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Abstract

Semi-supervised segmentation methods have demonstrated promising results in natural sce-
narios, providing a solution to reduce dependency on manual annotation. However, these
methods face significant challenges when directly applied to pathological images due to the
subtle color differences between nuclei and tissues, as well as the significant morphological
variations among nuclei. Consequently, the generated pseudo-labels often contain much
noise, especially at the nuclei boundaries. To address the above problem, this paper pro-
poses a boundary-aware contrastive learning network to denoise the boundary noise in a
semi-supervised nuclei segmentation task. The model has two key designs: a low-resolution
denoising (LRD) module and a cross-RoI contrastive learning (CRC) module. The LRD
improves the smoothness of the nuclei boundary by pseudo-labels denoising, and the CRC
enhances the discrimination between foreground and background by boundary feature con-
trastive learning. We conduct extensive experiments to demonstrate the superiority of our
proposed method over existing semi-supervised instance segmentation methods.

Keywords: Semi-supervised learning, Nuclei instance segmentation, Edge denoising.

1. Introduction

Nuclei instance segmentation is essential in the quantitative analysis of pathological images.
The characteristics of nuclei, including their size, morphology, and distribution, can provide
valuable insights into the tumor microenvironment, thereby offering crucial support for can-
cer diagnosis, staging, and grading processes (Khened et al., 2021; Hollandi et al., 2022). In
recent years, deep learning techniques have made remarkable advancements in nuclei seg-
mentation(Zhang et al., 2024a,b). DCAN (Chen et al., 2016) adopts a dual-branch decoder
architecture to predict semantics and contours simultaneously to enhance the instance dis-
tinguishing. HoverNet (Graham et al., 2019) incorporates distance and gradient constraints
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to split individual instances effectively. Similar methods such as CDNet (He et al., 2021),
and CellPose (Stringer et al., 2021) are also proposed to address overlapping nuclei chal-
lenges. However, these supervised methods typically rely on pixel-level annotations, which
are time-consuming and labor-intensive and need professional guidance, hindering the de-
velopment of models. Therefore, developing a technique that can effectively address the
dependency on manual annotation for nuclei instance segmentation is crucial.

A common approach to address the problem of scarce labeled data is semi-supervised
learning (Reddy et al., 2018; Van Engelen and Hoos, 2020). During the training process,
abundant unlabeled and insufficient labeled data are used to train the network. The exist-
ing semi-supervised methods mainly leverage prior information to improve the pseudo-label
quality. For example, ShapeProp (Zhou et al., 2020b) combines the information from bound-
ing boxes and partially annotated masks to improve the segmentation accuracy of target
regions based on Mask R-CNN (He et al., 2017). PAIS (Hu et al., 2023) uses a dynamic
alignment loss to address the misalignment problem between classification and segmentation
results, and then a new threshold filtering method for pseudo-labels is proposed. PointWS-
SIS (Kim et al., 2023) balances false negative and false positive errors by utilizing point
supervision prior information. However, due to the low color contrast differences between
the nuclei and tissues, these methods still have defects in generating nuclear pseudo-labels,
limiting the application of semi-supervised instance segmentation in pathological images.

Some methods use pseudo-label optimization strategies to enhance nuclei segmentation
accuracy in semi-supervised scenarios. MMT-PSM (Zhou et al., 2020a) integrates multiple
data-augmented segmentation results to construct reliable predictions and enhance pseudo-
labels’ confidence. CDCL (Wu et al., 2022) uses feature contrastive learning to promote
feature consistency between the teacher and student networks, thus improving the quality
of pseudo-labels. PG-FANet (Jin et al., 2024) employs a pseudo-label guided module that
aggregates multi-scale, multi-stage features to enhance segmentation performance. How-
ever, nuclei exhibit diversity in morphology and size, and in cases with limited annotations,
it is challenging for the teacher network to capture the complete range of nuclei shape fea-
tures. Consequently, the generated pseudo-labels often contain edge noise because existing
pseudo-label optimization methods lack specific designs for denoising nuclei boundaries,
which always leads to inaccurate nuclei boundary predictions.

In this paper, to address the issue of boundary noise in nuclei segmentation, we propose
a coarse-to-fine boundary-aware contrastive learning network for semi-supervised nuclei
segmentation (BASS1). Firstly, we design a low-resolution denoising (LRD) segmentation
head that promotes boundary smoothness. Additionally, within this segmentation head, we
use a low-weight loss for the nuclei boundary region optimization, which reduces the impact
of uncertain boundary prediction during training. Secondly, to minimize boundary noise
further, we design a cross-RoI contrastive learning (CRC) module that finely partitions the
internal, external, and boundary regions of nuclei, enhancing the discriminative capability
of nuclei boundary features. To demonstrate the effectiveness of our proposed method,
we conduct comparative experiments and ablation studies on two public datasets. The
experimental results show that our proposed method outperforms existing semi-supervised
methods, and the ablation studies demonstrate the effectiveness of the proposed modules.

1. Our code is availiable at https://github.com/zhangye-zoe/BASS.
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Figure 1: The framework of our semi-supervised nuclei segmentation method. (a)The
training flow of our BASS. First, the teacher model generates pseudo-labels, and then the
student model is used to train the nuclei segmentation network. (b) and (c) is the proposed
low-resolution denoising module and cross-RoI contrastive learning module.

2. Methodology

2.1. Framework Overview

To address the boundary noise problem of nuclei segmentation under a semi-supervised
scenario, we propose a coarse-to-fine boundary-aware denoising model, as shown in Fig.
1. Our whole training process can be divided into three stages. First, the labeled data
DL = {(xi, yi)}Ni=1 is used to train a teacher model. In this step, we employ Mask R-CNN
(He et al., 2017) as the baseline, and the loss function of the teacher network is defined as
follows:

Losst = Lt
seg + Lt

det, (1)

where Lt
seg is the loss of the segmentation head, and Lt

det is the loss of the detection head,
which consists of the classification loss and regression loss. Then, the trained teacher net-
work is employed to generate pseudo-labels ypj for input xj . To reduce the uncertainty
of pseudo-labels, we employ box and pixel threshold filtering to generate high-confidence
pseudo-labels. Finally, we combine the labeled data DL and the generated pseudo-labeled
data DU = {(xj , ypj )}Mj=1 to train the student network.

In the student network, our developed denoising methods are shown in the green box of
Fig.1, which consists of a low-resolution denoising (LRD) module and a cross-RoI contrastive
learning (CRC) module. The LRD employs low-resolution pseudo-labels as supervision
information to promote the smoothness of nuclei contours. Meanwhile, the CRC utilizes
boundary-aware contrastive learning to enhance the discriminative capability of contour
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features. In the training process, the overall loss is designed as follows:

Losss = Ls
det + Lnmh + Llrd + Lcl, (2)

where Lnmh represents the naive high resolution segmentation loss, Llrd represents the
low-resolution segmentation loss, and Lcl represents the contrastive learning loss.

2.2. Threshold Filtering

Before training the student network, we chose high-confidence instances as pseudo-labels
to reduce the uncertainty of the samples during student network training. In the pseudo-
label generation stage, the teacher network outputs probability values for instances (box
value) and mask probabilities (pixel value). We consider the pixel-level threshold vp to
be the hyperparameter. As for the box-level threshold vb, we assume the nuclear number
distribution is consistent between labeled and unlabeled data. Based on this assumption,
we uniformly sample 91 values between 0.1 and 1.0. Then, we iteratively apply these
probabilities to filter the instances and calculate the number distribution of nuclei in the
unlabeled data. Finally, we select the threshold closest to the distribution of labeled data.
We validate the effectiveness of the threshold filtering method in ablation experiments.

2.3. Low-resolution Denoising Module

In the naive Mask R-CNN (He et al., 2017), the RoI head outputs a 14 × 14 feature map
containing boundary noise. In the subsequent convolution process, Mask R-CNN increases
the size of the feature map to capture more semantic information, but the boundary noise is
also amplified. To avoid amplified noise effects, we design a low-resolution denoising module
as shown in Fig.1(b), which utilizes the low-resolution pseudo-labels as supervision for model
training. In the LRD, BASS directly performs segmentation in the 14 × 14 feature map.
This approach effectively smooths the boundaries and initially reduces the noise in nuclei
boundaries. Furthermore, to minimize the impact of boundary uncertainty on segmentation,
we apply a weighted loss to the low-resolution segmentation head. Specifically, pixels in the
boundary region are assigned a lower weight, and other areas are set to a high weight.

According to previous studies (Wang et al., 2022), although low-resolution images can
reduce the boundary noise, they lose some detailed information. To preserve the details, we
parallel the original segmentation head and low-resolution prediction head to perform the
segmentation task simultaneously, as shown in Fig.1(b). In this manner, the output mask
head decreases the influence of the original feature noise and keeps more details.

2.4. Cross-RoI Contrastive Learning

In the subsection, we propose an elaborate denoising method named cross-RoI contrastive
learning. It leverages labeled data to train a boundary feature extraction module, and then
the module is applied to learn the embedding of unlabeled data, which can mitigate the
impact of boundary noise caused by pseudo-labels and enhance the feature discrimination
ability of foreground and background. In general, object boundaries typically correspond to
hard-to-classify samples, and their embeddings are highly unstable. To avoid the impact of
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features from difficult samples on the representation of easy-to-classify samples, we employ
region-based contrastive learning and our proposed CRC is shown in Fig.1 (c).

First, the input image x is fed into the network for feature extraction and alignment,
then we randomly sample two aligned RoI features fi and fj .

Based on the contour (plotted in black line) shown in Fig.1 (c), we split the feature maps
into foreground region F and background region B. By shrinking and expanding d distances,
we obtain the inner contour (plotted in red dotted line) and outer contour (plotted in blue
dotted line). The regions between them and the true contour are represented as the inner
boundary and outer boundary. These boundary regions correspond to challenging pixels
for classification and can be expressed using the following formula:

Ri = {pi| pi ∈ F and ∥pi, ci∥22 ≤ d},
Ro = {pi| pi ∈ B and ∥pi, ci∥22 ≤ d},

(3)

where ci represents the contour pixel closest to pixel pi.
At the same time, we also sample other foreground and background pixels, which can

be expressed as the following equations:

Rf = {pi| pi ∈ F and pi ̸∈ Ri},
Rb = {pi| pi ∈ B and pi ̸∈ Ro},

(4)

where Rf represents the set of pixels obtained by excluding Ri from F and Rb represents
the set of pixels obtained by excluding Ro from B.

Next, we sample pixel features from the sets Ri, Ro, Rf and Rb. The sampling ratio is
set to α. For feature fi, the sampled features are denoted as kib, k

i
o, k

i
f and kii respectively.

Similarly, for feature fj , the sampled features are denoted as kjb , k
j
o, k

j
f and kji respectively.

Then, we calculate the query features of background and foreground across RoIs through:

qb = M(kib, k
i
o, k

j
b , k

j
o), qf = M(kif , k

i
i, k

j
f , k

j
i ), (5)

where M represents the averaged operation of vectors.
Finally, to narrow the same category feature distance and expand the feature distance

between foreground and background. We calculate four pairs of contrastive losses as follows:

Ls
cl = CL(qb, kb, kf ) + CL(qb, ko, ki) + CL(qf , kf , kb) + CL(qf , ki, ko), (6)

where CL represents contrastive learning loss. kb represents the concatenation of kib and

kjb . The calculation of CL is described below:

CL(q+, k+, k−) = −log
ecos(q

+,k+)/τ

ecos(q+,k+)/τ +
∑N

i=1 e
cos(q+,k−i )/τ

, (7)

where q+ and k+ represent a pair of positive instances, k− represents a negative instance,
and τ is the temperature hyper-parameter.

Different from the previous methods, PC2Seg (Zhong et al., 2021) extracts positive
instance pair of contrastive learning from a single perspective. However, our proposed CRC
performs contrastive learning cross-RoI, which enhances the feature generality.
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3. Experiments

3.1. Datasets

Our method is evaluated on the Cryosectioned Nuclei Segmentation (CryoNuSeg) dataset
(Mahbod et al., 2021), the Digestive-System Pathological Segmentation (DigestPath) dataset
(Da et al., 2022), and Multiple Organs Nuclei Segmentation (MoNuSeg) dataset (Kumar
et al., 2017). CryoNuSeg contains 30 images from 10 organs, each with a size of 512× 512.
DigestPath contains 69 images of the digestive system, each with a size of approximately
1500×1200. MoNuSeg contains 30 images from 7 organs, each with a size of 1000× 1000.

Table 1: Performance comparisons on CryoNuSeg, DigestPath and MoNuSeg Datasets. The
best performance is highlighted in bold, and the second-best is underlined. † represents
p-value of AJI < 0.001 and ‡ reprsents p-value of AJI < 0.05.

Ratio Methods
CryoNuSeg DigestPath MoNuSeg

Dice AJI PQ Dice AJI PQ Dice AJI PQ

Mask R-CNN† (He et al., 2017) 50.28 26.43 27.17 52.58 29.12 30.87 70.03 48.76 45.29

MMT-PSM‡ (Zhou et al., 2020a) 54.83 30.17 29.81 55.68 32.34 35.94 73.28 50.14 47.27

PointWSSIS† (Kim et al., 2023) 58.66 35.41 33.61 59.90 40.06 44.10 76.12 50.80 49.34

1/8 ShapeProp‡ (Zhou et al., 2020b) 57.42 35.53 33.68 58.18 39.94 43.49 75.33 49.89 50.02

NoisyBoundary† (Wang et al., 2022) 55.14 29.57 30.96 58.34 36.75 37.94 75.27 48.14 49.37

PG-FANet ‡ (Jin et al., 2024) 59.06 35.47 32.96 58.20 40.32 44.12 75.17 50.44 51.05

BASS† (Ours) 59.26 36.32 35.09 61.00 41.33 45.07 77.43 51.80 53.05

Mask R-CNN‡ (He et al., 2017) 62.89 34.17 32.96 53.44 35.12 38.79 72.30 49.30 47.21

MMT-PSM‡ (Zhou et al., 2020a) 67.24 37.60 34.67 58.23 37.64 41.93 73.14 51.08 49.17

PointWSSIS† (Kim et al., 2023) 75.01 47.12 49.83 64.93 43.16 47.86 75.21 51.11 52.06

1/4 ShapeProp‡ (Zhou et al., 2020b) 73.37 48.70 48.72 63.31 43.35 48.44 74.86 51.29 52.44

NoisyBoundary† (Wang et al., 2022) 69.34 38.85 35.91 61.15 40.77 45.74 73.13 50.77 51.94

PG-FANet † (Jin et al., 2024) 74.54 47.80 49.93 63.24 43.71 48.76 75.21 52.19 53.33

BASS† (Ours) 74.79 48.96 50.36 63.41 44.72 49.14 76.34 53.39 55.85

Mask R-CNN‡ (He et al., 2017) 69.31 43.34 42.10 57.17 38.01 42.44 74.92 50.28 50.26

MMT-PSM‡ (Zhou et al., 2020a) 72.85 45.06 44.47 59.11 39.97 45.58 75.12 51.05 51.17

PointWSSIS† (Kim et al., 2023) 74.67 49.91 49.29 63.87 45.45 51.64 75.89 52.14 52.30

1/2 ShapeProp‡ (Zhou et al., 2020b) 74.40 48.24 47.55 64.15 45.02 52.93 76.01 51.88 52.94

NoisyBoundary† (Wang et al., 2022) 73.71 46.58 46.13 61.35 44.41 50.65 77.10 53.99 55.20

PG-FANet ‡ (Jin et al., 2024) 72.17 49.86 49.37 64.49 45.14 51.15 78.77 54.91 56.04

BASS† (Ours) 76.76 51.09 49.66 65.72 46.14 53.96 77.80 54.82 56.59

3.2. Implementation Details and Evaluation Metrics

Following the previous method (Graham et al., 2019), we crop all the images to patches
of 256 × 256 pixels with an overlap of 128 pixels for data preprocessing. All experiments
are carried out with an RTX 3090 GPU. SGD is used as the optimizer. The learning
rate, momentum, and weight decay are set to 0.02, 0.9, and 0.001, respectively. Besides,
we evaluate the segmentation performance in terms of Dice (Vu et al., 2019), aggregated
Jaccard index (AJI) (Kumar et al., 2017), and panoptic quality (PQ) (Kirillov et al., 2019).

3.3. Comparison with the State of the Art Methods

We compare our proposed BASS against several state-of-the-art methods, including MMT-
PSM (Zhou et al., 2020a), PointWSSIS (Kim et al., 2023), ShapeProp (Zhou et al., 2020b),
NoisyBoundary (Wang et al., 2022) and PG-FANet (Jin et al., 2024). Besides, to validate
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the improvement of our semi-supervised model, we also compare our method with supervised
Mask R-CNN. We trained the models using 1/8, 1/4, and 1/2 of the labeled data on ResNet-
50. A more detailed data split is presented in the appendix.

Input BASS (Ours) Ground TruthNoisyBoundaryPointWSSISShapePropMMT-PSM PG-FANet

Figure 2: The semi-supervised instance segmentation visualization comparisons.

Quantitative comparison results on three datasets are displayed in Table 1, which shows
that our method achieves the optimal performance at all three annotation ratios. Even
with only 1/8 of the annotations, our BASS exceeds the suboptimal method approximately
1% in PQ. Fig.2 displays the visual comparison results. We can see that MMT-PSM and
NoisyBoundary mistakenly identify nuclei as tissue due to the lack of semantic discrimina-
tion between nuclei and tissues. Although ShapeProp and PointWSSIS employ weak labels
to enhance the location ability of nuclei, they still have nuclear shape errors.

Table 2: The segmentation head ablation experiments on CryoNuSeg and DigestPath.

NMH LRD CRC
CryoNuSeg DigestPath

Dice AJI PQ Dice AJI PQ

✓ 65.49 40.23 36.94 60.80 44.73 48.54
✓ 64.37 39.24 39.91 61.22 43.09 47.80

✓ ✓ 72.17 46.44 45.72 63.19 45.86 51.22
✓ ✓ ✓ 76.76 51.09 49.66 65.72 46.14 53.96

3.4. Ablation Studies

Ablation Studies for Segmentation Head. In the student network, we employ three
prediction heads, namely, the naive mask head (NMH), low-resolution denoising mask head
(LRD), and cross-RoI contrastive learning mask head (CRC), to jointly supervise the seg-
mentation predictions. To evaluate the effectiveness of these heads, we conducted a series
of ablation experiments to assess the impact of different designs. Specifically, we compared
four designs: NMH, LRD, NMH+LRD, and NMH+LRD+CRC. The experimental results
are listed in Table 2. From the table, we can observe the NMH+LRD+CRC outperforms the
other methods, indicating that incorporating multiple segmentation constraints is effective.

Ablation Studies for Box and Pixel Thresholds We conduct threshold filtering exper-
iments on the MoNuSeg dataset with a 1/2 annotation ratio, and The experiment results
are shown in Tables 3 and 4. Table 3 uses nuclear count statistics to determine the opti-
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mal box threshold. We can find that the model performs best when the threshold is set
to 0.38. When changing the value, the model’s performance deteriorated, indicating the
effectiveness of using nucleus count for box threshold selection. In addition, Table 4 shows
the experiment results of pixel threshold. The table shows that when choosing 0.5 as the
threshold, the model achieved optimal performance in terms of Dice and PQ scores.

Table 3: The box threshold setting ex-
periments.

Box Thr Dice AJI PQ
0.3 76.37 52.20 54.07

0.38(opt) 77.80 54.82 56.59
0.5 75.68 50.83 53.26
0.7 72.28 48.01 51.58

Table 4: The mask threshold setting ex-
periments.

Pixel Thr Dice AJI PQ
0.3 76.12 54.01 55.23
0.4 77.04 54.96 55.37

0.5(opt) 77.80 54.82 56.59
0.6 76.97 54.04 56.21

Ablation Studies for Sampling Ratio α. We conduct sampling ratio experiments and
set four sampling ratios of 0.1, 0.3, 0.5, and 0.7 in the CRC. The experimental results are
shown in Fig. 3. The table shows that as the sampling ratio increases, the performance
gradually improves, indicating that the sampling ratio indeed influences the performance.
When the sampling ratio is large, the model obtains more sampled pixels, resulting in
better contrastive learning performance. However, as the sampling ratio increases, the
computational cost of the model also increases. Therefore, we select 0.7 as the final sampling
ratio, which achieves the best balance between model performance and computational cost.

0.1 0.3 0.5 0.7
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DICE AJI
PQ
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Figure 3: The sampling ratio ablation ex-
periments on CryoNuSeg dataset.
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Figure 4: The distance comparison ex-
periments on CryoNuSeg dataset.

Ablation Studies for Distance d. We investigate the effect of distance d, which repre-
sents the distance from the inner (outer) contour to the accurate nuclei contour. Expressly,
we set d to 0, 2, 4, and 6. It is worth noting when d = 0, we do not sample between the
actual and inner (outer) contour. From the Fig. 4, we can see when d = 4, the model per-
forms best. However, the performance drops as d decreases. This is because when reducing
the sampling range, the boundary information obtained by the model also decreases. On
the contrary, when d increases to 6, the sampling area becomes more extensive, leading to
a mixture of boundary and non-boundary features, ultimately decreasing performance.

4. Conclusions

This paper proposes a boundary-aware contrastive learning model based on the teacher-
student framework for semi-supervised nuclei segmentation. The model utilizes a low-
resolution feature supervision head and a cross-RoI contrastive learning module to achieve
the nuclei boundary denoising. However, the model trains the teacher and student networks
in separate stages, which hinders the student network from effectively utilizing the features
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extracted by the teacher network. Therefore, in the future, we will adopt an end-to-end
training approach for both the teacher and student networks to enhance the information
interaction between the teacher and student networks.
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6. Appendix

In the main body, we used 1/8, 1/4 and 1/2 labeled data to conduct experiments on
CryoNuSeg (Mahbod et al., 2021), DigestPath (Da et al., 2022) and MoNuSeg (Kumar
et al., 2017) datasets respectively.

In this section, we provide the data split details as shown in Table 5. First, these three
datasets are divided into the training set, validation set and testing set according to the
proportion of 6:2:2. Then, we re-divide the training set into labeled and unlabeled data sets
according to 1/8, 1/4 and 1/2. In the whole training process, we keep the validation and
testing sets unchanged.

Table 5: The data split on CryoNuSeg, DigestPath and MoNuSeg datasets.

Dataset Ratio
Training

Validation Testing
Labeled Unlabeled

1/8 20 142 54 54
CryoNuSeg 1/4 40 122 54 54

1/2 81 81 54 54

1/8 631 2653 835 994
DigestPath 1/4 930 2354 835 994

1/2 1740 1554 835 994

1/8 98 686 392 294
MoNuSeg 1/4 196 588 392 294

1/2 392 392 392 294
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