining. 2009–
2019.

[24] Kejing Lu, Mineichi Kudo, Chuan Xiao, and Yoshiharu Ishikawa. 2021. HVS:

hierarchical graph structure based on voronoi diagrams for solving approximate

nearest neighbor search. Proceedings of the VLDB Endowment 15, 2 (2021), 246–
258.

[25] Zepu Lu, Jin Chen, Defu Lian, Zaixi Zhang, Yong Ge, and Enhong Chen. 2024.

Knowledge distillation for high dimensional search index. Advances in Neural
Information Processing Systems 36 (2024).

[26] Zepu Lu, Defu Lian, Jin Zhang, Zaixi Zhang, Chao Feng, Hao Wang, and Enhong

Chen. 2023. Differentiable Optimized Product Quantization and Beyond. In

Proceedings of the ACM Web Conference 2023. 3353–3363.
[27] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate

nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.

[28] Marius Muja and David G Lowe. 2014. Scalable nearest neighbor algorithms

for high dimensional data. IEEE transactions on pattern analysis and machine
intelligence 36, 11 (2014), 2227–2240.

[29] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:

Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[30] Lu Qin, Jeffrey Xu Yu, and Lijun Chang. 2012. Diversifying Top-K Results.

Proceedings of the VLDB Endowment 5, 11 (2012).
[31] Yongye Su, Yinqi Sun, Minjia Zhang, and Jianguo Wang. 2024. Vexless: A Server-

less Vector Data Management System Using Cloud Functions. Proceedings of the
ACM on Management of Data 2, 3 (2024), 1–26.

[32] Yao Tian, Xi Zhao, and Xiaofang Zhou. 2023. DB-LSH 2.0: Locality-Sensitive

HashingWith Query-Based Dynamic Bucketing. IEEE Transactions on Knowledge
and Data Engineering (2023).

[33] Hao Wang, Tong Xu, Qi Liu, Defu Lian, Enhong Chen, Dongfang Du, Han Wu,

and Wen Su. 2019. MCNE: An end-to-end framework for learning multiple

conditional network representations of social network. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining.
1064–1072.

[34] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-

angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al. 2021. Milvus:

A purpose-built vector data management system. In Proceedings of the 2021
International Conference on Management of Data. 2614–2627.

[35] Jingdong Wang, Ting Zhang, Nicu Sebe, Heng Tao Shen, et al. 2017. A survey on

learning to hash. IEEE transactions on pattern analysis and machine intelligence
40, 4 (2017), 769–790.

[36] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A Com-

prehensive Survey and Experimental Comparison of Graph-Based Approximate

Nearest Neighbor Search. Proceedings of the VLDB Endowment 14, 11 (2021),

1964–1978.

[37] Ruijie Wang, Zheng Li, Danqing Zhang, Qingyu Yin, Tong Zhao, Bing Yin, and

Tarek Abdelzaher. 2022. RETE: retrieval-enhanced temporal event forecasting

on unified query product evolutionary graph. In Proceedings of the ACM Web
Conference 2022. 462–472.

[38] Xunguang Wang, Yiqun Lin, and Xiaomeng Li. 2023. Cgat: Center-guided adver-

sarial training for deep hashing-based retrieval. In Proceedings of the ACM web
conference 2023. 3268–3277.

[39] Shitao Xiao, Zheng Liu, Weihao Han, Jianjin Zhang, Yingxia Shao, Defu Lian,

Chaozhuo Li, Hao Sun, Denvy Deng, Liangjie Zhang, et al. 2022. Progressively

optimized bi-granular document representation for scalable embedding based

retrieval. In Proceedings of the ACM Web Conference 2022. 286–296.
[40] Yandex. 2021. Text-to-Image-1B Dataset. https://research.yandex.com/blog/

benchmarks-for-billion-scale-similarity-search.

[41] Renchi Yang. 2022. Efficient and effective similarity search over bipartite graphs.

In Proceedings of the ACM Web Conference 2022. 308–318.
[42] Kai Zhang, Chongyang Tao, Tao Shen, Can Xu, Xiubo Geng, Binxing Jiao, and

Daxin Jiang. 2023. Led: Lexicon-enlightened dense retriever for large-scale

retrieval. In Proceedings of the ACM Web Conference 2023. 3203–3213.
[43] Pengcheng Zhang, Bin Yao, Chao Gao, Bin Wu, Xiao He, Feifei Li, Yuanfei Lu,

Chaoqun Zhan, and Feilong Tang. 2023. Learning-based query optimization for

multi-probe approximate nearest neighbor search. The VLDB Journal 32, 3 (2023),
623–645.

[44] Qianxi Zhang, Shuotao Xu, Qi Chen, Guoxin Sui, Jiadong Xie, Zhizhen Cai,

Yaoqi Chen, Yinxuan He, Yuqing Yang, Fan Yang, et al. 2023. {VBASE}: Unifying
Online Vector Similarity Search and Relational Queries via Relaxed Monotonicity.

In 17th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 23). 377–395.

[45] Xi Zhao, Yao Tian, Kai Huang, Bolong Zheng, and Xiaofang Zhou. 2023. Towards

efficient index construction and approximate nearest neighbor search in high-

dimensional spaces. Proceedings of the VLDB Endowment 16, 8 (2023), 1979–1991.
[46] Bolong Zheng, Ziyang Yue, Qi Hu, Xiaomeng Yi, Xiaofan Luan, Charles Xie, Xiao-

fang Zhou, and Christian S Jensen. 2023. Learned probing cardinality estimation

for high-dimensional approximate NN search. In 2023 IEEE 39th International
Conference on Data Engineering (ICDE). IEEE, 3209–3221.

9

https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search
https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[47] Kai Zheng, Pui Cheong Fung, and Xiaofang Zhou. 2010. K-nearest neighbor

search for fuzzy objects. In Proceedings of the 2010 ACM SIGMOD international
conference on Management of data. 699–710.

[48] Kai Zheng, Han Su, Bolong Zheng, Shuo Shang, Jiajie Xu, Jiajun Liu, and Xiao-

fang Zhou. 2015. Interactive top-k spatial keyword queries. In 2015 IEEE 31st
international conference on data engineering. IEEE, 423–434.

A Related Work
Existing studies for ANN search can be roughly divided into four

groups, including (1) hash-based [14, 32], (2) tree-based [7, 13, 28],

(3) quantization-based [1, 9, 25], and (4) graph-based [8, 24, 27,

36]. Typically, the computational cost of retrieval 𝑘 approximate

nearest neighbors,𝑂 (𝑛𝑑), incurs from the number of visited vectors

denoted as 𝑛 and the dimension of vectors represented as 𝑑 . The

existing ANN search methods leverage high-dimensional indexes

to reduce latency from these two aspects.

A.1 Partition-based ANN methods
The tree-based indexes [7] partition the vector space into nested

nodes and then narrow down the search area with hierarchical

tree-based indexes during the search phase. DB-LSH et.al [32] ef-

ficiently generate candidates by dynamically constructing query-

based search areas. IVF (inverted file) index [18] first clusters the

vectors into partitions and then narrows down the search area

with the nearest partitions. Chen et.al [5] uses a clustering algo-

rithm and the inverted index to build balanced posting lists, and

probes the clusters within a certain distance from the query vector.

Zhang et.al [43] focuses on multi-probe ANN search and formal-

izing the query-independent optimization as a knapsack problem.

Neural LSH [6] generates partitions by balanced graph partitioning.

Zhao et.al [45] combine the strength of LSH-based and graph-based

methods and utilize LSH to provide a high-quality entry point for

searching in graphs.

A.2 Learning-based ANN methods
Artificial Intelligence(AI) has been applied to databases [20, 35],

as well as information retrieval systems [21]. We provide some

learning-based ANN on top of partitions and graphs. For partition-

based methods, BLISS [12] and Li et.al [22] combine the partition

step and the learning step with learning-to-index methodology, and

then search with a fixed 𝑛𝑝𝑟𝑜𝑏𝑒 . Zheng et.al [46] builds hierarchical

balanced clusters and further leverages neural networks to gener-

ate adaptive 𝑛𝑝𝑟𝑜𝑏𝑒 for each query. For graph-based methods, the

graph-based indexes [27, 36] first connect the similar vectors with

basic proximity graphs in the construction phase and then route

in the graph through the most similar neighbors with the greedy

search strategy. Based on the graph-based HNSW, Li et.al [19]

demonstrate that easy queries often need less search depth than

hard ones. Li et.al [19] introduces an early termination strategy

and uses models to predict the minimum number of visited vectors

required for retrieving the ground truth 𝑘NN for a given query,

which can halt the search beforemeeting the traditional termination

condition in the graph.

B More Details of Motivation
We find that probing according to 𝑛𝑝𝑟𝑜𝑏𝑒∗

𝑑𝑖𝑠𝑡
wastes probing cardi-

nality, with empirical study presented in Fig. 10 (LEFT). The blue

dashed line shows the percentage of queries with 𝑛𝑝𝑟𝑜𝑏𝑒∗ no more

than a specified 𝑛𝑝𝑟𝑜𝑏𝑒 . The red dashed line reflects the percentage

of queries with 𝑛𝑝𝑟𝑜𝑏𝑒∗
𝑑𝑖𝑠𝑡

no more than a given 𝑛𝑝𝑟𝑜𝑏𝑒 . In other

words, those queries achieving 𝑅𝑒𝑐𝑎𝑙𝑙@10 = 1 satisfy the accuracy

requirement. (1) As we can see, the 𝑛𝑝𝑟𝑜𝑏𝑒∗
𝑑𝑖𝑠𝑡

exceeds 20 for some

queries when retrieving top-10 𝑘NN, which introduces significant

probing wastes. (2) Moreover, the waste of probing is even worse

with a larger value of 𝑘 . As shown in Fig. 10 (RIGHT) for 𝑘 = 100,

the 𝑛𝑝𝑟𝑜𝑏𝑒∗ of all queries are no more than 22; while 𝑛𝑝𝑟𝑜𝑏𝑒∗
𝑑𝑖𝑠𝑡

escalates to 40 for some queries.

0 10 20
nprobe

0.25

0.50

0.75

1.00

R
at

io
 o

f Q
ue

rie
s

w
ith

 R
ec

al
l@

10
 =

 1 9.0

SIFT1M, k = 10, B = 64

Max Distance Rank
Optimal nprobe

0 20 40
nprobe

0.5

1.0

R
at

io
 o

f Q
ue

rie
s

w
ith

 R
ec

al
l@

10
0

=
1 22.0

SIFT1M, k = 100, B = 64

Max Distance Rank
Optimal nprobe

Figure 10: Probing Waste with Distance Ranking and Com-
mon Long-tail Phenomenon.

Algorithm 1 One-level and Two-level Index Building

1: Input: data points D, training queries 𝑄

2: Output: indexes of D in 𝐵 partitions for top-𝑘 retrieval

3: (1) For one-level meta index
4: Sample a subset of data D𝑠𝑢𝑏 for training ⊲ Scalability

5: Build 𝐵 partitions for D𝑠𝑢𝑏 and get partition centroids and

distance to centroids 𝐼

6: Get 𝑘NN partition distributions 𝑝 of D𝑠𝑢𝑏 as labels

7: Learn 𝑝𝑞 , 𝑓 (𝑞, 𝐼) = 𝑝𝑞 ⊲ Model Training

8: Put all D in the nearest partitions

9: Get the predicted probability 𝑝 of D with 𝑓 (·)
10: Pick 𝜂% of data points as D𝑝𝑖𝑐𝑘 with 𝑝 ⊲ Redundancy

11: for all data point 𝑣 in D𝑝𝑖𝑐𝑘 do
12: Choose a target replica partition with 𝑝

13: Duplicate the data of 𝑣

14: end for
15: (2) For two-level index
16: Build internal indexes for each partition

C More Details of Scalability of LIRA
Since the subset of data is used in training, we give a detailed

explanation of the scalability of LIRA. In general, LIRA only requires

the ground truth 𝑘NN and 𝑘NN count distribution of a subset of

data. The two phases of probing model training and learning-based

redundancy are both scalable to large-scale datasets, even if the

model is trained on a subset. The algorithm of index building with

the probing model is illustrated in Algorithm 1.

First, for model training, the true label of 𝑘NN partition distribu-

tion is more sparse if we scale the number of data with the same

total number of partitions 𝐵. This is because a partition contains

more data points with a large-scale dataset under the same 𝐵, and

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

LIRA: A Learning-basedQuery-aware Partition Framework for Large-scale ANN Search Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

50000 100000 150000 200000
Dist Computations

0.90

0.95

1.00

R
ec

al
l@

10
0

Tuning nprobe
SIFT1M, k = 100, B = 64

Train with 1M Data
Train with 100K Data

50000 100000 150000
Dist Computations

0.90

0.95

1.00

R
ec

al
l@

10
0

Tuning threshold
SIFT1M, k = 100, B = 64

Train with 1M Data
Train with 100K Data

Figure 12: Scalability of model training.

Table 3: Datasets

Dataset # of Dimension # of Data # of Query

SIFT 128 1M 10K

GloVe 96 1M 1K

Deep 96 50M 10K

BIGANN 128 50M 10K

Yandex TI 200 50M 10K

0 40 80 120 160 200
Step

0.2

0.4

0.6

0.8

Lo
ss

Convergence in Loss and Recall
SIFT, k=100, B=64

Loss
Recall

0 40 80 120 160 200
Step

0

10

20

30

np
ro

be

Convergence in nprobe and Hit Rate
SIFT, k=100, B=64

nprobe
Hit Rate

0.0

0.5

1.0

R
ec

al
l@

10
0

0.00

0.25

0.50

0.75

H
it

R
at

e

Figure 11: Model convergence validation with SIFT128, 1M.

the 𝑘NN of a query are more likely to be separated in fewer par-

titions. However, the true label of 𝑘NN partition distribution 𝑝

does not affect the model training, since the probing partitions are

selected by the threshold 𝜎 of the predicted possibilities.

Second, for learning-based redundancy, the picking and duplicat-

ing steps are all based on the relative results. We pick a data point 𝑣

with a relatively high quantity of predicted probing partitions and

then duplicate it to a partition with relatively high probing possi-

bility in 𝑝𝑣 . Hence, the workflow of LIRA is scalable to large-scale

datasets.

D More Details of Experiment
D.1 Experiment Settings
Datasets. We conduct experiments on 5 high-dimensional ANN

benchmarks with different data sizes and distributions. The details

of the datasets are shown in Table. 3.

Baselines. The detailed information on baselines is as follows.

• IVF. IVFFlat in Faiss [18] (abbreviated as IVF) is a widely used

ANN method that utilizes inverted indexes.

• IVFPQ. IVFPQ [16] is a widely adopted solution that combines

the advantages of product quantization and the inverted file

index.

• IVFFuzzy. Fuzzy clustering is a method where each data point can

be put in more than one cluster. We build the IVFFuzzy index to

show the effectiveness of redundancy through centroid distance

rank, where every data point is placed in the two nearest clusters.

• BLISS [12]. BLISS is a learning-to-index method that builds

groups of partitions, each with an independent model. The vari-

ant of BLISS [22] is omitted from experiments, as well as Neural

LSH [6] that is inferior to BLISS.

Evaluation Platform. We implement our methods and baselines

in Python 3.7. All the experiments are conducted on Intel(R) Xeon(R)

Silver 4214 CPU@2.20GHz, 256GBmemory, and 4NVIDIAGeForce

RTX 3080.

D.2 Convergence Validation
This section is not intended to compare LIRA against other baselines

but rather to verify the convergence of LIRA. We illustrate that

during the process of model training and re-partition, the probing

model can achieve convergence while the recall and probing fan-

out can also be improved simultaneously. All the experiments on

convergence validation are conducted on SIFT with 10K queries in

the setting of 𝑘 = 100 and 𝐵 = 64. The batch size for model training

is set as 512. To evaluate whether the predicted partitions are the

𝑘nn partitions, we also calculate the hit rate of 𝑘nn partitions. We

record the model inference time and the total search time for all

queries, and we find that the model inference time only occupies

less than 1% of the total search time, which shows the efficiency of

predicting probing partitions.

Loss and recall. As shown in Fig. 11(LEFT), we record the loss

and the recall of the testing queries during the training process. A

step in the x-axis means every 10 batches of training data. We can

observe that the loss in the blue line dramatically decreases and

can finally achieve convergence. In addition, the recall in the red

line decreases and then increases. This is because the positive label

of target 𝑘NN partitions is sparse, and the probing model tends to

predict few probing partitions at the beginning of training. With

the probing model learning the mapping of data points to the target

𝑘NN partitions, the recall can approach nearly 1.0 at the end of the

training.

nprobe and hit rate. With the threshold of model outputs set as

default 𝜎 = 0.5, we record the average 𝑛𝑝𝑟𝑜𝑏𝑒 of queries to repre-

sent the query fan-out and the hit rate of target probing partitions

during the training process. As we can see in Fig. 11(RIGHT), the

number of predicted 𝑛𝑝𝑟𝑜𝑏𝑒 in the blue line converges in stable and

approximates the 𝑛𝑝𝑟𝑜𝑏𝑒∗, and the hit rate in the red line can reach

a high level. Hence, the result supports that the probing model can

predict the target 𝑘NN partitions well. Even if the hit rate is about

0.8 after training, we can tune the threshold 𝜎 in the query process.

In detail, a less 𝜎 results in more probing partitions and a larger

𝑛𝑝𝑟𝑜𝑏𝑒 , while a higher 𝜎 works in the opposite.

Scalability. We evaluate the scalability of LIRA by training on the

subset of data and on the whole data, respectively. Specifically, for

training on a subset, we sample 𝐷𝑆𝑢𝑏 , 100K data from the 1M data

in SIFT as the training data and building partitions on 𝐷𝑆𝑢𝑏 . For

𝑣 ∈ 𝐷𝑆𝑢𝑏 , we get the 𝑘NN count distribution, 𝑛𝑣 , and then get the

𝑘NN partition distribution 𝑝𝑣 in 𝐷𝑆𝑢𝑏 as training label. After model

training, the learning-based redundancy is used on the whole data

𝐷 . Keeping the partitions centroids unchanged, we put the whole
11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

10 20 30 40
Dist Computations (K)

0.75

0.80

0.85

0.90

0.95

1.00

R
ec

al
l@

10
0

SIFT, k=100, B=1024

LIRA
LIRA-fix nprobe
IVFFuzzy
IVF

20 40 60 80
Dist Computations (K)

0.7

0.8

0.9

1.0

R
ec

al
l@

10
0

SIFT, k=100, B=256

LIRA
LIRA-fix nprobe
IVFFuzzy
IVF

50 100 150
Dist Computations (K)

0.80

0.85

0.90

0.95

1.00

R
ec

al
l@

10
0

SIFT, k=100, B=64

LIRA
LIRA-fix nprobe
IVFFuzzy
IVF

100 125 150 175 200
Dist Computations (K)

0.80

0.85

0.90

0.95

1.00

R
ec

al
l@

10
0

SIFT, k=100, B=32

LIRA
LIRA-fix nprobe
IVFFuzzy
IVF

Figure 13: Sensitivity of the number of partitions 𝐵 in SIFT.

0 10 20 30
Dist Computations (K)

0.4

0.6

0.8

R
ec

al
l@

10
0

GloVe, k=100, B=1024

LIRA
LIRA-fix nprobe
BLISS
IVFFuzzy
IVF

0 20 40 60 80 100
Dist Computations (K)

0.4

0.6

0.8

1.0

R
ec

al
l@

10
0

GloVe, k=100, B=256

LIRA
LIRA-fix nprobe
BLISS
IVFFuzzy
IVF

0 100 200 300 400
Dist Computations (K)

0.4

0.6

0.8

1.0

R
ec

al
l@

10
0

GloVe, k=100, B=64

LIRA
LIRA-fix nprobe
BLISS
IVFFuzzy
IVF

0 200 400 600
Dist Computations (K)

0.4

0.6

0.8

1.0

R
ec

al
l@

10
0

GloVe, k=100, B=32

LIRA
LIRA-fix nprobe
BLISS
IVFFuzzy
IVF

Figure 14: Sensitivity of the number of partitions 𝐵 in GloVe.

10.0 12.5 15.0 17.5 20.0
Dist Computations (K)

0.96

0.98

1.00

R
ec

al
l@

10
0

4 6 8
nprobe

0.96

0.98

1.00

R
ec

al
l@

10
0

100% redundancy
80% redundancy

60% redundancy
40% redundancy

20% redundancy
0% redundancy

IVFFuzzy

Figure 15: Sensitivity of the redundancy ratio 𝜂 in SIFT.

data 𝐷 in partitions and then use the probing model to achieve

redundancy. For comparison, we also train a model with all the 1M

data as training data.

We get the trade-off between the recall and distance computa-

tions by tuning the𝑛𝑝𝑟𝑜𝑏𝑒 (i.e., probing partitions in the top𝑛𝑝𝑟𝑜𝑏𝑒

output rank) and by tuning the threshold 𝜎 (i.e., probing partitions

with 𝑝𝑞 > 𝜎). As shown in Fig. 12, the model trained on a sub-

set performs similarly to the model trained on the whole dataset

whether probing with 𝑛𝑝𝑟𝑜𝑏𝑒 or threshold. The result supports that

LIRA can be trained on a subset but can still achieve good partition

redundancy and partition pruning on a whole dataset.

D.3 Sensitivity Analysis
Effect of 𝐵. The hyper-parameter 𝐵 in LIRA is used as the total

number of partitions. We conduct sensitivity analysis of the par-

tition number 𝐵 on SIFT and GloVe, which is presented in Fig. 13

and Fig. 14, respectively. To reflect the general trade-off between

efficiency and accuracy, we plot these two figures with the average

distance computations versus recall, comparing LIRA-fix 𝑛𝑝𝑟𝑜𝑏𝑒 ,

BLISS, IVFFuzzy, and IVF. The LIRA-fix 𝑛𝑝𝑟𝑜𝑏𝑒 is a variant of LIRA
with different partition pruning, which utilizes a 𝑛𝑝𝑟𝑜𝑏𝑒 configura-

tion instead of adaptive 𝑛𝑝𝑟𝑜𝑏𝑒 controlled by the threshold 𝜎 of the

model output.We set the partition number as 𝐵 ∈ {1024, 256, 64, 32}.
Due to the inefficiency of BLISS on SIFT in Fig. 7 and Fig. 8, we

exclude the plotting of this group of settings for the result unable

to fit in the graph.

In all settings considered, LIRA outperformed other methods. (1)

For a small value of 𝐵, LIRA can reduce distance computations since

one partition contains more data points, and reducing one partition

probing can save many data points from searching. (2) For a large

value of 𝐵, LIRA can also decrease distance computations because

the probing waste of baselines is more severe across a large number

of partitions. (3) For LIRA-fix 𝑛𝑝𝑟𝑜𝑏𝑒 , even if this variant method

searches with 𝑛𝑝𝑟𝑜𝑏𝑒 configuration similar to the search process of

IVF, it outperforms IVF consistently. This result supports that the

probing model in LIRA can better directly probe the 𝑘NN partitions

with model output rank than probe along with the centroid distance

rank in IVF.

Effect of 𝜂. The hyper-parameter 𝜂 in LIRA is used as the redun-

dancy ratio, picking the data points with the highest predicted

𝑛𝑝𝑟𝑜𝑏𝑒 for redundancy. Considering the internal index can re-

duce the adverse impact of redundancy of both LIRA-HNSW and

IVFFuzzy-HNSW, we conduct sensitivity analysis of the redun-

dancy ratio 𝜂 on SIFT, which is presented in Fig. 15. We tune the 𝜂

to duplicate different ratios of data points in LIRA-HNSW, while the

IVFFuzzy-HNSW duplicates all data points. As we can see, merely

duplicating 40% of data points in LIRA-HNSW can achieve compa-

rable performance to IVFFuzzy-HNSW on the trade-off between

recall and both distance computations and 𝑛𝑝𝑟𝑜𝑏𝑒 . For fair redun-

dancy, we set the 𝜂 as 100% in LIRA-HNSW as the same redundancy

in IVFFuzzy-HNSW. When testing meta index alone, we set 𝜂 as

3% in LIRA to keep the high efficiency.

12

	Abstract
	1 Introduction
	1.1 Prior Approaches and Limitations
	1.2 Our Solution

	2 Preliminaries
	2.1 Definitions
	2.2 Motivation

	3 Method
	3.1 Framework Overview
	3.2 Probing Model Training
	3.3 Learning-based Redundancy
	3.4 Query-aware Top-k Retrieval

	4 Experiment
	4.1 Experiment Settings
	4.2 Evaluation on Small Scale Datasets
	4.3 Evaluation on Large Scale Datasets

	5 Conclusion
	References
	A Related Work
	A.1 Partition-based ANN methods
	A.2 Learning-based ANN methods

	B More Details of Motivation
	C More Details of Scalability of LIRA
	D More Details of Experiment
	D.1 Experiment Settings
	D.2 Convergence Validation
	D.3 Sensitivity Analysis

