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Abstract

Designing algorithms for solving high-dimensional Bayesian inverse problems di-
rectly in infinite-dimensional function spaces—where such problems are naturally
formulated—is crucial to ensure stability and convergence as the discretization of
the underlying problem is refined. In this paper, we contribute to this line of work by
analyzing a widely used sampler for linear inverse problems: Langevin dynamics
driven by score-based generative models (SGMs) acting as priors, formulated di-
rectly in function space. Building on the theoretical framework for SGMs in Hilbert
spaces, we give a rigorous definition of this sampler in the infinite-dimensional
setting and derive, for the first time, error estimates that explicitly depend on the
approximation error of the score. As a consequence, we obtain sufficient conditions
for global convergence in Kullback–Leibler divergence on the underlying function
space. Preventing numerical instabilities requires preconditioning of the Langevin
algorithm and we prove the existence and the form of an optimal preconditioner.
The preconditioner depends on both the score error and the forward operator and
guarantees a uniform convergence rate across all posterior modes. Our analysis
applies to both Gaussian and a general class of non-Gaussian priors. Finally, we
present examples that illustrate and validate our theoretical findings.

1 Introduction

Inverse problems arise in many challenging applications, such as X-ray computed tomography, seismic
tomography, inverse heat conduction, and inverse scattering. These problems share a common goal:
to estimate unknown parameters from noisy observations or measurements [1]. What makes them
difficult is that they are often ill-posed in the sense of Hadamard [2]: they may have multiple solutions,
no solutions at all, or solutions that are highly sensitive to small perturbations in the data. A possible
approach to address these difficulties is to cast the problem in a probabilistic framework known as
Bayesian inference. In the Bayesian approach, one first specifies a prior distribution that encodes
knowledge about the unknown before any data is observed, along with a model for the observational
noise. Bayes’ rule is then used to update this prior knowledge in light of the measurements, yielding
the so-called posterior distribution, which describes the distribution of the unknown conditioned
on the data. By sampling from the posterior one can extract statistical information and quantify
uncertainty in the solution [3–6].
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A central challenge in applying Bayesian inference to inverse problems is that in many cases—
especially those governed by partial differential equations (PDEs)—the unknowns to be estimated
are functions that lie in a suitable function space, typically an infinite-dimensional Hilbert space. It
is therefore crucial to design Bayesian inference algorithms that are both theoretically sound and
computationally effective in arbitrarily high dimensions. A way to achieve this is by lifting these
problems to an infinite-dimensional space and designing inference methods directly in that setting.
This approach, sometimes referred to as “apply-algorithm-then-discretize”—or, in the context of
Bayesian inference, “Bayesianize-then-discretize”—allows for the development of algorithms that
are inherently discretization-invariant, as the Bayes formula and algorithms are properly defined on
Hilbert spaces [3, 7]. In contrast, the opposite approach—“discretize-then-Bayesianize”—can lead to
several issues, such as instability as the discretization of the underlying problem is refined, or worse,
methods that seem stable but whose results are theoretically implausible [8, 9].

These considerations manifest clearly even in simple scenarios. In Figure 1 we consider two examples
involving a vanilla diffusion Langevin sampler. In the first one, we sample from a Gaussian posterior.
While the method appears numerically stable and produces samples with seemingly reasonable
behavior, a closer inspection shows that the samples carry infinite energy—they do not belong to
the infinite-dimensional Hilbert space. That is, the algorithm is producing objects that are not valid
functions in the limit of refined discretization. In the second example, we attempt to fix this by
choosing a trace-class prior, which ensures that samples have finite energy and are well-defined in a
Hilbert space. This theoretically-motivated structure, however, comes at a cost: without adjustments,
the drift of the vanilla Langevin sampler may diverge at fine scales.

Figure 1: We consider the toy linear inverse problem yj = AjjX
(j)
0 + nj in the basis (vj) of the

Hilbert space H , with Ajj = e−0.1j and nj ∼ N (0, 0.052), for j ≤ 100. In the top row, we sample
the posterior using an identity prior covariance on X0. The Langevin diffusion seems stable, but
the eigenvalues of the posterior covariance do not decay at infinity and therefore the samples do not
belong to the Hilbert space H . In the bottom row, we use a trace-class covariance prior with diagonal
terms ∼ 1/j2; the drift of the vanilla Langevin sampler starts diverging at fine scales.

These types of challenges, intrinsic to the infinite-dimensional setting, have long been studied in
the Bayesian inverse problems community, but are now receiving renewed attention with the rise
of deep learning methods for posterior sampling. One popular class of methods that still lacks a
complete theoretical understanding in this context is score-based generative models (SGMs), which
generate samples from complex distributions by first learning the (Stein) score—the gradient of
the log-density [10]—and then using it in various sampling algorithms [11, 12]. For example, [13]
employs the learned score in a Langevin-based sampler, while [14] unified SGMs and diffusion-based
methods [15, 16] through a stochastic differential equation (SDE) framework, known as score-based
diffusion models. After their introduction, SGMs have been applied successfully to Bayesian inverse
problems, either by learning the score conditioned on data [17–19], or by using the score of the prior
distribution—the unconditional score model—within Langevin-type samplers. Crucially, with a few
exceptions [20–23], these approaches assume that the posterior is supported in a finite-dimensional
space, leaving the challenges of infinite dimensions to heuristics and ad hoc solutions.
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In this work, we present a detailed analysis of SGMs for Bayesian inference of linear inverse problems,
going beyond the common assumption that the posterior is supported on a finite-dimensional space.
We focus on a widely used posterior sampling technique that combines SGMs—used as powerful
learned priors to capture complex features—with a Langevin-based sampler [24–26]. Lifting the
problem directly to function spaces is not a mere technicality: we show that, to provably sample the
posterior, the Langevin diffusion must be modified by a preconditioning operator C acting on the
Hilbert space. This preconditioner is not an ad hoc fix but rather built into the fabric of the infinite-
dimensional setting: it first appears in the forward diffusion process (5) whose time-reversal is used to
learn the prior, and must then be carried through into the Langevin sampler to ensure convergence to
the correct posterior (Section 3). Crucially, C cannot be the identity: for the time-reversed diffusion
to remain Hilbert-space-valued, C must be trace class. Setting C = I leads to the same theoretical
and numerical issues as highlighted in Figure 1 above.

The importance of preconditioning in function spaces has been well established in the context
of posterior sampling [3, 8, 27–30], but its implications have not yet fully explored for infinite-
dimensional SGMs. In this setting, we characterize the interplay between the preconditioner C, the
trace-class prior, the score approximation error, and the linear forward map of the inverse problem.
In particular, we analyze the impact of the score approximation error at small times—where the
score is learned in practice—and identify a theoretically optimal preconditioner that ensures uniform
convergence rates across posterior modes (Section 4). We carry out the analysis by focusing on two
cases: a Gaussian prior measure, and a more general class of priors which are absolutely continuous
with respect to a Gaussian measure (Section 5). Illustrations are provided in Section 6.

Related Work. There exists a large body of literature on infinite-dimensional MCMC algorithms
[3, 8, 27–40], which include a variety of preconditioning strategies for posterior sampling. However,
these works precede the recent wave of papers on SGMs and therefore do not address the central focus
of our analysis: the interplay between the score approximation error, the preconditioning operator,
the trace-class prior, and the sampler convergence, which we study in detail in both the Gaussian and
non-Gaussian settings.

Closest to our work are the papers that use SGMs for posterior sampling, such as [21, 24–26], which
employ SGMs as learned priors in a Langevin-type diffusion algorithm. Among these works, the
theoretical analysis of [25] is the most directly related to ours. However, there are key differences.
[25] analyze Langevin dynamics with SGMs for posterior sampling in finite dimensions, as their
results provide convergence error estimates that explicitly depend on the score approximation error
but diverge as the dimension of the problem increases. In contrast, our error analysis, since it is formu-
lated directly in infinite dimensions, provides conditions to ensure global boundedness (Theorem 3.1).
Moreover, the finite-dimensional setting of [25] does not address the role of preconditioning, which
becomes essential in infinite dimensions. Other related works include [41, 42] which investigate pre-
conditioning in Langevin dynamics with SGMs. However, these analyses are also finite-dimensional
and do not account for the score approximation error. As a result, they do not capture the critical role
of preconditioning, which—as we show in Section 4—becomes crucial in function spaces.

As we have pointed out several times, the learned score plays a key role in our analysis. Among the
theoretical frameworks defining SGMs in infinite dimensions [23, 43–48], we follow those of [20, 49]
for continuous-time diffusions. An important contribution of our work is to show that the convergence
bound depends explicitly on the accuracy of the approximated score, and that controlling this error is
key to designing a preconditioner that ensures convergence in function spaces (Theorem 4.1).

Finally, we note that [21] also explores the role of preconditioning to ensure convergence in infinite
dimensions in the context of SGMs. Their analysis is conducted in a more complex setting—nonlinear
inverse problems. Their argument builds on the proof of [25], but the difficulties of the nonlinear
setting prevent them from identifying an optimal preconditioner. In contrast, our work takes full
advantage of the linear setting, where the distributions at play admit explicit formulas. This allows
us to derive detailed error estimates in the small diffusion time regime, where the score is typically
learned, and discuss the impact of the score approximation error on posterior sampling—including
the effects of preconditioning on the bias error. Furthermore, their analysis focuses only on Gaussian
priors, while we generalize and consider non-Gaussian priors (Section 5).
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2 Langevin Posterior Sampling with Score-Based Generative Priors

We work in the setting of a linear Bayesian inverse problem formulated in infinite dimension. Let
H be a separable Hilbert space with inner product ⟨· , ·⟩, and let C,Cµ : H → H be trace-class,
positive-definite, symmetric covariance operators. The unknown quantity of interest is an H-valued
random variable X0 ∼ µ, where the prior measure µ is assumed to be absolutely continuous with
respect to a Gaussian reference measure N (0, Cµ), with density

dµ

dN (0, Cµ)
(X) ∝ exp

(
− Φ(X)

)
. (1)

The observations y ∈ RN are modeled as

y = AX0 + n,

where A : H → RN is a linear operator, and n ∼ N (0, σ2IN ) is Gaussian observational noise
independent of X0. Since we consider an observational model corresponding to observing a finite-
dimensional subspace of H , there exists an orthonormal basis (vj) of H such that Avj = 0 for all
j > N . Let (ej) denote the standard basis of RN . Then the observation model can be written as
yi =

∑N
j=1AijX

(j)
0 + ni, where Aij = ⟨ei, A vj⟩, yi = ⟨y, ei⟩, X(j)

0 = ⟨X0, vj⟩, and ni = ⟨n, ei⟩.

The posterior distribution πy of X0 conditioned on the observations y is absolutely continuous with
respect to N (0, Cµ):

dπy
dN (0, Cµ)

(X) ∝ exp
(
− Φ(X)− 1

2σ2
∥AX − y∥2

)
. (2)

The goal of infinite-dimensional Bayesian inference is to design sampling methods for πy whose
performance remains stable as the underlying discretization is refined. To this end, we study a
widely used sampler—a Langevin-type diffusion driven by score-based generative priors—this time
formulated directly in infinite dimensions rather than in the usual finite-dimensional setting. In
particular, we consider the continuous-time SDE

dXt = Sθ(Xt, τ ; µ)dt+ C∇X log ρ(y −AXt)dt+
√
2CdWt, (3)

where ρ is the noise density, C acts as a preconditioner, ∇X denotes the Fréchet derivative with
respect to X , Wt is a Wiener process on H , and Sθ(Xt, τ ; µ) is a neural network approximation of
the score function

S(X, τ ; µ) = −(1− e−τ )−1(X − e−τ/2E[X0|Xτ = X]), (4)

which corresponds to the drift term in the time-reversed SDE of the Hilbert-space-valued forward
diffusion

dXτ = −1

2
Xτdτ +

√
CdWτ , X0 ∼ µ. (5)

There are two important aspects to note here. First, both the Langevin SDE (3) and the forward
diffusion (5) are driven by a C-Wiener process, where C is trace-class, which is crucial for ensuring
that the samples are supported on the Hilbert space. Most of the technical difficulties in infinite
dimensions arise from this. Second, although the score is often expressed as ∇ log pτ in finite-
dimensional settings, the density pτ is not defined in infinite dimensions, since a Lebesgue reference
measure does not exist. For this reason, in the following we adopt the conditional expectation
representation of the score—or, more precisely, an equivalent formulation derived from it, as stated
in the next proposition, which was first proved in [49].
Proposition 2.1. The score (4) can be written as

S(X, τ ; µ) = −eτ/2E[C(CµC
−1
τ )−1∇Φ(X0) | Xτ = X]− CC−1

τ X, (6)

where Cτ = e−τCµ + (1− e−τ )C.

The idea behind samplers like (3) is simple yet powerful. By training Sθ(X, τ ;µ) to approximate
S(X, τ ; µ), one can effectively learn potentially complex priors µ—since, once Sθ(X, τ ;µ) is known,
one can sample from µ by simulating the backward-in-time dynamics—and then incorporate such
priors within a Langevin sampling scheme. What remains less understood, however, is how this
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approach extends to the infinite-dimensional setting, particularly in relation to the error introduced
by approximating the score and whether the sampler remains stable. In the sections that follow, we
address this gap—we prove convergence of (3) to the correct posterior and derive error bounds, along
with conditions ensuring a globally bounded convergence error. We also elucidate the role of the
preconditioner C. Our analysis is divided into two parts: one addressing the case of Gaussian priors,
and the other the non-Gaussian case.

3 Error Analysis in the Gaussian Setting

We begin our analysis of the continous-time Langevin SDE (3) in the infinite-dimensional setting
by examining the case where the prior of X0 is a Gaussian measure. While this case may seem
to defeat the purpose of using a score-based generative model to learn a simple prior, it provides
illuminating insights, as it allows us to detail the impact of the score approximation error on the
stationary distribution of (3), offers a clear interpretation of the infinite-dimensional difficulties, and
paves the way for the derivation of an explicit form of the optimal preconditioner (Section 4).

We assume in this section that Φ = 0. The posterior (2) is Gaussian:

πy = N
([
C−1

µ + σ−2A⊤A
]−1

σ−2A⊤y,
[
C−1

µ + σ−2A⊤A
]−1
)
.

We also assume that both C and Cµ are diagonal in the basis (vj), with eigenvalues (λj) and (µj),
respectively. We can make a few remarks:
• In the (vj) basis, the posterior decomposes into a Gaussian πN

y on the span of the first N observed
modes and a product of marginal Gaussian over the unobserved modes j > N .

• For the observed modes—i.e., those j ≤ N influenced by the data through the forward operator
A—the distribution is

πN
y = N

([
C−1

µ,N + σ−2A⊤
NAN

]−1

σ−2A⊤
Ny,

[
C−1

µ,N + σ−2A⊤
NAN

]−1
)
, with Cµ,N = Diag

1≤j≤N
(µj) .

• For the unobserved modes j > N , which lie in the nullspace of A, the posterior coincides with the
prior: π(j)

y = N (0, µj).

• The score function is S(X, τ ; µ) = −
∑

j sj(τ ;µ)X
(j)vj , with sj(τ ;µ) =

λj

e−τµj+(1−e−τ )λj
.

The block diagonalization of the system by (vj) justifies the following assumption on the form of the
score approximation error.

Assumption 1. We consider an approximate score Sθ(X, τ ; µ) such that〈
S(X, τ ; µ)− Sθ(X, τ ; µ), vj

〉
= εaj (τ)X

(j) + εbj(τ).

Define XN =
∑N

j=1X
(j)vj and similarly let WN

t denote the projection of Wt onto the first N
modes. By Assumption 1, for the observed modes j ≤ N , the preconditioned Langevin dynamics (3)
become

dXN
t =−

[
Diag
1≤j≤N

(sj(τ ;µ)) + Diag
1≤j≤N

(
εaj (τ)

)
+ CNσ

−2A⊤
NAN

]
XN

t dt

+

[
CNσ

−2A⊤
Ny − Diag

1≤j≤N

(
εbj(τ)

)]
dt+

√
2CNdW

N
t ,

with CN = Diag
1≤j≤N

(λj). For the unobserved modes j > N , we have

dX
(j)
t =−

[
sj(τ ;µ) + εaj (τ)

]
X

(j)
t dt− εbj(τ)dt+

√
2λjdW

(j)
t .

We are now ready to derive the stationary distribution of the continuous-time SDE (3). The following
proposition makes explicit the dependence on the score approximation error; its proof is included in
Appendix A.1.

5



Proposition 3.1. The stationary distribution π̌y of the preconditioned Langevin diffusion with approx-
imate score in the drift term is the Gaussian measure with mean m̌(τ) = (m̌N (τ), (m̌j(τ))j≥N+1)
and covariance v̌(τ) = v̌N (τ)⊕ Diag

j≥N+1
(v̌j(τ)). For the observed modes j ≤ N , we have

v̌N (τ) =

[
C−1

N Diag
1≤j≤N

(sj(τ ;µ)) + σ−2A⊤
NAN + C−1

N Diag
1≤j≤N

(
εaj (τ)

)]−1

, (7)

m̌N (τ) = v̌N (τ)

[
σ−2A⊤

Ny − C−1
N Diag

1≤j≤N

(
εbj(τ)

)]
, (8)

while for the unobserved modes j > N , we have

v̌j(τ) =
[
λ−1
j sj(τ ;µ) + λ−1

j εaj (τ)
]−1

, m̌j(τ) = −v̌j(τ)λ−1
j εbj(τ). (9)

Based on Proposition 3.1, we make a few comments:

• If we have access to the perfect score, that is, εaj = εbj = 0 for all j, then

m̌(τ) =
[
C−1

τ + σ−2A⊤A
]−1

σ−2A⊤y
τ→0→

[
C−1

µ + σ−2A⊤A
]−1

σ−2A⊤y,

v̌(τ) =
[
C−1

τ + σ−2A⊤A
]−1 τ→0→

[
C−1

µ + σ−2A⊤A
]−1

.

That is, we recover the posterior πy given the data. It does not depend on the preconditioner C.

• The error εaj can have an impact on the stationary distribution of X(j)
t , but as long as it is smaller

than λj/µj (i.e., the relative error in the approximation of the score is small), the impact is small.

• The error εbj can induce a bias. The bias can be large because the mean of the j-th mode marginal

of π̌(j)
y is amplified by λ−1

j . The preconditioner cannot prevent from this bias.

We can make our analysis more quantitative by presenting mode-by-mode and global convergence
error estimates for the preconditioned Langevin sampler in the Gaussian setting. To simplify the
discussion, the following theorem is stated by assuming that A⊤

NAN is diagonal.

Theorem 3.1. We define pj = λj/µj for all j. Let π̌(j)
y and π(j)

y denote the j-th mode marginals of
the approximate and true posterior distributions, π̌y and πy , respectively. Suppose that p−1

j εaj (τ) =

O(τ), λ−1
j εbj(τ) = O(1). Then, for j ≤ N , the Kullback-Leibler divergence satisfies

DKL

(
π̌(j)
y

∣∣∣∣∣∣π(j)
y

)
=

1

2
λ−2
j εbj(τ)

2

−
λ−1
j εbj(τ)

1 + σ−2µj(A⊤
NAN )jj

(
σ−2(A⊤

Ny)j − λ−1
j εbj(τ)

) (
(pj − 1)τ − p−1

j εaj (τ)
)
+O(τ2). (10)

For j > N , we have DKL
(
π̌
(j)
y

∣∣∣∣π(j)
y

)
= λ−2

j εbj(τ)
2
(
1
2 + (pj − 1)τ − p−1

j εaj (τ)
)
+O(τ2).

Proof. The proof relies on Proposition 3.1 and the fact that the j-th mode marginals π̌(j)
y and π(j)

y

are Gaussian, N (m̌j(τ), v̌j(τ)) and N (mj , vj), respectively, hence the Kullback-Leibler divergence
has an explicit form and standard perturbation arguments lead to the desired estimates. Full details
are provided in Appendix A.2.

Remark 3.1. Note that Theorem 3.1 can provide a set of sufficient conditions that ensure that the
global convergence error of the sampler is bounded in infinite dimensions:

∑
j

∣∣λ−1
j εbj(τ)

∣∣ < ∞,∣∣p−1
j εaj (τ)

∣∣ < C1, and
∣∣(A⊤

Ny)j
∣∣ < C2, where C1, C2 do not depend on j.

4 The Essence of Preconditioning

We now elucidate the role of the preconditioner C in the infinite-dimensional Gaussian setting
introduced in the previous section. We begin with two preliminary remarks:
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• In our analysis, C first appears in the forward diffusion (5), whose time-reversal learns the prior,
and must be carried through the Langevin sampler (3) to target the correct posterior.

• C cannot be the identity: it must be trace-class to keep the diffusion well-posed and to stabilize
the Langevin updates across all modes. Indeed, if C = Diag(λj), the drift in the j-th mode
contains the factor λj [e−τµj + (1− e−τ )λj ]

−1, which, unless λj decays sufficiently fast, blows
up like µ−1

j as j → ∞, making the sampler unstable at fine scales. This is a consequence of the
infinite-dimensional setting, where Cµ must be trace-class.

Since the preconditioner plays a role in the rate of convergence across all posterior modes, it is natural
to ask whether there exists a C that ensures a uniform convergence rate for the Langevin sampler. To
this aim, in the next propositionwe derive the mean reversion rate κ of the preconditioned Langevin
dynamics (3); the proof is given in Appendix B.1.
Proposition 4.1. Assume that A⊤

NAN is diagonal. For the observed modes j ≤ N , the mean
reversion rate is

κ(j) = λj

([
e−τµj + (1− e−τ )λj

]−1
+ σ−2(A⊤

NAN )jj + λ−1
j εaj (τ)

)
, (11)

while for the unobserved modes j > N , κ(j) = λj
[
[e−τµj + (1− e−τ )λj ]

−1
+ λ−1

j εaj (τ)
]
.

We can make a few comments:
• For the unobserved modes j > N , the convergence rate is λj [e−τµj + (1− e−τ )λj ]

−1 (≃ λj/µj

for small τ ) when the error εaj is negligible, and therefore we should choose λj = µj for all j to
get a convergence uniform in j, that is to say, C = Cµ.

• For the observed modes j ≤ N , the convergence rates for those modes such that µj ≪
σ2/(A⊤

NAN )jj (or (A⊤
NAN )jj = 0) are λj/µj , whereas for modes such that µj ≫

σ2/(A⊤
NAN )jj the convergence rates are λjσ−2(A⊤

NAN )jj . We should then choose λj =

[µ−1
j + σ−2(A⊤

NAN )jj ]
−1, or equivalently C = [C−1

µ + σ−2A⊤A]−1.
We now refine our analysis of the preconditioner by incorporating a first-order correction that accounts
for the score approximation error at small τ , the regime in which the score is typically learned. The
proof of the following theorem relies on a straightforward perturbation argument; full details are
given in Appendix B.2.
Theorem 4.1. In addition to Assumption 1, we further suppose that A⊤

NAN is diagonal, and that
εaj (τ) = εaj τ +O(τ2). Under these conditions, the optimal preconditioner C is also diagonal in the

basis (vj), with eigenvalues that admit the expansion λj = λ
(0)
j + λ

(1)
j τ +O(τ2). For the observed

modes j ≤ N , we have

λ
(0)
j =

[
µ−1
j + σ−2(A⊤

NAN )jj
]−1

, λ
(1)
j = λ

(0)
j

3
µ−2
j − λ

(0)
j

2
µ−1
j − εajλ

(0)
j . (12)

For the unobserved modes j > N , we have λ(0)j = µj , λ(1)j = −µjε
a
j .

Based on Theorem 4.1, we make a few comments:

• To compute the preconditioner C, one would need information on A⊤A, σ, Cµ, and the score
approximation error. Our analysis, however, suggests a simple and practical choice: take C as
close as possible to the prior covariance Cµ. For higher-order modes, the leading-order term of the
preconditioner coincides with Cµ, and this approximation is particularly justified when the prior
decays quickly, so that µ−1

j ≫ σ−2(A⊤
NAN ) for the low-order modes. Any available knowledge

of the posterior covariance or score error can then be used to refine this first approximation.
• This is not the first occurrence in the literature of an optimal preconditioner for diffusion models

in infinite dimensions. For example, while analyzing the convergence error of time-reversed SDE
dynamics in infinite dimensions, Pidstrigach et al. [49] derived a similar result for the optimal
C by minimizing the Wasserstein-2 distance between the true data distribution and the learned
sample distribution. Interestingly, assuming no data model and a perfect score, our framework
yields the same optimal C, with a few caveats: in our case, the preconditioner arises directly from
the mean-reversion rate of the Langevin dynamics. Hence, the optimal covariance we identify
does not merely minimize an upper bound: it represents, under the stated assumptions, the best
achievable choice in practice for ensuring a uniform rate of convergence across all modes.
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5 Non-Gaussian Sampling

We can generalize the results of Sections 3 and 4 by considering the case of a general class of
prior measures µ assumed to be absolutely continuous with respect to a Gaussian reference measure
N (0, Cµ) with density proportional to exp(−Φ). We present the main ideas here, relegating the
more quantitative results and proofs in Appendix C.

To reproduce the approach of the Gaussian setting, one first needs to diagonalize the Langevin SDE
system, which in turn requires diagonalizing the score function S(X, τ ; µ).

Proposition 5.1. We assume that C and Cµ have the same basis of eigenfunctions (vj) and we define
X(j) = ⟨X, vj⟩. We assume that Φ(X) =

∑
j ϕj(X

(j)). The score function (6) can be written as
S(X, τ ; µ) =

∑
j S

(j)(X(j), τ ;µ)vj , where

S(j)(X(j), τ ; µ) = −λj∂j ϕ̌j(X(j), τ)− sj(τ, µ)X
(j), (13)

with ϕ̌j(X(j), τ) = − logE
[
exp(−ϕj(X̃(j)

0 )) | X̃(j)
τ = X(j)

]
, and(

X̃
(j)
0

X̃
(j)
τ

)
∼ N

(
0,

(
µj e−τ/2µj

e−τ/2µj e−τµj + (1− e−τ )λj

))
. (14)

We assume a more general form of the score approximation error.

Assumption 2. We consider an approximate score Sθ(X, τ ; µ) such that〈
S(X, τ ; µ)− Sθ(X, τ ; µ), vj

〉
= εaj (τ)

[
X(j) + ∂jϕj(X

(j))
]
+ εbj(τ).

With the learned score, the preconditioned Langevin SDE for the observed modes j ≤ N becomes

dXN
t = −MNX

N
t dt+ bNdt+

√
2CNdW

N
t ,

where

MN = Diag
1≤j≤N

(sj(τ ;µ)) + CNσ
−2A⊤

NAN + Diag
1≤j≤N

(
εaj (τ)

)
,

bN =CNσ
−2A⊤

Ny − CN Diag
1≤j≤N

(
∂j ϕ̌j

)
− Diag

1≤j≤N

(
εaj (τ)∂jϕj(X

(j)
t )
)
− Diag

1≤j≤N

(
εbj(τ)

)
.

The SDE for the unobserved modes j > N can be obtained by taking AN = 0 above.

The stationary distribution of the preconditioned Langevin SDE is derived in the following proposition,
which makes explicit the dependence on the score approximation error.

Proposition 5.2. Let Assumption 2 hold true. Under the hypotheses of the previous proposition, the
preconditioned Langevin with approximate score in the drift term has π̌y as its stationary distribution.
It is absolutely continuous with respect to N (m̌(τ), v̌(τ)), and is given by the density

dπ̌y
dN (m̌(τ), v̌(τ))

(X, τ) ∝ exp
(
−Φ̌(X, τ)

)
. (15)

For the observed modes j ≤ N , the negative log-density is Φ̌N (XN , τ) =
∑N

j=1

[
ϕ̌j(X

(j), τ) +

λ−1
j εaj (τ)ϕj(X

(j)
t )
]
, the covariance v̌N (τ) and mean m̌N (τ) are given by (7-8). For the unobserved

modes j > N , the negative log-density is Φ̌(j)(X(j), τ) = ϕ̌j(X
(j), τ) + λ−1

j εaj (τ)ϕj(X
(j)
t ), the

covariance v̌(j)(τ) and mean m̌(j)(τ) are given by (9).

The interested reader can find in Appendix C a quantitative analysis of this general case, including
Theorem C.1, which provides an error analysis analogous to Theorem 3.1 for the Gaussian case. Here
we make a few qualitative comments:

• If εaj = εbj = 0 for all j, then Φ̌(X, τ)
τ→0→

∑
j ϕj(X

(j)), v̌(τ) τ→0→
[
C−1

µ + σ−2A⊤A
]−1

,

m̌(τ)
τ→0→

[
C−1

µ + σ−2A⊤A
]−1

σ−2A⊤y, that is to say, we get the posterior given the data.
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• The preconditioner influences the convergence rate. Consider the case in which ϕj is convex,
i.e., ∂2jϕj ≥ Cϕj

> 0. In this case, for the unobserved modes j > N , the convergence rate of
the j-th mode is ≃ λj [µ

−1
j + Cϕj

] for small τ , assuming the error εaj is negligible. To achieve
a convergence rate that is uniform in j, we should then choose λj = [µ−1

j + Cϕj ]
−1. For the

observed modes j ≤ N , and assumingA⊤
NAN is diagonal for simplicity, we should instead choose

λj = [µ−1
j + σ−2(A⊤

NAN )jj + Cϕj ]
−1.

• If the error |εaj | ≪ λj , its impact on the stationary distribution of X(j)
t is small. Like the Gaussian

case, the error εbj can induce a bias. It can be large since λ−1
j → +∞ as j → +∞.

6 Illustrations

We verify our theory by applying the preconditioned Langevin dynamics with SGM (3) to two linear
inverse problems: one based on the Karhunen-Loève (KL) expansion of the Brownian sheet [50], and
the other one on an inverse source problem for the heat equation [3]. Both examples are consistent
with the theory of the paper. Implementation and further details are provided in Appendix D.

Brownian sheet. We illustrate the discretization-invariance property of our approach on the
Brownian sheet, represented by its truncated KL expansion BN (x) =

∑N
j,k=1 ϕj,k(x)ηj,k, x ∈

[0, 1]2, where ηj,k ∼ N (0, µj,k) and (ϕj,k, µj,k) are the KL eigenpairs. For M ≤ N , the inverse
problem consists of reconstructing the KL coefficients and Brownian sheet from noisy data yj,k =
η̃j,k + εj,k, j, k ≤M , with η̃j,k ∼ N (0, µj,k), εj,k ∼ N (0, 0.012) (i.e. Ajk = 1 if j = k ≤M and
0 otherwise). Figure 2 shows the robustness of our approach with respect to the number of modesM2.

Figure 2: Discretization invariance in reconstructing the KL expansion of the Brownian sheet for
increasing number of observed modes M2, with M = 75 and M = 200. Here N = 200.

Heat equation. We verify the benefits of the optimal preconditioner C from Theorem 4.1 by
considering the ill-posed inverse problem of recovering the initial condition u(x, 0), x ∈ [0, 1]2, of
the heat equation from noisy observations of the solution u(x, T ) at time T = 0.1. Expanding in the
eigenpairs (ψj,k, ζj,k) of the Dirichlet Laplacian, one finds that u(x, t) =

∑
j,k e

−ζj,ktgj,kψj,k(x),
where gj,k = ⟨u(·, 0), ψj,k⟩. The inverse problem diagonalizes: we observe yj,k = e−ζj,kT gj,k+εj,k,
j, k ≤ M , with gj,k ∼ N (0, e−βζj,k), β = 0.1, εj,k ∼ N (0, 0.0052). In Figure 3 we compare
reconstructions using Langevin dynamics preconditioned with the optimal C (3rd column) and vanilla
Langevin (4th column). Both samplers use a score perturbed by a relative error εaj ∼ N (0, 0.12)
scaled by a small τ , as assumed in Theorem 4.1. The results support our theory: (i) the preconditioned
sampler is robust to score approximation error, as expected from the design of C (Theorem 4.1); ii)
as shown in the autocorrelation plot in Figure 4 (corresponding to the top row of Figure 3), the modes
converge faster and more uniformly than with the vanilla dynamics, since C targets the optimal mean
reversion rates (Proposition 4.1) ; iii) vanilla Langevin deteriorates as the score error increases (Figure
3) due to amplification at fine scales, reproducing the pathological behavior seen in Figure 1.

7 Discussion and Future Work

We studied a popular sampler—a Langevin-type diffusion driven by score-based generative priors—
directly in the infinite-dimensional Bayesian setting, rather than in the usual finite-dimensional
one. We showed that naïvely applying standard techniques in infinite dimensions leads to several
issues. To ensure provable posterior sampling and discretization-invariance, our analysis shows that

9



Figure 3: Effects of preconditioning in Langevin sampling for the inverse heat source problem.M =
15; top row: τ = 10−3, bottom row: τ = 10−1. The 4th column shows the issues of Figure 1.

Figure 4: Mode autocorrelation. Left: Preconditioned Langevin with SGM. Right: Vanilla Langevin.

preconditioning the vanilla Langevin is necessary. We prove detailed convergence error estimates and
the existence (and form) of an optimal preconditioner—depending on both the forward mapA and
the score error—that yields uniform convergence across all modes.

As is standard in infinite-dimensional analysis, our results rely on some simplifying assumptions:
finite-dimensional data, and co-diagonalizability of the prior and the diffusion’s noise covariance. In
some parts, we also assumed that A⊤A is diagonal, a common assumption in the theory of linear
Bayesian inverse problems [3, 4]. This is not merely a technical convenience: in many classical linear
inverse problems, such as the heat equation, tomography, or inverse scattering for Schrödinger-type
operators under the Born approximation, the forward operator A is compact, and hence one can
always find a basis in which A⊤A is diagonal.

Nevertheless, the main conclusions of our analysis remain valid even without the diagonalization
assumption. For example, the asymptotic expansion in Eq. (10) of Theorem 3.1 can be extended
to non-diagonal by replacing scalar expansions with their corresponding matrix-series counterparts,
while the arguments for the higher-order modes remains the same. Likewise, in Section 4, one
can verify that under a perfect score function the optimal preconditioner still takes the form C =
[C−1

µ + σ−2A⊤A]−1.

Several open questions remain. In particular, how do these results extend to nonlinear inverse
problems? Extending the analysis of [21] to determine an optimal preconditioner for nonlinear
inverse problems represents an important direction for future work.
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A Proofs of Section 3

A.1 Proof of Proposition 3.1

By Assumption 1, for the observed modes j ≤ N , the preconditioned Langevin dynamics (3) reduces
to the SDE

dXN
t =−

[
Diag
1≤j≤N

(sj(τ ;µ)) + Diag
1≤j≤N

(
εaj (τ)

)
+ CNσ

−2A⊤
NAN

]
XN

t dt

+

[
CNσ

−2A⊤
Ny − Diag

1≤j≤N

(
εbj(τ)

)]
dt+

√
2CNdW

N
t ,

(16)

with CN = Diag
1≤j≤N

(λj). For each unobserved mode j > N , we have

dX
(j)
t =−

[
sj(τ ;µ) + εaj (τ)

]
X

(j)
t dt− εbj(τ)dt+

√
2λjdW

(j)
t . (17)

Both (16) and (17) are Ornstein-Uhlenbeck (OU) processes. In particular, XN
t

t→∞→ XN
∞ in distribu-

tion, where the distribution of XN
∞ is the stationary distribution of (16):

XN
∞ ∼ N

(
m̌N (τ), v̌N (τ)

)
,

with

m̌N (τ)

=

[
Diag
1≤j≤N

(sj(τ ;µ)) + Diag
1≤j≤N

(
εaj (τ)

)
+ CNσ

−2A⊤
NAN

]−1[
CNσ

−2A⊤
Ny − Diag

1≤j≤N

(
εbj(τ)

)]
=

[
C−1

N Diag
1≤j≤N

(sj(τ ;µ))+C
−1
N Diag

1≤j≤N

(
εaj (τ)

)
+σ−2A⊤

NAN

]−1[
σ−2A⊤

Ny−C−1
N Diag

1≤j≤N

(
εbj(τ)

)]
,

and v̌N (τ) is such that it solves the Lyapunov equation[
Diag
1≤j≤N

(sj(τ ;µ)) + Diag
1≤j≤N

(
εaj (τ)

)
+ CNσ

−2A⊤
NAN

]
v̌N (τ)

+ v̌N (τ)

[
Diag
1≤j≤N

(sj(τ ;µ)) + Diag
1≤j≤N

(
εaj (τ)

)
+ CNσ

−2A⊤
NAN

]⊤
= 2CN .

Then

v̌N (τ) =

[
C−1

N Diag
1≤j≤N

(sj(τ ;µ)) + C−1
N Diag

1≤j≤N

(
εaj (τ)

)
+ σ−2A⊤

NAN

]−1

,

since [
Diag
1≤j≤N

(sj(τ ;µ)) + Diag
1≤j≤N

(
εaj (τ)

)
+ CNσ

−2A⊤
NAN

]
v̌N (τ)

= CN

(
v̌N (τ)

)−1
v̌N (τ) = CN ,

and

v̌N (τ)

[
C−1

N Diag
1≤j≤N

(sj(τ ;µ)) + C−1
N Diag

1≤j≤N

(
εaj (τ)

)
+ σ−2A⊤

NAN

]
CN

= v̌N (τ)
(
v̌N (τ)

)−1
CN = CN .

For each j > N , (17) is a one-dimensional OU process with rate sj(τ ;µ) + εaj (τ), mean shift

−[sj(τ ;µ) + εaj (τ)]
−1εbj(τ), and noise

√
2λj . Hence X(j)

t
t→∞→ X

(j)
∞ in distribution, where the

distribution of X(j)
∞ is the stationary distribution of (17)

X(j)
∞ ∼ N

(
−

εbj(τ)

sj(τ ;µ) + εaj (τ)
,

λj
sj(τ ;µ) + εaj (τ)

)
.

These results are valid as soon as sj(τ ;µ) + εaj (τ) is a positive number for all j.
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A.2 Proof of Theorem 3.1

For each mode j, define

µ̌j = µj

[
e−τ + (1− e−τ )pj

]
.

The proof can be divided into two cases: one for the observed modes j ≤ N , and one for the
unobserved modes j > N . Since the KL divergence for the unobserved modes can be obtained by
taking AN = 0 in the expression for the observed modes, we focus only on the latter.

The marginal distributions of the j-th mode for the approximate and true posterior, for j ≤ N , are
given respectively by

π̌(j)
y = N

([
1

µ̌j
+ σ−2(A⊤

NAN )jj + λ−1
j εaj (τ)

]−1 [
σ−2(A⊤

Ny)j − λ−1
j εbj(τ)

]
,

[
1

µ̌j
+ σ−2(A⊤

NAN )jj + λ−1
j εaj (τ)

]−1
)
,

and

π(j)
y = N

([
1

µj
+ σ−2(A⊤

NAN )jj

]−1

σ−2(A⊤
Ny)j ,

[
1

µj
+ σ−2(A⊤

NAN )jj

]−1
)
.

The KL divergence between these two Gaussian distributions admits the explicit formula

DKL

(
π̌(j)
y

∣∣∣∣∣∣π(j)
y

)
= log

([
1

µj
+ σ−2(A⊤

NAN )jj

]−1 [
1

µ̌j
+ σ−2(A⊤

NAN )jj + λ−1
j εaj (τ)

])

− 1

2
+

1

2

[
1

µj
+ σ−2(A⊤

NAN )jj

]2{[
1

µ̌j
+ σ−2(A⊤

NAN )jj + λ−1
j εaj (τ)

]−2

+

([
1

µ̌j
+ σ−2(A⊤

NAN )jj + λ−1
j εaj (τ)

]−1 [
σ−2(A⊤

Ny)j − λ−1
j εbj(τ)

]
−
[
1

µj
+ σ−2(A⊤

NAN )jj

]−1

σ−2(A⊤
Ny)j

)2
 .

We study its limiting behavior as τ → 0. From the first term, we derive

log

([
1

µj
+ σ−2(A⊤

NAN )jj

]−1 [
1

µ̌j
+ σ−2(A⊤

NAN )jj + λ−1
j εaj (τ)

])

= log

([
1 + σ−2µj(A

⊤
NAN )jj

]−1
[

1

e−τ + (1− e−τ )pj
+ σ−2µj(A

⊤
NAN )jj + p−1

j εaj (τ)

])
= log

(
1 +

1

1 + σ−2µj(A⊤
NAN )jj

[
(1− e−τ ) + (e−τ − 1)pj
e−τ + (1− e−τ )pj

+ p−1
j εaj (τ)

])
= log

(
1 +

1

1 + σ−2µj(A⊤
NAN )jj

[
−τ(pj − 1) + p−1

j εaj (τ) +O(τ2)
])

=
1

1 + σ−2µj(A⊤
NAN )jj

(
−τ(pj − 1) + p−1

j εaj (τ)
)
+O(τ2).

(18)
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We now consider the other terms of the KL divergence. First, we derive[
1

µ̌j
+ σ−2(A⊤

NAN )jj + λ−1
j εaj (τ)

]−1

×
[
σ−2(A⊤

Ny)j − λ−1
j εbj(τ)

]
−
[
1

µj
+ σ−2(A⊤

NAN )jj

]−1

σ−2(A⊤
Ny)j

=
µj

1 + σ−2µj(A⊤
NAN )jj

{[
1 +

1

1 + σ−2µj(A⊤
NAN )jj

(
(1− e−τ ) + (e−τ − 1)pj
e−τ + (1− e−τ )pj

+ p−1
j εaj (τ)

)]−1 [
σ−2(A⊤

Ny)j − λ−1
j εbj(τ)

]
− σ−2(A⊤

Ny)j

}

=
µj

1 + σ−2µj(A⊤
NAN )jj

{[
1 +

1

1 + σ−2µj(A⊤
NAN )jj

(
−τ(pj − 1) + p−1

j εaj (τ) +O(τ2)
)]−1

×
[
σ−2(A⊤

Ny)j − λ−1
j εbj(τ)

]
− σ−2(A⊤

Ny)j

}

=
µj

1 + σ−2µj(A⊤
NAN )jj

{[
1 +

1

1 + σ−2µj(A⊤
NAN )jj

(
τ(pj − 1)− p−1

j εaj (τ) +O(τ2)
)]

×
[
σ−2(A⊤

Ny)j − λ−1
j εbj(τ)

]
− σ−2(A⊤

Ny)j

}

=
µj

1 + σ−2µj(A⊤
NAN )jj

{
−λ−1

j εbj(τ)−
λ−1
j εbj(τ)

1 + σ−2µj(A⊤
NAN )jj

(
τ(pj − 1)− p−1

j εaj (τ)
)

+
σ−2(A⊤

Ny)j
1 + σ−2µj(A⊤

NAN )jj

(
τ(pj − 1)− p−1

j εaj (τ)
)}

+O(τ2).

Taking the square yields([
1

µ̌j
+ σ−2(A⊤

NAN )jj + λ−1
j εaj (τ)

]−1

×
[
σ−2(A⊤

Ny)j + λ−1
j εbj(τ)

]
−
[
1

µj
+ σ−2(A⊤

NAN )jj

]−1

σ−2(A⊤
Ny)j

)2

=
µ2
j

(1 + σ−2µj(A⊤
NAN )jj)2

[
λ−2
j εbj(τ)

2

+
2λ−1

j εbj(τ)

1 + σ−2µj(A⊤
NAN )jj

(
λ−1
j εbj(τ)− σ−2(A⊤

Ny)j
) (
τ(pj − 1)− p−1

j εaj (τ)
) ]

+O(τ2).

(19)
Next, we consider[

1

µ̌j
+ σ−2(A⊤

NAN )jj + λ−1
j εaj (τ)

]−2

=
µ2
j

(1 + σ−2µj(A⊤
NAN )jj)2

[
1 +

1

1 + σ−2µj(A⊤
NAN )jj

(
−τ(pj − 1) + p−1

j εaj (τ) +O(τ2)
)]−2

=
µ2
j

(1 + σ−2µj(A⊤
NAN )jj)2

[
1 +

2

1 + σ−2µj(A⊤
NAN )jj

(
τ(pj − 1)− p−1

j εaj (τ)
)
+O(τ2)

]
.

(20)
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Putting (18), (19), and (20) together, we obtain

DKL

(
π̌(j)
y

∣∣∣∣∣∣π(j)
y

)
=

1

2
λ−2
j εbj(τ)

2

−
λ−1
j εbj(τ)

1 + σ−2µj(A⊤
NAN )jj

(
σ−2(A⊤

Ny)j − λ−1
j εbj(τ)

) (
τ(pj − 1)− p−1

j εaj (τ)
)
+O(τ2).

B Proofs of Section 4

B.1 Proof of Proposition 4.1

If we assume that A⊤
NAN is diagonal in (vj), for the observed modes j ≤ N the preconditioned

Langevin dynamics 3 becomes

dX
(j)
t =−

[
sj(τ ;µ) + εaj (τ) + λjσ

−2(A⊤
NAN )jj

]
X

(j)
t dt−

[
λjσ

−2(A⊤
Ny)j − εbj(τ)

]
dt

+
√
2λjdW

(j)
t , (21)

while for each unobserved mode j > N , one obtains

dX
(j)
t =−

[
sj(τ ;µ) + εaj (τ)

]
X

(j)
t dt− εbj(τ)dt+

√
2λjdW

(j)
t . (22)

Let m(j)(t) = E[X(j)
t ]. For the observed modes j ≤ N , taking the expectation in the SDE above

gives the linear ODEs

dm(j)

dt
=−

[
sj(τ ;µ) + εaj (τ) + λjσ

−2(A⊤
NAN )jj

]
m(j)(t) +

[
λjσ

−2(A⊤
Ny)j − εbj(τ)

]
while for each unobserved mode j > N one obtains

dm(j)

dt
=−

[
sj(τ ;µ) + εaj (τ)

]
m(j)(t)− εbj(τ).

Given m(j)(0) = m
(j)
0 , both have unique solution. For j ≤ N ,

m(j)(t) =

(
m(j)(0)−

λjσ
−2(A⊤

Ny)j − εbj(τ)

sj(τ ;µ) + εaj (τ) + λjσ−2(A⊤
NAN )jj

)
e−[sj(τ ;µ)+εaj (τ)+λjσ

−2(A⊤
NAN )jj]t

+
λjσ

−2(A⊤
Ny)j − εbj(τ)

sj(τ ;µ) + εaj (τ) + λjσ−2(A⊤
NAN )jj

,

which for t→ ∞ decays exponentially fast to the mean

λjσ
−2(A⊤

Ny)j − εbj(τ)

sj(τ ;µ) + εaj (τ) + λjσ−2(A⊤
NAN )jj

,

with rate

κ(j) = sj(τ ;µ) + εaj (τ) + λjσ
−2(A⊤

NAN )jj

= λj

([
e−τµj + (1− e−τ )λj

]−1
+ σ−2(A⊤

NAN )jj + λ−1
j εaj (τ)

)
.

For the unobserved modes j > N ,

m(j)(t) =

(
m(j)(0) +

εbj(τ)

sj(τ ;µ) + εaj (τ)

)
e−[sj(τ ;µ)+εaj (τ)]t −

εbj(τ)

sj(τ ;µ) + εaj (τ)
,

which converge to the mean

−
εbj(τ)

sj(τ ;µ) + εaj (τ)
,

with rate

κ(j) = sj(τ ;µ) + εaj (τ)

= λj
[ [
e−τµj + (1− e−τ )λj

]−1
+ λ−1

j εaj (τ)
]
.
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B.2 Proof of Theorem 4.1

We consider only the case of the observed modes j ≤ N , since the case for the unobserved modes
j > N follows directly by setting AN = 0.

By Proposition 4.1, ensuring uniform convergence rate for (3) using an approximate score function—
as described in Assumption 1—amounts to solving the equation

λj
µ̌j

+ λjσ
−2(A⊤

NAN )jj + εaj (τ) = 1, (23)

where µ̌j = µj [e
−τ + (1− e−τ )pj ].

Assume the expansions

λj = λ
(0)
j + λ

(1)
j τ +O(τ2), εaj (τ) = εaj τ +O(τ2).

Then we compute

µ̌j = µj + µj(pj − 1)τ +O(τ2) = µj + λ
(0)
j τ − µjτ +O(τ2),

using that pj = λj/µj Substituting into (23), we obtain that λ(0)j and λ(1)j must satisfy

µ−1
j (λ

(0)
j + λ

(0)
j [1− µ−1

j λ
(0)
j ]τ + λ

(1)
j τ) + σ−2(A⊤

NAN )jj(λ
(0)
j + λ

(1)
j τ) + εaj τ +O(τ2) = 1.

Rearranging the terms, we get λ(0)j µ−1
j + λ

(0)
j σ−2(A⊤

NAN )jj = 1, which gives

λ
(0)
j =

[
µ−1
j + σ−2(A⊤

NAN )jj
]−1

,

and

µ−1
j

(
−λ(0)j

[
µ−1
j λ

(0)
j − 1

]
+ λ

(1)
j

)
+ σ−2(A⊤

NAN )jjλ
(1)
j + εaj = 0,

yielding

λ
(1)
j = λ

(0)
j

(
µ−1
j λ

(0)
j

(
µ−1
j λ

(0)
j − 1

)
− εaj

)
.

C Non-Gaussian Sampling: Technical Details

C.1 Proof of Proposition 5.1

By Φ(X) =
∑

j ϕj(X
(j)), the prior µ has Radon-Nikodym derivative with respect to the Gaussian

N (0, Cµ) given by
dµ

dN (0, Cµ)
(X) ∝

∏
j

exp
(
−ϕj(X(j))

)
.

Since C and Cµ are both diagonalized by the same basis (vj), the prior factorizes as a product of
independent one-dimensional marginals in the coordinates X(j):

dµ

dN (0, Cµ)
(X) =

∏
j

dµ(j)

dN (0, µj)
(X(j)),

where
dµ(j)

dN (0, µj)
(X(j)) ∝ exp

(
−ϕj(X(j))

)
.

We can then work mode by mode. For each j, define the one-dimensional OU process

X̃
(j)
0 ∼ N (0, µj), X̃(j)

τ = e−τ/2X̃
(j)
0 +

√
1− e−τξ(j),

with ξ(j) ∼ N (0, λj) independent of X̃(j)
0 . Notice that(

X̃
(j)
0

X̃
(j)
τ

)
∼ N

(
0,

(
µj e−τ/2µj

e−τ/2µj e−τµj + (1− e−τ )λj

))
. (24)
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The OU transition kernel is

p̃(X̃(j)
τ = xτ | X̃(j)

0 = x0) = N (e−τ/2x0, (1− e−τ )λj)(xτ ),

where N (µ, σ2)(x) is the density at x of the normal distribution with mean µ and variance σ2. We
push forward the prior e−ϕjN (0, µj) through the OU kernel. Mode by mode, its density is

µ(j)
τ (xτ ) ∝

∫
exp(−ϕj(x0))N (0, µj)(x0)p̃(xτ | x0)dx0

=

∫
exp(−ϕj(x0))p̃0,τ (x0, xτ )dx0,

where p̃0,τ (x0, xτ ) denotes the joint density of (X̃
(j)
0 , X̃

(j)
τ ). Let µ̌j = e−τµj + (1 − e−τ )λj .

Dividing by the marginal Gaussian density of X̃(j)
τ , we get

µ
(j)
τ (xτ )

N (0, µ̌j)(xτ )
∝
∫

exp(−ϕj(x0))
p̃0,τ (x0, xτ )

p̃τ (xτ )
dx0

=

∫
exp(−ϕj(x0))p̃(x0 | xτ )dx0

= E[exp(−ϕj(X̃(j)
0 )) | X̃(j)

τ = xτ ].

Since S(j)(xτ , τ ;µj) = λj∂j log
µ(j)
τ (xτ )

N (0,µ̌j)
+ λjN (0, µ̌j)(xτ ), we obtain

S(j)(xτ , τ ; µ) = λj∂j logE[exp(−ϕj(X̃(j)
0 )) | X̃(j)

τ = xτ ]−
λj

e−τµj + (1− e−τ )λj
X(j).

C.2 Proof of Proposition 5.2

For each mode j, define

ϕ̌j(X
(j), τ) = − logE

[
exp(−ϕj(X̃(j)

0 )) | X̃(j)
τ = X(j)

]
.

Under Assumption 2, the first N coordinates of the preconditioned Langevin dynamics (3) corre-
sponding to the observed modes j ≤ N satisfy

dXN
t =−

[
Diag
1≤j≤N

(sj(τ ;µ)) + CNσ
−2A⊤

NAN + Diag
1≤j≤N

(
εaj (τ)

)]
XN

t dt

+

[
CNσ

−2A⊤
Ny − CN Diag

1≤j≤N

(
∂j ϕ̌j(X

(j)
t )
)
− Diag

1≤j≤N

(
εaj (τ)∂jϕj(X

(j)
t )
)

− Diag
1≤j≤N

(
εbj(τ)

)]
dt+

√
2CNdW

N
t .

(25)

The SDE for the unobserved modes j > N can be obtained by taking AN = 0 above:

dX
(j)
t =−

[
sj(τ ;µ) + εaj (τ)

]
X

(j)
t dt

+
[
−λj∂j ϕ̌j(X(j)

t )− εaj (τ)∂jϕj(X
(j)
t )− εbj(τ)

]
dt+

√
2λjdW

(j)
t .

(26)

Both (25) and (26) are preconditioned overdamped Langevin SDEs. In particular, one checks that
(25) can be written as

dXN
t = −CN∇UN (XN

t )dt+
√
2CNdW

N
t ,

where the potential UN is

UN (XN ) =
1

2
XN⊤

[
C−1

N Diag
1≤j≤N

(sj(τ ;µ)) + σ−2A⊤
NAN + C−1

N Diag
1≤j≤N

(
εaj (τ)

)]
XN

−
[
σ−2A⊤

Ny − C−1
N Diag

1≤j≤N

(
εbj(τ)

)]
XN +

N∑
j=1

[
ϕ̌j(X

(j)
t )− λ−1

j εaj (τ)ϕj(X
(j)
t )
]
.
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Its stationary distribution is π̌N
y , which is absolutely continuous with respect to the Lebesgue measure

over RN :
dπ̌N

y (XN )

dXN
∝ exp(−UN (XN )).

We split UN into quadratic and non-quadratic terms. Hence

dπ̌N
y (XN )

dXN
∝ exp

(
−Φ̌N (XN , τ)

)
N (m̌N (τ), v̌N (τ))(XN ),

where N (m̌N (τ), v̌N (τ))(XN ) is the density at XN of the multivariate Gaussian with mean m̌N (τ)
and covariance v̌N (τ), with

Φ̌N (XN , τ) =

N∑
j=1

[
ϕ̌j(X

(j), τ) + λ−1
j εajϕj(X

(j)
t )
]
,

v̌N (τ) =

[
C−1

N Diag
1≤j≤N

(sj(τ ;µ)) + σ−2A⊤
NAN + C−1

N Diag
1≤j≤N

(
εaj (τ)

)]−1

,

m̌N (τ) = v̌N (τ)

[
σ−2A⊤

Ny − C−1
N Diag

1≤j≤N

(
εbj(τ)

)]
.

By the same argument, for each j > N , the one-dimensional potential of (26) is

Uj(X
(j))=

[
λ−1
j sj(τ ;µ) + λ−1

j εaj (τ)
] X(j)

t

2

2
+ λ−1

j εbj(τ)X
(j)
t + ϕ̌j(X

(j)
t ) + λ−1

j εaj (τ)ϕj(X
(j)
t ).

Its stationary distribution is therefore

dπ̌
(j)
y (X(j))

dX(j)
∝ exp

(
−Φ̌(j)(X(j), τ)

)
N (m̌(j)(τ), v̌(j)(τ))(X(j)),

where N (m̌(j)(τ), v̌(j)(τ))(X(j)) is the density at X(j) of the multivariate Gaussian with mean
m̌(j)(τ) and covariance v̌(j)(τ), with

Φ̌(j)(X(j), τ) = ϕ̌j(X
(j), τ) + λ−1

j εajϕj(X
(j)
t ),

v̌(j)(τ) =
[
λ−1
j sj(τ ;µ) + λ−1

j εaj (τ)
]−1

,

m̌(j)(τ) = −v̌(j)(τ)λj−1εbj(τ).

C.3 Error Analysis in the Non-Gaussian Setting

For the sake of completeness, we present a result analogous to Theorem 3.1 for the non-Gaussian
case. As the interested reader will notice, the calculations are significantly more involved, but remain
relatively straightforward.
Theorem C.1. We assume εaj (τ) = O(τ), εbj(τ) = O(1), and AN = Diag1≤j≤N (Ajj). The

Kullback-Leibler divergence between π̌(j)
y and π(j)

y is given by

DKL

(
π̌(j)
y

∣∣∣∣∣∣π(j)
y

)
= Bj(τ) + Ej(τ),

where Bj(τ) is a bias term given by

Bj(τ) =− 2λ−1
j εbj(τ)Eπ̌

(j)
y

[x] + λ−1
j p−1

j (εbj(τ))
2 + log

∫
e−ϕj(z)− 1

2σ2 [Ajjz−yj ]
2

N (0, µj)(z)dz

− log

∫
e−ϕj(z)− 1

2σ2 [Ajjz−yj ]
2

N (−p−1
j εbj(τ), µj)(z)dz,

and Ej(τ) is an error term

Ej(τ) = E
(1)
j (τ)τ + E

(2)
j (τ)λ−1

j εaj (τ) +O(τ3/2),
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where

E
(1)
j (τ) =

(
E
π̌
(j)
y

[
x2

µj

]
− λ−1

j p−1
j εbj(τ)

2

)
(1− pj) +

1

2
E
π̌
(j)
y

[
λj
(
ϕ′j(x)

2 − ϕ′′j (x)
)

−ϕ′j(x)(1− 2pj)x
]
−Z(εbj(τ), Ajj , yj)

−1

∫
e−ϕj(z)− 1

2σ2 [Ajjz−yj ]
2

N (−p−1
j εbj(τ), µj)(z)

×

[
1

2

(
λj(ϕ

′(z)2 − ϕ′′j (z))− ϕ′j(z)(1− 2pj)z
)
+

(
z + p−1

j εbj(τ)

µj

+
(z + p−1

j εbj(τ))
2

µj
− 1

2

)
(1− pj)

]
dz,

and

E
(2)
j (τ) = E

π̌
(j)
y

[
x2 − ϕj(x)

]
− p−2

j εbj(τ)
2 −Z(εbj(τ), Ajj , yj)

−1

∫
e−ϕj(z)− 1

2σ2 [Ajjz−yj ]
2

N (−p−1
j εbj(τ), µj)(z)

×

[
− ϕj(z) + z + p−1

j εbj(τ) +
(
z + p−1

j εbj(τ)
)2 − µj

2

]
dz,

with

Z(εbj(τ), Ajj , yj) =

∫
e−ϕj(z)− 1

2σ2 [Ajjz−yj ]
2

N (−p−1
j εbj(τ), µj)(z)dz.

Proof. In the following E
π̌
(j)
y

[ψ] and E
π̌
(j)
y

[ψ(x)] stand for
∫
ψ(x)dπ̌

(j)
y (x). Recall that for j ≤ N

the j-th mode marginal of the approximate posterior distribution π̌y is

dπ̌(j)
y (X(j)) =

1

Z
π̌
(j)
y

exp

(
−ϕ̌j(X(j))− λ−1

j εaj (τ)ϕj(X
(j)
t )− 1

2σ2

[
AjjX

(j) − yj

]2)

× dN

(
−
[
1

µ̌j
+ λ−1

j εaj (τ)

]−1

λ−1
j εbj(τ),

[
1

µ̌j
+ λ−1

j εaj (τ)

]−1
)
(X(j)),

while the true posterior is

dπ(j)
y (X(j)) =

1

Z
π̌
(j)
y

exp

(
−ϕj(X(j))− 1

2σ2

[
AjjX

(j) − yj

]2)
dN (0, µj).

For the unobserved modes j > N , we set Ajj = 0. For each j, we have

DKL

(
π̌(j)
y

∣∣∣∣∣∣π(j)
y

)
= E

π̌
(j)
y

[
logN

(
−
[
1

µ̌j
+ λ−1

j εaj (τ)

]−1

λ−1
j εbj(τ),

[
1

µ̌j
+ λ−1

j εaj (τ)

]−1
)

− logN (0, µj)

]
︸ ︷︷ ︸

first term

+ E
π̌
(j)
y

(
[1− λ−1

j εaj (τ)]ϕj − ϕ̌j

)
︸ ︷︷ ︸

second term

+ log
Z
π
(j)
y

Z
π̌
(j)
y︸ ︷︷ ︸

third term

.
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First term We derive

logN

(
−
[
1

µ̌j
+ λ−1

j εaj (τ)

]−1

λ−1
j εbj(τ),

[
1

µ̌j
+ λ−1

j εaj (τ)

]−1
)
(x)

= −1

2
log(2π)− 1

2
log

[
1

µ̌j
+ λ−1

j εaj (τ)

]−1

− 1

2

[
1

µ̌j
+ λ−1

j εaj (τ)

](
x+

[
1

µ̌j
+ λ−1

j εaj (τ)

]−1

λ−1
j εbj(τ)

)2

,

and

logN (0, µj)(x) = −1

2
log(2π)− 1

2
logµj −

1

2

x2

µj
.

Hence

E
π̌
(j)
y

[
logN

(
−
[
1

µ̌j
+ λ−1

j εaj (τ)

]−1

λ−1
j εbj(τ),

[
1

µ̌j
+ λ−1

j εaj (τ)

]−1
)

− logN (0, µj)

]

=
1

2
log

(
1

e−τ + (1− e−τ )pj
+ p−1

j εaj (τ)

)
− 1

2
E
π̌
(j)
y

[
1

µj

(
1

e−τ + (1− e−τ )pj
+ p−1

j εaj (τ)

)

×

(
x+

[
1

e−τ + (1− e−τ )pj
+ p−1

j εaj (τ)

]−1

p−1
j εbj(τ)

)2

− x2

µj

 .
We have

1

2
log

(
1

e−τ + (1− e−τ )pj
+ p−1

j εaj (τ)

)
=

1

2

(
(1− pj)τ + p−1

j εaj (τ)
)
+O(τ2),

and

E
π̌
(j)
y

[
1

µj

(
1

e−τ + (1− e−τ )pj
+ p−1

j εaj (τ)

)

×

(
x+

[
1

e−τ + (1− e−τ )pj
+ p−1

j εaj (τ)

]−1

p−1
j εbj(τ)

)2

− x2

µj


=
[
(1− pj)τ + p−1

j εaj (τ)
]
E
π̌
(j)
y

[
x2

µj

]
+ 2λ−1

j εbj(τ)Eπ̌
(j)
y

[x] + λ−1
j p−1

j εbj(τ)
2

×
[
1− (1− pj)τ − p−1

j εaj (τ)
]
+O(τ2).

Second term We have

E
[
exp

(
−ϕj(X̃0)

)
| X̃τ = x

]
=

∫
exp(−ϕj(z))

1√
2πvτ

exp

(
− (z −mτ (x))

2

2vτ

)
dz,

where

mτ (x) =
e−τ/2µj

e−τµj + (1− e−τ )λj
x =

[
1 +

(
1

2
− pj

)
τ +

(
pj
2

− 1

8

)
τ2
]
x+O(τ3),

and

√
vτ =

√
µj −

e−τµ2
j

e−τµj + (1− e−τ )λj
=
√
λjτ

(
1− τ

4
− τ2

32
+O(τ5/2)

)
.
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By the change of variable w = z−mτ (x)√
vτ

, we obtain

E
[
exp

(
−ϕj(X̃0)

)
| X̃τ = x

]
=

∫
exp(−ϕj(z))

1√
2πvτ

exp

(
− (z −mτ (x))

2

2vτ

)
dz

=

∫
exp(−ϕj (

√
vτw +mτ (x)))

1√
2π

exp(−w2/2)dw

= exp(−ϕj(x))
[
1 +

{
λj
[
ϕ′j(x)

2 − ϕ′′j (x)
]
− ϕ′j(x)(1− 2pj)x

} τ
2
+O(τ3/2)

]
where we used the Taylor expansion for exp(−ϕj

(√
vτw +mτ (x)

)
) as

√
τ → 0 and∫

w√
2π

exp(−w2/2) = 0,

∫
w2

√
2π

exp(−w2/2) = 1.

Hence

E
π̌
(j)
y
(ϕj(x)− ϕ̌j(x))

= E
π̌
(j)
y

log
[
1 +

{
λj
[
ϕ′j(x)

2 − ϕ′′j (x)
]
− ϕ′j(x)(1− 2pj)x

} τ
2
+O(τ3/2)

]
.

Third term For the unobserved modes j > N , we analyze∫
e−ϕj(z)N (0, µj)(z)dz∫

e−ϕ̌j(z)−λ−1
j εaj (τ)ϕj(z)N (−[µ̌−1

j + λ−1
j εaj (τ)]

−1λ−1
j εbj(τ), [µ̌

−1
j + λ−1

j εaj (τ)]
−1)(z)dz

. (27)

We use that

ϕ̌j(z) = ϕj(z)−
[
λj(ϕ

′
j(z)

2 − ϕ′′j (z))− ϕ′j(z)(1− 2pj)z
]τ
2
+O(τ3/2),

which implies

e−ϕ̌j(z)−λ−1
j εaj (τ)ϕj(z)

= e−ϕj(z)
(
1 +

[
λj(ϕ

′
j(z)

2 − ϕ′′j (z))− ϕ′j(z)(1− 2pj)z
]τ
2
− λ−1

j εajϕj(z) +O(τ3/2)
)
.

Now we consider the density of N
(
− [µ̌−1

j + λ−1
j εaj (τ)]

−1λ−1
j εbj(τ), [µ̌

−1
j + λ−1

j εaj (τ)]
−1
)
:

1√
2π[µ̌−1

j + λ−1
j εaj (τ)]

−1
exp

−

(
z + [µ̌−1

j + λ−1
j εaj (τ)]

−1λ−1
j εbj(τ)

)2
2[µ̌−1

j + λ−1
j εaj (τ)]

−1

 . (28)

We have
1√

2π[µ̌−1
j + λ−1

j εaj (τ)]
−1

=
1√
2πµj

[
1− 1

2
(1− pj)τ −

1

2
p−1
j εaj (τ) +O(τ2)

]
. (29)

We now look at the exponent of (28). Its numerator reduces to

(z + p−1
j εbj(τ))

2 − 2(z + p−1
j εbj(τ))((1− pj)τ + p−1

j εaj (τ)) +O(τ2),

while the reciprocal of its denominator (28) reduces to
1

2µj

[
1 + (1− pj)τ + p−1

j εaj (τ) +O(τ2)
]
.

Then the exponent of (28) can be expanded as

− 1

2µj
z2 − 1

2µj
p−2
j εbj(τ)

2 − zλ−1
j εbj(τ)

+

[
(z + p−1

j εbj(τ))

µj
+

(z + p−1
j εbj(τ))

2

2µj

]
((1− pj)τ + p−1

j εaj (τ)) +O(τ2),
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and the exponential term in (28) becomes

exp

(
−
(z + p−1

j εbj(τ))
2

2µj

)

×

[
1 +

(
z + p−1

j εbj(τ)

µj
+

(z + p−1
j εbj(τ))

2

2µj

)
((1− pj)τ + p−1

j εaj (τ)) +O(τ2)

]
.

(30)

Putting together (29) and (30) we get that the Gaussian density (28) is expanded as

N (−p−1
j εbj(τ), µj)(z)

×

[
1 +

(
z + p−1

j εbj(τ)

µj
+

(z + p−1
j εbj(τ))

2

µj
− 1

2

)
((1− pj)τ + p−1

j εaj (τ)) +O(τ2)

]
.

We can now expand for small τ[∫
e−ϕ̌j−λ−1

j εaj (τ)ϕjdN (−[µ̌−1
j + λ−1

j εaj (τ)]
−1λ−1

j εbj(τ), [µ̌
−1
j + λ−1

j εaj (τ)]
−1)

]−1

.

Let
Zj(ε

b
j(τ)) =

∫
e−ϕj(z)N (−p−1

j εbj(τ), µj)(z)dz.

We derive

Zj(ε
b
j(τ))

−1

{
1−Zj(ε

b
j(τ))

−1

×
∫
e−ϕj(z)N (−p−1

j εbj(τ), µj)(z)

[(
λj(ϕ

′(z)2 − ϕ′′j (z))− ϕ′j(z)(1− 2pj)z
)τ
2

− λ−1
j εaj (τ)ϕj(z) +

(
z + p−1

j εbj(τ)

µj
+

(z + p−1
j εbj(τ))

2

µj
− 1

2

)(
(1− pj)τ + p−1

j εaj (τ)

)]
dz

}
+O(τ3/2).

Then (27) can be expanded as

logZj(0)− logZj(ε
b
j(τ))

−Zj(ε
b
j(τ))

−1

∫
e−ϕj(z)N (−p−1

j εbj(τ), µj)(z)

[(
λj(ϕ

′(z)2 − ϕ′′j (z))

− ϕ′j(z)(1− 2pj)z
)τ
2
− λ−1

j εaj (τ)ϕj(z) +

(
z + p−1

j εbj(τ)

µj
+

(z + p−1
j εbj(τ))

2

µj
− 1

2

)

× ((1 + pj)τ + p−1
j εaj (τ))

]
dz +O(τ3/2).

Now let
Zj(ε

b
j(τ), Ajj , yj) =

∫
e−ϕj(z)− 1

2σ2 [Ajjz−yj ]
2

N (−p−1
j εbj(τ), µj)(z)dz.

For the observed modes j ≤ N , we get

logZj(0, Ajj , yj)− logZj(ε
b
j(τ), Ajj , yj)

−Zj(ε
b
j(τ), Ajj , yj)

−1

∫
e−ϕj(z)− 1

2σ2 [Ajjz−yj ]
2

N (−p−1
j εbj(τ), µj)(z)

[(
λj(ϕ

′(z)2 − ϕ′′j (z))

− ϕ′j(z)(1− 2pj)z
)τ
2
− λ−1

j εaj (τ)ϕj(z) +

(
z + p−1

j εbj(τ)

µj
+

(z + p−1
j εbj(τ))

2

µj
− 1

2

)

× ((1− pj)τ + p−1
j εaj (τ))

]
dz +O(τ3/2).
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Remark C.1. If ϕj is smooth and εbj(τ) = O(1), then Ej(τ) → 0 as τ → 0.

D Illustrations: Additional Details

Here we provide additional details on the theoretical setup underlying the illustrations. All illustrations
were generated on Google Colab (13 GB of RAM), and all code executions took less than one minute1.

D.1 Recovering the KL coefficients of the Brownian sheet

The Brownian sheet B(x1, x2) is a Gaussian process with zero mean and covariance

Cov(B(x1, x2), B(y1, y2)) = min(x1, y1)min(x2, y2).

Its Karhunen-Loève expansion [50] is

B(x1, x2) =
∑
j,k

ϕj,k(x1, x2)ηj,k, (x1, x2) ∈ [0, 1]2,

where ηj,k ∼ N (0, µj,k) are independent Gaussian random variables, and

ϕj,k(x1, x2) = 2 sin

(
π

(
j − 1

2

)
x1

)
sin

(
π

(
k − 1

2

)
x2

)
,

µj,k =

((
j − 1

2

)
π

(
k − 1

2

)
π

)−2

.

In Section 6, we truncate the KL expansion after N modes

BN (x1, x2) =

N∑
j,k=1

ϕj,k(x1, x2)ηj,k,

and consider the inverse problem of recovering the first N2 coefficients from noisy observations
corresponding to the first M2 ≤ N2 modes

yj,k = η̃j,k + εj,k, j, k ≤M,

where the prior is η̃j,k ∼ N (0, µj,k) and the noise εj,k ∼ N (0, σ2). This setup satisfies the
assumptions of our theory, since the prior diagonal in the KL basis (ϕj,k) and the forward map is
simply the projection onto these modes, so that

Aj,k,j′,k′ = δj,j′δk,k′ , j, j′, k′, k ≤M,

and zero otherwise. As a result, the posterior for each coefficient remains Gaussian

η̃j,k | yj,k ∼ π(j,k)
yj,k

= N (mj,k, vj,k),

with, for j, k ≤M ,

vj,k =
(
µ−1
j,k + σ−2

)−1

=
µj,kσ

2

µj,k + σ2
, mj,k =

µj,k

µj,k + σ2
yj,k,

and for j > M or k > M (unobserved modes) the posterior simply coincides with the prior,
vj,k = µj,k, mj,k = 0.

Experimental details In Figure 2, within the theoretical setup described above, we set the noise
level σ = 10−2, chose N = 200, and varied the number of observed modes M2 = 752, 2002 to
illustrate the discretization-invariance of the preconditioned Langevin sampler. This is confirmed by
the small errors reported in the fourth column of Figure 2. The preconditioned Langevin dynamics,
using the preconditioner CM = Diag1≤j,k≤M (λj,k), λj,k = [µ−1

j,k + σ−2]−1, was run for 5 · 103

iterations with a fixed step-size of 5 · 10−1. We assumed access to the exact score function, i.e.,
ϕ = τ = 0 in (6).

1Code to reproduce results can be found at https://github.com/balorenz1/SGM-Inf-Langevin
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D.2 Inverse source problem for the heat equation

Let Ω = [0, 1]2 ⊆ R2. Consider u : Ω× [0, T ] → R solving the heat equation
∂tu(x, t) = ∆u(x, t), (x, t) ∈ Ω× (0, T ],

u(x, 0) = g(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω× (0, T ].

Set u(x1, x2; t) =
∑∞

j,k=1 uj,k(t)ψj,k(x1, x2), where (ψj,k, ζj,k) are the Dirichlet eigenpairs of
−∆ on [0, 1]2: {

−∆ψj,k(x1, x2) = ζj,k ψj,k(x1, x2), (x1, x2) ∈ [0, 1]2,

ψj,k|∂[0,1]2 = 0.

We have
ψj,k(x1, x2) = 2 sin(jπx1) sin(kπx2), ζj,k = π2(j2 + k2).

The coefficients evolve as

uj,k(t) = e−ζj,kt gj,k, gj,k = ⟨g, ϕj,k⟩.

In Section 6, we consider the the so-called backward heat equation—the ill-posed inverse problem of
recovering the initial condition g from noisy measurements of u(·, T ) inside Ω

yj,k = e−ζj,kT gj,k + εj,k, j, k ≤M,

by adopting a Bayesian approach [3]. We assume a Gaussian prior gj,k ∼ N (0, e−βζj,k) and
independent Gaussian noise εj,k ∼ N (0, σ2). The forward map is diagonal in (ψj,k), with

Aj,k,j′,k′ = e−ζj,kT δj,j′δk,k′ , j, j′, k, k′ ≤M.

As a result, the posterior for each coefficient remains Gaussian

gj,k | yj,k ∼ N (mj,k, vj,k),

with, for j, k ≤M ,

vj,k =
e−βζj,kσ2

e−(β+2T )ζj,k + σ2
, mj,k =

µj,k

e−(β+2T )ζj,k + σ2
e−ζj,kT yj,k.

For j > M or k > M (unobserved modes), the posterior simply coincides with the prior.

Experimental details In Figure 3, within the theoretical setup described above, we fixed the noise
level at σ = 5 · 10−3, chose M = 15 (i.e. 225 observed modes), and set T = 0.1. We then ran the
preconditioned Langevin sampler—with the optimal preconditioner C from Theorem 4.1—using the
exact score function perturbed by a relative error εaj ∼ N (0, 0.12), scaled by τ = 10−3 in the top row
of Figure 3 and by 10−1 in its bottom row, and with zero bias (i.e. εbj = 0) to simulate a learned score.
This sampler was run for 5 · 103 iterations with a fixed step-size of 10−2. For comparison, we also
executed the vanilla Langevin sampler for 1.5 ·104 iterations with a fixed step-size of 10−6. To further
illustrate the quality of our preconditioned posterior samples, Figure 5 below shows uncertainty
quantification for Figure 3. For the first 35 modes, we plot the conditional posterior mean (red), the
95% credible interval (orange shading), and the ground truth (dotted black line).

Figure 5: Uncertainty quantification for preconditioned posterior sampling. Left: τ = 10−3. Right:
τ = 10−1
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• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models
that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We use open-source packages.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification: No new asset is released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper is mainly a theoretical analysis and does not involve LLMs as any
important, original, or non-standard components.
Guidelines:
• The answer NA means that the core method development in this research does not involve

LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for

what should or should not be described.

33

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Langevin Posterior Sampling with Score-Based Generative Priors
	Error Analysis in the Gaussian Setting
	The Essence of Preconditioning
	Non-Gaussian Sampling
	Illustrations
	Discussion and Future Work
	Proofs of Section 3
	Proof of Proposition 3.1
	Proof of Theorem 3.1

	Proofs of Section 4
	Proof of Proposition 4.1
	Proof of Theorem 4.1

	Non-Gaussian Sampling: Technical Details
	Proof of Proposition 5.1
	Proof of Proposition 5.2
	Error Analysis in the Non-Gaussian Setting

	Illustrations: Additional Details
	Recovering the KL coefficients of the Brownian sheet
	Inverse source problem for the heat equation


