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Abstract

We propose a new programming language called ALTA and a compiler that can map
ALTA programs to Transformer weights. ALTA is inspired by RASP, a language
proposed by Weiss et al. (2021), and Tracr (Lindner et al., 2023), a compiler
from RASP programs to Transformer weights. ALTA complements and extends
this prior work, offering the ability to express loops and to compile programs to
Universal Transformers, among other advantages. ALTA allows us to constructively
show how Transformers can represent length-invariant algorithms for computing
parity and addition, as well as a solution to the SCAN benchmark of compositional
generalization tasks, without requiring intermediate scratchpad decoding steps. We
make the ALTA framework — language specification, symbolic interpreter, and
weight compiler — available to the community to enable further applications and
insights.1

1 Introduction

There has been significant discussion and debate about the degree to which Transformers can perform
compositional generalization and “System 2” reasoning, prompted by negative results on various
evaluations for certain classes of Transformers (e.g., Dziri et al. (2023); Qiu et al. (2023); Shaw
et al. (2021); Wu et al. (2024); Delétang et al. (2022); Mitchell et al. (2023); Valmeekam et al.
(2023)). Do such negative results reflect some mutable aspect of how such models were trained,
or more fundamental architectural limitations? To better understand the conceptual limitations of
Transformers, it would be useful to have an interpretable framework for understanding whether and
how Transformers can represent and learn solutions to various tasks of interest. Such a framework
could also potentially help elucidate a path forward towards improving these capabilities.

We present a new framework for compiling interpretable, symbolic programs to Transformer model
weights. The framework is based on a new programming language called ALTA, A Language for
Transformer Analysis. The framework includes an interpreter for symbolically executing ALTA
programs, and a compiler for converting ALTA programs to Transformer model weights. ALTA is
inspired by prior work that introduced a programming language for Transformers called RASP (Weiss
et al., 2021), and prior work that built a compiler from RASP programs to model weights called
Tracr (Lindner et al., 2023). ALTA complements and extends this prior work, with two key conceptual
differences.

First, ALTA supports dynamic control flow operations such as loops. While Zhou et al. (2023b)
showed how RASP programs can be executed within the context of an auto-regressive decoder to
implement some forms of loops by leveraging scratchpads (Nye et al., 2021; Wei et al., 2022), ALTA
can implicitly support such operations without relying on intermediate decoding steps. This is useful

1Please see https://arxiv.org/abs/2410.18077 for the latest version of this paper.

The 1st Workshop on System-2 Reasoning at Scale, NeurIPS 2024.

https://arxiv.org/abs/2410.18077


         >_ALTA
Program

Transformer
Weights{    }ALTA

Compiler

Figure 1: Overview of ALTA. We propose a new programming language called ALTA, and a
“compiler” that can map ALTA programs to Transformer weights. ALTA is inspired by RASP, a
language proposed by Weiss et al. (2021), and Tracr (Lindner et al., 2023), a compiler from RASP
programs to Transformer weights. ALTA complements and extends this prior work, offering the
ability to express loops and to compile programs to Universal Transformers, among other advantages.

to study because such additional decoding steps can be computationally inefficient and are non-
differentiable, typically necessitating additional supervision. ALTA accomplishes this by compiling
to Transformers with layer-wise weight sharing. From one perspective, Transformers with weight
sharing are simply a special case of standard Transformers. However, they were also shown to have
an inductive bias that improves performance on compositional tasks (Csordás et al., 2021; Ontanon
et al., 2022; Yang et al., 2024), which warrants further study. ALTA also supports a conditional
computation mechanism, enabling compilation of programs to Universal Transformers (Dehghani
et al., 2019), thereby enabling new constructive expressivity results for this class of models.

Second, ALTA represents the computation of the MLP sub-layer as a sparse set of transition rules.
We show that this enables compilation of complex programs to reasonably sized Transformers. In
contrast, Tracr compiles functions over multiple variables expressed in RASP to dense lookup tables
encoded in the MLP parameters, which can suffer from combinatorial explosion in the number of
possible variable combinations. The ALTA compiler can leverage the sparsity expressed in the set of
transition rules to reduce the number of MLP hidden dimensions required, in some cases by many
orders of magnitude. Additionally, representing the MLP sub-layer computation as a set of sparse
transition rules supports new insights into the generalization potential of MLP layers, and therefore
of Transformers, which we explore both theoretically and empirically.

We highlight two primary applications of this framework. First, we show new constructive expressivity
results for Transformers and Universal Transformers, including showing how Transformers can
implement length-invariant algorithms for computing parity and addition, and a shift-reduce parsing
algorithm that solves the SCAN (Lake & Baroni, 2018) benchmark of compositional generalization
tasks. Second, we provide tools to analyze cases where the expressibility of an algorithm is established,
but end-to-end training on a given training set fails to induce behavior consistent with the desired
algorithm. Specifically, we propose to use intermediate supervision from ALTA execution traces
over a given training set as a learning signal. In some cases, we show this additional supervision
is sufficient to learn the desired algorithm, but in other cases failures can elucidate limitations of
the underlying architecture due to, e.g., the type of positional encoding used. To complement this
empirical assessment, we also introduce the analytical notion of whether a program is minimal with
respect to a training set, based on whether certain components of a program could be removed without
affecting the training set predictions. We provide theory showing that if a program is not minimal with
respect to a training set, then the compiled model will contain parameters that can be freely changed
without affecting any predictions on the training set, i.e. some parameters are under-specified by the
training set, even with intermediate supervision. We demonstrate cases where this analysis predicts
that test set performance would be under-specified by a given training set, and show agreement with
empirical results from training with intermediate supervision. We hope these tools can help provide
insights to bridge the gap between expressibility and learnability of algorithms in Transformers.

We make the ALTA framework, including the language specification, symbolic interpreter, and
compiler from programs to Transformer weights, available to the community to support further
applications and insights.

2 Proposed Framework

Here we give an overview of how ALTA programs are specified, their computational model, and how
they can be compiled to Transformers. More details on the ALTA program API is in Appendix A.1,
and compilation details and examples are in Appendix A.2.
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vars = {
# Initialize parity with input.
"parity": var(range=2 , input_init_fn=lambda x: x),
# Whether parity has been updated.
"done": var(range=2 , position_init_fn=lambda x: x == 0),
# Position of current element.
"idx": var(range=NUM_POS , position_init_fn=lambda x: x),
# Index of preceding element.
"idx_left": var(range=NUM_POS , position_init_fn=lambda x: max(0, x - 1),

}

attention_heads = {
# Values of ‘parity ’ and ‘done ’ for preceding element.
"parity_left": qkv("idx_left", "idx", "parity")
"done_left": qkv("idx_left", "idx", "done")

}

def ffn_fn(z):
if not z["done"] and z["done_left"]:

# Update parity based on parity of preceding element.
z["parity"] = z["parity_left"] ^ z["parity"]
z["done"] = 1

return program_spec(vars=vars , heads=attention_heads , ffn_fn=ffn_fn ,
output="parity", halt_spec=halt_spec("done", 1),
input_range=2 , position_range=NUM_POS)

Figure 2: Example ALTA Program. The parity program computes whether a given binary sequence
contains an even or odd number of “1” tokens. For an input of length N , the parity variable of the
final input element will equal the parity of the overall sequence after N − 1 layers, and computation
will halt. The program specification contains all of the necessary information to compile the program
to a Transformer.

2.1 Overview

We give an example of an ALTA program in Figure 2. An ALTA program specification includes three
key components: a set of variables, a set of attention heads, and a “MLP function”. We explain each of
these below in the context of how they affect the execution of an ALTA program. The computational
model of an ALTA program aligns closely with the computational model of a Transformer (Vaswani
et al., 2017). In this paper we focus on encoder-only Transformers for simplicity.2 We also focus on
Transformers with layer-wise weight sharing, i.e. all attention and MLP parameters are shared across
layers. We also support Universal Transformers which have an input-dependent number of layers. 3

The ALTA framework includes an interpreter, which symbolically executes a program, and a compiler
which compiles programs to Transformer weights. The input to an ALTA program P ∈ P is a
sequence of integers inputs (∈ X ) and the output is a sequence of integers of equal length (∈ Y). The
interpreter implements a function I : P × X → Y . The interpreter is useful for development and
understanding the computational model in an abstract way. The compiler implements a function C
such that θ = C(P ) where T (x, θ) ≈ I(P,x) for all x ∈ X and where T denotes the output of a
Transformer encoder. The equality holds up to the limits of numerical approximation for well formed
programs.

2.2 Variables

Similarly to Lindner et al. (2023), we adopt the residual stream view of Transformers as proposed by
Elhage et al. (2021). In this view, the attention and MLP sub-layers within the Transformer read and

2However, we note that ALTA programs can alternatively be executed in the context of a decoder-only
Transformer. This involves adding a causal attention mask and outer auto-regressive decoding loop, but does not
otherwise affect the definition and compilation of ALTA programs.

3Notably, not all types of computation expressible by Transformers can be represented in ALTA, i.e., the
range of the ALTA compiler is a relatively small subspace of all possible parameter values. For example, ALTA
has limited support for numeric computation and does not support modeling of probabilistic output distributions.
However, ALTA provides broad support for implementing various types of deterministic algorithms.
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Figure 3: Visualization of the interpreter’s symbolic residual stream for the parity program shown in
Figure 2, for the input sequence [1, 0, 1]. The computed output sequence after the second layer is
[1, 1, 0], which corresponds to the parity of the input sequence up to the current position, with the
final value containing the parity of the entire input sequence. Output values are outlined in red, and
values that have changed are highlighted in blue.

write to the residual stream, which is represented by the activations between these sub-layers. While
Transformers represent the residual stream for each element as a vector, our interpreter represents
the residual stream for each element symbolically as a mapping of variables to values. The residual
stream of the interpreter for the parity program of Figure 2 is shown in Figure 3. The set of variables
and their possible values are specified by the program. There are three kinds of variables: categorical
variables have bounded integer values, numerical variables have real-valued values, and set variables
have sets of bounded integer values. 4 We establish a bijective mapping between variable assignments
and activation vectors. Each possible value of a categorical variable is assigned a standard basis
vector in the activation space, i.e., a one-hot encoding. Set variables are similarly represented, but
with a multi-hot encoding. The scalar value of a numerical variable is directly represented in a single
dimension.5

2.3 Execution

In this section, we explain the execution of an ALTA program in the interpreter, and summarize how
each operation is encoded in a compiled Transformer, with more details in Appendix A. We denote
the value of variable foo for element i at sub-layer k as zk〈i,foo〉. Let zk〈:,foo〉 denote the vector of
values for foo across all elements at sub-layer k.

Initialization Given an input sequence x = 〈x1, x2, · · · , x|x|〉, we initialize every variable at every
position. Specifically, for a variable foo, we initialize z0〈i,foo〉 as a function of xi, a function of
the positional index i, or as a constant, based on how the initialization for foo is specified in the
program. This operation is encoded in the parameters of the Transformer’s embedding tables for
input and position values. The number of possible input values and possible positional indexes must
be specified to the compiler. Alternatively, positional embeddings can be omitted if no variable is
initialized as a function of position.

Encoder Loop We then proceed to iteratively execute the self-attention sub-layer and the MLP
sub-layer, which share parameters across all layers. A dynamic halting criteria, as proposed for

4Variables representing the output of attention heads can also take on a null or undefined value (§2.3)
5This mapping can be seen as establishing an approximate isomorphism with respect to the sub-layer

operations of the interpreter and those of a compiled Transformer.
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the Univeral Transformer (Dehghani et al., 2019), can optionally be specified by the program,
which consists of specifying which variable and corresponding value indicate that computation has
completed for a given element. Alternatively, a maximum number of layers can be specified as an
argument to the interpreter or when running a compiled Transformer. Similarly to Tracr (Lindner
et al., 2023), our compiled Transformers do not include layer normalization operations, which
simplifies compilation. Otherwise, the self-attention and MLP sub-layers align with those of a
standard Transformer, and are described below.

Self-Attention For each attention head, the interpreter computes a selection matrix, containing
a “weight” for every pair of inputs, and uses this to aggregate information across positions. A
simplifying assumption of ALTA, similarly to RASP, is that this matrix is binary. Attention heads
in ALTA are specified by pointers to query, key, value, and output variables. Each head must have
a unique output variable. The query variable must be a categorical or set variable, the key variable
must be categorical, and the value and output variables must both be either categorical or numerical.
For each attention sub-layer k, every attention head updates the value of some output variable:

zk+1
〈:,out〉 = aggregate(select(zk〈:,query〉, z

k
〈:,key〉), z

k
〈:,value〉),

where query, key, value, and out are the variable names specified by the given attention head.
The definition of select is similar to that used by RASP.6 The select operation returns a square
selection matrix, Si,j , where Si,j = Jzk〈i,key〉 = zk〈j,query〉K if query is categorical and Si,j =

Jzk〈i,key〉 ∈ zk〈j,query〉K if query is set-valued. The aggregate operation returns a new sequence

of values zk+1
〈:,out〉. Each value zk+1

〈i,out〉 is determined by aggregating over the set of selected values,
{zk〈j,value〉|Si,j = 1} specified by the selection matrix row Si,:. When value is numeric, aggregate
is defined the same as in RASP, outputting the average of the selected values, and will be undefined if
no value is selected. When value is categorical, the output will be undefined if there is not exactly
one value selected. 7

These operations can be encoded in the parameters of the query, key, value, and output projections
for a given attention head.8 Each attention sub-layer is followed by a residual connection. We also
support the option of using relative position representations (Shaw et al., 2018) by specifying a mask
of relative positions that each attention head can attend to, which is applied to the selection matrix
following the select operation. This binary mask is compiled to relative position biases using the
parameterization of Raffel et al. (2020).

MLP Function The MLP sub-layer implements a mapping from a set of variable assignments to a
new set of variable assignments, which is applied at every element. For compilation and analysis
purposes, ALTA programs internally represent this operation as a set of transition rules, which can
be interpreted as logical implications with conjunctive antecedents. For example, here is one of the
transition rules for the example program in Figure 2:

zk+1
〈·,parity〉 = 1← zk〈·,done〉 = 0 ∧ zk〈·,done_left〉 = 1 ∧ zk〈·,parity_left〉 = 1 ∧ zk〈·,parity〉 = 0

When the antecedent of a rule is satisfied by the MLP input (i.e., all of the conditions hold with
respect to the variable assignments at the MLP input), then the consequent determines the value of
some output variable for the next sub-layer. 9 The set of transition rules can be specified in two

6The main difference is that we do not allow specifying a custom binary predicate as an argument to select.
While this may seem to restrict the expressivity of the query, key, and value projections in the Transformer,
we note that the MLP sub-layer prior to the attention sub-layer can set the query, key, and value variables to
arbitrary values. By using set variables, it is still possible to specify arbitrary binary selection matrices. This
choice simplifies compilation.

7The interpreter will raise an exception if any undefined variable is used as input to any operation in
subsequent layers, as the encoding of an undefined variable is not well specified in a compiled model.

8A scalar hyperparameter controls the degree to which the softmax operation approximates generating a
binary selection matrix.

9By construction, for a given output variable, there should never be more than one rule satisfied by the MLP
input. If no rule is satisfied, then the value of that output variable is unchanged from the MLP input. We also
include transition rules that ensure that every attention output variable is set to a null value so that it can be
updated by the next attention sub-layer without conflicting with the residual connection. No attention output
variable can otherwise be the output variable of any transition rule.
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ways when defining ALTA programs. First, as shown in Figure 2, one can simply write a Python
function with the signature shown. The set of transition rules can then be determined by executing
this function for every possible set of variable assignments. In cases where this is not feasible, or
where it is desirable to have more control over the set of transition rules, we offer an alternative
API for specifying the set of transition rules more directly (see §A.1).10 Leveraging the sparsity
represented in a set transition rules rather than compiling a lookup table consisting of all variable
combinations can significantly reduce the number of MLP dimensions required.11

The set of transition rules is represented in the parameters of the MLP layers. We generate a 4-layer
MLP with clipped ReLU activations. The first 2 layers are only responsible for converting numerical
and set variables into a one-hot representation, representing the possible values of these variables. For
numerical variables, these correspond to a specified set of discrete buckets. Note that if a program
contains only categorical variables, these 2 layers could be omitted. The final 2 layers of the MLP
are based on the set of transition rules. The parameters of these layers are compiled such that the
hidden activations are a binary vector where each value corresponds to whether a particular transition
rule was satisfied by the MLP input. Each row of the first matrix is a function of the antecedent of a
particular rule, and each column of the second matrix is a function of the consequent of a particular
rule. Each MLP sub-layer is followed by a residual connection.

Output Each ALTA program specifies an output variable, which must be categorical. If execution
terminates after k sub-layers, and the output variable is output, then the program returns zk〈:,output〉.
Selecting the subset of dimensions associated with the output variable is encoded in the parameters
of the output projection. The Transformer then computes a softmax over this one-hot vector, and
outputs the argmax.

3 Expressibility and Learnability

While there are many potential applications for ALTA, we focus on two applications in this paper:
new constructive expressivity demonstrations, and analysis of whether such algorithms are learnable
given a particular training set, with varying amounts of supervision. We give an overview of these
applications here and provide additional discussion and details in Appendix B, with results in §4.

We show new constructive expressivity results for Transformers and Universal Transformers across
several tasks in §4. However, even though we can establish that an algorithm is expressible by a
given class of Transformers, training a model from this class on input and output examples of a
particular algorithm can fail to induce a model that generalizes outside of the training set. It can
be difficult to diagnose the reason for such failures. We provide two tools to help analyze the gap
between expressibility and learnability.

First, we propose training with trace supervision, i.e., using intermediate supervision from ALTA
execution traces over a given training set as a learning signal. In some cases, we show this additional
supervision is sufficient to learn the desired algorithm, but in other cases failures can elucidate
limitations of the underlying architecture due to, e.g., the type of positional encoding used. We report
results on the parity task in §4, and details of the trace supervision procedure in §B.2.

Second, we introduce the analytical notion of whether a program is minimal with respect to a training
set, based on whether certain components of a program could be removed without affecting the
training set predictions. Given a program, training set, and test set, we can determine a minimal
version of the program with respect to the training set (§B.3 describes the exact procedure used),
and then assess whether this minimal version generalizes, i.e., has the same behavior as the original
program on a test set. In §C, we provide a theoretical analysis focused on the MLP parameters in
the trace supervision setting. In summary, for a given set of execution traces D and transition rules
R, we show that the compiled MLP parameters are a coordinate-wise local minima of a regularized
reconstruction loss over D if and only ifR is minimal with respect to D (see Theorems 1 and 2 for

10In either case, the representation of numerical variable values in the antecedent of a transition rule is based
on the set of discrete buckets specified for the given variable.

11For example, consider a string x of length N represented by a set of categorical variables, x1, x2, · · · ,
xN , each with K possible values. We want to determine if x is in some vocabulary consisting of V strings. A
naive lookup table approach requires KN hidden dimensions, but this function can be represented with only V
transition rules.
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Figure 4: Generalization by length and number of ones for different parity programs in various
settings. The training set consists of inputs of up to length 20 (and therefore up to 20 “ones”) while
the test set consists of inputs with lengths 21 to 40. While the original compiled models have perfect
accuracy, the minimal versions of the programs exhibit different generalization behaviors and closely
mirror the behaviors of the trace supervision experiments.

the formal statements and proofs). Our theoretical analysis suggests that a Transformer trained with
trace supervision from a program on a training set is more likely to generalize if the minimal version
of the program generalizes, and we evaluate this empirically in §4.

4 Experiments and Analysis

We detail experiments and analysis on several tasks, with further details and results in Appendix D.

Parity The parity task requires the model to compute whether a binary sequence contains an
even or odd number of ones, and serves as a popular benchmark for analyzing Transformer gener-
alization (Bhattamishra et al., 2020; Chiang & Cholak, 2022; Ruoss et al., 2023; Delétang et al.,
2022; Hahn, 2020; Anil et al., 2022; Zhou et al., 2022, 2023b). We study three ALTA programs
for computing parity detailed in §D.1. First, the Sequential (Absolute) program computes parity by
iterating through each position (one per layer), flipping a parity bit every time a one is encountered.
While this program uses absolute positions to enable propagating information to neighboring tokens,
we also consider a Sequential (Relative) version that uses relative positions instead. Finally, the Sum
+ Modulo program computes parity in a single layer, using an attention head to compute the total
number of ones, and then computing a mod 2 operation in the following MLP sub-layer.

For each program, Figure 4 compares the generalization behavior of Transformers compiled from
the original version, compiled from the minimal version, and trained from trace supervision. The
minimal versions of these programs exhibit different generalization behavior. The minimal Sequential
(Absolute) does not generalize to examples longer than those seen during training, because the
embeddings for positions not seen during training are not specified. The minimal Sum + Modulo
program does not generalize to examples with more ones than those seen during training, as it does
not contain transition rules related to the numerical values corresponding to larger numbers of ones
than those seen during training. However, it can handle examples longer than the training examples
if the numbers of ones were seen during training. Only the minimal Sequential (Relative) program
generalizes to all input lengths. Notably, the trace supervision results exhibit the same generalization
behavior as the minimal programs, as predicted in Section 3. The Sequential (Relative) program
is also notable because it provides a constructive demonstration of how a Universal Transformer
can express a length-invariant solution to parity with a finite set of parameters, without relying on
intermediate decoding steps.12

We also evaluated several different Transformer variants using standard, end-to-end supervision.
Theoretically, a transformer trained with weight sharing and at least as many layers as the longest
examples in the train set could learn the minimal Sequential (Relative) algorithm and generalize to
examples of length up to the number of layers. However, in practice all variants exhibit behavior
similar to that of the minimal Sum + Modulo program, i.e., they exhibit some degree of length
generalization but do not generalize to examples with more ones than were seen during training. See

12While Chiang & Cholak (2022) previously demonstrated how a Transformer can express a solution to parity
for arbitrary lengths, their approach requires encoding activations and parameters with a degree of numerical
precision that scales with the maximum input length. The Sequential (Relative) program does not have this
limitation, but does require more layers of computation. Zhou et al. (2023b) also provide a length-invariant
construction, but their approach requires intermediate decoding steps. (See §D.1 for details)
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§D.1 for additional results and experiment details, and discussion of this result in relation to the
MDL-inspired hypothesis of Zhou et al. (2023b), and related work attempting to characterize the
inherent simplicity bias of Transformers.

Addition Another common benchmark for evaluating Transformer generalization has been multi-
digit addition (Nogueira et al., 2021; Liu et al., 2022; Zhou et al., 2024; Shen et al., 2023; Zhou et al.,
2023b; Lee et al., 2024; Kazemnejad et al., 2024; Ruoss et al., 2023). In §D.2 we detail an ALTA
program with dynamic halting that can add two positive integers of unbounded size. This program
compiles to a Universal Transformer with relative position representations. The number of layers
required to compute the sum is N + 2, where N is the number of digits in the larger of the two inputs.
Notably, the minimal version of this program with respect to a training set that includes only inputs
with ≤ 3 digits can generalize to unbounded input lengths.

SUBLEQ SUBLEQ is a single instruction language that has been shown to be Turing-complete
when given access to infinite memory (Mavaddat & Parhami, 1988). Giannou et al. (2023) previously
showed how a Looped Transformer can implement an interpreter for a variant of SUBLEQ. In §D.3
we demonstrate an ALTA program for implementing an interpreter for a less restrictive version of
SUBLEQ in a Universal Transformer.

SCAN The SCAN (Lake & Baroni, 2018) suite of compositional generalization tasks requires
mapping natural language commands (e.g., “jump twice”) to action sequences (e.g., JUMP JUMP).
Certain train and test splits have been shown to be challenging for Transformer-based models (Keysers
et al., 2020; Furrer et al., 2020; Qiu et al., 2022b; Kazemnejad et al., 2024). Empirically successful
solutions have involved symbolic decompositions of some form (Shaw et al., 2021; Chen et al., 2020;
Herzig & Berant, 2021; Qiu et al., 2022a; Zhou et al., 2023a). In §D.4, we demonstrate an ALTA
program that solves the SCAN task and compile this program to a Transformer. First, the program
executes a shift-reduce parse of the input sequence, representing the parse as a tree. Second, the
ALTA program decodes the output sequence by traversing the parse tree. The program represents the
necessary variable-length data structures (a stack, parse tree, and buffer) using a variable number of
input tokens. Compiled models require < 2, 000 MLP hidden dimensions despite there being > 1060

possible variable combinations in the program, highlighting the importance of sparsity enabled by
representing the MLP computation as a set of transition rules.

Notably, the minimal version of our program with respect to the training set generalizes to the test set,
for all of the most challenging length-based and Maximum Compound Divergence (MCD) (Keysers
et al., 2020) splits. Our ALTA program for SCAN thus gives a constructive demonstration of how
Transformers can represent algorithms exhibiting systematic generalization: a finite set of transition
rules and attention operations can be recombined in novel ways to process novel inputs.

5 Discussion

We have introduced the ALTA framework, and applied it to analyze the expressibility and learn-
ability of various algorithms for Transformers. While this paper has focused on analysis related to
expressibility and learnability, there are other potential applications of ALTA. For example, future
work could explore more flexible methods for leveraging trace supervision as a learning signal, using
ALTA to help develop interpretability tools, or developing models that combine compiled and learned
components. Of course, the ALTA framework has some important limitations. In particular, the
framework provides limited support for numerical computations and modeling probabilistic output
distributions. Also, the properties of compiled models may not reflect those of models learned in
practice. We offer an extended discussion of limitations and potential opportunities in Appendix E.
We hope insights from ALTA can help the community better understand how Transformers can
represent and learn various algorithms, and inspire new methods and techniques.
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A Framework Details

In this section we provide additional details about the ALTA Framework, as introduced in §2. First,
we detail the program API in §A.1, which is referenced by the ALTA programs in this paper. Second,
we provide more details and examples of how programs are compiled to Transformer weights in
§A.2.

A.1 Program API Details

Here we detail the functions of the ALTA API used to build the programs shown in this paper. We
refer the reader to our open-source implementation for further details.

Variables and Attention Heads The module contains several methods for defining variable speci-
fications:

• var defines a categorical variable, the most common variable type. The cardinality must be
specified.

• numerical_var defines a numerical variable. A set of discrete buckets must be specified,
and values are rounded to the closest bucket in the MLP sub-layer of compiled models.

• set_var defines a set variable. A set of sets of possible values must be specified.

For each of these functions, it is also necessary to specify how the variable is initialized.

There are two methods for defining attention heads:

• qkv defines an attention head, with arguments that specify the query, key, and value variables.
Optionally, a set of relative positions can also be passed, as well as an explicit specification
for the output variable.

• relative_v is a shorthand function for defining an attention head that attends to a relative
position. They query and key are implicitly set to a single-valued categorical variable.

The output variable specification can be optionally specified explicitly, and is otherwise inferred from
the type of the value variable. The output variable for each head is also included in the overall set of
program variables.

def get_transition_rules(variables , attention_heads):
x = MLPBuilder(variables , attention_heads)
for done in x.get("done"):

if done != 1:
for done_left in x.get("done_left"):

if done_left == 1:
x.set("done", 1)
for parity_left , parity in x.get("parity_left", "parity"):

x.set("parity", parity_left ^ parity)
return x.rules

Figure 5: Function for directly specifying the set transition rules for the parity program of Figure 2.

MLP Functions There are two ways to specify the MLP function, as mentioned in §2. For
simplicity, the programs listed in this paper specify the MLP function as a Python function, which
is passed a dictionary-like object for accessing and updating variable values. Alternatively, the set
of transition rules can be specified directly, allowing more control to manage the scope of variables
included in the antecedent of each rule, and avoid the combinatorial explosion of possible variable
values for more complex programs. Figure 5 gives an example of specifying the transition rules
for the parity program of Figure 2 using the MLPBuilder class. The class has two methods. The
get method returns a generator over possible variable values. The class automatically tracks which
variables and variable values are in scope. The set method generates a transition rule, generating the
antecedent of the rule automatically based on the current scope. In almost all cases, this results in
a more compact set of transition rules than specifying the MLP function as a Python function. All
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of the results in this paper related to analyzing the minimal versions of programs or computing the
number of MLP hidden dimensions in compiled models are based on versions of programs where the
transition rule set has been specified directly.

A.2 Compiler Details

In this section we will give examples of the compilation process introduced in §2, using the parity
program of Figure 2 as an example.

Notation Let vki denote the activation vector in a compiled model for element i at sub-layer k.

Encoding Variable Assignments Consider a set of variable assignments:

parity = 1

parity_left = 0

· · ·
idx = 2

· · ·

For brevity, we consider only a subset of program variables here. This set of assignments is represented
as the following vector in a compiled model:

0 parity = 0
1 parity = 1
1 parity_left = 0
0 parity_left = 1
· · ·
0 idx = 0
0 idx = 1
1 idx = 2
· · ·


Initialization The input embedding is computed as: z0i = WX

xi,: + W I
i,:, where xi is the input

token ID as position i, and WX and W I represent the embedding matrices for token and positional
embeddings, respectively. For brevity, we only consider only up to 3 positional indices. We also omit
some variables in the matrices below, and transpose them for clarity of the row and column labels.
Note that variables representing attention outputs, e.g. parity_left, are initialized to a null value.

(WX)> =



x i
=
0

x i
=
1

1 0 parity = 0
0 1 parity = 1
0 0 parity_left = 0
0 0 parity_left = 1
· · · · · ·
0 0 idx = 0
0 0 idx = 1
0 0 idx = 2
· · · · · ·


(W I)> =



i =
0

i =
1

i =
2

0 0 0 parity = 0
0 0 0 parity = 1
0 0 0 parity_left = 0
0 0 0 parity_left = 1
· · · · · · · · ·
1 0 0 idx = 0
0 1 0 idx = 1
0 0 1 idx = 2
· · · · · · · · ·


Self-attention The self-attention operation sums over a set of attention heads:

zk+1
i = zki +

∑
h

ohi ,
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where ohi is the output of head h parameterized by matrices WQ
h , WK

h , WV
h , and WO

h :

ohi = WO
h

∑
j

αij ·W vzki

lij = (WQ
h z

k
i )>WK

h z
k
i

αij =
elij∑
k e

lik
.

For simplicity, we ignore the scaled dot product term. Simlarly to Tracr (Lindner et al., 2023), we
also adopt the parameterization of Elhage et al. (2021) for the attention output, which can be shown
to be equivalent to that of the original Transformer, but allows for a clearer exposition.

The parity program of Figure 2 has two attention heads. Here we describe the WQ, WK , WV , and
WO matrices corresponding to the attention head with query idx_left, key idx, value parity, and
output parity_left (ommitted cells are zeros):

(WQ)> =



· · · · · · · · ·
0 0 0 idx = 0
0 0 0 idx = 1
0 0 0 idx = 2
λ 0 0 idx_left = 0
0 λ 0 idx_left = 1
0 0 λ idx_left = 2

 (WK)> =



· · · · · · · · ·
λ 0 0 idx = 0
0 λ 0 idx = 1
0 0 λ idx = 2
0 0 0 idx_left = 0
0 0 0 idx_left = 1
0 0 0 idx_left = 2



(WV )> =


1 0 parity = 0
0 1 parity = 1
0 0 parity_left = 0
0 0 parity_left = 1
· · · · · ·

 WO =


0 0 parity = 0
0 0 parity = 1
1 0 parity_left = 0
0 1 parity_left = 1
· · · · · ·


where λ is a hyperparameter that controls the degree to which the selection matrix approximates a
binary-valued matrix, set to 100 by default.

MLP Sub-layer Our approach to compiling MLP parameters takes loose inspiration from Nielsen
(2016), which provides a helpful visual exposition of how MLPs can encode arbitrary functions. The
MLP function of the parity program can be represented with 7 transition rules, using the notation of
Section 2:

R1 : zk+1
〈·,parity〉 = 1← zk〈·,done〉 = 0 ∧ zk〈·,done_left〉 = 1 ∧ zk〈·,parity_left〉 = 1 ∧ zk〈·,parity〉 = 0

R2 : zk+1
〈·,parity〉 = 0← zk〈·,done〉 = 0 ∧ zk〈·,done_left〉 = 1 ∧ zk〈·,parity_left〉 = 1 ∧ zk〈·,parity〉 = 1

R3 : zk+1
〈·,done〉 = 1← zk〈·,done〉 = 0 ∧ zk〈·,done_left〉 = 1

R4 : zk+1
〈·,parity_left〉 = ∅← zk〈·,parity_left〉 = 0

R5 : zk+1
〈·,parity_left〉 = ∅← zk〈·,parity_left〉 = 1

R6 : zk+1
〈·,done_left〉 = ∅← zk〈·,done_left〉 = 0

R7 : zk+1
〈·,done_left〉 = ∅← zk〈·,done_left〉 = 1

Section C provides a detailed description of the MLP sub-layer and the compilation process. We
just give the compiled parameters W 1, b1, and W 2 for the parity program here. As described in
Section A, there are also two initial MLP layers that are responsible for converting numerical and
set variables into one-hot representations, but those are not necessary for the parity program we are
considering which uses only categorical variables. We also omit the cells corresponding to idx and
idx_left in the matrices and vector below, which are zeros.

16



(W 1)> =



R1 R2 R3 R4 R5 R6 R7

1 0 0 0 0 0 0 parity = 0
0 1 0 0 0 0 0 parity = 1
0 0 0 1 0 0 0 parity_left = 0
1 1 0 0 1 0 0 parity_left = 1
1 1 1 0 0 0 0 done = 0
0 0 0 0 0 0 0 done = 1
0 0 0 0 0 1 0 done_left = 0
1 1 1 0 0 0 1 done_left = 1
· · · · · · · · · · · · · · · · · · · · ·


(b1)> = [

R1 R2 R3 R4 R5 R6 R7

−3 −3 −1 0 0 0 0 ]

W 2 =



R1 R2 R3 R4 R5 R6 R7

−1 1 0 0 0 0 0 parity = 0
1 −1 0 0 0 0 0 parity = 1
0 0 0 −1 0 0 0 parity_left = 0
0 0 0 0 −1 0 0 parity_left = 1
0 0 −1 0 0 0 0 done = 0
0 0 1 0 0 0 0 done = 1
0 0 0 0 0 −1 0 done_left = 0
0 0 0 0 0 0 −1 done_left = 1
· · · · · · · · · · · · · · · · · · · · ·


MLP Example Consider a set of variable assignments:

parity = 1

parity_left = 1

done = 0

done_left = 1

· · ·

Let z denote the vector encoding of these assignments:

z =



0 parity = 0
1 parity = 1
0 parity_left = 0
1 parity_left = 1
1 done = 0
0 done = 1
0 done_left = 0
1 done_left = 1
· · ·


Here are the hidden activations in the MLP layer, which is binary vector corresponding to which rules
are satisfied by the input:

h(z) = σ(W 1z + b1) =



0 R1

1 R2

1 R3

0 R4

1 R5

0 R6

1 R7
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Here is the output of the MLP sub-layer before and after the residual connection:

W 2h(z) =



1 parity = 0
−1 parity = 1
0 parity_left = 0
−1 parity_left = 1
−1 done = 0
1 done = 1
0 done_left = 0
−1 done_left = 1
· · ·


W 2h(z) + z =



1 parity = 0
0 parity = 1
0 parity_left = 0
0 parity_left = 1
0 done = 0
1 done = 1
0 done_left = 0
0 done_left = 1
· · ·


Which corresponds to the expected output assignments:

parity = 0

parity_left = ∅
done = 1

done_left = ∅
· · ·

where the attention output variables are set to null values so they are ready to be updated at the next
self-attention layer.

B Expressivity and Learnability Analysis Details

In this section, we provide additional discussion and details related to analyzing the expressibility
of Transformers and the learnability of various algorithms, as introduced in §3. First, we discuss
prior work related to Transformer expressivity and how ALTA can help provide new insights in §B.1.
Second, we detail the procedure for training with trace supervision in §B.2. Third, we details the
procedure for determining the minimal version of a program with respect to a training set in §B.3.
Finally, we provide our theoretical analysis connecting the notion of minimality to properties of a
loss landscape around the compiled MLP parameters in §C.

B.1 Expressivity Discussion

There has been considerable interest in establishing the theoretical expressivity of various classes
of Transformers (Pérez et al., 2021; Chiang et al., 2023; Yun et al., 2020), including those with
dynamic computation, with a recent focus on intermediate decoding steps (Feng et al., 2023; Merrill &
Sabharwal, 2024). Of particular relevance to ALTA, while Pérez et al. (2021) show that Transformer
encoder-decoders with hard attention, positional encoding and parameters and activations that are
rational numbers of arbitrary precision are Turing-complete, they also show that even Universal
Transformers with fixed precision are not Turning-complete. Theoretical works like this one often
do not demonstrate specific constructions of how Transformers can express algorithms of interest
with limited resources. Tools like RASP, Tracr, and ALTA make it easier to construct Transformers
that express various algorithms than directly specifying specific sets of parameter values. For
example, RASP and its extensions have supported many new constructive expressivity results for
Transformers (Angluin et al., 2023; Kazemnejad et al., 2024; Yang & Chiang, 2024; Strobl et al., 2024;
Friedman et al., 2024). In Section 4, we show that ALTA can enable new constructive demonstrations
of how Transformers and Universal Transformers can express various algorithms, within some finite
bounds on resources such as the sizes of parameter and activation matrices, and the number of layers
of computation required.

B.2 Procedure for Training with Trace Supervision

Given a program P and a set of model inputs X , we run P for every input in X , and extract the
variable assignments at the input and output of every sub-layer, for every position. These traces can
be used to derive intermediate supervision, which encourages the behavior of the model to align
with that of the program being used to provide supervision. In our experiments, for simplicity, we
focus on training the MLP parameters. After using the ALTA interpreter to collect pairs of variable
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assignments at the input and output of the MLP layers, we map these assignments to vectors, using
the mapping described in §2. Finally, we can train a MLP layer based on these pairs of input and
output vectors. Specifically, we use an L2 loss to encourage the MLP to produce the output vector
given the input. We then use the ALTA compiler to compile parameters other than those used for the
MLP layer. By combining the learned MLP parameters with those provided by the compiler, we have
a full set of Transformer parameters. See §D.1 for the hyperparameters and training details for parity
task.

For future work, it may be possible to provide supervision from execution traces in a way that makes
fewer assumptions about how variables are encoded in the residual stream, i.e. by encouraging the
residual stream to encode such values in a way that allows them to be accurately predicted from
the residual stream with a linear classifier. This would enable training models with intermediate
supervision without any compiled parameters, but is out of scope for this work. It would then be
interesting to assess whether there is any potential for transfer learning from training with such
supervision in cases where a ground truth program is known to cases where a ground truth program
is unknown or not feasible to express.

B.3 Procedure for Determining Minimal Versions of Programs

Given a program P and set of model inputs X , we can determine the minimal version of P with
respect toX . For simplicity, we focus on the set of transition rules and the input embedding operations
for this analysis. First, as motivated by our theoretical analysis in §C, we remove any transition
rules which are never satisfied when running P on the inputs in X . While the formal definition of a
minimal rule set also puts conditions on the contraints of satisfied rules, we assume that there are
no constraints to simplify our analysis. Second, we analyze the set of input IDs and positions seen
when executing P over X . We restrict the variable initialization functions of the minimal program to
output default values for variables outside of this minimal set of observed token IDs and positions.

This analytical test has two advantages relative to training with trace supervision, with respect
to understanding the potential learnability of a program from a given training set. It does not
require training models or selecting hyperparameters, and provides an interpretable assessment of the
potentially underspecified aspects of a program.

Notably, this notion of minimality can also help generalize some of the ideas introduced by Zhou
et al. (2023b) with respect to RASP. As Zhou et al. (2023b) were interested in understanding length
generalization, they proposed some restrictions on RASP programs that would otherwise be “difficult
to learn”. First, they proposed restrictions on programs containing certain operations over positional
indices. Second, they excluded certain programs from consideration on an intuitive basis, such as a
program for solving the parity task using sum and modulo operations. In both cases, such programs
would not be minimal with respect to some finite length training set, according to our proposed
criteria, as we show in Section 4.

C Theoretical Analysis of Minimal Rule Sets and MLP Parameters

Broadly, we are interested in how the criteria of whether a program is minimal with respect to some
training set relates to the learnability of such a program with respect to that training set. In this section
we explore this question from the perspective of the MLP parameters in the trace supervision setting.
Specifically, we identify conditions under which the compiled MLP parameters are a strict coordinate-
wise local optimum of a regularized reconstruction loss. Extensions to consider all parameters of the
compiled transformer, end-to-end training objectives, or non-coordinate-wise local optima is left to
future work.

C.1 MLP Specification

Here we introduce notation that differs from that in other sections, but is more appropriate for the
goals of this section. Let us focus on two components of an ALTA program P for this analysis. First,
a set of possible variable assignments, V , and a set of rules,R. The rules implicitly define an MLP
function, fR : V → V , which is a sub-component of the overall program. Let us also consider only
programs with categorical variables for this analysis, and exclude transition rules related to attention
outputs, for simplicity.
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Variable Assignments An assignment V ∈ V is a tuple of NV elements, with V =
〈V1, V2, · · · , VNv )〉, where Vi ∈ {0, 1, . . . , Di − 1} and Di is the dimensionality of variable Vi.
The number and dimensionality of variables is specified by the program specification.

Transition Rules Let R = 〈R1, R2, · · · , RNR
〉, where Ri is a transition rule. Transition rules

can be represented as a logical implication where the antecedent, denoted Rai , has the following
conjunctive form:

(k1 = v1) ∧ (k2 = v2) ∧ · · · ∧ (kNRi
= vNRi

),

where each ki refers to a variable and each vi refers to some particular assignment of that variable.
A transition rule is satisfied by an assignment V ∈ V if and only if Vk = v for all (k, v) in the
antecedent, Rai . The consequent of a transition rule consists of a single output variable, denoted kRi

,
and a new assignment for that variable, denoted v′Ri

. Per construction, for every Ri we require that
the output variable appears in the antecedent of the rule. Let vRi

denote to the value associated with
the output variable in the antecedent. The rule Ri can therefore be interpreted as updating the value
of the variable kRi from vRi to v′Ri

if Ri is satisfied.

Finally, we also require that for any assignment ∈ V , that no more than one rule is satisfied for a
given output variable. In other words, if two rules share the same output variable index, then they
should never both be satisfied for any assignment ∈ V .

Logical MLP Function We can define the logical MLP function gR : Z → Z in terms ofR. Let
V′ = fR(V). Then:

V ′k =

{
v′Ri

, if ∃Ri ∈ R that is satisfied by V

Vk, otherwise.

C.2 Compiling MLP Parameters

As described in §A.2, in our compiled models, we represent variable assignments as vectors, and
the MLP function in the parameters of an MLP. Here we introduce notation and a more detailed
description of the compilation procedure to support our theoretical analysis.

Assignment Embeddings In our compiled models, variable assignments are represented as NZ-
dimensional vectors. Let Z = RNZ represent the space of such vectors, which include the inputs and
outputs of MLP layers.

We can define a mapping eV : V → Z . First, we define a bijective function m(k, v) which for a given
variable index k ∈ {0, 1, . . . , Nv − 1} and variable value v, returns an index in {0, 1, . . . , NZ − 1}.
Let 〈z1, z2, · · · , zNz

〉 = eV(V). Then, zi = J∃k, v | Vk = v ∧m(k, v) = iK.

MLP Function The compiled MLP function fθ : Z → Z is defined by parameters θ ∈ Θ, where
θ = 〈W 1, b1,W 2〉, and W 1 ∈ RNZ×NR , b1 ∈ RNR , and W 2 ∈ RNR×NZ . The bias term in the
second layer is set to all zeros in practice, and omitted here for simplicity.

For z ∈ Z , we can the define fθ(z) = W 2hθ(z) + z and hθ(z) = σ(W 1z + b1), where σ(z) =
max(0,min(1, z)) is a clipped ReLU activation function applied element-wise to the vector z.

MLP Parameters We can define the compiled parameters θ̂ ∈ Θ such that eV(fR(V)) =

fθ̂(eV(V)) for all V ∈ V . Let θ̂ = 〈Ŵ 1, b̂1, Ŵ 2〉.

Ŵ 1
i,j =J∃ (k, v) ∈ Rai s.t.m(k, v) = jK (1)

b̂1i =1−NRi
(2)

Ŵ 2
i,j =


−1, if m(kRj , vRj ) = i

1, if m(kRj
, v′Rj

) = i

0, otherwise
(3)

This construction ensures that for any assignment V, we have hθ̂(eV(V))[i] = JRi is satisfied by VK.
In other words, each element in the hidden layer activations corresponds to whether a particular rule
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was satisfied by the variable assignment represented in the input. Each column of Ŵ 2 encodes an
“update” to the assignments related to a particular rule.

C.3 Minimal Rule Set

A necessary condition for a minimal program is to have a minimal rule set, which describes minimality
conditions relating only to the rule set and the corresponding MLP layer. This is a subset of the
minimality conditions discussed in §B.3, encompassing only those conditions necessary to obtain
guarantees about a reconstruction loss landscape around the parameters of the compiled MLP.
Definition 1. (minimal rule set) Given a dataset of N variable assignments D ∈ VN , a set of rules
R is a minimal rule set over D if:

• It is not possible to remove any individual rule in R and not change the output of fR for
some example V ∈ D.

• It is not possible to remove any individual constraint in any rule inR and not change the
output of fR for some example V ∈ D.

C.4 Setting

We consider a setting related to that of training models with trace supervision, as discussed in §B.2.
For program P and set of model inputs X , let D ∈ VN be the set of variable assignments at the
input to the MLP for every position and layer when we run P over X . The vector encodings of
these variable assignments are denoted ZD = {eV(V) | V ∈ D}, with each eV(Vn) indicating the
vertical concatenation of the one-hot encodings of all variables in Vn.

Now let us define a reconstruction loss over individual predictions, LR(Zn, Ẑn) 7→ R+, which
quantifies how well the predicted variable encodings Ẑn match the variable encodings Zn spec-
ified by R. With some abuse of notation we will also use the shorthand LR(Θ;Vn) :=
LR(eV(fR(Vn)), fθ(eV(Vn))). Note that by construction of eV , we are guaranteed that Zi ∈
{0, 1}NZ . We will require that LR increases at a rate of at least β as each component of Ẑ moves
away from Z:

Definition 2. A loss LR(Z, Ẑ) 7→ R+ is a β-reconstruction loss for β > 0 if for each Ẑi < Zi, the
partial derivative is ∂LR

∂Ẑi
(Ẑ) ≤ −β and for each Ẑi > Zi, the partial derivative is ∂LR

∂Ẑi
(Ẑ) ≥ β.

For example, for the L1 loss ||Z − Ẑ||1 is a β-reconstruction loss with β = 1.

Finally, as it is difficult to analyze whether a point is a strict local optimum, we will instead analyze
whether a point is a coordinate-wise local optimum.
Definition 3. (coordinate-wise local optimum) For a multivariate function f : X1×X2× . . .×Xn →
R, the value X̂ = [x̂1, x̂2, . . . , x̂n] is a strict coordinate-wise local optimum iff for each i, the right
derivative with respect to Xi evaluated at X̂ is positive, ∂+f∂Xi

(X̂) > 0, and the left derivative with

respect to Xi evaluated at X̂ is negative ∂−f
∂Xi

(X̂) < 0.

C.5 Main theorems

Suppose we learn Θ by optimizing a regularized sum of LR losses over a dataset,

L(Θ;D, α) = αL1(Θ) +
∑
i

LR(Θ;Vi), (4)

with α > 0 penalizing the sum of L1 norms ||W 2||1 + ||W 1||1 + ||b1||1. We want to show that when
the weights Θ̂ are generated by compiling a program that is minimal with respect to D, then Θ̂ is a
coordinate-wise local optimum of L for α < β.

Theorem 1. Let L(W 1, b1,W 2) = αL1(W 1, b1,W 2) +
∑D
n LR(W 1, b1,W 2;Vn) be a loss such

that LR is a β-reconstruction loss summed over dataset D and α ∈ (0, β) is the coefficient on an
element-wise L1 regularizer. If 〈Ŵ 1, b̂1, Ŵ 2〉 is the compilation of a rule setR that is minimal for
D, then 〈Ŵ 1, b̂1, Ŵ 2〉 is a strict coordinate-wise local optimum of L(W 1, b1,W 2).
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Theorem 2. If 〈Ŵ 1, b̂1, Ŵ 2〉 is the compilation of a rule set R that is not minimal for D, then
〈Ŵ 1, b̂1, Ŵ 2〉 is not a strict coordinate-wise local optimum of any L(W 1, b1,W 2) as defined in
Theorem 1.

C.6 Proof of Theorem 1

To prove Theorem 1, we will prove lemmas for each group of parameters. To review the notation,

f(Z in
n ; θ) = Ẑout

n =W 2h(Z in
n ; θ) + Z in

n (5)

h(Z in
n ; θ) =σ(g(Z in

n ; θ)) (6)

g(Z in
n ; θ) =W 1Z in

n + b1, (7)

with σ(x) = max(0,min(x, 1)). We then have the following partial derivatives,

∂fi
∂W 2

i,j

= hj(Z
in
n ; θ)

∂fi
∂hj

= W 2
i,j (8)

∂hi
∂gi

= Jgi(Z in
n ; θ) ∈ (0, 1)K

∂hi
∂gj 6=i

= 0 (9)

∂gi
∂b1j

= Ji = jK
∂gi
∂W 1

i,j

= Z in
n,j . (10)

Lemma 1. Each Ŵ 2
i,j is a strict coordinate-wise local optimum of L.

Proof. We first distribute and then apply the chain rule to LR,

∂L

∂W 2
i,j

=αsign(W 2
i,j) +

∑
n

∂

∂W 2
i,j

LR(θ;Vn) (11)

∂

∂W 2
i,j

LR(θ;Vn) =
∂LR(θ;Vn)

∂Ẑout
n,i

∂Ẑout
n,i

∂W 2
i,j

(12)

=
∂LR(θ;Vn)

∂Ẑout
n,i

hj(Z
in; θ). (13)

The term hj(Z
in
n ) ∈ {0, 1} indicates whether rule j is satisfied by Vn. By minimality, there exists at

least one such n where hj(Z in
n ) = 1; we can ignore all other n. Because LR is a β-reconstruction

loss and we are guaranteed that Ẑout
n = Zout

n for the compiled parameters, then the directional
derivatives of the reconstruction loss must satisfy ∂−LR(θ;Vn)

∂Ẑout
n,i

≤ −β and ∂+LR(θ;Vn)

∂Ẑout
n,i

≥ β. Because

α < β, the regularizer cannot change the sign of the directional derivatives, so the conditions of strict
coordinate-wise local optimality are satisfied.

Lemma 2. Each b̂1j is a strict coordinate-wise local optimum of L.

Proof. We can reason about the effect of shifting b̂1j by ε by exploiting the properties of the nonlin-
earity σ(x) = min(1,max(0, x)):

Ẑout
n,i

∣∣∣
b1j :=b̂

1
j+ε

=Z in
n,i +W 2

i,jσ(W 1
j Z

in
n + b1j + ε) +

∑
j′ 6=j

W 2
i,j′σ(W 1

j′Z
in
n + b1j′) (14)

=

{
Ẑout
n,i +W 2

i,jε, (Zout
n,i = 0 ∧W 2

i,jε > 0) ∨ (Zout
n,i = 1 ∧W 2

i,jε < 0)

Ẑout
n,i, otherwise.

(15)

Now we can evaluate Ẑout
n,i

∣∣∣
b1j :=b̂

1
j+ε

under various conditions:
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• Suppose all conditions of rule j have been met and Wij 6= 0. Then when Zout
n,i = 0, the

rule can only have affected the output by flipping Z in
n,i from 1 to 0, so we know W 2

i,j = −1;
when Zout

n,i = 1, the rule can only have affected the output by flipping Z in
n,i from 0 to 1, so

we know W 2
i,j = 1. Either way, we can conclude ε < 0, so when the conditions of rule j are

met then
∂−Ẑ

out
n,i

∂b̂1j
= 1 and

∂+Ẑ
out
n,i

∂b̂1j
= 0.

• If Wij 6= 0 and all but one of the conditions of rule j are met, then when Zout
n,i = 0, the MLP

could affect the output by flipping Z in
n,i from 0 to 1, so we know W 2

i,j = 1; when Zout
n,i = 0,

the MLP could affect the output by flipping Z in
n,i from 1 to 0, so we knowW 2

i,j = −1. Either
way, we can conclude ε > 0, so when all but one of the conditions of rule j are met then
∂+Ẑ

out
n,i

∂b̂1j
= 1 and

∂−Ẑ
out
n,i

∂b̂1j
= 0.

• If Wij = 0 or if two or more conditions of rule j are unmet then
∂+Ẑ

out
n,i

∂b̂1j
=

∂−Ẑ
out
n,i

∂b̂1j
= 0.

By minimality we are guaranteed that for each rule j, there exists: (a) an index i such that Wij 6= 0;
(b) an example Vn such that all conditions of j are met; (c) an example Vn′ such that all but one
conditions are met. If (a) or (b) were not satisfied, we could drop the rule; if (c) were not satisfied
we could drop one of the conditions. Now, by the chain rule and the definition of a β-reconstruction
loss, these examples contribute −β to the left derivative and β to the right derivative of LR. Because
β > α, the signs of the left and right derivatives are not affected by the regularizer. They remain
negative and positive respectively, satisfying the definition of coordinate-wise local optimality.

Lemma 3. Ŵ 1
j,k is a coordinate-wise local optimum of L.

Proof. The analysis is similar to that of b̂1j :

∂

∂W 1
j,k

LR(θ;Vn) =
∑
i

∂LR(θ;Vn)

∂Ẑout
n,i

∂Ẑout
n,i

∂hj

∂hj
∂gj

∂gj
∂W 1

j,k

(16)

=
∑
i

∂LR(θ;Vn)

∂Ẑout
n,i

× Ŵ 2
i,j × Jgj(Z in

n ; θ) ∈ (0, 1)K× Z in
n,k (17)

=Z in
n,k × Jgj(Z in

n ; θ) ∈ (0, 1)K
∑
i

∂LR(θ;Vn)

∂Ẑout
n,i

× Ŵ 2
i,j (18)

=Z in
n,k ×

∂

∂b1j
LR(θ;Vn). (19)

Recall that W 1
j,k ∈ {0, 1} and Z in

n,k ∈ {0, 1}. If W 1
j,k = 1 then by minimality there exists some n

such that Z in
n,k = 1. In this case, ∂

∂W 1
j,k
LR(θ;Vn) = ∂

∂b1j
LR(θ;Vn), which was already shown to

satisfy the conditions of strict coordinate-wise local optimality in Lemma 2. If W 1
j,k = 0 then the left

and right directional derivatives are set by the regularizer to (−α, α).

C.7 Proof of Theorem 2

Proof. There are two ways in which a ruleset might violate minimality with respect to D.

• We can remove rule Rj without affecting the output of fR on any example. All rules
affect the output when their conditions are met, so we can infer that the conditions of Rj are
never met. In this case, there is guaranteed to be a parameter Ŵ 2

i,j 6= 0, setting the value of
Ẑout
i when the conditions of Rj are met. If Rj is never active on D, then it does affect the

reconstrution loss LR.
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• There is a condition of Rj that we can remove without affecting the output of fR on
any example. This condition is represented as a nonzero element in Ŵ 1

j,k (and also in bj ,
which is not necessary for the proof). By construction this parameter does not affect the
reconstruction loss.

In both cases, the gradient with respect to the nonzero parameter (Ŵ 2
i,j and Ŵ 1

j,k) is set only by
the regularizer. The right and left derivatives have the same sign, violating the conditions of strict
coordinate-wise local optimality.

D Program Details and Additional Results

D.1 Parity

Background The ability of transformers to learn parity has been studied extensively (Hahn, 2020),
particularly the degree to which they exhibit length generalization (Bhattamishra et al., 2020; Chiang
& Cholak, 2022; Ruoss et al., 2023; Delétang et al., 2022). Empirically successful solutions have
relied on scratchpads (Anil et al., 2022; Zhou et al., 2022). Zhou et al. (2023b) used a variant of RASP
to investigate why Transformers struggle with length generalization on parity and why scratchpads
help.

Programs Here we provide the ALTA code for the parity programs that we study. The code for
the Sequential (Relative) program is in Figure 7 and the code for the Sum + Modulo program is in
Figure 6.

vars = {
"parity": var(range=2),
"start": numeric_var(input_init_fn=lambda x: float(x == START),

values=(0, 1)),
"start_or_one": var(range=2 , input_init_fn=lambda x: x in {1, START}),
"query": var(range=2 , default=1),

}

attention_heads = {
"x": qkv("query", "start_or_one", "start",

output_spec=numeric_var(values=BUCKETS)),
}

def ffn_fn(z):
num_ones = round (1 / z["x"]) - 1
z["parity"] = int(num_ones % 2 != 0)

return program_spec(
variables=vars , heads=attention_heads , ffn_fn=ffn_fn ,
output_name="parity", input_range=3 , position_range=None

)

Figure 6: Program for computing parity using a sum and modulo operation.

Alternative Programs There is another algorithm for parity proposed by Chiang & Cholak (2022),
which was inspired by algorithms for MLPs from Rumelhart et al. (1986). Similarly to the Sum +
Modulo program, this algorithm first computes a sum operation using an attention head, but they
avoid explicitly computing the modulo operation by instead using attention heads that separately
attend to even and odd elements. This enables the algorithm to be implemented with a fixed set
of parameters that is invariant to the maximum input length, aside from the positional encodings.
However, we did not explore this algorithm because it is not possible to implement in a way where
the minimal ALTA program is invariant to the maximum input length considered. This is because
ALTA requires discretization of numerical variables in order to perform numerical computations,
a current limitation of the framework. Implementing the computations required would therefore
require a number of transition rules that scales with the maximum input length considered, similarly
to how the Sum + Modulo program requires a number of buckets that scales with the maximum
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variables = {
"parity": var(range=2 , input_init_fn=lambda x: 0 if x == START else x),
"done": var(range=2 , input_init_fn=lambda x: x == START),

}
attention_heads = {

"parity_left": v_relative("parity", -1),
"done_left": v_relative("done", -1),

}

def ffn_fn(z):
if z["done"] != 1 and z["done_left"] == 1:

z["parity"] = z["parity_left"] ^ z["parity"]
z["done"] = 1

return program_spec(
variables=variables , heads=attention_heads ,ffn_fn=ffn_fn ,
output_name="parity", input_range=3 , position_range=None ,
halt=halt_spec("done", halt_value=1),

)

Figure 7: Program for computing parity sequentially using relative positions.

number of ones considered. Regardless, Chiang & Cholak (2022) showed this algorithm is difficult to
learn in practice, and it also requires specialized positional encodings. Furthermore, their algorithm
requires encoding parameters and activations with a degree of numerical precision that scales with
the maximum input length. In contrast, the Sequential (Relative) program compiles to a Universal
Transformer that only needs to encode 4 binary variables in the residual stream, and consists of only
7 transition rules, i.e., requires only 7 hidden MLP dimensions. However, the construction of Chiang
& Cholak (2022) requires only 2 layers, where as the Sequential (Relative) program requires N − 1
layers, where N is the maximum input length.

Train and Test Sets The train and test sets are the same for all experiments (including both trace
and end-to-end supervision). The train set consists of examples between lengths 0 and 20, and the
test set contains examples between lengths 0 and 40. The sets include roughly an equal number of
examples per number of ones.

Table 1: Trace supervision hyperparameters.

Program

Hyperparameter Sequential (Relative) Sequential (Absolute) Sum + Modulo
Hidden Layers 2 4 4

Hidden Layer Size 128 4,096 4,096
Batch Size 256 256 256

Steps 50,000 50,000 400,000
Learning Rate 1e-2 1e-4 1e-4
Activation Fn ReLU ReLU ReLU

Optimization Fn Adafactor Adam Adam
Noise Std Dev 0.1 0.1 0.1

Trace Supervision Details Hyperparameters for training with trace supervision are listed in Table 1.
All are standard hyperparameters for training neural networks except "Noise Std Dev." We added
a small amount of Gaussian noise to the neural network input at training time to make it robust to
numeric imprecision at inference time.

The Sequential (Absolute) and Sum + Modulo experiments used four hidden layers instead of the
standard two, as we explored various hyperparameters to ensure the MLP had the capacity to
fit the training set. Similarly, we used Adam (Diederik, 2014) for both experiments instead of
Adafactor (Shazeer & Stern, 2018), as it helped fit the training set.
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The Sum + Modulo program used for trace supervision differs slightly from the program in Figure 6.
num_ones is stored as an intermediate categorical variable, as we found it easier for the MLP to learn
to map a categorical variable to the correct parity output than a numeric variable.

End-to-end Training Details We trained transformers with various configurations using standard
supervision — varying the number of layers, whether weight sharing is used, and the type of positional
encoding. Constant in all standard supervision experiments are the following hyperparameters:
embeddings with dimension 512, hidden layer sizes of 2048, 6 attention heads with dimension 64, an
Adafactor optimization function, GeLU (Hendrycks & Gimpel, 2016) activation functions, a learning
rate of 5e-4, 50,000 steps, and a byte vocabulary.
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Figure 8: In distribution and out of distribution accuracy by length and number of ones for transform-
ers trained using intermediate supervision and standard, end-to-end supervision. Transformers trained
with standard supervision exhibit behavior similar to the Sum + Modulo intermediate supervision
model. I.e., they exhibit no generalization to numbers of ones greater than those seen during training,
but they do exhibit some length generalization.

Table 2: Length generalization accuracy for Transformers trained with intermediate supervision on
parity.

Accuracy

Program Length ≤ 20 Length > 20 Ones > 20

Sequential (Relative) 100% 100% 100%
Sequential (Absolute) 100% 52% 51%

Sum + Modulo 100% 78% 50%

Table 3: Length generalization accuracy for Transformers trained with standard supervision on parity.

Accuracy

Layers Weight Sharing Positional Encoding Length ≤ 20 Length > 20 Ones > 20

8 No Relative 100% 60% 51%
8 Yes Relative 100% 65% 52%

40 No Relative 100% 55% 51%
40 Yes Relative 100% 54% 48%
8 No Absolute 100% 49% 50%
8 Yes Absolute 100% 50% 52%

40 No Absolute 100% 50% 51%
40 Yes Absolute 100% 52% 51%

Results Table 2 presents the accuracy for each intermediate supervision experiment and Table 3
presents the accuracy for each standard supervision configuration on different slices of the data. Fig-
ure 8 compares the intermediate and standard supervision results, showing that standard supervision
exhibits behavior similar to the Sum + Modulo program.

Figures 9, 10, and 11 break down the standard supervision results in more detail.
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Figure 9: Accuracy by length for Transformers trained with standard supervision. There is some
length generalization with relative position embeddings (left), but none with absolute (right).

Figure 9 shows that there is no length generalization when using absolute positional embeddings,
while with relative positional embeddings there is some length generalization which decreases as
length increases.
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Figure 10: Accuracy by number of ones for Transformers trained with standard supervision using
relative position embeddings. There is no generalization beyond 20 ones, which is the maximum
number seen during training.

Figure 10 shows that the length generalization we observe with relative positional embeddings is
due entirely to longer examples sometimes containing the same number of ones as shorter examples
in the training distribution, consistent with results in Anil et al. (2022). After 20 ones, accuracy
starts oscillating between 0 and 1. The oscillations are due to the model predicting either 0 or 1 for
all examples once examples contain more ones than were seen during training, which is shown in
Figure 11.

Simplicity Bias Prior work has attempted to understand the implicit inductive bias of Transformers
in relation to a simplicity bias given some measure of complexity (Zhou et al., 2023b; Abbe et al.,
2023; Bhattamishra et al., 2023; Tsoy & Konstantinov, 2024). For instance, inspired by the Minimum
Description Length (MDL) principle (Rissanen, 1978; Grunwald, 2004), Zhou et al. (2023b) hypothe-
sized that Transformers are biased towards learning behavior corresponding to the simplest RASP
program that fits the training set, if one exists. Properties of the set of transition rules in an ALTA
program can potentially provide new measures of Transformer complexity. For example, we can
empirically compare the degree to which Transformers with layerwise weight sharing have an implicit
simplicity bias towards learning “simpler” programs according to the number of transition rules.
While the minimal Sequential (Relative) program contains 7 rules and the minimal Sum + Modulo
program contains 31 rules, our results show that end-to-end model behavior is more consistent with
the Sum + Modulo program. This indicates that Transformers, in this context, do not have an inherent
simplicity bias that aligns with the number of transition rules expressed in ALTA. In this particular
context, the end-to-end behavior is more consistent with the algorithm that requires the fewest layers
to execute. Pfau et al. (2024) showed that Transformers struggle to effectively leverage intermediate
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Figure 11: Average prediction by number of ones for Transformers trained with standard supervision
using relative position embeddings. Once examples have slightly more than 20 ones, the maximum
number seen during training, the models resort to predicting either 0 or 1 for all examples.

decoding steps to learn sequential algorithms without explicit supervision. Our results suggest a
similar finding for leveraging weight-shared layers to learn sequential algorithms.

D.2 Addition

This task has been studied extensively (Nogueira et al., 2021; Liu et al., 2022), particularly with
respect to length generalization (Zhou et al., 2024; Shen et al., 2023; Zhou et al., 2023b; Lee et al.,
2024; Kazemnejad et al., 2024; Ruoss et al., 2023). While new positional encodings such as FIRE Li
et al. (2024) can improve performance, Transformers still struggle with length generalization on this
task, unless provided with carefully constructed supervision over intermediate decoding steps (Zhou
et al., 2023b, 2024).

Our program for computing addition is given in Figure 13. The compiled MLP width (i.e., number of
transition rules) is 884.

D.3 SUBLEQ

Our ALTA program for implementing a SUBLEQ interpreter is given in Figure 15. The input tokens
define the set of memory registers, and program execution starts at position 0. SUBLEQ stands
for SUBtract and branch if Less-than or EQual to zero. Commands in SUBLEQ are specified by
three memory addresses A, B, and C. Executing a command consists of subtracting the value at
memory address A from the value at address B, and writing the result to address B. If the result
is less than or equal zero, then the program jumps to the command at address C, or will halt if
C < 0. Giannou et al. (2023) showed how a Looped Transformer can implement an interpreter for a
restricted form of SUBLEQ that did not allow self-modifying code, i.e., memory registers specifying
SUBLEQ instructions could not be modified during program execution. Our program implements
a SUBLEQ interpreter without such restrictions, i.e. without differentiating between program and
memory registers. Additionally, our implementation executes 1 SUBLEQ instruction every 3 layers,
as opposed to every 9 layers for the implementation of Giannou et al. (2023). However, our approach
requires O(N3) MLP hidden dimensions (i.e., transition rules), where N is the number of possible
memory values. The construction of Giannou et al. (2023) requires only O(log(N)) MLP hidden
dimensions.

D.4 SCAN

Background The SCAN suite of compositional generalization tasks (Lake & Baroni, 2018) require
mapping natural language commands (e.g., “jump twice and look left”) to action sequences (e.g., JUMP
JUMP LTURN LOOK). The suite is inspired by the linguistic notion of systematic compositionality,
i.e., the ability to recombine a finite set of elements in novel ways (Chomsky, 1957; Montague,
1970). Certain splits have been shown to be challenging for Transformer-based models (Keysers
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def init(x):
# Initializes pointers.
if x["token_right"] == END_TOKEN:

x["ptr_b"] = 1
x["ptr_out"] = 1

if x["token_right"] == ADD_TOKEN:
x["ptr_a"] = 1

def iterate(x):
# Execute one step of addition.
raw_sum = x["value_carry"] + x["ptr_a_token"] + x["ptr_b_token"]
if x["ptr_out"]:

x["value_out"] = raw_sum % 10
x["value_carry"] = raw_sum // 10
# Move all pointers to the left.
# Attention heads attending to the right will be undefined.
if x["token"] != END_TOKEN:

x["ptr_out"] = x["ptr_out_right"]
x["ptr_a"] = x["ptr_a_right"]
x["ptr_b"] = x["ptr_b_right"]

def finalize(x):
# Finalize output by adding the final carry to the output.
if x["ptr_out"]:

x["value_out"] = x["value_carry"]
x["step"] = STEP_DONE

def ffn_fn(x):
if x["step"] == STEP_INIT:

init(x)
x["step"] = STEP_ITERATE

elif x["step"] == STEP_ITERATE:
if x["ptr_a_token"] == START_TOKEN:

x["step"] = STEP_FINALIZE
else:

iterate(x)
elif x["step"] == STEP_FINALIZE:

finalize(x)

Figure 12: MLP function for addition program.

et al., 2020; Furrer et al., 2020; Qiu et al., 2022b; Kazemnejad et al., 2024), especially the length
split and the Maximum Compound Divergence (MCD) splits proposed by Furrer et al. (2020).
Notably, no Transformer-based model has been shown to reliably solve these tasks, without relying
on some symbolic decomposition of the task (Zhou et al., 2023a) or training data augmented by a
symbolic system (Qiu et al., 2022a). All successful solutions have also involved symbolic parsing
of some form (Shaw et al., 2021; Chen et al., 2020; Herzig & Berant, 2021). While prior work has
studied the expressivity of various classes of Transformers with respect to formal languages, it has
primarily focused on recognizing and generating Dyck languages (Yao et al., 2021; Bhattamishra
et al., 2020; Hahn, 2020; Weiss et al., 2021; Ebrahimi et al., 2020), and thus has not previously shown
a constructive demonstration of how a Transformer can solve the SCAN task.

Program Our approach follows Shaw et al. (2021) in formalizing the SCAN task as translation
given a quasi-synchronous context-free grammar. Notably, the SCAN grammar is unambiguous and
can be parsed in linear time. First, the program executes a shift-reduce parse of the input sequence,
representing the parse as a tree. Second, the ALTA program decodes the output sequence by traversing
the parse tree. The program represents the necessary variable-length data structures (a stack, parse
tree, and buffer) using a variable number of input tokens. We include additional “memory” tokens in
the input to ensure there are a sufficient number of tokens to represent these structures. We give an
example of shift-reduce parsing for SCAN in Table 4.

In Figure 17 we show a program for parsing SCAN inputs using a shift-reduce parser. This program
is a fragment of the overall SCAN program, which also decodes the output from the parsed represen-
tation, but is too verbose to include in this paper. We refer the reader to our open-source code for the
full SCAN program.
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variables = {
"token": pb.var(INPUT_RANGE , input_init_fn=lambda x: x),
# This variable tracks the current processing step.
"step": pb.var(NUM_STEPS),
# These are pointers to which digit is currently being processed.
# They are ‘1‘ at the position of the current digit to process , and ‘0‘
# otherwise.
"ptr_a": pb.var(2),
"ptr_b": pb.var(2),
# This pointer is ‘1‘ at the position to write the next output to,
# and ‘0‘ otherwise.
"ptr_out": pb.var(2),
# This tracks the "carry" value form the previous iteration.
"value_carry": pb.var (10),
# This tracks the final output value for a given digit.
"value_out": pb.var (10),
# Static variables used as attention query.
"one": pb.var(var_range=2 , default=1),

}
attention_heads = {

# For these relative attention heads , we always want to attend to the
# position immediately to the right.
"token_right": v_relative("token", 1),
"ptr_a_right": v_relative("ptr_a", 1),
"ptr_b_right": v_relative("ptr_b", 1),
"ptr_out_right": v_relative("ptr_out", 1),
# For these attention heads , we want to attend to the positions associated
# with the current pointers.
"ptr_a_token": qkv("one", "ptr_a", "token"),
"ptr_b_token": qkv("one", "ptr_b", "token"),

}
return program_spec(

variables=variables , heads=attention_heads , ffn_fn=ffn_fn ,
output_name="value_out", input_range=INPUT_RANGE , position_range=None ,
halt_spec=pb.halt_spec("step", halt_value=STEP_DONE),

)

Figure 13: Program for adding two positive integers. The MLP function is defined in Figure 12.

Table 4: Example of shift-reduce parsing for SCAN, for the input “jump twice”. Our ALTA program
represents the state of the stack and parse tree using a variable number of input tokens.

Action Stack Parse Tree Input Buffer

Initialize 〈 〉 〈 〉 〈 jump, twice 〉
Shift 〈 jump 〉 〈 〉 〈 twice 〉

Reduce 〈 NT 〉 〈 NT→ jump 〉 〈 twice 〉
Shift 〈 NT, twice 〉 〈 NT→ jump 〉 〈 〉

Reduce 〈 NT 〉 〈 NT→ jump, NT→ NT twice 〉 〈 〉

End-to-end Training Details We trained encoder-decoder Transformers end-to-end on the SCAN
length and MCD splits. We varied the number of layers, whether weight sharing was used, and the
type of positional encodings used in the encoder. When using weight sharing, we trained with up to
256 encoder layers and 256 decoder layers (as our ALTA program requires at most 512 total layers).
Without weight sharing, we only trained with up to 64 encoder layers and 64 decoder layers due to
memory constraints.

Constant in all experiments were the following hyperparameters: embeddings with dimension 128,
hidden layer sizes of 512, 8 attention heads with dimension 128, an Adafactor optimization function,
GeLU activation functions, a learning rate of 5e-4, 100,000 steps, and a SentencePiece vocabulary
(Kudo & Richardson, 2018).

Results Figure 18 plots test accuracy when using weight sharing and relative positional encodings.
Accuracy does not improve as the number of layers increases. (If anything, there is a slight inverse
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def encode(value):
# Encodes a register value as positive integer.
return value - MIN_VALUE

def decode(value):
# Decodes a register value from positive integer.
return value + MIN_VALUE

def _update_position(z, position_a):
z["position_a"] = position_a
z["position_b"] = position_a + 1
z["position_c"] = position_a + 2

def ffn_fn(z):
if z["state"] == STATE_1:

if decode(z["a"]) < 0 or decode(z["b"]) < 0:
# ‘a‘ or ‘b‘ are not valid register positions.
z["state"] = STATE_DONE
return

z["state"] = STATE_2
elif z["state"] == STATE_2:

# Compute mem[b] - mem[a].
mem_b = decode(z["mem_b"]) - decode(z["mem_a"])
z["jump"] = int(mem_b <= 0)

# Update memory value at position ‘b‘.
if z["position"] == z["b"]:

z["mem"] = encode(mem_b)

z["state"] = STATE_3
elif z["state"] == STATE_3:

# Determine next instruction.
if z["jump"]:

# Jump to instruction ‘c‘.
if decode(z["c"]) < 0:

# Break if ‘c‘ is negative.
z["state"] = STATE_DONE

else:
_update_position(z, z["c"])
z["state"] = STATE_1

else:
# Proceed to next instruction.
_update_position(z, z["position_a"] + 3)
z["state"] = STATE_1

Figure 14: MLP function for interpreting SUBLEQ instructions.

relationship between number of layers and test accuracy.) This is the case in all experiments,
regardless of the type of positional encoding used in the encoder and whether weight sharing is used.
(See Table 5 for all results.)

The fact that increasing the number of layers does not improve generalization indicates that when
trained with standard supervision, Transformers are unable to take advantage of extra layers to learn
the sequential ALTA program that generalizes perfectly. All end-to-end experiments fit the training
set, even with just two layers, so there exists some other algorithm that fits the training set that
requires at most two layers. We speculate that in all cases, the end-to-end supervised Transformers
are unable to learn the sequential algorithm with perfect generalization because of a bias towards
learning algorithms that require fewer layers to execute. These results are consistent with our results
on Parity, in which Transformers trained with end-to-end supervision do not learn the sequential
algorithm with perfect generalization, instead seeming to mimic an algorithm that requires just one
layer (see §D.1).
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mem_range = (MAX_VALUE - MIN_VALUE) + 1
vars = {

# Value of register.
"mem": var(mem_range , input_init_fn=lambda x: x),
# Position of register.
"pos": var(mem_range , position_init_fn=encode),
# Position of current instruction.
"pos_a": var(mem_range , default=encode (0)),
"pos_b": var(mem_range , default=encode (1)),
"pos_c": var(mem_range , default=encode (2)),
# Program state.
"state": var(NUM_STATES),
# Whether to jump at next instruction.
"jump": var(2),

}

attention_heads = {
# Values of registers at ‘pos_a ‘, ‘pos_b ‘, and ‘pos_c ‘.
"a": qkv("pos_a", "pos", "mem"),
"b": qkv("pos_b", "pos", "mem"),
"c": qkv("pos_c", "pos", "mem"),
# Value of registers at ‘a‘ and ‘b‘.
"mem_a": qkv("a", "pos", "mem"),
"mem_b": qkv("b", "pos", "mem"),

}

variables = get_variables(mem_range)
attention_heads = get_attention_heads ()

return program_spec(
variables=variables , heads=attention_heads , ffn_fn=ffn_fn ,
output_name="mem", input_range=mem_range , pos_range=NUM_POSITIONS ,
halt=halt_spec("state", halt_value=STATE_DONE),

)

Figure 15: Program for interpreting SUBLEQ instructions. The MLP function is specified in
Figure 14.

Table 5: Test accuracy for all Transformers trained with standard, end-to-end supervision on SCAN.
Regardless of the configuration and split, increasing the number of layers does not improve test
accuracy.

Number of Layers

Split Weight Sharing Encoder Positional Encoding 2 6 16 32 64 128 256
Length Yes Relative 11.1% 9.9% 8.9% 7.1% 7.0% 7.4% 5.0%
Length Yes Absolute 8.4% 8.6% 6.5% 4.8% 5.5% 5.7% 3.8%
Length No Relative 9.0% 9.2% 10.6% 10.2% 10.2% – –
Length No Absolute 9.1% 6.1% 6.5% 5.6% 4.4% – –
MCD1 Yes Relative 5.5% 3.3% 2.2% 4.3% 2.9% 3.0% 2.3%
MCD1 Yes Absolute 4.1% 1.1% 3.2% 1.5% 1.8% 1.6% 1.3%
MCD1 No Relative 3.5% 3.7% 3.4% 1.7% 2.3% – –
MCD1 No Absolute 4.7% 1.5% 1.1% 0.7% 1.9% – –
MCD2 Yes Relative 8.6% 12.9% 8.9% 5.1% 3.6% 6.9% 3.3%
MCD2 Yes Absolute 4.9% 5.6% 2.2% 2.1% 2.5% 1.9% 2.4%
MCD2 No Relative 13.1% 7.4% 4.3% 5.2% 3.7% – –
MCD2 No Absolute 4.2% 4.0% 1.7% 1.7% 1.1% – –
MCD3 Yes Relative 12.3% 12.2% 6.3% 5.5% 7.0% 2.0% 2.7%
MCD3 Yes Absolute 3.3% 4.3% 2.8% 3.2% 3.0% 1.8% 1.9%
MCD3 No Relative 8.1% 7.6% 6.9% 3.2% 1.6% – –
MCD3 No Absolute 3.9% 5.1% 2.0% 3.3% 1.2% – –
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def shift_stack_pointers(z, stack_pointer_offset):
new_stack_pointer_0 = z["stack_pointer_0"] + stack_pointer_offset
z["stack_pointer_0"] = new_stack_pointer_0
z["stack_pointer_1"] = new_stack_pointer_0 - 1
z["stack_pointer_2"] = new_stack_pointer_0 - 2
z["stack_pointer_3"] = new_stack_pointer_0 - 3

def reduce(z, matched_rule):
# Pop RHS elements and add LHS nonterminal to stack.
if z["position"] == (z["stack_pointer_0"] - rule_len(matched_rule)):

z["symbol_id"] = rule_lhs_id(matched_rule)
shift_stack_pointers(z, 1 - rule_len(matched_rule))
# Add rule to parse tree.
if z["position"] == z["tree_pointer"]:

# Use 1-indexing to reserve 0 for no rule.
z["rule_id"] = rule_id(matched_rule)

z["tree_pointer"] += 1

def shift(z):
# Shift the next token to the stack.
if z["position"] == z["stack_pointer_0"]:

z["symbol_id"] = get_symbol_id(z["input_pointer_token_id"])
shift_stack_pointers(z, 1)
z["input_pointer"] += 1

def ffn_fn(z):
if not z["done"]:

# Check if top -3 stack symbols (and 1 lookahead token) match any rule.
matched_rule = maybe_match_rule(

z["input_pointer_token_id"],
z["stack_symbol_1"],
z["stack_symbol_2"],
z["stack_symbol_3"],

)
if matched_rule is not None:

reduce(z, matched_rule)
else:

# Check if parsing is complete.
if z["input_pointer_token_id"] == EOS_ID:

z["done"] = 1
else:

shift(z)

Figure 16: MLP function for parsing SCAN.

E Extended Discussion

Limitations ALTA has many of the same limitations as RASP and Tracr with respect to the potential
differences between compiled models and those learned in practice, as discussed in Lindner et al.
(2023).

Opportunities There are many potential opportunities for applying ALTA beyond the applications
studied in this paper. For example, we discussed potential extensions to how trace supervision
could be employed in §B.2. Additionally, ALTA could potentially help develop test cases for
interpretability tools. This was one of the primary motivations for Tracr, which has been applied
to help design interpretability benchmarks (Thurnherr & Scheurer, 2024) and more interpretable
Transformers (Friedman et al., 2023). Finally, compiled components can potentially be integrated
within learned models, such as circuits for arithmetic (Nanda et al., 2023) or induction heads (Akyürek
et al., 2024).
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variables = {
"token": var(NUM_INPUT_TOKENS , input_init_fn=lambda x: x),
"position": var(NUM_POSITIONS , position_init_fn=lambda x: x),
# Whether parsing is complete.
"done": var(2),
# Pointer to the next stack position , and then the top 3 elements on
# the stack.
"stack_pointer_0": var(NUM_POSITIONS , default=STACK_OFFSET),
"stack_pointer_1": var(NUM_POSITIONS , default=STACK_OFFSET - 1),
"stack_pointer_2": var(NUM_POSITIONS , default=STACK_OFFSET - 2),
"stack_pointer_3": var(NUM_POSITIONS , default=STACK_OFFSET - 3),
# Pointer to write the next rule to.
"tree_pointer": var(NUM_POSITIONS , default=TREE_OFFSET),
# Pointer to the next input token to process.
"input_pointer": var(NUM_POSITIONS , default=INPUT_OFFSET),
# Stores index of associated parsing rule.
"rule_id": var(NUM_RULES),
# Stores symbol ID associated with stack element.
"symbol_id": var(NUM_SYMBOLS),

}

heads = {
# Get token at input pointer.
"input_pointer_token_id": qkv("input_pointer", "position", "token"),
# Get top 3 symbols on stack.
"stack_symbol_1": qkv("stack_pointer_1", "position", "symbol_id"),
"stack_symbol_2": qkv("stack_pointer_2", "position", "symbol_id"),
"stack_symbol_3": qkv("stack_pointer_3", "position", "symbol_id"),

}

return program_spec(
variables=variables , heads=heads , ffn_fn=ffn_fn ,
output_name="rule_id",
input_range=NUM_INPUT_TOKENS ,
position_range=NUM_POSITIONS ,

)

Figure 17: Program for parsing SCAN. The MLP function is defined in Figure 16.
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Figure 18: Test accuracy by number of layers on SCAN splits when trained using standard, end-to-end
supervision with weight sharing and relative positional encodings. Test accuracy does not increase as
the number of layers increases.
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