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Abstract001

The strong performance of large language002
models (LLMs) raises extensive discussion003
on their application to code generation. Re-004
cent research suggests continuous program005
refinements through visible tests to improve006
code generation accuracy in LLMs. However,007
these methods suffer from LLMs’ inefficiency008
and limited reasoning capacity. In this work,009
we propose an LLM programming workflow010
(LPW) designed to improve both initial code011
generation and subsequent refinements within012
a structured two-phase workflow. Specifically,013
the solution generation phase formulates a solu-014
tion plan, which is then verified through visible015
tests to specify the intended natural language016
solution. Subsequently, the code implementa-017
tion phase drafts an initial code according to018
the solution plan and its verification. If the gen-019
erated code fails the visible tests, the plan verifi-020
cation serves as the intended solution to consis-021
tently inform the refinement process for correct-022
ing bugs. Compared to state-of-the-art meth-023
ods across various existing LLMs, LPW signif-024
icantly improves the Pass@1 accuracy by up to025
16.4% on well-established text-to-code genera-026
tion benchmarks. LPW also sets new state-of-027
the-art Pass@1 accuracy, achieving 98.2% on028
HumanEval, 84.8% on MBPP, 59.3% on Live-029
Code, 62.6% on APPS, and 34.7% on Code-030
Contest, using GPT-4o as the backbone.031

1 Introduction032

Code generation, also known as program synthe-033

sis, studies the automatic construction of a pro-034

gram that satisfies a specified high-level input re-035

quirement (Gulwani et al., 2017). Recently, large036

language models (LLMs) pre-trained on extensive037

code-related datasets (Brown et al., 2020; Meta,038

2024; Li et al., 2023; Roziere et al., 2023; Achiam039

et al., 2023; Muennighoff et al., 2023) have shown040

success in code-related tasks, such as code gen-041

eration from natural language descriptions, also042

named as text-to-code generation (Chen et al., 043

2021; Austin et al., 2021; Li et al., 2022), code 044

translation (Pan et al., 2024; Yang et al., 2024), 045

and code completion (Izadi et al., 2024). However, 046

LLM-based code generation remains challenging 047

due to stringent lexical, grammatical, and semantic 048

constraints (Scholak et al., 2021). 049

Code generation substantially benefits from the 050

empirical insights of human programmers. In 051

practice, human programmers develop high-quality 052

code by consistently rectifying errors through the 053

analysis of test case executions (Huang et al., 054

2023c; Chen et al., 2023b). Different studies have 055

refined programs based on execution results and 056

LLM-generated information such as code and error 057

explanation (Tang et al., 2023; Shinn et al., 2023; 058

Madaan et al., 2023). Recent work further opti- 059

mizes refinement (debugging) by performing rub- 060

ber duck debugging processes (Chen et al., 2023b) 061

and leveraging control flow graph information to 062

assist LLMs in locating bugs (Zhong et al., 2024). 063

However, the absence of precise correction instruc- 064

tions in feedback messages results in numerous 065

refinements that deviate from the intended solution. 066

Additionally, refining programs that significantly 067

diverge from the problem description remains an 068

open challenge (Tian and Chen, 2023). 069

To replicate each phase of program development, 070

several studies (Lin et al., 2024; Qian et al., 2024; 071

Dong et al., 2023b) have employed LLM instances 072

as customized agents, assigning them diverse roles 073

and facilitating their collaboration. Recent work in- 074

corporates extra visible tests (Huang et al., 2023a) 075

and solution plans (Islam et al., 2024) generated 076

by designated agents to improve the code refine- 077

ments in multi-agent collaborations. However, the 078

absence of methodologies for generating reliable 079

visible tests and plans in these studies undermines 080

their credibility, as incorrect visible tests and plans 081

can lead to erroneous codes. Besides, with an in- 082

creased number of agents, multi-agent collabora- 083
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Figure 1: The pipeline of LPW, where the components highlighted in red are exclusive to LPW.

tions consume significant token resources for com-084

munication (Huang et al., 2023a). The detailed085

related work is discussed in Appendix A.086

In this work, we propose LPW, a large language087

model programming workflow, specifically for text-088

to-code generation, addressing the aforementioned089

limitations. LPW involves two phases for code090

generation: the solution generation phase for plan091

creation and plan verification, and the code imple-092

mentation phase for initial code development and093

subsequent refinements. The pipeline of LPW is094

depicted in Figure 1. LPW leverages various in-095

formation, including LLM-generated solution plan096

(Jiang et al., 2023) (block (b)), LLM-generated097

code explanation (Chen et al., 2023b) (block (g)),098

and runtime information from program execution099

(Zhong et al., 2024) (block (h)) to boost the code100

generation performance, and effectively incorpo-101

rates them into an end-to-end framework. In LPW,102

aside from runtime information, all other messages103

are autonomously generated by LLMs using few-104

shot prompting, without the need for annotated105

corpora or additional training.106

A unique feature of LPW is incorporating plan107

verification (block (c)) as the natural language in-108

tended solution for visible tests. LPW initially109

produces a solution plan that decomposes a com-110

plex problem into several tractable sub-problems111

(intermediate steps) (block (b)). LPW then veri-112

fies the solution plan against visible tests to assess113

its correctness, known as plan verification. For114

a visible test, the LLM-generated verification in-115

cludes a text-based step-by-step analysis to derive116

the output for each intermediate step and the final117

output, ensuring that the final output is consistent118

with the visible test result. Subsequently, each in-119

ferred intermediate output is reviewed by LLMs120

(block (d)) to maintain logical consistency and mit-121

igate hallucination throughout the verification. The122

plan verification encompasses comprehensive con-123

ditions and logical specifications for solving visible124

tests, eliminating potential misunderstandings be-125

fore code generation. This is akin to Test-Driven 126

Development, where human developers validate the 127

intended solution with test cases (Beck, 2022). 128

LPW uses the plan and its verification in the ini- 129

tial code development (block (e)) to ensure that the 130

initial code closely aligns with the problem descrip- 131

tion. Furthermore, LPW incorporates plan verifica- 132

tion in the subsequent refinements. By comparing 133

discrepancies between the expected output of each 134

intermediate step, as recorded in the plan verifica- 135

tion, against the execution trace on the failed visi- 136

ble test (block (h)), LPW accurately locates bugs, 137

identifies logic flaws in the code implementation, 138

and further generates detailed refinement sugges- 139

tions, as documented in the error analysis (block 140

(j)). Then, the error analysis when integrated with 141

the code explanation (block (g)) serves as feedback 142

to refine the code, surpassing conventional scalar re- 143

wards or deduced error analysis (Chen et al., 2023b; 144

Zhong et al., 2024; Shinn et al., 2023) and thereby 145

improving refinement efficiency and accuracy. 146

We first evaluate LPW on four text-to-code gen- 147

eration benchmarks: HumanEval (Chen et al., 148

2021), MBPP (Austin et al., 2021), and their 149

extended test case variants, HumanEval-ET and 150

MBPP-ET (Dong et al., 2023a). We conduct exper- 151

iments on the proprietary LLM GPT-3.5 (Achiam 152

et al., 2023), and open-source LLMs, Llama-3 153

(Meta, 2024) and Phi-3 (Abdin et al., 2024). The 154

Pass@1 accuracy (Chen et al., 2021) is reported. 155

Compared to the state-of-the-art LLM debugger, 156

LDB (Zhong et al., 2024), LPW improves Pass@1 157

accuracy by 2% to 6.1% across all benchmarks 158

with GPT-3.5 and achieves up to 16.4% improve- 159

ment on MBPP with Llama-3. When evaluated on 160

additional benchmarks using the advanced GPT- 161

4o (OpenAI, 2024), LPW maintains its advan- 162

tages, and achieves new state-of-the-art perfor- 163

mance across evaluated benchmarks. Notably, on 164

the contamination-free benchmark, LiveCode (Jain 165

et al., 2024), and challenging benchmarks, APPS 166

(Hendrycks et al., 2021) and CodeContests (Li 167
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et al., 2022), LPW improves Pass@1 accuracy by168

around 5%, 10%, and 5%, respectively, compared169

to LDB. We outline our contributions as follows:170

• We introduce an end-to-end large language171

model programming workflow, LPW, which172

significantly improves the code generation ac-173

curacy over the state-of-the-art methods.174

• We derive the intended solution for visible175

tests, represented as the plan verification. The176

plan verification clarifies logic specifications177

required to solve the visible tests for the given178

problem, thereby increasing the LLMs’ confi-179

dence during both the initial program genera-180

tion and subsequent debugging processes.181

• We conduct extensive experiments across182

seven text-to-code generation benchmarks to183

validate the performance of LPW with various184

LLM backbones, provide a comprehensive185

analysis of their performance, token usage,186

and failure cases, and highlight the existing187

challenges.188

2 Problem Formulation189

We follow the problem formulation for text-to-code190

generation as outlined in Jiang et al. (2023), Chen191

et al. (2023b), and Zhong et al. (2024). The text-to-192

code generation problem is formulated as a triple193

P = ⟨Q,Tv, Th⟩, where Q represents the natural194

language problem specifications, and Tv and Th195

are sets of visible and hidden tests, each containing196

input-output pairs (ti, to) ∈ T = Tv ∪ Th. The197

goal is to leverage the LLMM to generate a pro-198

gram function f ,M→ f , that maps each input ti199

to its output to for all pairs in T , i.e., f(ti) = to,200

for (ti, to) ∈ T . We note that Th remains hidden201

during both solution generation and code imple-202

mentation phases and only becomes visible if the203

generated f passes Tv. In LPW, for all components204

shown in Figure 1, the problem description Q is,205

by default, concatenated with task-specific prompts206

to produce the desired response from LLMs.207

3 Workflow Structure208

In this section, we first detail the two phases of209

LPW separately and then elaborate on the iterative210

update strategies used in each phase.211

Solution Generation. Figure 2 displays the212

overall workflow of the solution generation phase213

in LPW (part (a)), with an example programming214

Output
Information

[Plan Verification for ...]
1. Sort [-3, -4, 5] in descending order, which is [5, -3, -4].
2. Return the first 3 elements in reverse order, which are [-4, -3, 5].
[Results Compare] 
The correct output is [-4, -3, 5]. The analysis output is [-4, -3, 5].
[-4, -3, 5] = [-4, -3, 5]. So the plan is correct.
[Correct Plan]

[Problem Description]
def maximum(arr, k):
"""Given an array arr of integers and a positive integer k, return a
sorted list of length k with the maximum k numbers in arr."""
[Visible Tests]
maximum([-3, -4, 5], 3) == [-4, -3, 5]

[Solution Plan]
1. Sort the input array in descending order.
2. Return the first k elements of the sorted array in reverse order.

[Verification Check]
- Sort ... is correct.
- Returning .. which are [-4, -3, 5] is correct.
- The comparison between the test output [-4, -3, 5] and the
analysis output [-4, -3, 5] is correct.
[Correct Plan Verification]

(1)

(2)

(3)

(4)

(5)

Problem 
Description

Solution Plan 

Verification
 Check

Visible Tests

Plan 
Verification

(a) (b)
Figure 2: (a): An illustrated workflow of the solution
generation phase in LPW. (b): Example message frag-
ments corresponding to each workflow component for
a HumanEval problem (120th) with the GPT-3.5 back-
bone. The detailed messages are available in Section 6.

problem for illustration (part (b)). LPW leverages 215

the self-planning approach introduced by Jiang 216

et al. (2023) to abstract and decompose the problem 217

description Q into a strategic and adaptable plan Π 218

at the start of the solution generation phase. 219

For a problem in HumanEval described by block 220

(1) in Figure 2, its example solution plan is illus- 221

trated at block (3). However, the LLM-generated 222

plan Π may occasionally be incorrect, misguid- 223

ing subsequent program generation. To avoid this, 224

LPW queries the LLM to verify Π against all visi- 225

ble tests Tv. The LLM-responded plan verification 226

A(Π, Tv) delivers a step-by-step analysis, includ- 227

ing all intermediate results and final derived out- 228

puts for all visible tests Tv based on Π. For each 229

tv ∈ Tv, its verification A(Π, {tv}) compares the 230

derived output to
′

v with the ground-truth output tov 231

to assess the correctness of Π, as outlined at block 232

4. If Π is successfully verified on all visible tests, 233

where in A(Π, Tv), to
′

v = tov,∀tv ∈ Tv, then the 234

plan verificationA(Π, Tv) is reviewed by the LLM 235

again to ensure the accuracy of all intermediate re- 236

sults, since each intermediate step result is used in 237

locating bugs and providing refinement suggestions 238

when compared with the code runtime information 239

on the failed visible test. If all intermediate outputs 240

in A(Π, Tv) are validated as correct by the LLM 241

as shown at block 5, A(Π, Tv) is treated as the 242

intended solution for Tv. The plan Π and its verifi- 243

cation A(Π, Tv) serve as the output of the solution 244

generation phase, guiding code development and 245

refinements in the code implementation phase. 246

Code Implementation. Figure 3 shows the over- 247

all workflow of the code implementation phase in 248
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[Execution Trace for ...]
...
[Plan Verification for...]
...
[Error Analysis]
... but there's a discrepancy: the execution trace returns [5, -4,
-3]  not the expected  [-4, -3, 5], indicating  the list wasn't
reversed after descending sort.

def maximum(arr, k):
      arr.sort(reverse=True)
    return arr[:k][::-1]

[Refinement Explanation]
... adding [::-1]to reverse the sublist of the first k elements. 

[Code Explanation.]
- arr.sort(reverse=True): Sorts the arr in descending order. 
- return arr[:k]: Returns the first k elements of arr. 

def maximum(arr, k):
        arr.sort(reverse=True)

return arr[:k]

[Initial Code] (1)

(4)

(5)

(6)

[Execution Trace for...]
Sort the input array in descending order: [5, -3, -4]
Return maximum 3 number: [5, -3, -4]

Initial Code

Execution Trace 
for the Failed Test

Code  Explanation

Refined Code

Hidden Test 

Visible Tests [Visible Tests]
maximum([-3, -4, 5], 3) == [-4, -3, 5]

(2)

(3)

Plan Verification
for the Failed Test

Error Analysis

(a) (b)

[Refined Code]

Figure 3: (a): An illustrated workflow of the code im-
plementation phase in LPW. (b): Example message
fragments extending from Figure 2 and corresponding
to each workflow component. See Section 6 for detailes.

LPW (part (a)), using the same problem from Fig-249

ure 2 as an illustration (part (b)). LPW develops250

an initial program f by prompting the LLM with251

the problem description Q (block (1) in Figure 2),252

along with plan Π and its verification A(Π, Tv)253

from the solution generation phase. Subsequently,254

LPW queries the LLM to add print statements for255

each line in f , resulting in fp, and then executes256

fp on visible tests Tv. If fp successfully solves Tv,257

LPW validates it on the hidden tests Th to report258

Pass@1 accuracy. Otherwise, LPW collects the259

runtime information on the first failed visible test260

t̄v, indicating that the implementation in f deviates261

from the specifications in A(Π, {t̄v}). Blocks 1-3262

in part (b) of Figure 3 depict an initial program f263

(block (1)) that fails on a visible test t̄v (block (2))264

and its execution trace (block (3)) on t̄v after adding265

print statements. We omit fp from Figure 3 to keep266

the discussion concise. LPW instructs the LLM to267

conduct an error analysis by identifying inconsis-268

tencies between the intermediate outputs recorded269

in the execution trace of t̄v and the expected in-270

termediate outputs documented in the verification271

A(Π, {t̄v}), analyzing causes, and offering refine-272

ment suggestions (block (4)). Subsequently, the273

error analysis and code explanation for f generated274

by the LLM (block (5)) are concatenated as the275

prompt to generate the refined program f ′ (block276

(6)). The code explanation helps the LLM align the277

text-based error analysis with the code implemen-278

tation. LPW replaces f with the refined program279

f ′ and revalidates the updated f against the visible280

tests Tv to assess the need for further refinements.281

Iterative Updates. LPW includes two update282

steps in the solution generation phase to enable283

self-correction as indicated by the red arrows in 284

Figure 2: 1) when the plan verification inferred 285

final output differs from the ground-truth output 286

for a visible test, where to
′

v ̸= tov,∃tv ∈ Tv in 287

A(Π, Tv), a revised solution plan Π′ is included in 288

the LLM response to substitute the original plan; 289

2) when the LLM detects any incorrect interme- 290

diate values in A(Π, Tv) e.g., contextual inconsis- 291

tencies, mathematical miscalculations, or logical 292

flaws, LPW prompts the LLM to regenerate the 293

plan verification. These update methods ensure that 294

the solution plan Π and its verification A(Π, Tv) 295

maintain the necessary precision, as well-formed 296

Π and A(Π, Tv) are essential for accurate code 297

generation (Jiang et al., 2023). In the code imple- 298

mentation phase, the code refinement process acts 299

as an update mechanism, replacing the program f 300

with the refined program f ′ when f fails the visible 301

test Tv as highlighted by the red arrow in Figure 3. 302

Overall, for a problem P , LPW iteratively revises 303

the generated plan Π and its verification A(Π, Tv), 304

in the solution generation phase, until A(Π, Tv) in- 305

fers correct outputs for all visible tests Tv and no 306

error intermediate outputs are present in A(Π, Tv). 307

Otherwise, LPW reports a failure forP when reach- 308

ing the maximum iterations. Similarly, in the code 309

implementation phase, LPW iteratively refines the 310

generated program f if bugs exist. This process 311

continues until a refined f successfully solves Tv, 312

followed by Pass@1 accuracy calculation on hid- 313

den tests Th, or LPW reports a failure for P upon 314

reaching the maximum iteration limit. 315

4 Experiments 316

Benchmarks. We first evaluate LPW on the well- 317

established text-to-code benchmarks HumanEval, 318

MBPP, HumanEval-ET, and MBPP-ET, where the 319

given context outlines the intended functionality of 320

the program to be synthesized. HumanEval-ET and 321

MBPP-ET introduce approximately 100 additional 322

hidden tests, covering numerous edge cases, for 323

each problem in HumanEval and MBPP, thus being 324

regarded as more reliable benchmarks (Dong et al., 325

2023a). In HumanEval and HumanEval-ET, we 326

treat the test cases described in the task description 327

as visible tests, typically 2-5 per task. For MBPP, 328

we consider its test set that contains 500 problems 329

with 3 hidden tests per problem. We set the first 330

hidden test as the visible test and treat the other 331

two as hidden, consistent with studies (Chen et al., 332

2023b; Zhong et al., 2024; Ni et al., 2023; Shi et al., 333
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HumanEval HumanEval-ET MBPP MBPP-ET

Acc ↑ ∆ ↑ Acc ↑ ∆ ↑ Acc ↑ ∆ ↑ Acc ↑ ∆ ↑
Baseline 74.4 ±0.8 – 66.5 ±1.3 – 67.4 ±0.5 – 52.8 ±0.3 –
SP 77.4 ±0.8 3.0 69.5 ±0.8 3.0 69.2 ±0.4 1.8 52.4 ±0.2 -0.4
MapCoder 77.4 ±1.0 3.0 66.5 ±1.0 0.0 72.0 ±0.5 4.6 56.6 ±0.5 3.8
SD 81.1 ±1.0 6.7 72.0 ±1.0 5.5 71.2 ±0.3 3.8 56.0 ±0.1 3.2
LDB 82.9 ±1.0 8.5 72.6 ±1.0 6.1 72.4 ±0.3 5.0 55.6 ±0.2 2.8

GPT-3.5

LPW (ours) 89.0 ±0.8 14.6 77.4 ±0.8 10.9 76.0 ±0.2 8.6 57.6 ±0.1 4.8
Baseline 73.2 ±1.3 – 61.0 ±1.0 – 44.0 ±1.2 – 35.4 ±1.0 –
SP 78.0 ±2.0 4.8 65.2 ±1.0 4.2 48.6 ±1.4 4.6 38.4 ±1.4 3.0
MapCoder 83.5 ±1.3 10.3 73.8 ±0.8 12.8 71.4 ±1.0 27.4 55.6 ±1.0 20.2
SD 81.7 ±1.3 8.5 68.3 ±0.8 7.3 63.6 ±1.2 19.6 50.0 ±1.3 14.6
LDB 84.1 ±1.7 10.9 72.0 ±0.8 11.0 57.2 ±1.6 13.2 44.8 ±1.4 9.4

Llama-3

LPW (ours) 88.4 ±1.6 15.2 76.2 ±1.3 15.2 73.6 ±1.3 29.6 56.4 ±1.2 21.0
Baseline 36.0 ±1.0 – 32.3 ±1.0 – 39.0 ±1.3 – 33.2 ±1.4 –
SP 40.8 ±1.4 4.8 34.8 ±0.9 2.5 46.4 ±1.4 7.4 37.6 ±1.4 4.4
MapCoder – – – – – – – –
SD 51.2 ±1.2 15.2 45.7 ±1.0 13.4 45.8 ±1.2 6.8 36.6 ±1.2 3.4
LDB 65.9 ±1.6 29.9 54.9 ±0.9 22.6 52.4 ±1.6 13.4 42.8 ±1.4 9.6

Phi-3

LPW (ours) 76.8 ±1.3 40.8 62.8 ±1.3 30.5 64.0 ±1.2 25.0 48.4 ±1.2 15.2

Table 1: Comparisons of Baseline, SP, MapCoder, SD, LDB, and LPW in terms of Pass@1 accuracy (Acc) and
improvement (∆) with respect to Baseline across benchmarks HumanEval, HumanEval-ET, MBPP, and MBPP-ET
with LLMs GPT-3.5, Llama-3, and Phi-3. Acc and ∆ are measured in percentages. Best results are highlighted in
red. The standard deviation (±) is calculated based on three runs and applies to other experiments when reported.

2022). MBPP-ET uses the same set of problems334

and visible tests for each problem as MBPP.335

Experimental Setup. We compare LPW with336

the representative code generation approaches Self-337

Planning (SP) (Jiang et al., 2023), MapCoder (Is-338

lam et al., 2024), Self-Debugging (+Expl) (SD)339

(Chen et al., 2023b), and Large Language Model340

Debugger (LDB) (Zhong et al., 2024). SP relies341

solely on the LLM-generated solution plan to pro-342

duce the program solution in a single effort without343

refinements. MapCoder, a multi-agent collabora-344

tive approach, generates multiple unverified plans345

and traverses them to produce and refine code based346

on the current plan. SD uses a rubber duck debug-347

ging approach in LLMs, where LLMs are prompted348

to provide explanations of generated programs as349

feedback for debugging. LDB, a state-of-the-art350

LLM debugger, segments generated programs into351

blocks based on the control flow graph, which fa-352

cilitates bug detection and the refinement of each353

program block using runtime information in LLMs.354

A detailed comparison of different methods is sum-355

marized in Appendix Table 15.356

We generate a seed program for each problem357

with the same prompts and parameters introduced358

by Chen et al. (2023b) for SD and LDB and label359

the performance of seed programs as Baseline. We360

note that SD and LDB only perform refinements on361

the seed program that fails the visible tests. We ex-362

periment with various LLMs with different parame-363

ter sizes, including GPT-3.5 (turbo-0125, ≥175B),364

Llama-3 (70B-Instruct), and Phi-3 (14B-Instruct) 365

to evaluate performance and demonstrate that LPW 366

is model-independent. The Pass@1 accuracy is re- 367

ported. We apply 2-shot prompting in LPW, with a 368

maximum of 12 iterations for both the solution gen- 369

eration and code implementation phases. Similarly, 370

we set the maximum debugging iterations to 12 for 371

SD and LDB. MapCoder generates 3 plans, each 372

with up to 4 refinement iterations. All following 373

experiments adhere to these iteration settings. An 374

empirical discussion on the number of iterations 375

for LPW is available in Appendix B. 376

Results on various LLMs. Table 1 presents the 377

Pass@1 accuracy for evaluated approaches, along 378

with their respective improvements over Baseline. 379

LPW outperforms all competing methods across 380

all benchmarks and with various LLM backbones. 381

Compared to LDB, LPW improves Pass@1 accu- 382

racy by 6.1%, 4.8% 3.6%, and 2%, on HumanEval, 383

HumanEval-ET, MBPP, and MBPP-ET, respec- 384

tively, with GPT-3.5 and achieves up to 16.4% 385

improvement on MBPP with Llama-3. These re- 386

sults showcase the effectiveness of the proposed 387

workflow and demonstrate the model-independent 388

benefits of LPW. MapCoder fails on Phi-3 as it re- 389

quires strict XML-formatted responses, which pose 390

a challenge for Phi-3. The failure analysis for LPW 391

with GPT-3.5 is available in Appendix D. 392

Results on Advanced LLM. To further demon- 393

strate the effectiveness of LPW, we evaluate its 394

performance on the same benchmarks presented in 395
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HumanEval HumanEval-ET MBPP MBPP-ET LiveCode APPS CodeContests
Baseline 91.5 ±0.3 81.7 ±0.3 78.4 ±0.4 62.6 ±0.2 45.7 ±0.6 41.7±0.9 28.0 ±0.5

GPT-4o LDB 92.1 ±0.0 81.7 ±0.0 82.4 ±0.3 65.4 ±0.0 54.3 ±0.3 53.2 ±0.3 29.3 ±0.3

LPW (ours) 98.2 ±0.3 84.8 ±0.3 84.8 ±0.2 65.8 ±0.1 59.3 ±0.6 62.6 ±0.3 34.7 ±0.3

Table 2: Pass@1 accuracy, in percentages, for Baseline, LDB, and LPW on HumanEval, HumanEval-ET, MBPP,
MBPP-ET, LiveCode, APPS and CodeContests benchmarks when using GPT-4o (2024-05-13) as the backbone.

MBPP-ET ↑ MBPP-ET-3 ↑ ∆ ↑
MapCoder 56.6 ±0.5 60.6 ±0.2 4.0
SD 56.0 ±0.1 59.2 ±0.3 3.2

GPT-3.5 LDB 55.6 ±0.2 57.6 ±0.2 2.0
LPW (ours) 57.6 ±0.1 62.0 ±0.2 4.4

Table 3: The impact on Pass@1 accuracy with addi-
tional visible tests using the GPT-3.5 backbone. MBPP-
ET-3 includes two more visible tests per problem than
MBPP-ET. ∆ represents the accuracy improvement on
MBPP-ET-3 over MBPP-ET. Pass@1 accuracy and ∆
are measured as percentages.

Table 1, along with the contamination-free bench-396

mark, LiveCode, and two competitive benchmarks,397

APPS and CodeContests, using the advanced LLM398

GPT-4o as the backbone. LDB is compared due399

to its second-highest performance in Table 1 using400

GPT-3.5. We sample 140 problems from LiveCode,401

published between November 2023 and Septem-402

ber 2024, postdating GPT-4o’s cutoff date. For403

APPS and CodeContests, we use subsets of 139404

and 150 problems, respectively. The experiment405

results are shown in Table 2. Similarly, the perfor-406

mance of the seed programs for LDB is referred407

to as Baseline. LPW outperforms Baseline and408

LDB across all benchmarks, and establishes new409

state-of-the-art Pass@1 accuracy, notably achiev-410

ing 98.2% on HumanEval. GPT-4o exhibits re-411

duced performance on LiveCode, while LPW reli-412

ably outperforms LDB by 5% accuracy. For APPS413

and CodeContests, LPW surpasses LDB by around414

10% and 5% accuracy, highlighting the advantages415

of LPW in tackling challenging benchmarks. Incor-416

porating the plan verification allows LPW to clarify417

issues before code generation and efficiently cor-418

rect bugs overlooked by LLMs. In contrast, LDB419

shows a negligible improvement of only 0.6% and420

1.3% compared to Baseline on HumanEval and421

CodeContests, underscoring the limitations of de-422

bugging with coarse feedback. See Appendix G for423

tasks that LPW fails to address with GPT-4o.424

Learning from Test. We further investigate the425

impact of the number of visible tests on MapCoder,426

SD, LDB, and LPW that use visible tests to refine427

code. We propose a variant of MBPP-ET, denoted428

as MBPP-ET-3. In MBPP-ET-3, each problem’s429

visible tests are the three hidden tests from MBPP,430

while the hidden tests are the extended test cases431

Figure 4: The impact on Pass@1 accuracy with the
increased number of code implementation iterations/de-
bugging iterations on the HumanEval benchmark when
leveraging GPT-3.5 as the LLM backbone. The shaded
area represents the standard deviation.

introduced in MBPP-ET. In other words, each prob- 432

lem in MBPP-ET-3 contains two more visible tests 433

than in MBPP-ET. Results in Table 3 show that 434

LPW achieves the highest Pass@1 accuracy of 435

62.0% on MBPP-ET-3 and the largest improve- 436

ment of 4.4% over MBPP-ET. LPW produces the 437

step-by-step solution for each visible test to clarify 438

code development logic and inform subsequent re- 439

finements, demonstrating superior efficiency in uti- 440

lizing visible tests to improve performance among 441

evaluated methods. 442

Performance Analysis. Figure 4 evaluates the 443

Pass@1 accuracy of LPW when considering dif- 444

ferent numbers of code implementation iterations 445

on the HumanEval benchmark with GPT-3.5. For 446

SD and LDB, we allocate the same number of de- 447

bugging iterations. We omit MapCoder due to its 448

distinct refinement strategy. We note that all evalu- 449

ated approaches start from iteration 0, representing 450

the Pass@1 accuracy before debugging. In Figure 451

4, Baseline and SP are plotted as straight lines with 452

74.4% and 77.4% accuracy, respectively, due to no 453

debugging involved. Baseline and SP serve as the 454

control group to illustrate when debugging methods 455

surpass no-debugging methods. SD and LDB re- 456

fine incorrect programs in Baseline, surpassing SP 457

after two iterations. LPW starts debugging from an 458

initial 79.9% accuracy, higher than the 77.4% for 459

SP, underscoring the importance of plan verifica- 460

tion in initial code generation. LPW surpasses the 461

best performance of SD and LDB after only one 462
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HumanEval MBPP

Acc ∆ Acc ∆

LPW 89.0 ±0.8 – 76.0 ±0.2 –
LPW-V 86.0 ±0.5 -3.0 73.2 ±0.2 -2.8

GPT-3.5 LPW-S 86.0 ±1.0 -3.0 73.0 ±0.3 -3.0
LPW-C 79.9 ±0.8 -9.1 72.2 ±0.5 -3.8

Table 4: Pass@1 accuracy (Acc) for different variants
of LPW with GPT-3.5. ∆ denotes the decrease against
LPW. Acc and ∆ are measured in percentages. See
Appendix C for additional ablation study.

Figure 5: Pass@1 accuracy vs. average token cost per
program for LDB and LPW on different benchmarks
using GPT-4o as the LLM backbone. K is 103. The
standard deviation is too small to be visible.

iteration, demonstrating its efficient code refine-463

ment strategy. LPW gradually refines the code and464

reaches the highest accuracy by the 10th iteration.465

Ablation Study. Table 4 shows the Pass@1466

accuracy of different variants of LPW on the Hu-467

manEval and MBPP benchmarks with GPT-3.5.468

The suffix -V denotes the exclusion of plan verifi-469

cation in both solution generation and code imple-470

mentation phases; -S stands for the LPW variant471

that excludes the solution generation phase; while472

-C represents the removal of the code implementa-473

tion phase, specifically omitting code refinements.474

For each problem, LPW-V generates the initial pro-475

gram based on the unverified plan and repairs the476

program using only code explanation and runtime477

information. LPW-S refines the seed program from478

Baseline that fails visible tests, leveraging only479

code explanation and runtime information. LPW-C480

generates the program solution based on the plan481

and its verification without refinements.482

The performance decline of LPW-V highlights483

the significance of plan verification, which serves484

as the intended solution for visible tests, improving485

the performance of LLMs in both initial code gen-486

eration and subsequent refinements. LPW-V con-487

siders the unverified plan when drafting initial pro-488

grams. However, the effect of the unverified plan is489

limited, as LPW-V shows only slight improvement490

Figure 6: Pass@1 accuracy as a function of token con-
sumption for LDB, Repeated Sampling, and LPW on
the APPS and CodeContests benchmarks with GPT-4o.
The standard deviation is omitted for better illustration.
The same illustration for the LiveCode benchmark is
available in Appendix Figure 8.

on MBPP compared to LPW-S, which excludes 491

both the plan and plan verification. This aligns 492

with the results in Table 1, where Self-Planning 493

shows minimal improvement compared to Base- 494

line. The results of LPW-S and LPW-C show that 495

removing either phase in LPW decreases its perfor- 496

mance, indicating that both solution generation and 497

code implementation phases are crucial for optimal 498

performance. See Appendix E and F for a discus- 499

sion on the accuracy of LLM-generated plans, plan 500

verifications and refined programs in LPW. 501

5 Cost-Performance Analysis 502

Figure 5 compares Pass@1 accuracy against the 503

average token cost per program for LDB and LPW 504

across five benchmarks using GPT-4o. When an- 505

alyzing the cost for LDB, we include the tokens 506

used to generate the seed programs, which account 507

for about 2% of its total token consumption. LDB 508

consumes fewer tokens per problem but achieves 509

lower accuracy. When measured by the accuracy- 510

cost ratio, computed as Pass@1 accuracy divided 511

by the total tokens used, LDB shows better ratios 512

on HumanEval and MBPP benchmarks. On Live- 513

Code, APPS, and CodeContests benchmarks, LDB 514

and LPW exhibit similar token usage per problem, 515

while LPW displays notably higher accuracy. As a 516

result, LPW realizes higher accuracy-cost ratios of 517

0.60% on LiveCode, 0.43% on APPS, and 0.18% 518

on CodeContests per 1000 tokens, compared to 519

LDB, which reports 0.50% on LiveCode, 0.39% on 520

APPS and 0.14% on CodeContests per 1000 tokens. 521

The lower ratios of LDB arise from insufficient re- 522

finements, where multiple ineffective debugging 523

iterations consume significant token resources, yet 524
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Plan Verification
[Plan Verification for maximum([-3, -4, 5],
3) == [-4, -3, 5]]
1. Sort [-3, -4, 5] in descending order, which
is [5, -3, -4].
2. Return the first 3 elements, which are [5,
-3, -4].
[Results Compare] 
The correct output is [-4, -3, 5]. The
analysis output is [5, -3, -4]. [-4, -3, 5] is not
equal to [5, -3, -4]. So the plan is incorrect.
[Incorrect Reasons]
The plan is incorrect because the returned
list should be in ascending order instead of
descending order. 
[Revised Plan]
1. Sort the input array in descending order.
2. Return the first k elements of the sorted
array in reverse order.

Problem Description

1. Sort the input array in
descending order.
2. Return the first k elements
of the sorted array.

Visible Tests
maximum([-3, -4, 5], 3) ==

[-4, -3, 5]

[Plan Verification for ...]
1. Sort [-3, -4, 5] in descending
order, which is [5, -3, -4].
2. Return the first 3 elements in
reverse order, which are [-4, -3, 5].
[Results Compare] 
The correct output is [-4, -3, 5]. The
analysis output is [-4, -3, 5]. [-4, -3,
5] = [-4, -3, 5]. So the plan is correct.
[Correct Plan]

[Plan Verification for ...]
1. Sort [-3, -4, 5] in descending order,
which is [5, -3, -4].
2. Return the first 3 elements in
reverse order which are [-4, -3, 5].
[Execution Trace for ...]
Sort the input array in descending order:
[5, -3, -4]
Return maximum 3 numbers: [5, -3, -4]
[Error Analysis]
 ... but there's a discrepancy: the
execution trace returns [5, -4, -3] not the
expected [-4, -3, 5], indicating the
list wasn't reversed after  descending sort.Solution Plan

Plan Verification Error Analysis

Refined Code
def maximum(arr, k):
    arr.sort(reverse=True)
    print(f"sort the input array in "
          f"descending order:{arr}")
    print(f"return maximum {k} numbers:{arr[:k]}")
    return arr[:k]

def maximum(arr, k):
    arr.sort(reverse=True)
    return arr[:k][::-1]

(a)

(c)

(b)

(d) (e) (g)

(h)

def maximum(arr, k):
"""
Given an array arr of integers and a
positive integer k, return a sorted list
of length k with the maximum k
numbers in arr. Example 1: Input: arr
= [-3, -4, 5], k = 3 Output: [-4, -3, 5] ...
"""

Code with Print (f)

Figure 7: A case study of LPW on the 120th problem in HumanEval, extending from Figures 2 and 3, using GPT-3.5.
We omit certain components in Figures 2 and 3, e.g., the plan verification check and the initial code, and present
incomplete prompts and responses to save space.

the generated program remains flawed.525

Figure 6 illustrates the variation in Pass@1 ac-526

curacy with token consumption across different527

approaches on the APPS and CodeContests bench-528

marks using GPT-4o. We introduce Repeated Sam-529

pling as an enhanced Baseline. For each problem,530

it repeatedly samples program solutions from the531

LLM until either the token consumption exceeds532

that of LPW, or a solution passes all visible tests533

and is validated on hidden tests. Repeated Sam-534

pling and LDB initially improve accuracy with in-535

creased tokens but show negligible improvement536

after around 103.8 tokens on the APPS benchmark537

and 103.3 tokens on the CodeContests benchmark.538

In contrast, LPW starts with high token consump-539

tion for initial plan and verification generation, re-540

sulting in a sharp accuracy increase that quickly sur-541

passes Repeated Sampling and LDB after around542

104.6 tokens on the APPS benchmark and 104.8 to-543

kens on the CodeContests benchmark. Repeated544

Sampling is allocated the same token budget as545

LPW, while its final accuracy remains lower than546

LPW on both benchmarks, highlighting the benefits547

of plan and plan verification in generating high-548

quality initial code and subsequent refinements.549

Challenging benchmarks align with LPW usage550

scenarios, where the precise natural language solu-551

tion described in the plan and plan verification is552

essential for logical consistency and understanding553

non-trivial bugs in the program, particularly when554

problems involve complex logical reasoning steps.555

6 Case Study556

Figure 7 illustrates example message fragments557

from LPW in the 120th problem of HumanEval558

using the GPT-3.5 backbone. LPW successfully559

generates the correct program, while all other ap-560

proaches fail. This problem requires returning a561

sorted array with the maximum k numbers. How- 562

ever, in the problem description (block (a)), the 563

unspecified order in the output array introduces am- 564

biguity, confusing other methods. LPW struggles 565

at the initial solution plan (block (c)), while the is- 566

sue is addressed in the [Revised Plan], during plan 567

verification (block (d)). The visible test (block (b)) 568

delineates the reverse order in the return array after 569

sorting in descending order. The initial code with 570

print statements (block (f)) fails on the visible test 571

since the array is not reversed. Subsequently, its 572

execution trace is compared with the plan verifica- 573

tion (block (e)) to identify this bug, as described in 574

the [Error Analysis] in block (g). The refined code, 575

which first sorts the array in descending order and 576

then reverses the first k elements into ascending 577

order, successfully solves this problem. 578

7 Conclusion 579

We introduce LPW, a large language model pro- 580

gramming workflow, designed for text-to-code gen- 581

eration tasks. LPW effectively integrates vari- 582

ous advanced code generation techniques within a 583

two-phase development model. A key innovation 584

of LPW is the incorporation of plan verification, 585

which enables LLMs to accurately draft an initial 586

program and effectively correct bugs. We evaluate 587

LPW on well-established text-to-code generation 588

benchmarks across various LLMs. LPW signif- 589

icantly improves code generation accuracy com- 590

pared to other existing approaches and achieves 591

new state-of-the-art Pass@1 accuracy, with 98.2% 592

on HumanEval, 84.8% on MBPP, 59.3% on Live- 593

Code, 62.6% on APPS, and 34.7% on CodeCon- 594

tests benchmarks using GPT-4o as the backbone. 595

In the future, additional visible tests automatically 596

generated by LLMs (Chen et al., 2023a) can be 597

explored to improve the performance of LPW. 598
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8 Limitations599

Similar to other code generation approaches, LPW600

is constrained by the imperfect reasoning capacity601

of LLMs. Strengthening the reasoning capacity602

of LLMs remains an ongoing challenge. While603

the plan and plan verification have proven valuable604

across different benchmarks, they require substan-605

tial token consumption. In the future, reducing606

this consumption remains a critical area for im-607

provement. Besides, although the LLM-generated608

plan and plan verification demonstrate promising609

accuracy on current tasks, the accuracy of the gen-610

erated code still lags behind that of the plan and611

plan verification (Appendix E). Incorporating al-612

ternative solution representations (Zelikman et al.,613

2023) alongside natural language representations614

may assist LLMs in translating text-based solutions615

into program solutions more accurately.616
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Appendix912

A Related Work913

A.1 Program Synthesis914

Program synthesis remains an open challenge of915

generating a program within a target domain-916

specific language (DSL) from given specifications.917

One prevalent approach involves searching the918

large space of possible programs. For example, gen-919

eralized planning whose solution is formalized as920

a planning program with pointers (Segovia-Aguas921

et al., 2024; Lei et al., 2023) has demonstrated922

promising results in synthesizing program solu-923

tions for abstract visual reasoning tasks (Lei et al.,924

2024) when the DSL is carefully designed. How-925

ever, hand-crafted DSLs often suffer from limited926

generalization capacity, and the huge search space927

diminishes its effectiveness. Recently, large lan-928

guage models trained on vast corpora have excelled929

in natural language processing (NLP) tasks and930

have been extended to code generation e.g., GPT-931

series (Achiam et al., 2023; OpenAI, 2024), Llama-932

series (Meta, 2024; Roziere et al., 2023; Touvron933

et al., 2023), and Claude-series (Anthropic, 2024).934

LPW leverages the strengths of LLMs in NLP935

tasks to generate intended solutions in natural lan-936

guage. These text-based solutions demonstrate937

high-quality logical reasoning steps and satisfac-938

tory accuracy, thereby effectively aiding subse-939

quent code generation.940

A.2 Prompting Techniques941

To imitate the logical chain in human brain when942

tackling reasoning tasks, prompting methods di-943

rect LLMs to decompose problems into solvable944

sub-problems (Jiang et al., 2023; Zhou et al., 2023;945

Lightman et al., 2024; Dhuliawala et al., 2023)946

and progressively infer the correct answer with947

intermediate outputs, as exemplified by chain-of-948

thought prompting (Wei et al., 2022; Kojima et al.,949

2022). Inspired by these studies, LPW decomposes950

a text-to-code problem into several sub-problems951

described by the solution plan and follows the952

chain-of-thought prompting idea to verify the so-953

lution plan against visible tests with step-by-step954

analysis. The generated plan and its verification955

provide step-by-step natural language instructions956

for code generation, supporting LLMs in both the957

initial code development and subsequent refine-958

ments.959

Figure 8: Pass@1 accuracy as a function of token con-
sumption for LDB, Repeated Sampling, and LPW on
the LiveCode benchmark with GPT-4o.

A.3 Code Refinement 960

Accurate program solutions often require iterative 961

refinements due to model limitations (Zhong et al., 962

2024; Chen et al., 2023b; Shinn et al., 2023). Vari- 963

ous interactive approaches have been proposed to 964

optimize debugging performance in LLMs, such 965

as human feedback (Chen et al., 2024; Le et al., 966

2022; Wu et al., 2023), trained models (Huang 967

et al., 2023b; Le et al., 2022; Yasunaga and Liang, 968

2021), LLM-generated explanations (Chen et al., 969

2023b; Madaan et al., 2023; Shinn et al., 2023; 970

Tang et al., 2023), execution results (Zhong et al., 971

2024; Holt et al., 2024; Tian and Chen, 2023), 972

and multi-agent collaborations (Islam et al., 2024; 973

Huang et al., 2023a; Qian et al., 2024; Dong et al., 974

2023b). Current state-of-the-art LLM debuggers, 975

such as Self-Debugging and LDB, repair various 976

seed programs to create program solutions. How- 977

ever, they encounter difficulties when the initial 978

code substantially deviates from the original intent. 979

Besides, without safeguarding, the refined code fre- 980

quently diverges from the problem specifications. 981

In contrast, LPW develops initial code that adheres 982

to the validated intended solution through plan ver- 983

ification, minimizing deviations from the problem 984

description. The plan verification further guides 985

the code refinement, ensuring alignment with the 986

problem specifications. 987

B Parameter Study 988

We conduct an experiment involving 20 iterations 989

for both the solution generation and code imple- 990

mentation phases in LPW. Figure 9 shows the 991

variation in Pass@1 accuracy on the HumanEval 992

benchmark using GPT-3.5. The increased num- 993

ber of iterations in the solution generation phase 994
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Figure 9: Pass@1 accuracy of LPW on the HumanEval
benchmark using GPT-3.5 with 20 iterations in both the
solution generation and code implementation phases.

HumanEval MBPP

Acc ∆ Acc ∆

LPW 89.0 – 76.0 –
GPT-3.5

LPW-E 87.8 -1.2 75.6 -0.4

Table 5: Pass@1 accuracy (Acc) for the variant of LPW
with the GPT-3.5 backbone. The suffix -E stands for the
exclusion of code explanation in the code implementa-
tion phase. Other metrics remain consistent with those
in Table 4.

results in higher initial program accuracy, 81.1%,995

compared to 79.9% with 12 iterations before re-996

finements. Subsequently, the accuracy steadily in-997

creases, reaching the highest value of 89.6% after998

18 debugging turns, compared to a maximum of999

89.0% with 12 iterations. Overall, a larger number1000

of iterations improves performance in both initial1001

code generation and subsequent refinements. How-1002

ever, the significant token consumption presents1003

challenges for practical applications.1004

C Additional Ablation Study1005

Table 5 shows the performance of the variant of1006

LPW on the HumanEval and MBPP benchmarks1007

using GPT-3.5 as the LLM backbone. The suffix1008

-E denotes removing the code explanation when1009

generating the refined program in the code imple-1010

mentation phase. The code explanation facilitates1011

LLMs in aligning text-based error analysis with1012

code implementation when locating and refining1013

incorrect program lines. LPW-E demonstrates a de-1014

crease in Pass@1 accuracy on both the HumanEval1015

and MBPP benchmarks.1016

Figure 10: Pass@1 accuracy of Baseline, Self-Planning
(SP), MapCoder, Self-Debugging (+Expl) (SD), LDB,
and LPW across different difficulty levels, Easy,
Medium, and Hard on the HumanEval benchmark when
leveraging GPT-3.5 as the LLM backbone.

D Analysis of Unsolved Problems for 1017

LPW using GPT-3.5 1018

D.1 Performance Across Different Difficulty 1019

Levels 1020

Figure 10 compares the Pass@1 accuracy of com- 1021

peting methods across different difficulty levels, 1022

Easy, Medium, and Hard, on the HumanEval bench- 1023

mark using GPT-3.5. We apply the method de- 1024

scribed in Zhong et al. (2024) to generate the diffi- 1025

culty annotations in Figure 10 by querying GPT-3.5 1026

with problem descriptions and canonical solutions. 1027

LPW displays convincing performance, exceeding 1028

85% accuracy across all difficulty levels. For the 1029

Hard level, LPW achieves 85.7% accuracy, while 1030

competing approaches show a notable degradation, 1031

falling below 70%. 1032

D.2 Failure Reasons 1033

LPW achieves state-of-the-art performance among 1034

the evaluated methods and demonstrates superior- 1035

ity over other LLM debuggers. We categorize the 1036

failure reasons for LPW on HumanEval with GPT- 1037

3.5 into 4 types. Table 6 compares the percentage 1038

of different failure reasons out of the total unsolved 1039

problems for LPW based on authors’ manual re- 1040

view. In LPW, half of the errors result from the 1041

No Code type, where the generated solution plan 1042

fails to be verified on the visible tests, or the re- 1043

sulting verification includes incorrect intermediate 1044

outputs in the solution generation phase, leading to 1045

failure after reaching the maximum iteration thresh- 1046

old. The second most common reason is Missing 1047

Conditions, originating from the same issues in the 1048
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Missing Conditions Differ from Intended Solution No Code Others
LPW 33.3 5.6 50.0 11.1

Table 6: The percentage of different failure reasons for LPW on the HumanEval benchmark with GPT-3.5 as the
backbone. Missing Conditions arises from the same issues in the plan and plan verification. Differ from Intended
Solution indicates the plan and plan verification are manually classified as correct, while the generated code deviates,
resulting in failure. No Code represents the absence of valid plan and plan verification in the solution generation
phase, leading to failure after reaching the maximum number of iterations. Others denotes error program solutions
caused by various reasons that differ from the previously listed categories.

HuamEval MBPP
MapCoder 18.9 46.4
SD 22.6 36.1

GPT-3.5 LDB 28.6 37.7
LPW (ours) 44.4 36.7

Table 7: The percentage of problems where MapCoder,
Self-Debugging (+Expl) (SD), LDB, and LPW gener-
ated programs solve the visible tests but fail the hidden
tests, out of total failed problems for each method on
HumanEval and MBPP, with GPT-3.5 as the backbone.

HuamEval MBPP
MapCoder 4.3 13
SD 4.3 10.4

GPT-3.5 LDB 4.9 10.4
LPW (ours) 4.9 8.8

Table 8: The percentage of problems where MapCoder,
Self-Debugging (+Expl) (SD), LDB, and LPW gener-
ated programs pass the visible tests but fail the hidden
tests, out of a total of 164 problems in HumanEval and
500 problems in MBPP, with GPT-3.5 as the backbone.

plan and plan verification. For LPW, 5.6% of fail-1049

ures result from the generated program solution1050

differing from the plan and plan verification (Differ1051

from Intended Solution). For example, LPW fails1052

in the 91st problem, where the generated program1053

is unable to solve the hidden tests due to deviations1054

from the plan and plan verification. The plan veri-1055

fication clearly specifies splitting the input string1056

into sentences using delimiters “.”, “?” or “!”, but1057

the generated code only handles the full stop case1058

and ignores “?” and “!”.1059

D.3 Failure on Hidden Tests1060

Tables 7 and 8 show the percentage of problems1061

where MapCoder, Self-Debugging (+Expl) (SD),1062

LDB, and LPW generated program solutions pass1063

the visible tests but fail the hidden tests, out of1064

respectively failed problems and the total number1065

of problems in the HumanEval and MBPP bench-1066

marks using GPT-3.5 as the backbone. In Table 7, 1067

44.4% of failures in LPW result from solving the 1068

visible tests only on the HumanEval benchmark, 1069

since except for the No Code category, other rea- 1070

sons discussed in Table 6 could contribute to this 1071

issue. In contrast, less than 30% of failures in Map- 1072

Coder, SD and LDB experience this issue on Hu- 1073

manEval as the larger number of failed problems in 1074

these methods. In Table 7, MapCoder demonstrates 1075

a higher likelihood of passing only the visible tests, 1076

while all other evaluated approaches show similar 1077

percentages on the MBPP benchmark, with the re- 1078

maining failures arising from different reasons. We 1079

note that all methods tend to address visible tests 1080

only on the same set of problems in the HumanEval 1081

benchmark, resulting in the similar percentage out 1082

of the total number of problems, as shown in Table 1083

8. In contrast, on the MBPP benchmark, MapCoder 1084

exhibits the highest rate of passing only the visible 1085

tests out of the total number of problems, consistent 1086

with the result in Table 7, while LPW demonstrates 1087

the lowest rate, as shown in Table 8. Meanwhile, all 1088

methods are prone to addressing visible tests only 1089

on MBPP rather than on HumanEval as indicated 1090

in Table 8. Compared to the detailed problem de- 1091

scriptions in HumanEval, the problem descriptions 1092

in MBPP are concise but lack clarity. For example, 1093

Figure 11 illustrates two problems in MBPP where 1094

LPW generated solutions are tailored to the visible 1095

tests but deviate significantly from the canonical 1096

solution. 1097

E Accuracy of Plans, Plan Verifications, 1098

and Programs in LPW using GPT-3.5 1099

E.1 Plans and Plan Verifications 1100

We manually investigate the accuracy of solution 1101

plans and plan verifications generated by GPT-3.5 1102

on the HumanEval benchmark, and the results are 1103

presented in Table 9. Overall, GPT-3.5 generates 1104

the correct solution plans and plan verifications in 1105

natural language for majority of problems. In LPW, 1106
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def cal_electbill(units): 
"""
Write a function to
calculate electricity bill.
"""

Problem Description

Visible Tests
cal_electbill(75)==246.25

136th Problem 
def month_season(month, days):
"""
Write a function to print the
season for the given month and
day.
"""

Problem Description

Visible Tests
month_season 
('January', 4) 
==('winter')

159th Problem 

Figure 11: Example problems in MBPP.

Plan and Plan Verification Correct Plan Correct Plan Verification
LPW 94.5 92.7 92.7

Table 9: Percentage of problems where the LLM successfully generates the valid plans and plan verifications in the
solution generation phase (first column); percentage of problems where the LLM-generated plans are manually
classified as correct (middle column), considering no plan cases; and percentage of problems where the LLM-
generated plan verifications are manually classified as correct (last column), considering no plan verification cases.
All percentages are reported using GPT-3.5 as the backbone on the HumanEval benchmark, with a total of 164
problems.

GPT-3.5 successfully produces plans and plan veri-1107

fications for 94.5% of the problems. GPT-3.5 gen-1108

erates the correct plans for 92.7% of the problems1109

and achieves the same accuracy for plan verifica-1110

tions. A common issue in the LLM-generated plan1111

is the omission of certain conditions. For exam-1112

ple, solution plan frequently overlooks uppercase1113

situations and negative numbers. We note that the1114

LLM-generated plan verification closely adheres1115

to the solution plan. When the plan is accurate,1116

the verification process strictly follows the plan1117

logic, resulting in a correct analysis. Conversely,1118

if the plan contains logical errors or omits edge1119

cases, the verification process replicates these mis-1120

takes. Specifically, for LPW, all correct plans lead1121

to accurate plan verifications, and vice versa.1122

E.2 Plan Verifications and Programs1123

We further manually explore the relationship be-1124

tween plan verification and program solution on1125

the HumanEval benchmark with GPT-3.5. Table1126

10 evaluates the conditional probabilities between1127

wrong code and wrong plan verification, as well as1128

between correct code and correct plan verification.1129

Typically, in LPW, accurate plan verifications sig-1130

nificantly contribute to correct program solutions,1131

whereas incorrect plan verifications inevitably re-1132

sult in errors. LPW generates program solutions1133

based on plans and plan verifications. Therefore,1134

any accurate descriptions or mistakes, including1135

missed conditions, in the plan and plan verification1136

are propagated to the code. When plan verifica- 1137

tions are accurate, 96.1% of program solutions are 1138

correct in LPW. The remaining incorrect instances 1139

arise from unclear condition statements in plan veri- 1140

fication that fail to account for hidden tests, leading 1141

to erroneous program solutions. 1142

The results from Tables 9 and 10 highlight the 1143

impressive capability of LLMs in tackling text-to- 1144

code generation tasks when outputs are represented 1145

in natural language. Plan and plan verification gen- 1146

eration accuracy is typically higher than code gen- 1147

eration accuracy, underscoring the rationale behind 1148

LPW, which produces the high-quality program 1149

solution by leveraging plan and plan verification. 1150

It is worth exploring methods to help LLMs over- 1151

come the challenges of translating natural language 1152

solutions into programs, given the strict lexical, 1153

grammatical, and semantic constraints. Integrat- 1154

ing alternative solution representations (Zelikman 1155

et al., 2023) alongside natural language representa- 1156

tions could offer a promising approach. 1157

F Refinement Consistency in LPW 1158

LPW allows multiple rounds of debugging to re- 1159

fine code based on error analysis, generated by 1160

comparing the code execution trace with plan ver- 1161

ification on the failed visible test. LPW queries 1162

LLMs to generate refined code accompanied by 1163

a refinement explanation, detailing the modifica- 1164

tions implemented to address the errors identified 1165

in the error analysis. For instance, Figures 14 and 1166
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Wrong Code←Wrong Plan Verification Correct Code← Correct Plan Verification
LPW 100 96.1

Table 10: The relationship between LLM-generated code solutions and plan verifications on the HumanEval
benchmark with GPT-3.5. The first column shows the percentage of problems where the LLM generates incorrect
code solutions when plan verifications are incorrect; the second column shows the percentage of problems where
correct code solutions are generated when plan verifications are correct.

Figure 12: Pass@1 accuracy of Baseline, LDB, and
LPW across different difficulty levels, Easy, Medium,
and Hard, on the LiveCode benchmark when using GPT-
4o as the LLM backbone.

LiveCode
LDB 23.4

GPT-4o LPW (ours) 31.6

Table 11: The percentage of problems where LDB and
LPW generated programs solve the visible tests but fail
the hidden tests, out of total failed problems for each
method in LiveCode, with GPT-4o as the backbone.

7 illustrate two HumanEval problems where LPW1167

successfully generates the correct program through1168

refinements informed by the error analysis using1169

the GPT-3.5 backbone. We note that in LPW, if the1170

refined code is irrelevant to the error analysis, the1171

entire debugging process degrades to a simple sam-1172

pling approach, contradicting our original intent.1173

As a result, we manually evaluate the debugging1174

consistency among the generated error analysis1175

(part (e)), the refined code (part (f)), and the refine-1176

ment explanation (part (g)), as exampled in Figure1177

14. LPW demonstrates excellent consistency be-1178

tween error analysis and the refined code, where1179

only one refined code deviates from the error anal-1180

ysis yet still produces the correct solution, across1181

all problems solved through debugging. This result1182

validates the effectiveness of the debugging steps1183

in the code implementation phase for LPW, where1184

the meaningful error analysis enables LLMs to pro-1185

duce the correct program with precise refinements.1186

LiveCode
LDB 10.7

GPT-4o LPW (ours) 12.9

Table 12: The percentage of problems where LDB and
LPW generated programs pass the visible tests but fail
the hidden tests, out of a total of 140 problems in Live-
Code, with GPT-4o as the backbone.

G Analysis of Unsolved Problems for 1187

LPW using GPT-4o 1188

G.1 HumanEval 1189

LPW achieves 98.2% Pass@1 accuracy on Hu- 1190

manEval with the GPT-4o backbone, indicating 1191

only 3 unsolvable problems. We further investi- 1192

gate the reasons behind GPT-4o’s failures on the 1193

91st, 132nd, and 145th problems as shown in Fig- 1194

ures 15, 16, and 17, and attempt to generate the 1195

correct program solutions. The 91st problem fails 1196

since GPT-4o misinterprets the linguistic distinc- 1197

tion between the word and the letter; the 132nd 1198

problem’s ambiguous description challenges GPT- 1199

4o; and the incomplete description of the 145th 1200

problem leads to failed plan verifications. LPW 1201

successfully generates correct program solutions 1202

for 2 out of 3 problems, achieving 99.4% Pass@1 1203

accuracy, by involving an additional visible test to 1204

validate the intended solution for the 91st problem 1205

and providing a comprehensive problem descrip- 1206

tion for the 145th problem. 1207

G.1.1 The 91st Problem 1208

Figure 15 illustrates the 91st problem in Hu- 1209

manEval, where the GPT-4o generated code (part 1210

(c)) contains an incorrect condition. The code veri- 1211

fies if the sentence starts with the letter “I”, which is 1212

inconsistent with the problem description (part (a)) 1213

that requires the sentence to start with the word “I”. 1214

The provided visible tests (part (b)) fail to clarify 1215

the correct condition, resulting in the error program 1216

passing the visible tests only. Inspired by the supe- 1217

rior learning-from-test capacity discussed earlier, 1218

we convert a failed hidden test into a visible test, 1219

16



APPS CodeContests
LDB 23.1 27.4

GPT-4o LPW (ours) 23.1 29.6

Table 13: The percentage of problems where LDB and
LPW generated programs solve the visible tests but fail
the hidden tests, out of total failed problems for each
method in APPS and CodeContests, with GPT-4o as the
backbone.

highlighted in red in part (d). Consequently, GPT-1220

4o successfully generates the correct program, as1221

shown in part (e).1222

G.1.2 The 145th Problem1223

Figure 17 displays the 145th problem, where the1224

incomplete problem description (part (a)) results1225

in incorrect plan verification on visible tests (part1226

(b)), leading to a failure after reaching the iteration1227

threshold. The problem description requires return-1228

ing a list sorted by the sum of digits but omits the1229

specification regarding the sign of negative num-1230

bers. This omission confuses GPT-4o, resulting in1231

consistently incorrect sorting when verifying the1232

solution plan on the first visible test. We refine1233

the problem description with a detailed explanation1234

on handling both positive and negative numbers1235

(part (c)), leading to the correct program solution,1236

as shown in part (d).1237

G.1.3 The 132nd Problem1238

Figure 16 illustrates the 132nd problem, where am-1239

biguities in the problem description (part (a)) chal-1240

lenge GPT-4o. The problem description lacks clar-1241

ity on “a valid subsequence of brackets” and fails1242

to specify the meaning of “one bracket in the subse-1243

quence is nested”. We deduce the intended problem1244

description by prompting GPT-4o with a canonical1245

solution (part (d)). However, the LLM-generated1246

description remains unclear and results in various1247

erroneous programs. Furthermore, adding typically1248

failed hidden tests to the visible tests (part (b)) is1249

also ineffective in clarifying the correct logic. We1250

acknowledge that a clearer description might help1251

generate the correct program. However, some prob-1252

lems are inherently difficult to describe accurately1253

in natural language without careful organization,1254

posing challenges for LLMs.1255

G.2 LiveCode1256

LiveCode, a contamination-free dataset, serves as1257

a reliable benchmark for evaluating code genera-1258

APPS CodeContests
LDB 10.8 19.3

GPT-4o LPW (ours) 8.6 19.3

Table 14: The percentage of problems where LDB and
LPW generated programs pass the visible tests but fail
the hidden tests, out of a total of 139 problems in APPS
and 150 problems in CodeContests, with GPT-4o as the
backbone.

Figure 13: Pass@1 accuracy of Baseline, LDB, and
LPW across different difficulty levels, Introductory,
Interview, and Competition, on the APPS benchmark
when using GPT-4o as the LLM backbone.

tion performance. It presents challenges for the 1259

advanced LLM GPT-4o, with all competing ap- 1260

proaches showing performance limitations. We 1261

note that LPW consistently surpasses Baseline and 1262

LDB by approximately 15% and 5%, respectively, 1263

in Pass@1 accuracy and across different difficulty 1264

levels, as discussed below, emphasizing the relia- 1265

bility of LPW. 1266

G.2.1 Performance Across Different Difficulty 1267

Levels 1268

Figure 12 compares the Pass@1 accuracy of Base- 1269

line, LDB, and LPW across varying difficulty lev- 1270

els, Easy, Medium, and Hard on the LiveCode 1271

benchmark using GPT-4o. LPW achieves the high- 1272

est Pass@1 accuracy across all levels, surpassing 1273

LDB by over 5% accuracy in each level. Com- 1274

pared to Baseline, LPW delivers over 15% higher 1275

accuracy at the Easy and Medium levels and 7.5% 1276

higher at the Hard level. Conversely, LDB per- 1277

forms similarly to Baseline at the Hard level, un- 1278

derscoring its limited refinement capability in ad- 1279

dressing more complex tasks. 1280

G.2.2 Failure on Hidden Tests 1281

Tables 11 and 12 show the percentage of problems 1282

where the program solutions generated by LDB and 1283

LPW pass only the visible tests but fail the hidden 1284
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tests out of the total number of failed problems1285

and the total number of problems, respectively,1286

on the LiveCode benchmark using GPT-4o. For1287

LPW, 31.6% of failures occur when only the visi-1288

ble tests are solved, while for LDB, this percentage1289

is 23.4%, as shown in Table 11. In Table 12, both1290

LDB and LPW generate a similar proportion of1291

solutions that pass only the visible tests. However,1292

LPW tends to solve only the visible tests in 12.9%1293

of problems, compared to 10.7% for LDB.1294

G.3 APPS and CodeContests1295

APPS and CodeContests are unstructured bench-1296

marks where visible tests are intermingled with the1297

problem statements and function signatures are ex-1298

cluded. To align input data structure across bench-1299

marks, we instruct GPT-4o to derive the optimal1300

function signature and identify visible tests for each1301

problem in APPS and CodeContests prior to con-1302

ducting experiments. Example structured problems1303

from APPS and CodeContests are illustrated in Fig-1304

ures 18 and 19. LPW demonstrates significant im-1305

provements on APPS and CodeContests, exceeding1306

around 10% and 5% Pass@1 accuracy, respectively,1307

compared to LDB with GPT-4o. However, in con-1308

trast to the performance on the HumanEval and1309

MBPP benchmarks, where LPW achieves 98.2%1310

and 84.8% Pass@1 accuracy, the 62.6% accuracy1311

on APPS and 34.7% accuracy on CodeContests1312

indicate that even for the advanced LLM GPT-1313

4o, code generation remains challenging when ad-1314

dressing complicated programming problems, such1315

as those encountered in collegiate programming1316

competitions like IOI and ACM (Hendrycks et al.,1317

2021).1318

G.3.1 Performance Across Different Difficulty1319

Levels1320

Figure 13 compares the Pass@1 accuracy of Base-1321

line, LDB, and LPW across different difficulty lev-1322

els, Introductory, Interview, and Competition, on1323

the APPS benchmark using GPT-4o. LPW con-1324

sistently dominates in Pass@1 accuracy across all1325

difficulty levels. LPW shows strong performance1326

on the relatively easier levels, i.e., Introductory and1327

Interview, surpassing LDB by around 9% and 13%1328

accuracy, respectively, and outperforming Baseline1329

by over 20% accuracy. For the problems belonging1330

to the most challenging level, Competition, LPW1331

achieves 34.8% accuracy, compared to 28.3% for1332

LDB and 17.4% for Baseline. However, all ap-1333

proaches experience a substantial decrease at the1334

Competition level, emphasizing the necessity for 1335

further improvements. 1336

G.3.2 Failure on Hidden Tests 1337

Tables 13 and 14 present the percentage of prob- 1338

lems where the generated program solutions from 1339

LDB and LPW solve visible tests but fail hidden 1340

tests out of the total failed problems and the total 1341

number of problems, respectively, on the APPS 1342

and CodeContests benchmarks using GPT-4o as 1343

the backbone. In Table 13, 23.1% of failures 1344

result from passing only the visible tests on the 1345

APPS benchmark, with this percentage increasing 1346

to around 30% on CodeContests for both LDB and 1347

LPW. In Table 14, LDB and LPW display similar 1348

percentages of solving visible tests only on each 1349

benchmark, ranging from around 10% on APPS to 1350

19% on CodeContests. Compared to the results in 1351

Table 8, where LDB and LPW address only visible 1352

tests in around 5% of problems on the HumanEval 1353

benchmark, LDB and LPW exhibit weaker perfor- 1354

mance on the more challenging APPS and Code- 1355

Contests benchmarks. This is particularly evident 1356

on CodeContests, where the percentage is roughly 1357

twice as high as APPS for both LDB and LPW. In 1358

APPS and CodeContests, each problem averages 1359

approximately 2 visible tests, while CodeContests 1360

includes more comprehensive hidden tests, averag- 1361

ing about 23 per problem compared to only around 1362

5 per problem in APPS, increasing the likelihood 1363

of solving only the visible tests. 1364

G.4 Prompts for LPW 1365

We provide the LLM prompts used in LPW in 1366

Prompts 1 to 8. For conciseness, we only include 1367

one example in each prompt. Full prompts can be 1368

found in our released code. 1369
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Analysis Before Coding Coding With Debugging

Plan Plan Verification Code Explanation Runtime Information Intended Solution

SP ✓ ✗ ✗ ✗ ✗

MapCoder ✓ ✗ ✗ ✓ ✗

SD ✗ ✗ ✓ ✗ ✗

LDB ✗ ✗ ✓ ✓ ✗

LPW (ours) ✓ ✓ ✓ ✓ ✓

Table 15: Features of Self-Planning (SP), MapCoder, Self-Debugging (+Expl) (SD), LDB, and LPW.

def longest(strings):
    if not strings:
        return None
    longest_str = None
    for string in strings:
        if longest_str is None or len(string) > len(longest_str):
            longest_str = string
    return longest_str

Visible Tests(b)
longest([]) is None
longest(['a', 'b', 'c']) == 'a'
longest(['a', 'bb', 'ccc']) == 'ccc'

12th Problem 
Problem Description(a)

def longest(strings):
    if not strings:
        return None
    longest_str = None
    for string in strings:
        if longest_str is None or len(string) >= len(longest_str):
            longest_str = string
    return longest_str

Initial Code(c)

Refined Code(f)

... The error in the initial program was in
the comparison condition when checking
for the longest string. The condition should
be len(string) > len(longest_str) instead of
len(string) >= len(longest_str) to ensure
that the first longest string encountered is
returned in case of multiple strings with
the same length. 

Refinement Explanation(g)

... the error execution trace updates
the longest string variable from a to b
but the correct verification skips
this update due to the same length. The
condition for updating the longest
string variable is incorrect when two
variables have the same length.

Error Analysis(e)

Failed Visible Test(d)

longest(['a', 'b', 'c']) == 'a'

def longest(strings):
"""
Out of list of strings, return the longest one.
Return the first one in case of multiple  strings of
the same length. Return None in case the input
list is empty.
"""

Figure 14: The 12th problem in HumanEval, where LPW with GPT-3.5 generated initial code (part (c)) is unable
to solve one of the visible tests (part (d)). The refined code (part (f)) successfully solves both visible and hidden
tests based on the error analysis (part (e)). The modification in the refined code aligns with the error analysis, as
evidenced by the refinement explanation (part (g)).

19



Problem Description 

Visible Tests
is_bored('Hello world')
== 0
is_bored('The sky is
blue. The sun is shining.
I love this weather') == 1

(b)

def is_bored(S):
    # Split the input string into sentences using delimiters '.', '?', and '!'
    sentences = S.split('.')
    sentences = [s for sentence in sentences for s in sentence.split('?')]
    sentences = [s for sentence in sentences for s in sentence.split('!')]
    # Initialize a counter to keep track of the number of boredoms
    boredom_count = 0
    # Loop through each sentence and strip any leading or trailing whitespace
    for sentence in sentences:
        stripped_sentence = sentence.strip()
        # Check if the sentence starts with the word "I"
        if stripped_sentence.startswith("I"):
            # Increment the counter if the sentence starts with "I"
            boredom_count += 1
    # Return the counter as the result
    return boredom_count

Add a Visible Test(d)
is_bored('Hello world') == 0
is_bored('The sky is blue. The sun
is shining. I love this weather') == 1
is_bored(' Is the sky blue?') ==0

import re
def is_bored(S):
    sentences = re.split(r'[.?!]', S)
    # Initialize a counter to keep track of the number of boredoms
    boredom_count = 0
    # Loop through each sentence in the split list
    for sentence in sentences:
        # Strip leading and trailing whitespace
        sentence = sentence.strip()
        # Split the sentence into words
        words = sentence.split()
        # Check if the first word is "I"
        if words and words[0] == "I":
            # Increment the counter
            boredom_count += 1
    # Return the counter as the result
    return boredom_count

(a)

Error Code(c) Correct Code(e)

91st Problem 
def is_bored(S):
"""
You'll be given a string of words, and
your task is to count the number of
boredoms. A boredom is a sentence that
starts with the word "I". Sentences are
delimited by '.', '?' or '!'.
"""

Figure 15: The problem description (part (a)) and visible tests (part (b)) of the 91st problem in HumanEval, where
GPT-4o generated code (part (c)) addresses the visible tests but fails the hidden tests. However, after converting a
failed hidden test to a visible test (part (d)), GPT-4o successfully generates the correct program (part (e)).
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def is_nested(string: str) -> bool:
    opening_bracket_index = []
    closing_bracket_index = []
    for i in range(len(string)):
        if string[i] == '[':
            opening_bracket_index.append(i)
        else:
            closing_bracket_index.append(i)
    closing_bracket_index.reverse()
    cnt = 0
    i = 0
    l = len(closing_bracket_index)
    for idx in opening_bracket_index:
        if i < l and idx < closing_bracket_index[i]:
            cnt += 1
            i += 1
    return cnt >= 2

Visible Tests(b)
is_nested('[[]]') == True
is_nested('[]]]]]]][[[[[]') == False
is_nested('[][]') == False
is_nested('[]') == False
is_nested('[[][]]') == True
is_nested('[[]][[') == True

132nd Problem 
def is_nested(string)
"""

Create a function that takes a string as input
which contains only square brackets. The
function should return True if and only if there
is a valid subsequence of brackets where at
least one bracket in the subsequence is nested.
"""

Problem Description(a)

def is_nested(string: str) -> bool:
    counter = 0
    nested = False
    for char in string:
        if char == '[':
            # Increment counter for opening bracket
            counter += 1
            if counter > 1:
                # Set nested flag if there is more than one opening bracket
                nested = True
        elif char == ']':
            # Decrement counter for closing bracket
            counter -= 1
            if counter < 0:
                # Return False if counter goes negative (unbalanced brackets)
                return False 
    # Return True if there was any nested bracket, else False
    return nested

Error Code(c)
Canonical Solution(d)

Figure 16: The problem description (part (a)) and visible tests (part (b)) of the 132nd problem in HumanEval, where
the GPT-4o generated error code (part (c)) passes the visible tests yet fails the hidden tests. GPT-4o consistently
generates incorrect programs despite providing additional visible tests or refining the problem description.
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(d)

Problem Description(a)

def order_by_points(nums):
    def digit_sum(n):
        """ Helper function to calculate the sum of digits for a given number. """
        if n < 0:
            result = -int(str(n)[1]) + sum(int(d) for d in str(n)[2:])
            return result
        result = sum(int(d) for d in str(n))
        return result
    # Create a list of tuples where each tuple contains the original number and its digit sum
    nums_with_sums = [(num, digit_sum(num)) for num in nums]
    # Sort the list of tuples based on the digit sum.
    nums_with_sums.sort(key=lambda x: x[1])
    # Extract the sorted numbers from the tuples
    sorted_nums = [num for num, _ in nums_with_sums]
    return sorted_nums

Correct Code(d)

Visible Tests(b)

order_by_points([1, 11, -1, -11, -12])
== [-1, -11, 1, -12, 11]
order_by_points([]) == []

Write a function which sorts the given list of integers in
ascending order according to the sum of their digits. 

For positive numbers, the digit sum is the sum of all digits.
For negative numbers, consider the sign only for the first digit
(e.g., the digit sum for -12 is -1 + 2, and for -11, it is -1 + 1).

Note: if there are several items with similar sum of their
digits, order them based on their index in original list.

145th Problem 
Refined Problem Description (c)

def order_by_points(nums):
"""

Write a function which sorts the
given list of integers in ascending
order according to the sum of their
digits. Note: if there are several
items with similar sum of their
digits, order them based on their
index in original list.
"""

Figure 17: The problem description (part (a)) and visible tests (part (b)) of the 145th problem in HumanEval where
GPT-4o fails to respond with a valid plan verification, resulting in failure. However, after refining the problem
description (part (c)), GPT-4o successfully generates the correct program (part (d)).

# Task

Given an initial string s, switch case of the minimal
possible number of letters to make the whole string
written in the upper case or in the lower case.

# Input/Output

[input] string s

String of odd length consisting of English letters.

3 ≤ inputString.length ≤ 99.

[output] a string

The resulting string.

# Example

For s = "Aba", the output should be "aba"

For s = "ABa", the output should be "ABA"

Unstructured Problem(a)

3231st Problem (APPS) 
Structured Problem(a)

def case_unification(s: str) -> str:

"""

# Task

Given an initial string s, switch case of the minimal 

possible number of letters to make the whole string
written in  the upper case or in the lower case.

# Input/Output

[input] string s

String of odd length consisting of English letters.

3 ≤ inputString.length ≤ 99.

[output] a string

The resulting string.

# Example
For s = "Aba", the output should be "aba"

For s = "ABa", the output should be "ABA"

"""
Visible Tests(b)

    case_unification('Aba') == 'aba'
    case_unification('ABa') == 'ABA'

Figure 18: An example structured APPS problem with a function signature and visible tests, generated by instructing
GPT-4o with the unstructured problem description.
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A string is called a k-string if it can be represented as k
concatenated copies of some string. For example, the
string "aabaabaabaab" is at the same time a 1-string, a 2-
string and a 4-string, but it is not a 3-string, a 5-string, or
a 6-string and so on. Obviously any string is a 1-
string. You are given a string s, consisting of lowercase
English letters and a positive integer k. Your task is to
reorder the letters in the string s in such a way that the
resulting string is a k-string.

Input: The first input line contains integer k (1 ≤ k ≤
1000). The second line contains s, all characters in s are
lowercase English letters. The string length s satisfies the
inequality 1 ≤ |s| ≤ 1000, where |s| is the length of string s.

Output:  Rearrange the letters in string s in such a way
that the result is a k-string. Print the result on a single
output line. If there are multiple solutions, print any of
them. If the solution doesn't exist, print "-1" (without
quotes).

Examples

Input 2 aazz Output azaz 

Input 3 abcabcabz Output -1

Unstructured Problem(a)

137th Problem (CodeContests) 
Structured Problem(a)

       def AkString(k: int, s: str) -> str:
"""
A string is called a k-string if it can be represented as k
concatenated copies of some string. For example, the string
"aabaabaabaab" is at the same time a 1-string, a 2-string
and a 4-string, but it is not a 3-string, a 5-string, or a 6-
string and so on. Obviously any string is a 1-string. You are
given a string s, consisting of lowercase English letters and a
positive integer k. Your task is to reorder the letters in the
string s in such a way that the resulting string is a k-string.

Input: The first input line contains integer k (1 ≤ k ≤ 1000).
The second line contains s, all characters in s are lowercase
English letters. The string length s satisfies the inequality 1 ≤
|s| ≤ 1000, where |s| is the length of string s.

Output: Rearrange the letters in string s in such a way that
the result is a k-string. Print the result on a single output
line. If there are multiple solutions, print any of them. If the
solution doesn't exist, print "-1" (without quotes).

Examples

Input 2 aazz Output azaz 

Input 3 abcabcabz Output -1
"""

Visible Tests(b)
  AkString(2, 'aazz') == 'azaz'
  AkString(3, 'abcabcabz') == '-1'

Figure 19: An example structured CodeContests problem with a function signature and visible tests, generated by
instructing GPT-4o with the unstructured problem description.
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Listing 1: Prompt for plan generation
1370

======================================= System =======================================1371
1372

You are a Python writing assistant that responds with a step-by-step thought process (1373
IN ENGLISH) to solve Python coding problems.1374

1375
======================================== User ========================================1376

1377
You will be provided with a series of examples, where each example begins with [Start1378
Example] and ends with [End Example]. In each example, you will be presented with a1379
Python coding problem, starting with [Example Problem Description], which includes the1380
function signature and its accompanying docstring. You will then provide a reasonable1381
solution plan, starting with [Example Start Plan] and ending with [Example End Plan],1382
to solve the given problem.1383

1384
[Start Example]1385
[Example Problem Description]1386
def encrypt(s):1387

"""1388
Create a function encrypt that takes a string as an argument and returns a string1389
encrypted with the alphabet being rotated. The alphabet should be rotated in a1390
manner such that the letters shift down by two multiplied to two places.1391
"""1392

1393
[Example Start Plan]1394
Create an alphabet, biased by two places multiplied by two.1395
Loop through the input, find the letter biased by the alphabet.1396
Return the result.1397
[Example End Plan]1398
[End Example]1399

1400
... Authors' notes: We omit another example for conciseness. The full prompt can be1401
found in our released code. ...1402

1403
Lastly, you will be given a Python writing problem, beginning with [Problem Description1404
], which includes the function signature, its docstring, and any potential constraints.1405
The phrase "Let's think step by step" will signal the start of the plan. Your task is1406

to create a solution plan, starting with [Start Plan] and ending with [End Plan].14071408

Listing 2: Prompt for plan verification
1409

======================================= System =======================================1410
1411

You are a logical reasoner tasked with performing a step-by-step analysis to derive the1412
correct solution to the given problem based on the provided plan.1413

1414
======================================== User ========================================1415

1416
You will be presented with several plan verification examples, each starting with [1417
Start Example] and ending with [End Example]. In each example, you will be given a1418
Python writing problem, starting with [Example Problem Description], followed by the1419
solution plan starting with [Example Solution Plan], and its verification process1420
beginning with [Example Plan Verification for X] for a test case X, starting with [1421
Example Test Cases]. During the verification process, intermediate variables that need1422
to be recorded are clearly identified at the outset, starting with [Record Analysis].1423
Whenever the value of a recorded intermediate variable is updated, the new result is1424
clearly displayed, beginning with [Record]. After the verification, the derived result1425
is compared to the correct test result, starting with [Results Compare]. If the derived1426
result matches the test result, the output will be [Correct Plan]. If the derived1427

result differs from the test result, the output will be [Incorrect Plan], followed by1428
the reasons for the discrepancy, starting with [Incorrect Reasons], and the revised1429
correct solution plan, beginning with [Start Revised Solution Plan] and ending with [1430
End Revised Solution Plan].1431

1432
[Start Example]1433
[Example Problem Description]1434
def prime_number(n: int):1435

"""1436
In range 0 to 100, returns n-th number that is a prime.1437
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""" 1438
1439

[Example Solution Plan] 1440
1. Iterate number through 0 to 100. 1441
2. Check each number, if it's prime. 1442
3. Keep track of the count of prime numbers found. 1443
4. Stop when we find the n-th prime number. 1444
5. Return the nth prime number. 1445
[Example Test Cases] 1446
assert prime_number(3)==5 1447
[Example Plan Verification for assert prime_number(2)==3] 1448
[Record Analysis] 1449
The return value is the nth prime number, so all nth prime numbers need to be clearly 1450
recorded! 1451
1. Call the function prime_number(2). 1452
2. According to line 1 in solution plan, Iterate number through 0 to 100. 1453
3. According to line 2 in solution plan, Check if 0 is prime. It's not. 1454
4. Move to next number 1. 1455
5. According to line 2 in solution plan, Check if 1 is prime. It's not. 1456
6. Move to next number 2. 1457
7. According to line 2 in solution plan, Check if 2 is prime. It is a prime. 1458
8. According to line 3 in solution plan, the count of prime numbers is 1. 1459
[Record]: 1st prime number is 2 1460
9. Move to next number 3. 1461
10. According to line 2 in solution plan, Check if 3 is prime. It is a prime. 1462
11. According to line 3 in solution plan, the count of prime numbers is 2. 1463
[Record]: 2nd prime number is 3 1464
12. According to line 4 in solution plan, Stop when we find the 2nd prime number. 1465
13. According to line 5 in solution plan, Return the 2nd prime number, which is 3. 1466
[Results Compare] 1467
The test correct output is 3. The logic analysis output is 3. 3=3. Thus, the plan is 1468
verified to correctly handle all test cases. 1469
[Correct Plan] 1470
[End Example] 1471

1472
... Authors' notes: We omit another example for conciseness. The full prompt can be 1473
found in our released code. ... 1474

1475
Finally, you will be given a problem description, beginning with [Problem Description], 1476
along with your generated solution plan, starting with [Solution Plan], to solve the [ 1477

Problem Description], and multiple test cases starting with [Test Cases]. The phrase " 1478
Let's verify the plan" will indicate the beginning of the verification process, 1479
followed by your verification steps to confirm whether your generated plan can pass all 1480
test cases. 1481

1482
For each test case, the verification must include [Record Analysis] to track the 1483
intermediate variables at the beginning. If any intermediate variable value is updated 1484
during the reasoning process, the updated value should be clearly displayed, starting 1485
with [Record]. Please include [Results Compare] to assess the derived outcome against 1486
the correct test output. If the derived result matches the test result, output [Correct 1487
Plan] and proceed to the next test case. If the derived result does not match the test 1488
result, output [Incorrect Plan], followed by the reasons for the discrepancy, starting 1489
with [Incorrect Reasons]. Finally, provide the revised solution plan, starting with [ 1490

Start Revised Solution Plan] and ending with [End Revised Solution Plan], to complete 1491
the process. 14921493

Listing 3: Prompt for plan verification check
1494

======================================= System ======================================= 1495
1496

You are a logical reasoner. Your goal is to identify any incorrect logic within the 1497
logic verification process. 1498

1499
======================================== User ======================================== 1500

1501
You will be given several examples demonstrating how to evaluate a logic verification 1502
process. Each example will begin with [Start Example] and end with [End Example]. In 1503
each example, you will find the following: 1504

1505
[Example Problem Description] outlining the Python writing problem; 1506
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1507
[Example Solution Plan] describing the approach to solve the problem;1508

1509
[Example Plan Verification for X], applying the solution plan to a specific test case X.1510
In this process, the intermediate variables to be tracked are analyzed at the start,1511

marked by [Record Analysis]. Whenever the value of a recorded intermediate variable is1512
updated, its new value is displayed starting with [Record]. The [Results Compare]1513
section compares the verification derived result with the correct test output;1514

1515
[Example Verification Check for X], this section evaluates, step by step, whether the1516
logic verification process for test case X is correct.1517

1518
If the verification is correct, the output will be [Correct Plan Verification], and1519
please proceed to the next example. If the verification is incorrect, explanation1520
should be provided and [Incorrect Plan Verification] will be the output to conclude the1521
evaluation.1522

1523
[Start Example]1524
[Example Problem Description]1525
def addOne(message: str):1526

"""1527
You are given a large integer represented as an integer array digits, where each1528
digits[i] is the ith digit of the integer. The digits are ordered from most1529
significant to least significant in left-to-right order. The large integer does not1530
contain any leading 0's. Increment the large integer by one and return the resulting1531
array of digits.1532
"""1533

1534
[Example Solution Plan]1535
1. Convert the list of digits into a number.1536
2. Increment the number by one.1537
3. Convert the incremented number back into a list of digits and return it.1538

1539
[Example Plan Verification for assert addOne([1,2,3])==[1,2,4]]1540
[Record analysis]1541
The return value is the incremental resulting array of digits, so the incremental1542
resulting array of digits needs to be clearly recorded!1543

1544
According to line 1 in solution plan, convert [1,2,3] to the number 123.1545
According to line 2 in solution plan, Increment 123 by one to get 124.1546
According to line 3 in solution plan, convert 124 back into the list [1,2,4]1547
[Record]: incremental resulting array is [1,2,4]1548
According to line 3 in solution plan return incremental resulting array [1,2,4].1549

1550
[Results Compare]1551
The test correct output is [1,2,4]. The logic analysis output is [1,2,4].1552
[1,2,4]=[1,2,4]. So the plan is verified to correctly handle all test cases.1553

1554
[Correct Plan]1555

1556
[Example Verification Check for assert ddOne([1,2,3])==[1,2,4]]:1557
"Convert [1,2,3] to the number 123" is correct!1558
"Increment 123 by one to get 124" is correct! since 123+1=1241559
"Convert 124 back into the list [1,2,4]" is correct!1560
"return incremental resulting array [1,2,4]" is correct!1561

1562
In [Results Compare] "The test correct output = [1,2,4]" is correct! "The logic1563
analysis output = [1,2,4]" is correct! The results comparison "[1,2,4]=[1,2,4]" is1564
correct!1565

1566
All analysis steps are correct!1567

1568
[Correct Plan Verification]1569

1570
[Example Plan Verification for assert addOne([-1,2])==[-1,1]]1571
[Record analysis]1572
The return value is the incremental resulting array of digits, so the incremental1573
resulting array of digits needs to be clearly recorded!1574
According to line 1 in solution plan, convert [-1,2] to the number 12.1575
According to line 2 in solution plan, Increment 12 by one to get 13.1576
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According to line 3 in solution plan, convert 13 back into the list [1,3] 1577
[Record]: incremental resulting array is [1,3] 1578

1579
According to line 3 in solution plan return incremental resulting array [1,3]. 1580

1581
[Results Compare] 1582
The test correct output is [-1,1]. The logic analysis output is [-1,1]. [-1,1]=[-1,1]. 1583
So the plan is verified to correctly handle all test cases. 1584
[Correct Plan] 1585

1586
[Example Verification Check for assert addOne([-1,2])==[-1,1]]: 1587

1588
"Convert [-1,2] to the number 12" is incorrect. The analysis doesn't correctly 1589
interpret the -1 and assumes all values are positive, the sequence -1, 2 should form 1590
-12. 1591
"Increment 12 by one to get 13" is correct, but as established, the initial conversion 1592
should not yield 12. 1593
"Convert 13 back into the list [1,3]" is correct! 1594
"Return incremental resulting array [1,3]" is correct! 1595

1596
In [Results Compare] "The test correct output = [-1,1]" is correct! "The logic analysis 1597
output = [-1,1]" is incorrect! The logic analysis result is [1,3] mentioned in the 1598

verification "return incremental resulting array [1,3]". The results comparsion 1599
"[-1,1]=[-1,1]" is incorrect! The logic analysis result is [1,3] and [-1,1] is not 1600
equal [1,3]. 1601

1602
The logic verification process for addOne([-1,2])==[-1,1] is incorrect. The analysis 1603
doesn't correctly interpret the -1 and assumes all values are positive, the sequence -1, 1604
2 should form -12. The logic analysis output = [-1,1] is incorrect! It is [1,3]. The 1605

results comparison is incorrect since [-1,1] is not equal [1,3]. 1606
1607

[Incorrect Plan Verification] 1608
1609

[End Example] 1610
1611

... Authors' notes: We omit another example for conciseness. The full prompt can be 1612
found in our released code. ... 1613

1614
Finally, you will be given a problem description, beginning with [Problem Description], 1615
followed by your generated solution plan, starting with [Solution Plan], to address 1616

the [Problem Description]. You will then work through multiple Plan Verification, each 1617
starting with [Plan Verification for X], where X represents a test case. At the start 1618
of the verification process, [Record Analysis] examines the intermediate variables that 1619
should be tracked. During the logic verification, the tag [Record] indicates any 1620

updates to the values of the recorded intermediate variables. The [Results Compare] 1621
section documents the comparison between the verification derived result and the 1622
expected test output. 1623

1624
The phrase "Let's evaluate the verification" will indicate the start of the evaluation 1625
for each verification process. This will be followed by your step-by-step verification 1626
check to assess whether each intermediate output in the verification process is correct, 1627
starting with [Verification Check for X], as shown in the examples. If all 1628

intermediate results in the verification process are correct, the output will be [ 1629
Correct Plan Verification], and you will proceed to the next verification. If the 1630
verification process is incorrect, an explanation should be provided, and [Incorrect 1631
Plan Verification] will be output to conclude the evaluation. 16321633

Listing 4: Prompt for initial code generation
1634

======================================= System ======================================= 1635
1636

You are a Python writing assistant that only responds with Python programs to solve a 1637
Python writing problem. 1638

1639
======================================== User ======================================== 1640

1641
You will receive several examples, each structured as follows, beginning with [Start 1642
Example] and ending with [End Example]. Within each example, you will find a Python 1643
programming problem starting with [Example Problem Description] and a solution plan 1644
starting with [Example Solution Plan]. Additionally, you will receive plan 1645
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verifications for specific test cases. For each test case X, the plan verification is1646
labeled as [Example Plan Verification for X], providing a detailed logical breakdown1647
and variable value updates, which are recorded starting with [Record]. Following the1648
verification, you will encounter the example-generated program starting with [Example1649
Generated Program]. The program, marked from [Start Program] to [End Program], is1650
generated based on the solution plan and plan verification, ensuring that the program's1651
execution aligns with the plan verification when test case X is used as input.1652

1653
[Start Example]1654

1655
[Example Problem Description]1656
from typing import List1657
def get_closest_transition_character(word):1658

"""1659
You are given a word. Your task is to find the closest transition character from the1660
right side of the word(case sensitive). The transition character is lowercase and1661
the character after it is uppercase. If no such lowercase character is found, return1662
an empty string.1663
>>> get_closest_transition_character("eAsy") == "s"1664
"""1665

1666
[Example Solution Plan]1667
1. Reverse iterate through the characters of the word starting from the last character1668
from the right.1669
2. For each character, check if the current character is lowercase and if the character1670
after it is uppercase.1671

3. If step 2 is satisfied,1672
4. return the current vowel character.1673
5. If no such vowel is found, return an empty string.1674

1675
[Example Plan Verification for assert get_closest_transition_character("eAsy")=="s"]1676

1677
[Record analysis]1678
The return value is the closest transition character, so the closest transition1679
character should be recorded!1680

1681
1. Call the function get_closest_vowel("eAsy").1682
2. According to line 1 in the solution plan, reverse iterate the word, from the last1683
character to the first character, so the last character is "y"1684
3. According to line 2 in the solution plan, "y" is a lowercase but the character after1685
"y" is "s" and "s" is a lowercase.1686

4. Move to the next character based on the reverse iterate, so the character is "s".1687
5. According to line 2 in the solution plan, "s" is a lowercase and the character after1688
's' is 'A', and 'A' is uppercase.1689

6. According to line 3 in the solution plan, step 2 is satisfied,1690
7. [Record]: the closest transition character 's'1691
8. According to line 4 in the solution plan, return the current lowercase character 's'1692

1693
1694

[Example Generated Program]1695
[Start Program]1696

1697
from typing import List1698
def get_closest_transition_character(word):1699

""" You are given a word. Your task is to find the closest transition character from1700
the right side of the word(case sensitive). The transition character is lowercase1701
and the character after it is uppercase.1702
>>> get_closest_transition_character("eAsy") == "s"1703
"""1704
# reverse iterate the word1705
for i in range (len(word)-1,-1,-1):1706

current_character=word[i]1707
if current_character.islower():1708

if i!=0:1709
after_character=word[i-1]1710
if after_character.isupper():1711

return current_character1712
return ""1713

1714
[End Program]1715
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[End Example] 1716
1717

... Authors' notes: We omit another example for conciseness. The full prompt can be 1718
found in our released code. ... 1719

1720
Finally, you will be provided with a Python writing problem, starting with [Problem 1721
Description]. A solution plan will follow, beginning with [Solution Plan]. Next, you 1722
will receive several plan verifications. For each test case X, the plan verification, 1723
starting with [Plan Verification for X] provides detailed logical reasoning steps to 1724
solve it. 1725

1726
Once the plan verification is provided, the "Let's generate the program" flag indicates 1727
the start of Python program generation. You will then need to generate the Python 1728

program solution for the problem. The plan verification serves as a constraint during 1729
program generation. It is essential to ensure that the execution of the generated 1730
program remains consistent with [Plan Verification for X] when using test case X as 1731
input. Additionally, the generated program should incorporate all conditions noted in [ 1732
Plan Verification for X] to solve test case X. Please ONLY output the generated Python 1733
program, starting with [Start Program] and ending with [End Program]. 17341735

Listing 5: Prompt for print statement
1736

======================================= System ======================================= 1737
1738

You are a Python writing assistant that only responds with Python programs with PRINT 1739
statements. 1740

1741
======================================== User ======================================== 1742

1743
You'll be provided with several examples structured as follows, beginning with [Start 1744
Example] and ending with [End Example]. In each example, you will be given a sample 1745
Python program, starting with [Example Python Program]. You will also receive several 1746
plan verifications for specific test cases. For a test case X, its plan verification, 1747
starting with [Example Plan Verification for X], includes a worded description of the 1748
logic used to solve test case X. During the verification, the intermediate variable 1749
that needs to be tracked is clearly identified, starting with [Record Analysis] at the 1750
beginning, and any updates to its value are recorded, starting with [Record]. 1751

1752
Following this, you will be shown a Python program that includes detailed print 1753
statements, starting with [Example Python Program with Print Statements]. These print 1754
statements illustrate how the values of the intermediate variables (described in the 1755
plan verification) are modified during program execution, as well as how other 1756
variables in the program change. These examples will guide you on where and how to add 1757
print statements in your Python program. 1758

1759
[Start Example] 1760

1761
[Example Python Program] 1762
from typing import List 1763
def get_closest_transition_character(word): 1764

""" You are given a word. Your task is to find the closest transition character from 1765
the right side of the word(case sensitive). The transition character is lowercase 1766
and the character after it is uppercase. 1767
>>> get_closest_transition_character("eAsy") == "s" 1768
""" 1769
for i in range (len(word)-1,-1,-1): 1770

current_character=word[i] 1771
if current_character.islower(): 1772

if i!=0: 1773
after_character=word[i-1] 1774
if after_character.isupper(): 1775

return current_character 1776
return "" 1777

1778
[Example Plan Verification for assert get_closest_transition_character("eAsy")=="s"] 1779
[Record analysis] 1780
The return value is the closest transition character, so the closest transition 1781
character should be recorded! 1782

1783
1. Call the function get_closest_vowel("eAsy"). 1784
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2. According to line 1 in the solution plan, reverse iterate the word, from the last1785
character to the first character, so the last character is "y"1786
3. According to line 2 in the solution plan, "y" is a lowercase but the character after1787
"y" is "s" and "s" is a lowercase.1788

4. Move to the next character based on the reverse iterate, so the character is "s".1789
5. According to line 2 in the solution plan, "s" is a lowercase and the character after1790
's' is 'A', and 'A' is uppercase.1791

6. According to line 3 in the solution plan, step 2 is satisfied,1792
7. [Record]: the closest transition character 's'1793
8. According to line 4 in the solution plan, return the current lowercase character 's'1794

1795
[Example Python Program with Print Statements]1796
from typing import List1797
def get_closest_transition_character(word):1798

""" You are given a word. Your task is to find the closest transition character from1799
the right side of the word(case sensitive). The transition character is lowercase1800
and the character after it is uppercase.1801
>>> get_closest_transition_character("eAsy") == "s"1802
"""1803

1804
print(f"Reverse iterate the word {word}")1805
for i in range (len(word)-1,-1,-1):1806

current_character=word[i]1807
print(f"current character at index {i} is {word[i]}")1808
if current_character.islower():1809

print(f"current character {word[i]} is lowercase")1810
if i!=0:1811

print(f"There is a character after {word[i]}")1812
after_character=word[i-1]1813
print(f"character after {word[i]} is {word[i-1]}")1814
if after_character.isupper():1815

print(f"character is {word[i-1]} is uppercase")1816
print(f"[Record]: the closest transition character {word[i]}")1817
print(f"Return the closest transition character {word[i]}")1818
return current_character1819

1820
print(f"no such lowercase character is found, return an empty string")1821
return ""1822

[End Example]1823
1824

... Authors' notes: We omit another example for conciseness. The full prompt can be1825
found in our released code. ...1826

1827
Finally, you will be provided with a Python program, starting with [Python Program],1828
along with several plan verifications for specific test cases. For each test case X,1829
the plan verification, starting with [Plan Verification for X], includes a detailed1830
description of the logic used to solve test case X. In the plan verification, the1831
intermediate variables to be tracked are clearly analyzed at the beginning, starting1832
with [Record Analysis], and any updates to these variable values are recorded, starting1833
with [Record].1834

1835
The phrase "Let's add print statements" signals the start of the process to incorporate1836
print statements into the provided Python program. Your task is to add print1837

statements that track how the variables in the program change. Ensure that the1838
intermediate variable values (as outlined in the plan verification) are printed using1839
these statements. Output your program with print statements, starting with [Start1840
Program] and ending with [End Program].18411842

Listing 6: Prompt for code explanation
1843

======================================= System =======================================1844
1845

You are a Python interpreter tasked with providing an explanation for each line of the1846
Python program.1847

1848
======================================== User ========================================1849

1850
You will be given a Python program, and your task is to generate a word-by-word1851
explanation describing the effect of each line in the program. You will be provided1852
with several examples, each beginning with [Start Example] and ending with [End Example1853
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]. In each example, you will receive a Python programming problem, starting with [ 1854
Example Problem Description], along with an example Python program, marked as [Example 1855
Python Program], which is generated to solve the given problem. Additionally, you will 1856
be provided with an explanation of each line in the example Python program, starting 1857
with [Example Explanation For Each Line]. 1858

1859
[Start Example] 1860
[Example Problem Description] 1861
def encode(message): 1862

""" 1863
Write a function that takes a message, and encodes in such a way that replaces all 1864
letters in the message with the letter that appears 1 place after of that letter in 1865
the english alphabet and then delete letter is a vowel. 1866
The last letter z is execluded in the message. Assume the input only containing 1867
letters. 1868
""" 1869

1870
[Example Python Program] 1871
def encode(message): 1872

encoded_message = "" 1873
for char in message: 1874

next_char = chr(ord(char) + 1) 1875
if next_char not in "aeiouAEIOU": 1876

encoded_message += next_char 1877
return encoded_message 1878

1879
[Example Explanation For Each Line] 1880
The Python function encode is designed to manipulate a given string (referred to as a 1881
message) by replacing the current letter with the letter that appears 1 place after it 1882
in the English alphabet and then skipping the letter if it is a vowel: 1883

1884
Function Definition (def encode(message):): Defines a function named encode that 1885
accepts one parameter, message. This parameter is intended to be a string that will be 1886
processed to create an encoded message. 1887

1888
Initialize Encoded Message (encoded_message = ""): Initializes a variable 1889
encoded_message as an empty string. This variable will store the encoded version of the 1890
message as characters are processed and approved for inclusion. 1891

1892
For Loop (for char in message:): Iterates over each character in the message. Each 1893
character is processed individually. 1894

1895
Calculate Next Character (replacechar = chr(ord(char) + 1)): For each character in the 1896
message, this line calculates its next character that appears 1 place after it in the 1897
English alphabet. It converts the character to its ASCII value with ord(char), 1898
increments this value by 1, and then converts it back to a character with chr(). 1899

1900
Check if the resulting character is a Vowel (if replacechar in "aeiouAEIOU":): Check if 1901
the resulting character (replacechar) after incrementation is a vowel (either 1902

uppercase or lowercase is checked here). If it is a vowel, the continue statement is 1903
executed. 1904

1905
Add Character to Encoded Message (else: encoded_message += replacechar): If replacechar 1906
is not a vowel, it is appended to encoded_message. This builds up the final encoded 1907

string with the modified characters. 1908
1909

Return Encoded Message (return encoded_message): After processing all characters in the 1910
original message, the function returns the fully encoded string which consists of all 1911

non-vowel characters that are the successors of the original characters in the ASCII 1912
sequence. 1913
[End Example] 1914

1915
... Authors' notes: We omit another example for conciseness. The full prompt can be 1916
found in our released code. ... 1917

1918
Finally, you will be presented with a problem description, starting with [Problem 1919
Description], and your generated Python program, starting with [Python Program], which 1920
is meant to solve the [Problem Description]. After this, the "Let's generate the 1921
explanation" flag will signal the beginning of the explanation phase. Your task is to 1922
generate a word-by-word explanation for each line in the Python program, following the 1923
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format shown in the previous examples. Please skip the explanation for any line that is1924
a print statement. Output your explanation starting with [Start Explanation] and1925

ending with [End Explanation].19261927

Listing 7: Prompt for error analysis
1928

======================================= System =======================================1929
1930

You are a logical reasoner. You will be provided with two logical reasoning processes:1931
[Plan Verification] and [Error Execution Trace]. Your task is to identify any errors in1932
the [Error Execution Trace] by comparing it with the [Plan Verification].1933

1934
======================================= System =======================================1935

1936
You will be provided with several examples, each starting with [Start Example] and1937
ending with [End Example]. In each example, you will receive a Python programming1938
problem, starting with [Example Problem Description], along with an example of an1939
incorrect Python program, marked as [Example Error Program], generated for that problem.1940
You will also be provided with a detailed execution trace of the error program on the1941

failed test case X, labeled as [Example Error Execution Trace for X], including the1942
intermediate variable values.1943

1944
Additionally, you will be provided with an example of the correct logical reasoning1945
process, labeled as [Example Plan Verification for X]. This process outlines the1946
necessary steps to solve test case X accurately, including condition checks and1947
recording intermediate variable updates, starting with [Record]. Next, [Example1948
Discrepancy Analysis] provides a comparison between the Example Plan Verification and1949
the Example Error Execution Trace, highlighting output differences and identifying1950
where the Error Execution Trace deviates from correctness. Finally, [Example Error1951
Analysis] summarizes the errors identified in the [Example Discrepancy Analysis] and1952
proposes solutions to correct them.1953

1954
[Start Example]1955
[Example Problem Description]1956
def is_palindrome(num):1957

"""1958
check if a given integer is a palindrome.1959
"""1960

1961
[Example Error Program]1962
def is_palindrome(num):1963

num_str = str(abs(num))1964
return num_str == num_str[::-1]1965

1966
[Example Error Execution Trace for assert is_palindrome(-121)==False]1967
1. Convert the integer -121 to the string "121"1968
2. The integer string "121" is equal to the reversed string "121", the result is True1969
3. Return True1970

1971
[Example Plan Verification for assert is_palindrome(-121)==False]1972
[Record analysis]1973
The return value is the checking result about a given integer is a palindrome, so the1974
checking result should be clearly recorded!1975

1976
1. Call the function is_palindrome(-121).1977
2. change integer to string, it is "-121"1978
3. check whether the string "-121" is equal to its reversed string "121-", the checking1979
result is False1980

4. [Record]: checking result = False1981
5. Return checking result False1982

1983
1984

[Example Discrepancy Analysis]1985
In the plan verification, the recorded value is the checking result:1986

1987
Let's trace the "checking result" value in the plan verification when it is first-time1988
recorded (SKIP INITIALIZATION).1989

1990
In the plan verification, the value of checking result is first-time recorded in Line 41991
after executing lines:1992
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1. Call the function is_palindrome(-121). 1993
2. change to integer to the string, it is "-121" 1994
3. check whether the string "-121" is equal to its reversed string "121-", the checking 1995
result is False 1996

4. [Record]: checking result = False 1997
1998

In the plan verification, the first-time update changes the checking result value to 1999
False. 2000

2001
Let's trace the "checking result" value in the Error Execution Trace. 2002
In Error Execution Trace, the value of checking result is first-time recorded in Line 2 2003
after executing lines 2004

1. Convert the integer -121 to the string "121" 2005
2. The integer string "121" is equal to the reversed string "121", the result is True 2006

2007
In Error Execution Trace, the first-time update changes the checking result value to 2008
True. 2009

2010
The checking result value in the plan verification and Error Execution Trace are NOT 2011
the same, due to False NOT equaling True when the checking result value is first 2012
updated. 2013

2014
Let's carefully analyse the reason with step-by-step thinking: 2015
In lines 1-4 in the plan verification, the integer -121 is first converted to the 2016
string "-121". Then "-121" is compared with its reversed string "121-". "-121" is NOT 2017
equaling "121-" so the result is False 2018

2019
In lines 1-2 in Error Execution Trace, the integer -121 is first converted to the 2020
string "121". This is different from the plan verification where converting -121 to 2021
string is "-121" rather than "121". Then "121" is compared with its reversed string 2022
"121". "121" is equaling "121" so the result is True. 2023

2024
[Example Error Analysis] 2025
The error execution trace incorrectly converts the negative integer to its negative 2026
integer string. The negative signal is missed. For example, negative integer -121 2027
should be converted to string "-121" but not "121. To fix this error, the negative 2028
number must be considered and its negative sign should be contained when converted to 2029
string. Such as negative integer -121 should be converted to string "-121". 2030

2031
[End Example] 2032

2033
... Authors' notes: We omit another example for conciseness. The full prompt can be 2034
found in our released code. ... 2035

2036
Finally, you will be presented with a problem description, starting with [Problem 2037
Description], along with your generated error program, starting with [Error Program], 2038
which attempts to solve the [Problem Description]. You will also receive a detailed 2039
execution trace, including intermediate variable values, for the failed test case X, 2040
starting with [Error Execution Trace for X]. This trace is generated by the error 2041
program. Additionally, you will be provided with a correct logical reasoning process, 2042
labeled as [Plan Verification for X], which outlines the necessary steps to solve test 2043
case X accurately, including condition checks and recording intermediate variable 2044
updates, starting with [Record]. 2045

2046
Following this, the "Let's do analysis" flag will indicate the start of the analysis 2047
phase. Your task is to analyze where the [Error Execution Trace for X] deviates from 2048
the [Plan Verification for X], as demonstrated in the examples. This analysis should be 2049
output starting with [Discrepancy Analysis]. Finally, you should provide a summary of 2050

the errors identified in the [Discrepancy Analysis], including the reasons for these 2051
mistakes (IN ENGLISH) and suggestions on how to correct them, starting with [Error 2052
Analysis]. 20532054

Listing 8: Prompt for code refinement
2055

======================================= System ======================================= 2056
2057

You are a Python program fixer. You need to correct an error Python program based on 2058
the provided information. 2059

2060
======================================== User ======================================== 2061
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2062
You will receive several examples, each structured as follows, starting with [Start2063
Example] and ending with [End Example]. Within each example, you will find a Python2064
programming problem, beginning with [Example Problem Description], followed by an error2065
program provided under [Example Error Program] for the given problem. You will then2066

receive an explanation for the error program, including a line-by-line explanation2067
starting with [Example Error Program Explanation].2068

2069
Additionally, an error analysis will be provided, starting with [Example Error Analysis2070
], describing the issues in the error program and offering suggestions for refinement.2071
You will then be provided with the refined Python program under [Example Refined2072
Program], based on the error analysis. Following that, a refinement explanation,2073
starting with [Example Refinement Explanation], will be given to show which lines of2074
the program were changed and explain the reasons for those changes.2075

2076
[Start Example]2077

2078
[Example Problem Description]2079
def is_palindrome(num):2080

"""2081
check if a given integer is a palindrome.2082
"""2083

2084
[Example Error Program]2085
def is_palindrome(num):2086

num_str = str(abs(num))2087
return num_str == num_str[::-1]2088

2089
[Example Error Program Explanation]2090
Function Definition (def is_palindrome(num):): This line defines a function named2091
is_palindrome that takes one parameter, num. This parameter is expected to be an2092
integer.2093

2094
Convert Number to Absolute String (num_str = str(abs(num))): A variable num_str is2095
initialized with the absolute value of num converted to a string. The abs() function2096
removes the sign from num if it's negative, ensuring the palindrome check is based2097
solely on the digits.2098

2099
Check Palindrome and Return (return num_str == num_str[::-1]): This line checks if the2100
string representation of num_str is the same forwards and backwards. It uses the2101
slicing technique [::-1] to reverse the string. If num_str is equal to its reversed2102
version, the function returns True, indicating the number is a palindrome. Otherwise,2103
it returns False.2104

2105
[Example Error Analysis]2106
The error execution trace incorrectly converts the negative integer to its negative2107
integer string. The negative signal is missed. For example, negative integer -1212108
should be converted to string "-121" but not "121. To fix this error, the negative2109
number must be considered and its negative sign should be contained when converted to2110
string.2111

2112
2113

[Example Refined Program]2114
def is_palindrome(num):2115

num_str = str(num)2116
return num_str == num_str[::-1]2117

2118
[Example Refinement Explanation]2119
Program line (num_str = str(abs(num))) is changed to (str(num)) to convert the negative2120
integer to its negative integer string by deleting the abs function to keep the2121

negative representation as mentioned in the the error analysis. (str(num)) can2122
correctly convert negative integer -121 to string "-121".2123

2124
[End Example]2125

2126
... Authors' notes: We omit another example for conciseness. The full prompt can be2127
found in our released code. ...2128

2129
You will be presented with a Python writing problem, starting with [Problem Description2130
]. The error program will be provided under [Error Program], followed by an explanation2131
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of each line, starting with [Error Program Explanation]. You will then receive an 2132
error analysis, starting with [Error Analysis], which describes the issues in the error 2133
program and provides refinement suggestions. 2134

2135
The repair process will begin with the phrase "Let's correct the program." Based on the 2136
error analysis, generate the refined program. Output your refined program, starting 2137

with [Start Refined Program] and ending with [End Refined Program], ensuring that ONLY 2138
the Python code is included between these markers. Finally, provide a refinement 2139
explanation, starting with [Refinement Explanation], detailing how the program was 2140
modified to align with the error analysis. 21412142
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