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KNOWLEDGE STORAGE AND EXTRACTION IN LAN-
GUAGE MODELS (PART A)∗

ABSTRACT

Large language models can store extensive world knowledge, often extractable
through question-answering (e.g., “What is Abraham Lincoln’s birthday?”). How-
ever, it’s unclear whether the model answers questions based on exposure to ex-
act/similar questions during training, or if it genuinely extracts knowledge from
the source (e.g., Wikipedia biographies). In this paper, we conduct an in-depth
study of this problem using a controlled set of semi-synthetic biography data. We
uncover a relationship between the model’s knowledge extraction ability and dif-
ferent diversity measures of the training data. We conduct (nearly) linear probing,
revealing a strong correlation between this relationship and whether the model
(nearly) linearly encodes the knowledge attributes at the hidden embedding of the
entity names, or across the embeddings of other tokens in the training text.

1 INTRODUCTION

Knowledge is crucial for human cognition and communication, allowing us to comprehend and
utilize information. For humans, this often involves memorization, the process of storing and re-
trieving information in the brain. For example, after reading a biography of Abraham Lincoln, we
can memorize the information and later answer questions like “Where was Lincoln born?” or “What
is Lincoln’s birthday?” Memorization enables us to extract and manipulate knowledge from the
sentences we read or hear, recognize the entities, relations, and facts expressed in the text, and apply
logical and causal reasoning to infer new information or answer queries.

In this paper, we explore how transformer based language models memorize knowledge during
training and extract it during inference. This is distinct from in-context learning or RAG (Lewis
et al., 2020), where the model is given a paragraph during inference and immediately answers ques-
tions about it. We focus on factual knowledge (e.g., knowledge graph) that a language model needs
to memorize from the training corpus, encode in its weights, and extract later during inference.

We stress that memorizing all sentences in the training data does not ensure that the model can ex-
tract or manipulate the factual knowledge from the sentences during inference. Language models
can reproduce the exact input during inference, but this doesn’t necessarily mean they can use these
sentences to answer factual questions related to them. Hence, we differentiate between “memoriza-
tion of knowledge” in language models and traditional memorization in machine learning, which
merely means the model can fit the exact training data, but doesn’t imply the model can extract the
knowledge flexibly from the data after training.

For example, if the training data includes Lincoln’s biography, the model can memorize and re-
produce the sentence “Abraham Lincoln was born in Hodgenville, K.Y.” when given the prompt
“Abraham Lincoln was born in”, but it might not be able to answer the question “Which city was
Abraham Lincoln born in?” Therefore, a key question is:

How do language models memorize knowledge during training, and extract it later to answer
questions or perform logical reasoning during inference?

Previous works have demonstrated that language models can “memorize” a lot of knowledge by
probing the model to answer questions related to different entities and attributes, see Omar et al.

∗Since “knowledge” is a broad subject, we have to write separate papers to cover its different aspects. This
Part A addresses how knowledge is stored, the conditions under which knowledge can be extracted through
instruct fine-tuning, and introduces probing techniques. A natural subsequent question concerns how such
knowledge can be further manipulated for downstream tasks. This is explored in our Part B (Anonymous,
2023). We’ve anonymously submitted both to ICLR 2024 as standalone papers, ensuring no result overlap and
making each self-contained. Our Part B is also in the supplementary material for interested readers.
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(2023); Singhal et al. (2022); Sun et al. (2023) and the citations therein. However, these studies
use models trained on internet data, leaving it unclear whether the model answers questions like
“Which city was Abraham Lincoln born in?” by extracting knowledge from Abraham Lincoln’s
biography (our focus) or if it encountered a similar, or even the same question during training and
simply memorized the answer (traditional memorization).

Given the challenges of conducting controlled experiments with internet data, we propose studying
this question using well-controlled, synthetically generated data,1 examining the models’ mathe-
matical properties that characterize their knowledge representation and extraction. We construct a
synthetic dataset of 100k biographies, including their birthday, birth city, major of study, etc. We
also use LLaMA (Touvron et al., 2023) to rewrite them to make them close to real-life biography
styles. We pretrain the language model on the biography dataset of all the 100k people. We ask:

After training a language model on the biography dataset, can the model be finetuned to extract the
knowledge to answer questions like “Where is the birth city of [name]” or “What did [name]

study?”, and if so, how does the model achieve so?

We evaluate our model’s knowledge extraction ability by finetuning it on question and answers
(QAs) for a p fraction of individuals and testing its ability to answer QAs about the remaining 1− p
fraction. This training and testing process ensures that the model sees enough data to understand
the QAs, and also isolates the effect of knowledge extraction from other factors like seeing the exact
same question during training. The paper is structured as follows:

1. In Section 3, we demonstrate that training a model on all biographies and QAs for a p fraction
of individuals together in pretraining time enables it to (apply knowledge to) answer questions
about the remaining 1−p fraction. We call this process mixed training. We also observe in mixed
training, the model learns in an unconventional way: it first uses QAs to encode knowledge about
the p fraction, then correlates this encoded knowledge with the biography to infer generalization
to the remaining 1− p fraction. This learning process deviates from typical human learning and
is less frequently used in large language model training.

2. In Section 4, we examine a model pre-trained on biographies and fine-tuned on QAs for a p frac-
tion of individuals. It struggles to answer questions for the remaining 1−p fraction, regardless of
model size, pre-train time, and finetune parameters. However, accuracy significantly improves
with knowledge augmentations like varying writing styles or sentence permutations. Even if this
augmentation is applied to a subset of individuals, what we call celebrities, test accuracy for oth-
ers also increases significantly. The mere inclusion of celebrity data in pre-training enhances the
model’s knowledge extraction for minorities. One of our work’s key contribution is establishing
this strong link between knowledge augmentation in pre-training data and model’s improved
knowledge extraction after fine-tuning.

3. In Section 5, as another main contribution, we use (nearly) linear probing techniques to show
that knowledge augmentation compels the model to encode a person’s knowledge almost lin-
early in the model’s hidden embedding of the person’s name tokens. Without augmentation, the
model encodes the person’s knowledge across all biography words/tokens, making knowledge
extraction during finetuning nearly impossible. We summarize this as:

no knowledge augmentation in data ⇐⇒ attribute is not entirely stored on person’s names
⇐⇒ knowledge cannot be extracted via instruct finetune

4. In Appendix B, we show that BERT-like models, pre-trained on biography data and finetuned
on QAs, cannot extract a person’s knowledge after finetuning, regardless of the bio-data knowl-
edge augmentation used during training, unless the knowledge is a single word or multiple but
independent words (like birth month, day, and year).

Related work. LINEAR PROBING OF KNOWLEDGE. Linear probing is a recognized method to
examine how a model encodes knowledge (Aspillaga et al., 2021; Conneau et al., 2018; Dai et al.,
2021; Geva et al., 2020; Li et al., 2021; Meng et al., 2022; Sun et al., 2023). Contrary to previous
studies that suggest models trained on internet data can linearly encode knowledge in the hidden

1One could suggest filtering the data to eliminate such questions and retraining the model. However, this
doesn’t rule out the presence of similar sentences “Which city did Abraham Lincoln grow up in?”, more com-
plex ones in French, or grammatically incorrect versions like “Where Abraham Lincoln birth in?” in the data.
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embeddings of entity names, we find that such encoding is only possible with knowledge augmen-
tations like permutation/rewriting of entity-attribute knowledge during pretraining. Without these
augmentations, the language model can still memorize the training data, but it is not linearly en-
coded in the entity’s hidden embeddings, making knowledge extraction via QAs quite hard, if not
impossible, even with instruct fine-tuning. This implies that diverse internet data on the same entity
is vital for pre-training the language model for knowledge extraction during inference. The use-
fulness of augmentations of pretraining data for language models was also empirically observed in
literature Berglund et al. (2023); Cai et al. (2020); Eldan & Li (2023); Kobayashi (2018), but they
did not explore where the knowledge is nearly-linearly encoded in a sentence and its correlation
with knowledge augmentation, a process we refer to as P-probing in Section A.1.

PROBING LANGUAGE MODELS’ KNOWLEDGE VIA QAS. Question answering (QA) is a common
method to probe the knowledge encoded in language models pretrained on internet data (Hernandez
et al., 2023; Naseem et al., 2021; Omar et al., 2023; Peng et al., 2022; Petroni et al., 2019; Richard-
son & Sabharwal, 2020; Singhal et al., 2022; Sun et al., 2023). However, it’s unclear whether
these models answer questions by extracting knowledge from the training source or by recognizing
exact/similar questions from training. We use semi-synthetic data in a controlled experiment for
out-of-distribution testing on individuals whose QAs were not part of training. This approach also
allows us to study the correlation between knowledge extraction and the diversity of pretrain data.

ENCODER VERSUS DECODER FOR QAS. While BERT-based models Kenton & Toutanova (2019)
are also used for knowledge extraction through QAs (Choi et al., 2022; Sushil et al., 2021), our work
indicates that they are less effective at extracting knowledge compared to GPT models.

2 PRELIMINARIES

In this paper, we analyze synthetic human biography datasets and near-real datasets generated by
LLaMa-30B (v1) (Touvron et al., 2023; Zhou et al., 2023). Detailed descriptions are in the appendix,
with a brief overview here.

BIO dataset bioS. The synthetic dataset, bioS, generates profiles for N = 100, 000 individuals.
Each individual’s details are randomly and independently selected from a uniform distribution. The
birth dates offer 200× 12× 28 possibilities, while other categories offer 100 ∼ 1, 000 choices. We
also add a “company city” attribute which depends on the employer’s headquarters location. We
ensure uniqueness in each individual’s full name.

We generate a six-sentence biographical text entry for each individual, highlighting six distinct as-
pects. For diversity, each sentence is randomly chosen from approximately 50 distinct templates.
In the basic configuration, we generate a single biographical entry for each person, maintaining a
consistent order for the six sentences. We use “bioS single” to denote this basic configuration. See
an example entry below:
Anya Briar Forger was born on October 2, 1996. She spent her early years in Princeton, NJ. She received mentorship and guidance from faculty
members at Massachusetts Institute of Technology. She completed her education with a focus on Communications. She had a professional
role at Meta Platforms. She was employed in Menlo Park, CA.

(2.1)
We also explore 3 types of knowledge augmentations: (1) multiM , generating M biography entries
for an individual using varied templates, (2) fullname, substituting he/she/they with the person’s full
name; and (3) permute, shuffling the six sentences randomly. Examples are given in Section 4.2.

BIO dataset bioR. We examine a “close-to-real” dataset produced by LLaMA-30B (Touvron
et al., 2023; Zhou et al., 2023). For the set of N = 100, 000 individuals, we provide an instructive
prompt to LLaMA to generate a biographical entry. Here’s an example:

Anya Briar Forger is a renowned social media strategist and community manager. She is currently working as a Marketing Manager at
Meta Platforms. She completed her graduation from MIT with a degree in Communications. She was born on 2nd October 1996 in
Princeton, NJ and was brought up in the same city. She later moved to Menlo Park in California to be a part of Facebook’s team. She is
an avid reader and loves traveling.

We diversified our instructive prompts by drawing from a pool of templates and employed rejection
sampling to guarantee the inclusion of all six attributes. In the basic configuration, we produce a
single biographical entry for each person (denoted as “bioR single”). For comparison, we also con-
sider multiM augmentation which generates M entries per person and the fullname augmentation.
Additional examples can be found in Appendix C.
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(b) training on bioS dataset
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(c) training on bioR dataset

Figure 1: Accuracies and loss curves for mix training. b date,b city,c name,c city stand for birth date, birth
city, company name, company city, and mean acc stands for the mean accuracy of the six attributes.
Baseline is majority-guessing (c city has large accuracy because many companies are based in NYC).

QA dataset. This paper explores the effectiveness of a trained language model in retaining knowl-
edge from BIO data. As discussed in the introduction, memorization is more than just predicting
the next token when given exact sentences from BIO. It includes the model’s ability to truly extract
knowledge from the BIO. We assess this knowledge extraction using a question and answer (QA)
framework. For each individual, we pose six questions targeting their six unique attributes:

1. What is the birth date of Anya Briar Forger?
Answer: October 2, 1996.

2. What is the birth city of Anya Briar Forger?
Answer: Princeton, NJ.

3. Which university did Anya Briar Forger study?
Answer: Massachusetts Institute of Technology.

4. What major did Anya Briar Forger study?
Answer: Communications.

5. Which company did Anya Briar Forger work for?
Answer: Meta Platforms.

6. Where did Anya Briar Forger work?
Answer: Menlo Park, CA.

For each question, we use it as a prompt for the model to generate a response. QA accuracy is
measured by the proportion of answers that match the correct response.

Model architectures. The standard GPT2-small architecture comprises 12 layers with 12 heads
and 768 dimensions Radford et al. (2019). Due to GPT2’s limitations from its absolute positional
embedding, we use its modern rotary positional embedding variant Black et al. (2022); Su et al.
(2021), referred to as GPT2 for brevity. We retain the GPT2 small architecture (124M) for pre-
training on the bioS data, but use a larger 12-layer, 20-head, 1280-dim GPT (302M) for the bioR
data to accommodate its increased complexity. The default GPT2 tokenizer is used, which converts
simple words into single tokens, but names and most other attributes into tokens of varying lengths.2

Training. We investigate two types of autoregressive training, detailed in Appendix D.

PRETRAIN + INSTRUCT FINETUNE. Here, we pre-train the language model on the BIO data,
randomly sampling and concatenating them into 512-token sentences, separated by a standard
<|EOS|> token. The model is then fine-tuned using half of the QA data and evaluated on the
remaining half, mirroring the typical instruct finetune process.

MIX TRAINING. In mix training, we pre-train the model on all BIO data and half of the QA data.
BIO and QA entries are randomly sampled without requiring them to be from the same individual.
We use a parameter QAr to control the QA data amount, primarily setting QAr = 0.8 (a 2 : 8 BIO
to QA entry ratio). The model’s generation accuracy is evaluated using the remaining QA data.3

LoRA finetune. In full finetuning a pretrained model is tuned for a downstream task such as QAs.
LoRA finetuning (Hu et al., 2021) improves upon this by freezing all pretrained model parameters
and adding low-rank updates to a subset of the weight matrices for fine-tuning. We apply a low-rank
update to the query/value matrices of the transformer model and the embedding layer to account for
input data distribution shifts. Full finetuning is also included when presenting negative results.

3 MIX TRAINING

Mix training involves training the model using BIO data for all individuals and QAs for half of them.
The group of individuals whose QAs are included in the training set is referred to as in-distribution
or Ptrain. The model’s generative accuracy is then tested on the QAs from the remaining individuals
(Ptest) to assess its out-of-distribution generalization capability.

As shown in Figure 1(a), a mix-trained model exhibits strong out-of-distribution generalization,
answering most QAs with mean accuracies of 86.6% for bioS and 77.7% for bioR. This indicates

2Only in Figure 2 when presenting a negative result, we tried a 12-layer, 32-head, 2048-dim GPT (682M).
3See Appendix E for a comparison of how QAr affects performance.
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(b) 302M model, pre-trained 1000 passes on bioR
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(d) 682M model, pre-trained 1350 passes on bioR

Figure 2: BIO pretrain + QA finetune (train acc) / test acc. Bold number indicates QA generation accuracy on
Ptest, and the smaller number in bracket represents QA (first-token) accuracy on Ptrain. For LoRA
fine-tune we consider a rank r = 2, 4, 8, 16, 32 update on the query/value (q/v) matrices and a rank
r′ = 0, 16, 32, 64, 128 update on the word embedding matrix. More details are in Appendix F.

that the model can extract and utilize knowledge from the BIO data, addressing queries about an
individual’s attributes even when no QA about that person was used in training; only their BIO
entry was provided. However, our detailed analysis reveals that the model employs a somewhat
unconventional method to extract knowledge through mix training.

3.1 MODEL’S ABNORMAL LEARNING BEHAVIOR

We examine the model’s mixed training process for knowledge storage and extraction by monitoring
its accuracies on the BIO/QA data and for Ptrain/Ptest separately. Specifically,4

- BIO first-token accuracy: we track the model’s next-token-prediction accuracy on the first token
of each of the six attributes (birthdate, birthcity, etc.) in the BIO data, separately for Ptrain/Ptest.
This measures the model’s BIO data memorization performance. (Despite all individuals’ BIO
data appearing in training, we still separately track them for Ptrain/Ptest.)

- QA first-token accuracy: we track the model’s next-token-prediction accuracy on the first an-
swer token in the QA data, separately for Ptrain/Ptest. This loosely estimates the model’s QA
generation performance.

- QA generation accuracy: we track the model’s whole-attribute generation accuracy on Ptest.

From Figure 1(b) and 1(c), we find that the model employs an unconventional learning strategy.

• Initially, the model uses the QA data from the training set to encode knowledge for people in
Ptrain, as indicated by the rapid increase in QA in-dist accuracy. This also aids in memorizing
in-dist BIO data, as shown by the subsequent rise of the BIO in-dist accuracy.

• The model then gradually aligns the encoded knowledge with the BIO data to learn to extract
knowledge and generalize it to Ptest. Notably, it takes a while before the BIO out-dist accuracy
catches up, followed by an increase in the QA out-dist accuracy.

This is akin to the “study to pass the test” approach in schools, where students prepare using past
exam questions and textbooks for answers. While this may yield high scores, it doesn’t reflect the
natural progression of human knowledge acquisition. To address this, we explore a scenario in the
next section where the model is pretrained on the BIO data without exposure to the questions. 5

4 BIO PRETRAIN + QA INSTRUCT FINETUNE

We now examine a scenario where the model is pre-trained solely on the BIO data of all individuals.
It is then fine-tuned using QAs from half of these individuals, denoted as Ptrain, without further use

4Interested readers may consider “whole-attribute” accuracies instead of “first-token” accuracies. They are
similar, so we omit them here.

5In mixed training, we selected QAr = 0.8, maintaining a 8 : 2 QA to BIO ratio as outlined in Section 2.
We found a higher QA ratio improves QA test accuracy (Figure 10 in Appendix E), further supporting our
observation of the model’s abnormal behavior: it first learns knowledge from QA and then associates it with
BIO. For comparison, LLaMA was trained using only 2% of tokens from StackExchange (Touvron et al., 2023).
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Figure 3: Comparison of BIO pretraining + QA finetuning (left) versus their mixed training counterparts (right)
under various knowledge augmentations on the bioS data. Displayed values indicate QA generation
accuracies for six attributes in Ptest. Refer to Figure 12 for bioR data and Appendix F for more
details. Observation. Knowledge augmentation in pretraining data improves model generalization
to out-of-distribution QAs after finetuning. Accuracy increases with more augmentations introduced;
while mixed training is minimally impacted by knowledge augmentation.

of biographies. The model’s generalization is evaluated on questions related to the remaining half,
denoted as Ptest, whose BIO/QA data were not used during fine-tuning. This process mirrors human
knowledge acquisition, where learning from textbooks is applied to later answer exam questions.

4.1 MODEL MAY FAIL TO EXTRACT KNOWLEDGE AFTER PRETRAINING ON BIO DATA

We first pretrain on the basic bioS and bioR datasets, each containing a single biography per person.
The QA finetune generalization accuracies (on Ptest) are reported in Figure 2, using both full and
LoRA finetuning (Hu et al., 2021). The model’s QA finetune training accuracy on Ptrain is also
included for comparison.

Despite a 99+% first-token accuracy during pretraining (see Appendix E), the model exhibits near-
zero QA accuracy on Ptest for all finetuning parameters. This suggests that while the model can
memorize the BIO data token-by-token, it struggles to extract the underlying knowledge. Full-
finetuning achieves high in-distribution QA finetune accuracy (nearly perfect on Ptrain), indicating
it can memorize the QAs for individuals in the finetuning set. However, it is largely ineffective for
QAs concerning individuals in Ptest. In sum, we observe:

perfect BIO token memorization + perfect QA answers for half the people
̸=⇒ correct QA answers for the other half. (knowledge extraction does not come for free)

This holds true even when the model size is approximately 7000 times larger than N = 100k, the
number of individuals, each individual is observed 1350 times during pretraining, and numerous
finetune parameters have been explored. Despite memorizing all knowledge from the BIO data
during pretraining, the model encodes it in a disorganized manner within the transformer, preventing
knowledge extraction during finetuning.6

Figure 2 seems to contradict the success of large models like GPT3.5, trained on internet data such
as Common Crawl and known for effective knowledge extraction upon fine-tuning. Why is this?
Analyzing the test accuracy breakdown for the six attributes on the bioS data (Figure 3, the “bioS
single” row), we see that QA fine-tuning in fact achieves a 33% generalization accuracy on the
“birthdate” attribute but fares poorly on others. This is because our bioS single data consistently
places birthdate as the first attribute after a person’s name, unlike internet data which presents infor-
mation variably, often repeating it with diverse wordings and orderings.

4.2 KNOWLEDGE AUGMENTATION

We explore how knowledge augmentation enhances a model’s capacity to store and efficiently re-
trieve knowledge from training data. We focus on three augmentations: adding multiplicity, intro-
ducing permutations, and repeating full names, typically found in internet data. The original datasets
without augmentation are referred to as bioS single and bioR single.

6This is not a result of catastrophic forgetting, a common issue during heavy fine-tuning where the model
forgets the pretraining data. Even with LoRA fine-tuning, which introduces minimal low-rank updates to model
weights while preserving the pretrained model, test accuracy only slightly improves.

6



Under review as a conference paper at ICLR 2024

• MULTIPLICITY. We denote the method of creating M distinct biography entries for each indi-
vidual, using varied language but retaining the same information, as multiM .7 An example of
adding multiplicity to the biography in (2.1) is:
Anya Briar Forger came into this world on October 2, 1996. She originated from Princeton, NJ. She pursued advanced coursework at
Massachusetts Institute of Technology. She dedicated her studies to Software Engineering. She developed her career at Meta Platforms.
She gained work experience in Menlo Park, CA.

• PERMUTATION. We denote adding random permutations to the biography sentences as per-
mute.8 For instance, the example above can be permuted as follows:
Anya Briar Forger originated from Princeton, NJ. She dedicated her studies to Communications. She gained work experience in Menlo
Park, CA. She developed her career at Meta Platforms. She came into this world on October 2, 1996. She pursued advanced coursework
at Massachusetts Institute of Technology.

• FULLNAME. We denote the augmentation where all pronouns or partial names in bioS/bioR are
replaced with the person’s full name as fullname.

Results. In Figure 3, we present our results for the bioS dataset. (Parallel results for the bioR
dataset are in Figure 12.) We implemented each knowledge augmentation individually and in com-
binations, then compared the model’s QA finetune accuracy on Ptest using LoRA. The model ar-
chitecture and training parameters remained consistent, but the pre-training datasets varied based on
the applied augmentations. Further details are in Appendix F.

We find that adding multiplicity, permutations, or repeating full names all improve the model’s
ability to memorize the person’s information during pretraining, making knowledge extraction easier
later.9 Notably, pretraining on a dataset where each individual has five diverse biography entries
(i.e., different wording, different sentence shuffling) boosts the QA fine-tune accuracy (on Ptest)
from 9.7% to 96.6%. Moreover, such accuracy increases as data multiplicity or permutation number
increases, highlighting the model’s improved ability to store and extract knowledge when presented
with repeated information during pretraining.

One might infer that exposing the model to varied expressions of identical knowledge encourages it
to focus on the underlying logical structure of the information, rather than its superficial presentation.
This could foster a more direct link between an individual’s name and their attributes. We will
introduce probing techniques to substantiate this hypothesis in Section 5.

4.3 CELEBRITY CAN HELP MINORITY

The previous subsection highlighted the significant benefits of knowledge augmentation. However,
in practice, we may not have augmented data for all individuals. This subsection explores whether
partially augmenting data can improve knowledge extraction for non-augmented data. In our biog-
raphy dataset, the augmented subset is akin to a “celebrity” group with plentiful online biographical
information, potentially included in the fine-tuning dataset as well. The non-augmented subset is
comparable to a “minority” group with limited biographical data.

For comparison, we introduce an additional set of N = 100, 000 individuals, the celebrity group
Pcel, while the original N individuals form the minority group Pmin. We test both synthetic bioS
and more realistic bioR data. For bioS, the celebrity group’s biographies use the multi5+permute
augmentation, simulating varied expressions found on internet. For bioR, the celebrity group uses
the multi5 augmentation, generating their biographies five times using LLaMA.

The language model is pretrained on the combined set Pcel ∪ Pmin biographies and then fine-tuned
using QAs from the celebrity group Pcel. We evaluate the model’s QA accuracy on the Pmin group.10

Our results are presented in Figure 4.
7For bioS data, each of the six sentences is selected from around 50 templates, with a new template resam-

pled for each sentence in the M entries. For bioR data, we recreate the biography using LLaMA for each of
the M entries.

8For bioS single, we denote random permutation of the same six sentences P times as permuteP . For
bioS multiM , we denote random permutation of each of the M biography entries as permute. The bioR data,
generated by LLaMA, already has some randomness in sentence ordering, so no extra permutations are added.

9An exception is when permutation is directly added to the single data without multiplicity (see “bioS
single + permute1”), this hurts the QA performance as it makes knowledge extraction harder.

10Other fine-tuning variations, such as QA fine-tuning with half of Pmin as training and half as testing, show
negligible differences.
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QA mean acc

QA b_date
QA b_cit

y
QA univ

QA major

QA c_n
ame

QA c_c
ity

baseline
bioS single + permute1
bioS single + permute1 + CEL
bioR single                   
bioR single                    + wiki
bioR single                    + CEL

2.7 0.0 0.5 0.3 1.0 0.4 13.7
4.4 0.5 3.3 2.4 5.0 3.5 13.7
86.8 98.3 96.8 90.7 90.2 71.7 80.1
10.0 25.1 13.9 2.4 5.5 2.0 14.1
7.3 18.4 5.2 2.6 4.3 1.8 14.1
76.3 94.3 85.3 82.9 79.4 67.0 56.6

Figure 4: QA finetune accuracy on the minority group with vs. without celebrity data in the pretraining process.
Experiment details are in Appendix I, where we also include additional experiments in Figure 16.

Results. In the synthetic bioS case, introducing celebrity data boosts the minority group’s QA
accuracy from 4.4% to 86.8%. This is significant because:

- the minority group’s BIO pretrain data remains unchanged in both cases, with Pmin using bioS
single+permute1 for biographies, and

- the minority group’s QA data is not used during fine-tuning.

This highlights that simply including celebrity data during pretraining significantly improves
the model’s ability to store and extract knowledge from the minority group. Similarly, in the more
realistic bioR case, introducing celebrity data also increases the minority group’s QA accuracy from
10.0% to 76.3%. We believe this strongly suggests that this phenomenon also occurs in real-world
scenarios. We will introduce probing techniques to validate the above findings in Section 5.
Remark 4.1. Using the bioR dataset, we find the positive impact of celebrity data is not universal.
Substituting it with the WikiBook dataset improves the model’s English comprehension, yet it still
struggles with biographical knowledge extraction. This suggests that only celebrity data of similar
form truly aids knowledge extraction for minority groups. In Figure 16 in Appendix I, we further
investigate different celebrity data types and instances of minor format differences between minority
and celebrity knowledge.

5 KNOWLEDGE PROBES ON THE BIO PRETRAINED MODEL

We investigate how a pretrained language model on BIO data encodes knowledge in its hidden
representations using two probing techniques: position-based probing (P-probing) and query-based
probing (Q-probing). Both techniques employ simple (nearly-linear) probes to extract a person’s
attributes from the model’s hidden representations. Detailed findings are in Appendix A.

In P-probing, we input biography entries into the pretrained model and train a linear classifier on
the last hidden layer to predict six target attributes. To accommodate varied data lengths, we identify
six special token positions preceding the first occurrences of the six attributes in each biography
entry. We use the transformer’s last hidden layer at these positions to (linearly) predict the six
target attributes (Figure 5).11 Our results (Figure 6) show that increased knowledge augmentation
in the pretrain data improves P-probing prediction accuracies from earlier token positions. In the
basic bioS single setup, P-probing accuracy remains low until the token immediately preceding the
target attribute. This suggests the model memorizes BIO data but encodes knowledge in a complex
manner, revealing a person’s attribute only after encountering all prior attributes. This prevents
knowledge extraction during QA finetuning, particularly when only the person’s name is given. In
Appendix A, we use a Venn diagram to precisely illustrate which attribute is stored after observing
another, further confirming this finding.

Anya Briar Forger is a renowned social media strategist and community manager. She is currently working as a Marketing
Manager at Meta Platforms. She completed her graduation from MIT with a degree in Communications. She was born on
2nd October 1996 in Princeton, NJ and was brought up in the same city. She later moved to Menlo Park in California to be a
part of Facebook’s  team. She is an avid reader and loves traveling.

predict major / b_date / b_city / c_citypredict c_name / univ / major / b_date / b_city / c_city

predict univ / major / b_date / b_city / c_city
predict b_city / c_city

predict c_city
predict b_date / b_city / c_city

Figure 5: Illustration of the P-probing. Underscore prepositions are the special token positions where we prob.
The task is to predict all attributes following these positions. Given the attribute ordering, there can
be up to 6× 6 = 36 tasks across all data.

11For each target attribute prediction task, we freeze the pretrained network but add a trainable rank-2 update
on the embedding layer to account for the task change.
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8.3 8.3 8.3 8.3 8.3 8.3 2.5 2.5 2.5 2.5 2.5 2.5 37.0 37.0 37.0 37.0 37.0 37.0 4.0 4.0 4.0 4.0 4.0 4.0 1.5 1.5 1.5 1.5 1.5 1.5 14.8 14.8 14.8 14.8 14.8 14.8
100 5.9 100 38.0 37.1 99.2 4.7 4.6 5.4 99.9 1.5 1.2 1.3 2.4 99.5 15.4 15.4 14.9 13.0 69.1 100
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58.8 64.3 69.6 74.4 82.9 100 37.4 41.6 47.9 56.1 69.7 99.9 54.9 59.1 64.0 70.1 79.0 98.9 42.0 47.2 52.7 60.1 71.8 100 43.2 54.2 65.3 76.8 88.3 99.8 49.5 61.8 74.6 85.1 95.6 100
81.5 85.0 86.7 88.2 92.1 100 57.7 63.2 65.9 71.1 78.2 100 69.7 72.4 75.5 78.0 83.6 99.7 65.3 69.6 72.8 76.6 82.2 100 91.9 93.9 94.8 96.0 97.4 100 96.3 97.4 98.2 98.8 99.6 100
88.8 90.4 91.5 92.3 94.6 100 63.5 67.3 69.9 73.6 80.4 100 76.8 80.0 81.8 83.8 88.1 99.9 70.4 72.9 75.1 78.2 83.9 100 98.0 98.0 98.3 98.7 99.0 100 99.9 100 100 100 100 100
100 70.7 100 47.8 74.8 99.9 18.9 30.1 60.1 99.6 3.0 3.8 8.4 34.6 99.3 15.0 14.6 13.9 21.8 66.9 100
100 100 100 99.6 100 100 99.7 99.9 100 100 99.6 99.9 99.9 99.9 100 66.2 71.4 72.7 74.5 76.5 99.9
100 100 100 100 100 100 99.9 100 100 100 100 100 99.9 100 100 100 100 100 99.5 99.7 99.8 99.9 100 100 93.3 95.3 96.8 98.0 98.8 99.9 90.2 92.8 95.0 96.8 98.6 100
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100 100 100 98.7 99.8 100 99.3 99.9 99.9 99.9 98.1 99.6 99.7 99.7 100 58.8 65.1 67.2 68.6 72.0 99.9
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99.9 99.9 99.9 100 100 100 99.8 99.8 99.9 100 100 100
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Figure 6: P-probing accuracies for various pretrained models on bioS data. Each row represents a pretrained
model using a different knowledge augmentation, and each column labeled “i-field” shows the ac-
curacy of predicting the first token of field from position i. Details are in Section 5 and Appendix G
(where we also include experiments for the bioR data and for predicting the full-attribute field.)
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Figure 7: Q-probing accuracies. Each row denotes a pretrained model with its specific knowledge augmen-
tation. The left block reiterates QA finetune accuracies from Figure 3. The middle showcases Q-
probing accuracies on the first-token prediction for the six attributes, and the right focuses on Q-
probing for the whole-attribute prediction. (Further details for bioR and more are in Appendix G.
Note: For birth date, first token predicts the whole birth month; we do not have whole-attribute pre-
diction for it since it has too many choices.)

In Q-probing, we focus on the knowledge directly linked to a person’s name. We evaluate input
sentences containing only the person’s full name and train a linear classifier on the last layer’s hidden
states to predict the person’s six attributes.12 Our results (Figure 7 in Appendix A.2) show that
the knowledge-extraction finetune accuracy is directly linked to whether the knowledge is (nearly-
)linearly stored on the person’s name in the pretrained model. This is a property independent of the
finetune parameters, and suggests that the model does not utilize contextual or global information
from the biographies to extract knowledge about the individual.

6 CONCLUSION

This study explores the ability of pre-trained language models to store and extract knowledge dur-
ing inference using question-answering tasks. We created a semi-synthetic biography dataset and
utilized probing techniques to examine the effect of knowledge augmentation on the storage and
extractability of knowledge in pre-trained transformers. Synthetic data offers increased control over
model training and fine-tuning inputs, which is crucial for understanding the influence of different
data sources on the internal mechanisms of transformers. This could potentially be a significant
future direction for unraveling the complexities of transformers. The paper also highlights the im-
portance of rewriting essential but infrequently occurring data during pre-training to ensure its
effective storage for subsequent tasks. This should be achieved using tools like ChatGPT before
pre-training, as rectification during the fine-tuning stage might be too late if the pre-training data
has not been fully augmented. While our primary focus was on autoregressive language models, our
techniques are also applicable to bidirectional models like BERT, as discussed in Appendix J.

12We freeze all transformer layers (acquired through pretraining), except the embedding layer, to which we
apply a rank-16 update. This adjustment is arguably the minimal change necessary since we are tackling a
notably different input distribution.
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