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ABSTRACT

Distribution shifts between training and test graphs typically lead to the decreased
performance of well-trained graph neural network (GNN) models, negatively af-
fecting their ability to generalize in real-world applications. Although there have
been advances in addressing graph distribution shifts through various model archi-
tectures and training strategies, implementing existing solutions in practical GNN
deployment and serving at test time can be challenging, as they often necessitate
significant modifications or retraining of the GNNs. To address such challenges,
in this work, we propose a novel method, i.e., Test-Time Graph REBirth, dubbed
TT-GREB, to effectively generalize the well-trained GNN models to the test-time
graphs under distribution shifts by directly manipulating the test graph data. Con-
cretely, we develop an overall framework designed by two principles, corresponding
to two sub-modules: (1) prototype extractor for re-extracting the environment-
invariant features of the test-time graph; and (2) environment refiner for re-fining
the environment-varying features to explore the potential shifts. Furthermore, we
propose a dual test-time graph contrastive learning objective with an effective
iterative optimization strategy to obtain optimal prototype components and envi-
ronmental components of the test graph. By reassembling these two components,
we obtain a newly reborn test graph, which is better suited for generalization on
the well-trained GNN model with shifts in graph distribution. Extensive experi-
ments on real-world graphs under diverse test-time distribution shifts verify the
effectiveness of the proposed method, showcasing its superior ability to manipulate
test-time graphs for better GNN generalization ability.

1 INTRODUCTION

Recent advances in graph neural networks (GNNs) have achieved great success with promising
learning abilities for various graph structural data in numerous real-world applications (Zhang et al.,
2022; Zheng et al., 2022a;b; 2023c;a; Jin et al., 2022; Zheng et al., 2022c). Well-designed GNN
models are ultimately intended for practical deployment and serving on various graph learning
tasks (Zheng et al., 2023b; Liu et al., 2023b; Yu et al., 2023). However, these expertly trained GNNs
generally experience significant performance degradation due to the graph distribution shift issue
between the training and the test graphs (Wu et al., 2022b; Liu et al., 2023a; Chen et al., 2023b; Yu
et al., 2023). The main reason behind such distribution mismatch lies in the underlying environmental
variations, with time-related attribute changes, agnostic corruptions, and inconsistent graph data
collection procedures (Sui et al., 2023; Chen et al., 2023b; Jin et al., 2023). These factors would lead
to considerable differences in node contexts, graph structures, and the overall scale of graphs during
the test-time stage.

To overcome the model generalization challenge caused by graph distribution shifts, there is a
growing focus on research into learning with distribution shifts on graphs, from the model-centric
perspective (Wu et al., 2022b; You et al., 2023; Chen et al., 2023c; Wu et al., 2020). Typically,
these existing methods incorporate invariant representation learning into GNN development through
customizing model architectures and training strategies (Xu et al., 2019; Zhu et al., 2021; Liu et al.,
2022; Wu et al., 2022a). However, in real-world GNN deployment and serving, it may not be
always practical to re-design GNN model architectures or re-train well-trained GNN models by test-
time fine-tuning. This would be more challenging when these well-trained GNNs are continuously
in service online, as accessing and modifying their parameters becomes more difficult. Given
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(a)	Model-centric	Graph	Learning	Under	Distribution	Shifts (b)	Data-centric	Test-time	Graph	Rebirth	Under	Distribution	Shifts	
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Figure 1: Comparison between the (a) model-centric graph learning methods v.s. our proposed (b)
data-centric test-time graph rebirth method under graph distribution shifts.

all these circumstances including complex training-test graph distribution shifts and inaccessible
online-serving GNN model fine-tuning, an intriguing problem emerges:

Question: Is it possible to give the rebirth of the test-time graph data from the data-centric perspective, to
serve various well-trained GNN models for better generalization under distribution shifts?

In this work, we provide a feasible graph data-centric solution to answer this question by enhancing
the test-time graph data quality, without accessing the training graph data or modifying the well-
trained GNNs, as shown in Fig. 1. Specifically, the original test graph would undergo a rebirth
process to emerge as a new test graph, which is then fed into the well-trained GNN model for direct
inference without retraining or fine-tuning. In the test-time graph rebirth process, we identify two
essential components that decomposed a graph under distribution shifts: (a) the environment-invariant
component retains consistent informative features (such as node class label prototypes) across various
training and test graph distributions; (b) the environment-varying component dictates the extent of
shifts in graph data distribution between training and test.

In light of this, we propose a novel test-time graph rebirth method for serving good GNN generaliza-
tion under graph distribution shifts with two principles: (1) re-extracting the environment-invariant
features of the test-time graph for identifying the predictive pattern of node class label prototypes with
a prototype extractor, and (2) re-fining the environment-varying features to explore the potential
shifts in the training-test distribution with a environment refiner, leading to the alignment of the
training-test environment latent space with improved generalization capabilities for online GNN
deployment. Furthermore, due to the unknown test-time graph node labels, we propose a dual
test-time graph contrastive learning objective with self-supervision signals, along with an effective
iterative optimization strategy to obtain expressive prototype features and environmental features
of the test graph. In this way, we preserve prototype features to determine the node class label’s
predictive patterns, meanwhile, we adjust the environmental features of the original test graph to
match those of the training graph. Then, these components are reassembled into a newly reborn test
graph, which better suits the well-trained GNNs’ generalization under distribution shifts.

In summary, the contributions of this work are as follows:

• Graph Data-centric Paradigm. We introduce a novel graph data-centric paradigm, Test-
Time Graph REBirth (TT-GREB), designed to enhance the generalization ability of well-
trained GNNs to real-world test graphs experiencing distribution shifts at test time.

• Innovative Solution. We develop a comprehensive framework with two core components:
a prototype extractor that identifies invariant features within test-time graphs, and an envi-
ronment refiner that adjusts varying features to align the latent spaces of training and test
environments. These components are effectively optimized through a dual test-time graph
contrastive learning objective and an iterative optimization strategy.

• Comprehensive Evaluation. We evaluate the proposed method on real-world test graphs
under diverse graph distribution shifts. Extensive experimental results reveal consistently
strong generalization ability on various well-trained GNN models, providing compelling
evidence for the efficacy of the proposed method.
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2 RELATED WORK

Test-time Adaption. Our work is related to test-time adaption methods, which aim to enable dynamic
tuning of the pre-trained model to generalize and adapt well to the test samples (Sun et al., 2020;
Wang et al., 2020; Chen et al., 2023a; Liang et al., 2020; Jang et al., 2022). The pioneering work is
Test-Time Training (TTT) (Sun et al., 2020), which re-trains model weights at test time on a single
test image sample through a self-supervised learning objective with an auxiliary task. Moreover,
TENT (Wang et al., 2020) proposes a fully test-time adaption problem that only accesses model
parameters and the test data. Considering most existing methods are model-centric and serve the
computer vision domain, which might not fit GNN models and graph data, GTRANS (Jin et al., 2023)
first proposes to adapt test graph data without accessing the training procedure and GNN architectures.
However, GTRANS employs a fully parameterized matrix to represent modified test-time graph node
features and engages in graph structure learning within the dynamic node representation learning
process. For one thing, the fully parameterized approach to node feature learning merely adds to
the original node features, which narrows the scope for learning updated test graphs. For another
thing, GTRANS uses a binary-space projected gradient descent method, limiting the flexibility in
handling diverse graph structures. In this work, we conduct the parameterized decomposition of the
test graph to give it a rebirth by re-extracting the invariant features and re-fining test-time varying
features of test graphs. This allows for more adaptable modifications to test graphs with an expended
optimization space of our proposed TT-GREB.

Graph Learning Under Distribution Shifts. Our work is also relevant to the research topic of graph
learning under distribution shifts, whose goal is to develop a GNN model for better generalization
ability on test graphs under graph distribution shifts (Wu et al., 2020; Chen et al., 2023b; Sui et al.,
2023; Guo et al., 2023; Chen et al., 2022a; Wang et al., 2022). Typically, UDAGCN (Wu et al.,
2020) conducts unsupervised graph domain adaption with a domain adversarial method to learn
domain-invariant embeddings across the source domain and the target domain. AIA (Sui et al.,
2023) proposes graph data augmentation with effective GNN learning to handle the covariate shift on
graphs for the graph classification task. Different from these graph model-centric methods, in this
work, we mainly focus on modifying the test graph data with self-supervision signals to deal with
the distribution-shifted test graph learning problem. Therefore, the critical distinction between our
work and existing methods is that our work is primarily concerned with a graph data-centric learning
paradigm to directly manipulate test graph data for serving better the GNN generalization ability
under distribution shifts.

3 TEST-TIME GRAPH REBIRTH (TT-GREB)

Preliminary. Given a training graph Gtr = (Xtr,Atr,Ytr) ∼ Ptr with N nodes and C-classes of
node labels, where Xtr ∈ RN×d is the d-dimension nodes feature matrix indicating node attribute
semantics, Atr ∈ RN×N is the adjacency matrix indicating whether nodes are connected or not by
edges with Ai,j

tr = {0, 1} ∈ R for i-th and j-th nodes, Ytr ∈ RN×C denotes the node labels, and Ptr
is the training graph distribution.

Training Stage: A GNN model is trained on Gtr according to the following objective function for
node classification:

θ∗
tr = min

θtr
Lcls

(
Ŷtr,Ytr

)
, where

Ztr, Ŷtr = GNNθtr(Xtr,Atr).

(1)

The parameters of GNN trained on Gtr is denoted by θtr, Ztr ∈ RN×d1 is the output node embedding
of graph Gtr from GNNθtr , and Ŷtr ∈ RN×C denotes the output node labels predicted by the trained
GNNθtr . By optimizing the node classification loss function Lcls (e.g., cross-entropy loss) between
GNN predictions Ŷtr and ground-truth node labels Ytr, the GNN model that is well-trained on Gtr
can be denotes as GNNθ∗

tr
with optimal weight parameters θ∗

tr. Note that once we obtain the optimal
GNNθ∗

tr
that has been well-trained on Gtr, the GNN model would be fixed and Gtr would not be

accessible during test time.

Test-time Inference: For practical GNN deployment and serving, given a real-world test graph
Gte = (Xte,Ate) ∼ Pte including M nodes with its feature matrix Xte ∈ RM×d and its adjacency

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

matrix Ate ∈ RM×M , we assume that there are potential distribution shifts between Gtr and Gte,
which mainly lies in node contexts, graph structures, and scales as Ptr ̸= Pte, but the label space keeps
consistent under the covariate shift, i.e., all nodes in Gte are constrained in the same C-classes as
Gtr as {Ytr,Yte} ∈ Y = {1, · · · , C}. Generally, the well-trained model GNNθ∗

tr
would be directly

used for inferring on the test graph as Ŷte = GNNθ∗
tr
(Xte,Ate). However, due to the latent graph

distribution shifts at the test time, the optimal parameters θ∗
tr learned on the training graph would not

be ideal for inference on the test-time graph. This can result in less accurate node classification on
the test graph and does harm to the GNN’s generalization ability.

Compared with existing model-centric methods working on learning optimal GNN parameter θ∗
{tr,te}

on the joint distribution of the training and test graphs, which requires GNN architecture re-designed
and fine-tuned, in this work, we pay attention to a data-centric solution through modifying the test
graph Gte under distribution shifts by test-time graph rebirth, without re-designing and fine-tuning
the well-trained GNNθ∗

tr
, and without accessing the training graph Gtr.

3.1 PROBLEM FORMULATIONS

Through the length of graph structural data generation hypothesis in existing studies (Gui et al.,
2022; Ye et al., 2022; Wu et al., 2021; Sui et al., 2023; Chen et al., 2022b; 2023b), a graph can
be generated through a mapping fgen : {C,S} → G, where C ⊆ Rnc and S ⊆ Rns are the latent
variables denotes the environment-invariant part and the environment-varying parts for generating the
graph G ∈ G = ∪∞

N=1{0, 1}N × RN×d, where nc and ns denote the dimensions of latent variables,
respectively. Inspired by such structural causal model (SCM) (Chen et al., 2022b; 2023b) for graph
generation progress, we have the following proposition to comprehend test-time graph distribution
shifts and the test-time graph discrepancy from the training graph.

Proposition 1 Given the training graph Gtr ∼ Ptr, there exist the environment-invariant part GInv
tr

and the environment-varying part GEnv
tr components in this graph, denoting as Gtr = {GInv

tr , GEnv
tr },

likewise for the the test graph Gte ∼ Pte with Gte = {GInv
te , GEnv

te }. Then, the GNN model GNNθ∗
tr

that has been well trained on the Gtr would keep good generalization on the test graph when

GInv
tr = GInv

te ∼ QInv , dist
(
GEnv

tr , GEnv
te

)
< ϵ,

where GEnv
tr ̸= GEnv

te , GEnv
tr ∼ QEnv

tr , GEnv
te ∼ QEnv

te .
(2)

push close
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Figure 2: Illustration of distribution shifts in test-time graphs
v.s. training graphs.

In this proposition, the function
dist(·) quantifies the discrepancy be-
tween the components of the train-
ing graph and the test graph that vary
with the environment. Additionally,
QInv represents the distribution of la-
tent variables that remain constant
across different environments, and is
expected to be identical in both the
training and test graphs. Furthermore,
the environmental variables of GEnv

tr
and GEnv

te are presumed to adhere to
distinct, environment-specific distri-
butions, denoted as QEnv

tr and QEnv
te , re-

spectively.

As shown in Fig. 2, we elaborate on the distribution shifts in the test-time graph and the training
graph, from the view of latent variable decomposition according to Proposition 1. It shows two
fundamental insights and principles for test-time graph rebirth:

1. Re-extracting the environment-invariant features of the test-time graph, which shares the same
informative characteristics with the training graph, to assure that they can reflect the predictive
pattern of node class labels, denoting as class-related prototype features.

2. Re-fining the environment-varying features, which are primarily attributed to possible shifts in the
training-test distribution, referred to environment features. Essentially, a well-trained GNN model
is supposed to perform expressively on the test graph, when the test distribution closely matches
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Figure 3: The overall framework of the proposed test-time graph rebirth (TT-GREB) method.

the training graph’s distribution. When we push the test-time environment feature distributions
more closely with those of the training graph, the well-trained GNN is likely to exhibit improved
generalization capabilities under distribution shifts.

According to such two principles, if we (1) keep prototype features and (2) align the environment
features on the test graph, then, make a re-composition, we could transform the original test graph to
a new test graph, this process can be defined as the problem of test-time graph rebirth:

Definition 3.1 (Test-time Graph Rebirth) Given the test graph Gte = (Xte,Ate) and the well-
trained GNN model GNNθ∗

tr
, test-time graph rebirth aims to learn following mapping functions:

fPro : Gte → GInv
te and fEnv : Gte → GEnv

te , with the re-composition function g = fPro ◦ fEnv, the
rebirth test graph can be denoted as

G′
te = (X′

te,A
′
te) = g(fPro(Gte), fEnv(Gte)). (3)

In this way, the rebirth test graph would be fed into the well-trained GNN model that has been
deployed online in practice for making inference Ŷ′

te = GNNθtr(X
′
te,A

′
te), where Ŷ′

te is expected to
be more closely aligned with the actual ground-truth node labels of the test graph compared to the
initial predictions Ŷte.

3.2 METHODOLOGY

According to the two principles, in this work, we propose a novel method, named TT-GREB, to
address the test-time graph rebirth problem for serving good GNN generalization under distribution
shifts at the test time.

The overall framework is illustrated in Fig. 3. Concretely, the proposed TT-GREB consists of
two components: (1) a prototype extractor identifies features that remain unchanged in different
environments, mainly determined by node class labels, where these features can be consistent in both
training and test graphs and reflect the predictive pattern of GNN models; and (2) an environment
refiner adjusts the environment-varying features of the test-time graph, to match the latent distribution
of the training graph’s environment. This alignment ensures that the GNN, which is well-trained
on the training graph, demonstrates strong generalization capability on the rebirth test graph. More
details of the modular design of our proposed TT-GREB are presented below.

3.2.1 MODULAR DESIGN.

Given a test-time graph Gte = (Xte,Ate) with M nodes with d dimension node attribute features,
the prototype extractor fPro

ϕp
(·) and the environment refiner fEnv

ϕe
(·), parameterized by ϕp and ϕe,

respectively, take it as the input simultaneously. For ease of reference, we denote them as fϕp
(·) and

fϕe(·), by omitting the superscripts in subsequent mentions.

5
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Concretely, these two sub-modules share the same structure, i.e., two full-connected layers, FCk
node(·)

and FCk
edge(·) to generate the soft and dense node attribute reweight matrix Wk

node ∈ Rd×d, and
the edge reweight matrix Wk

edge ∈ RM×M , where k = {Pro,Env} for indicating the layers in the
prototype extractor and the environment refiner, respectively. In this way, we have:

Wk
node = σ

(
FCk

node(Xte)
)
,

Wk
edge(i, j) = σ

(
FCk

edge

([
xi

te,x
j
te

]))
,

(4)

where σ(·) is the sigmoid function that constrains both the node attribute reweight matrix and the
edge reweight matrix to [0, 1], and xi

te = Xte [i, :] denotes the i-th row’s feature representation for
node i, so as for node j with xj

te = Xte [j, :], attributing the value in the location (i, j) for Wk
edge.

Then, we could obtain the graph GPro = (XPro,APro) that reflects the node class label prototypes
and the graph GEnv = (XEnv,AEnv) that adjusts the test-time graph characteristics that vary with
environments under distribution shifts, as:

GPro = fϕp(Gte) =
(
Ate ⊙WPro

edge, Xte ⊙WPro
node

)
,

GEnv = fϕe
(Gte) =

(
Ate ⊙WEnv

edge, Xte ⊙WEnv
node

)
,

(5)

where ⊙ is the broadcasted element-wise product. After these, we make a re-composition with the
prototype graph GPro and the environment graph GEnv components to build a new test-time graph
G′

te = (X′
te,A

′
te) through:

G′
te = g(Gte) =

(
Ate ⊙WComp

edge , Xte ⊙WComp
node

)
, where

WComp
edge =

(
1edge −WPro

edge

)
⊙WEnv

edge +WPro
edge, and

WComp
node =

(
1node −WPro

node

)
⊙WEnv

node +WPro
node.

(6)

In this process, 1node and 1edge denote the all-one matrices. Given WPro
node represents the class-prototype

node attribute reweight matrix,
(
1node −WPro

node

)
can be viewed as a plain and straightforward

proportion of the environment-sensitive node attributes. Then,
(
1node −WPro

node

)
⊙WEnv

node re-composes
node attribute reweight matrix by explicitly imposing the environment refinement WEnv

node on the
environment-sensitive proportion. And then, +WPro

node makes sure to preserve the environment
consistent proportion. The edge reweight matrix composition would follow the same rule. The
rationale for such a re-composition schema is based on the understanding that the interplay between
node class label prototypes and environment features is typically more complex than a basic additive
combination, such as (WEnv

node +WPro
node). This complexity becomes particularly evident under the

distribution shifts encountered during test time.

By this re-composition schema, we jointly keep prototype features and align the environment features
on the test graph, leading to a transformation from the original test graph to a newly reborn test graph.
In this way, the new test-time rebirth graph can make effective predictions with good generalization
ability on the well-trained GNN model with graph data distribution shifts.

3.2.2 OPTIMIZATION OBJECTIVE.

During the test time, to improve the well-trained GNN model generalization under graph distribution
shifts, the significant challenge faced with graph data-centric transformation through test-time graph
rebirth is the scarcity of test ground-truth labels. Consequently, this makes it more challenging to
conduct supervised learning by minimizing the cross entropy loss, which is the most readily and
straightforward solution. Therefore, with (1) the insufficient node class labels of the test graph, (2) the
inaccessible training graph for online GNN deployment, and (3) the unknown graph distribution shifts,
it is imperative to develop an effective self-supervised learning objective along with an appropriate
optimization strategy.

In this work, we propose a dual test-time graph contrastive learning objective with an effective
iterative optimization strategy. For one thing, we use self-supervise signals from the well-trained
GNN’s output node representations to guide the learning of prototype extractor with the graph

6
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contrastive learning loss LPro, following the parameter-free principle (Jin et al., 2023). Through the
lens of the general graph contrastive learning scheme, the core idea is to maximize the similarity
between two consistent views of the same graph, and to minimize the similarity when the views are
not in agreement. For another thing, we perform a decomposition of environment-varying features on
the test graph, by ensuring the environmental discrepancy under the graph distribution shifts during
the test time. Considering the inaccessible training graph, we encourage the discrepancy between the
environmental characteristics of the reborn test-time graph and the original test-time graph, leading
to the graph environment refinement loss LEnv to optimize the proposed environment refiner. As
illustrated in the lower section of Fig.3, these two optimization objectives are iteratively refined using
gradient descent until they reach convergence. More implement details of the dual learning objective
of our proposed TT-GREB are presented as follows.

Given the obtained prototype graph GPro, the environment graph GEnv, and the new rebirth graph G′
te,

we fed them into the well-trained GNN model simultaneously, leading to the node representations
with ZPro = GNNθ∗

tr
(GPro), ZEnv = GNNθ∗

tr
(GEnv), and Zte′ = GNNθ∗

tr
(G′

te). Then, the learning
objective of structural prototype feature extraction for test-time graph rebirth can be:

min
ϕp

LPro =

M∑
i=1

(
1− (zte′

i )⊤zPro
i∥∥(zte′

i )⊤
∥∥∥∥zPro

i

∥∥
)

−
N∑
i=1

(
1− (zEnv

i )⊤zPro
i∥∥(zEnv

i )
∥∥∥∥zPro

i

∥∥
)

+ α
[
Reg

(
WPro

node

)
+Reg

(
WPro

edge

)]
.

(7)

Furthermore, the learning objective of environment refinement can be written as:

max
ϕe

LEnv = dist(Gte, GEnv) = ||Zte − ZEnv||22

− β
[
Reg

(
WEnv

node

)
+Reg

(
WEnv

edge

)]
,

(8)

where Reg(W♣) = |
∑

W♣∑
(1−W♣)

− λs| is the regularization term with s = {1, 2, 3, 4} and
superscript♣ corresponding to WPro

node, W
Pro
edge, W

Env
node, and WEnv

edge, respectively. Here, λs acts as
a hyper-parameter ranging [0, 1], while α and β balance the loss functions between the primary
optimization objectives and the regularization terms. These regularization terms are designed to keep
the average ratio of the number of reweighted node features or edges close to λs, thereby stabilizing
the training process and avoiding trivial solutions.

4 EXPERIMENT

In this section, we verify the effectiveness of the proposed TT-GREB in terms of the GNN gen-
eralization ability on test-time graphs under distribution shifts. Concretely, we aim to answer the
following questions to demonstrate the effectiveness of the proposed TT-GREB: Q1: How does
the proposed TT-GREB perform on the well-trained GNNs for node classification task under var-
ious graph distribution shifts at test time? Q2: How does the proposed TT-GREB perform when
conducting an ablation study regarding the sub-module components and the learning strategy? Q3:
How sensitive are the hyper-parameter λ for the proposed TT-GREB? Q4: How does the proposed
TT-GREB perform in terms of running time efficiency and visualization?

4.1 EXPERIMENTAL SETTINGS

Datasets. We perform experiments on five real-world graph datasets with diverse graph data distri-
bution shifts containing: node feature shifts: Cora (Yang et al., 2016) and Amazon-Photo (Shchur
et al., 2018); domain shifts (Wu et al., 2020): Twitch-E (Rozemberczki et al., 2021); temporal shifts:
Elliptic (Pareja et al., 2020) and OGB-arxiv (Pareja et al., 2020). More details of datasets are listed in
Appendix A. For all training, validation, and test graphs, we follow the process procedures and splits
in previous works (Wu et al., 2022b; Jin et al., 2023; Wu et al., 2020; Zheng et al., 2023b).

Test-time Evaluation Protocol. We test four commonly used GNN models for evaluating GNN
generalization under graph distribution shifts following the settings in (Jin et al., 2023), including
GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017) (abbr. SAGE), GAT (Veličković
et al., 2017), and GPR-GNN (Chien et al., 2020) (abbr. GPR). For each model, we train it on training
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Table 1: Average classification results (%) over the test graphs under various graph distribution shifts
on different backbone GNN models. The best results are in bold, and the second-bests are with
underlines. ‘Rank’ indicates the average rank of each algorithm for each backbone; ‘OOM’ indicates an out-of-memory error on 32 GB

GPU memory; TENT with ‘-’ means it cannot be applied to GNNs without batch normalization layers.

Backbones Categories Methods Amz-Photo Cora Elliptic OGB-Arxiv Twitch-E Rank

GCN
Model-centric

ERM 88.60±0.90 87.49±7.97 51.09±5.63 38.39±2.92 59.80±3.77 3.8
EERM 81.05±0.95 66.80±6.51 45.60±1.22 OOM 53.28±1.88 6
DropEdge 81.73±1.23 74.05±8.00 53.83±4.52 40.82±2.18 59.49±4.14 3.8
TENT 88.60±0.90 87.51±8.01 47.05±2.01 38.45±2.35 59.79±3.77 3.8

Data-centric
GTRANS 89.27±0.37 95.20±0.87 56.69±6.74 40.00±2.30 60.38±3.86 1.8
TT-GREB (Ours) 89.11±0.47 96.12±1.10 57.20±8.19 39.49±1.72 60.85±4.17 1.6

SAGE
Model-centric

ERM 84.03±7.61 98.48±3.68 57.34±5.95 39.26±2.39 62.08±4.04 4.4
EERM 84.97±7.26 96.73±6.77 60.94±5.18 OOM 61.70±4.23 4.6
DropEdge 80.67±1.61 92.53±7.12 52.84±3.92 37.90±1.74 62.19±4.16 4.8
TENT 84.10±7.71 98.58±3.49 50.16±3.89 39.59±1.63 62.04±4.06 3.8

Data-centric
GTRANS 89.63±5.43 99.89±0.03 62.54±7.94 39.49±2.34 62.04±4.06 2
TT-GREB (Ours) 88.49±4.07 99.66±0.48 66.97±8.94 40.15±1.65 62.43±4.26 1.4

GAT
Model-centric

ERM 91.20±2.41 95.53±4.98 65.28±9.59 40.47±2.48 58.23±3.45 3.8
EERM 89.13±4.06 87.04±11.07 50.40±3.48 OOM 59.51±3.26 4.6
DropEdge 69.52±6.33 76.71±4.60 64.96±7.12 43.91±1.93 58.46±3.35 4
TENT 91.40±2.36 95.57±4.96 56.86±5.10 30.36±1.20 58.23±3.45 4

Data-centric
GTRANS 94.04±0.73 97.28±2.92 66.85±9.80 41.65±2.26 58.20±3.49 2.4
TT-GREB (Ours) 94.34±0.82 98.05±1.03 66.05±8.92 41.45±2.00 58.53±3.50 1.8

GPR
Model-centric

ERM 87.04±2.86 87.24±9.11 64.79±7.26 44.38±2.97 59.77±3.73 3.4
EERM 85.29±1.48 89.50±7.83 64.41±6.97 OOM 61.76±4.06 3
DropEdge 74.20±6.90 73.29±10.19 60.62±6.06 43.96±2.37 59.89±3.99 4.6
TENT - - - - - -

Data-centric
GTRANS 86.94±2.62 87.45±8.91 67.65±10.49 45.74±2.24 59.89±3.61 2.4
TT-GREB (Ours) 88.55±1.68 88.54±8.74 71.34±10.01 45.14±2.41 60.00±3.86 1.6

sets, until the model achieves the optimal node classification on its validation sets following the
standard training process, so that we can obtain the ‘well-trained’ GNN model that keeps fixed in the
whole test-time graph rebirth process. We report the average classification performance, and for all
experiments, we report the average results of 10 repeated times with different random seeds.

Baseline Methods. We compare the proposed TT-GREB with the following baselines that fall in two
groups: graph model-centric methods: empirical risk minimization (ERM) for standard training (Wu
et al., 2022b), data augmentation technique DropEdge (Rong et al., 2019), Explore-to-Extrapolate
Risk Minimization (EERM) (Wu et al., 2022b) customized for node-level graph OOD generalization,
and test-time training method TENT (Wang et al., 2020); And the recent SOTA graph data-centric
method: test-time graph transformation method GTRANS (Jin et al., 2023). More demonstrations of
the differences among these baselines are presented in Appendix A.

4.2 EXPERIMENTAL RESULTS

In Table 1, we report the average node-level classification results over the test graphs under various
graph distribution shifts on different backbone GNN models, along with the average rank of each
comparison method for each backbone.

As can be observed, our proposed TT-GREB generally delivers great performance across various
graph datasets and models, achieving the highest ranks overall: 1.6, 1.4, 1.8, and 1.6 for GCN, SAGE,
GAT, and GPR, respectively. These results could verify the outstanding effectiveness of the proposed
TT-GREB for modifying graph data at test time to serve better GNN generalization ability.

Moreover, compared with the recent SOTA graph data-centric method GTRANS, our proposed
TT-GREB achieves significant improvements in some cases: for example, our method has 5.5%

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

average improvement of the classification performance from GTRANS’s 67.65% to 71.34% on
Elliptic dataset with GPR model, and 7.1% average improvement with SAGE model, respectively.

Besides, we can also observe that some model-centric comparison methods, achieve great performance
in some cases, for instance, DropEdge and EERM could deliver excellent performance on OGB-arxiv
with GCN and Twitch-e with GAT models, respectively. Nevertheless, DropEdge and EERM can not
be applied to the test-time application scenario, since it has to modify the training process of GNNs to
achieve better generalization ability. Although TENT is suited for the test-time adaption and training
scenario, it can not be directly used for models without batch normalization layers, significantly
limiting its usage on GNN models.

In summary, our proposed TT-GREB significantly improves GNN generalization for different graph
distribution shifts and GNN models during test time, achieving superior average rankings compared
to existing approaches. This success is due to the collaboration between the prototype extractor and
environment refiner, which enhances the representations of test graph nodes and edges. Additionally,
the incorporation of a dual graph contrastive learning objective, coupled with an effective iterative
optimization strategy, further contributes to the method’s outstanding performance.

4.3 ABLATION STUDY OF TT-GREB

Table 2: Ablation study components of the proposed method.
For Idx02, ✓* denotes enabling the complete framework in the test-time graph rebirth

process but only using the output GPro of the prototype extractor for final inference.

Ablation Index
Sub-module Components Learning Strategies

ProExtractor EnvRefiner Contrastive_Obj Iterative_Opt

Baseline × × × ×

Idx00 ✓ × × ×
Idx01 ✓ ✓ ✓ ×
Idx02 ✓* ✓ ✓ ✓

Idx03 (TT-GREB) ✓ ✓ ✓ ✓

In Table 2, we evaluate the effec-
tiveness of the overall framework of
the proposed TT-GREB, from the
perspectives of sub-module compo-
nents and learning strategies, respec-
tively. We observe the effectiveness
of the prototype extractor (ProExtrac-
tor), and the environment refiner (En-
vRefiner), respectively. For learning
strategies, we test the effectiveness
of with and without the dual graph
contrastive learning objective (Con-
trastive_Obj) as well as the iterative
optimization method (Iterative_Opt). Baseline denotes the original test graph classification perfor-
mance directly inferring on the well-trained GNNs without any test-time modification. For Idx00
without the contrastive learning objective, the optimization objective would be degraded to the close
distance constraint between the output prototype extractor and the original test graph, which means
with the weakest supervision signals to instruct the learning process. For Idx02 with ✓∗, it denotes
that we use the overall proposed framework to give a test-time graph rebirth, but only access the
partial output, i.e., the output GPro of the prototype extractor for final test-time inference.
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Figure 4: Ablation study results (%) on Cora with GCN, SAGE, and GAT models demonstrated with
Box-plot on all test graphs.

The results on all test graphs of Cora on GCN, SAGE, and GAT with a fixed seed run are presented
in Fig. 4. As can be observed, our proposed TT-GREB achieves consistently good classification
performance on all test graphs on average, also with the smallest standard deviations across all
models (shown in Appendix B). Besides, it can also be observed that, generally, each component
of sub-modules and learning strategies could contribute to performance improvement in different
degrees when these components are coupled together to achieve the best performance of the proposed
TT-GREB.
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Figure 5: Hyper-parameter sensitivity study results (%) on Cora and Elliptic with GCN model, from
left to right: (1) α on Elliptic with GCN, (2) β on Elliptic with GCN, (3) λPro on Cora with GCN.

4.4 HYPER-PARAMETER SENSITIVITY ANALYSIS

In Fig. 5, we evaluate the sensitivity of three hyper-parameters in terms of the regularization in
our proposed TT-GREB in Eq. (7) and Eq. (8). Concretely, λPro indicates s = {1, 2} in Eq. (7)
and Eq. (8) for λ1 = λ2, corresponding to WPro

node, W
Pro
edge, and we empirically set the λ3 = 1 for

WEnv
node.More observation on the sensitivity of hyper-parameters, i.e., λEnv indicates λ4, corresponding

to WPro
edge is presented in Appendix B. For regularization weights in balancing the optimization

objective, we observe α and β in a set of {0, 0.1, 0.5, 1, 10, 100}. For λPro and λEnv, we observe the
parameter range of [0, 1] with an interval of 0.1. Observations indicate that the hyper-parameters
demonstrate a moderate level of sensitivity within specific ranges, underscoring the robustness of our
proposed method to hyper-parameter tuning. More results on visualization are listed in Appendix C.

4.5 RUNNING TIME COMPARISON

Table 3: Running time (seconds) comparison in 20 epochs
with a single NVIDIA A100 GPU on all graph distribution
shift datasets with GCN model.

Methods Amz-Photo Cora Elliptic OGB-Arxiv Twitch-E

EERM 14.66 2.67 230.50 191.48 22.14
GTRANS 0.24 0.13 0.32 0.89 0.20

TT-GREB (Ours) 2.06 1.08 1.53 4.29 1.76

In Table 3, we compare the running
time of our proposed TT-GREB with
existing baseline methods, i.e., EERM
and GTRANS, which are specifically
designed for the graph distribution
shift issue. The results are obtained in
a single NVIDIA A100 GPU across
all datasets with GCN model in 20
epochs. It can be observed that our
proposed method achieves a compara-
ble running time with GTRANS, and significantly exceeds the EERM method, demonstrating its
great time efficiency. This efficiency stems primarily from the fact that EERM, a graph data-centric
method, necessitates retraining the GNN, which is inherently time-consuming. In contrast, both
GTRANS and our proposed method employ test-time graph modifications to enhance performance.
However, our method incurs a slight increase in time consumption due to the implementation of a
dual iterative optimization strategy.

5 CONCLUSION

In this work, we proposed a new graph data-centric method, test-time graph rebirth (TT-GREB),
aimed at enhancing the generalization ability of GNN models to test-time graphs affected by distri-
bution shifts through direct manipulation of the test graph data. The overall framework includes a
prototype extractor for learning environment-invariant features and an environment refiner for adjust-
ing environment-sensitive features, followed by a dual test-time graph contrastive learning objective
and an efficient iterative optimization strategy, facilitating the extraction of optimal prototype and
environmental components of the reborn test graph. Our extensive experiments on real-world graph
datasets under various test-time distribution shifts confirm the superiority of our method, underscoring
its innovative capacity to modify test-time graphs for enhanced GNN generalization. A potential
limitation of this work is its current focus on node-level tasks, but future extensions are expected to
adapt it for broader applications in graph-level and edge-level tasks.
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APPENDIX

This is the appendix of our work: Test-Time Graph Rebirth: Serving GNN Generalization
Under Distribution Shifts. In this appendix, we provide more details of the proposed TT-GREB in
terms of more experiments, covering dataset statistics, baseline method comparison, and additional
experimental results.

A BASELINE METHOD COMPARISON

The statistics of datasets are presented in Table A1. In the following, we demonstrate the differences
among these baselines:

• Except for TENT, GTRANS, and our proposed TT-GREB, other baseline methods do NOT
perform test-time adaption only with a single-stage training process.

• TENT, GTRANS, and our proposed TT-GREB use two-stage training and test-time adaption,
where all the GNN backbones with fixed optimal parameters are trained on common cross-entropy
loss under the standard training.

• TENT falls into the model-centric method group by fine-tuning and adapting well-trained GNN
models’ parameters at the test time, while GTRANS, and our proposed TT-GREB do NOT
fine-tune the model parameters but only modify graph data at the test time.

65%

70%

75%

80%

85%

90%

95%

100%

AC
C(
%
)

Cora	on	GPR

Baseline Idx00 Idx01 Idx02 Idx03	(TT-GREB)

Figure A1: Ablation study results (%) on
Cora on GPR model demonstrated with Box-
plot on all test graphs.
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Figure A2: Hyper-parameter λEnv sensitiv-
ity study results (ACC%) on Cora with GCN
model.

B ADDITIONAL EXPERIMENT RESULTS

We provide more ablation study results covering GPR-GNN model in Fig. A1. Additional hyper-
parameter sensitivity analysis results are presented in Fig. A2, where λEnv indicates λ4, corresponding
to WPro

edge in Eq. (7) and Eq. (8) of the main manuscript.

Note that the outcomes for each hyper-parameter are presented under the condition that the remaining
parameters are set to their optimal values. Thus, the optimal set of hyper-parameters is achieved by
combining the best values from these analyses.

C VISUALIZATION COMPARISON

For a comprehensive understanding of the reborn test graph by our proposed method, in Fig. A3, we
present the t-SNE visualization of the original test graph and our reborn test graph on Cora’s first test
graph, in terms of the output node representations of the well-trained GCN model.

It can be seen that the clusters corresponding to different node class labels are more distinctly
separated in the t-SNE latent space after experiencing our proposed test-graph rebirth process. This
could effectively verify that the proposed TT-GREB can be beneficial to improve node representation
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Table A1: Dataset statistics with various test-time graph data distribution shifts. ‘Splits’ denotes the
number of training/validation/test graphs.

Distribution shifts Datasets #Nodes #Edges #Classes Metrics Splits

Node feature shifts
Cora (Yang et al., 2016) 2,703 5,278 10 Accuracy 1/1/8
Amazon-Photo (Shchur et al., 2018) 7,650 119,081 10 Accuracy 1/1/8

Domain shifts Twitch-E (Rozemberczki et al., 2021) 1,9129,498 31,299 - 153,138 2 ROC-AUC 1/1/5

Temporal shifts
Elliptic (Pareja et al., 2020) 203,769 234,355 2 F1 Score 5/5/33
OGB-arxiv (Pareja et al., 2020) 169,343 1,166,243 40 Accuracy 1/1/3

t-SNE	visualization	of	Cora	original	test	graph

Label	0
Label	1
Label	2
Label	3
Label	4
Label	5
Label	6
Label	7
Label	8
Label	9

t-SNE	visualization	of	Cora	reborn	test	graph	(TT-GREB)

Label	0
Label	1
Label	2
Label	3
Label	4
Label	5
Label	6
Label	7
Label	8
Label	9

Figure A3: Visualization comparison of t-SNE on the embeddings of the original test graph (1-st test
graph) and our reborn test graph with the well-trained GCN model on Cora.

learning, and better separation in the latent space test data demonstrates good generalization ability
of our method under graph distribution shifts.
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