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Abstract

The Gromov-Wasserstein (GW) distance quantifies discrepancy between metric
measure spaces, but suffers from computational hardness. The entropic Gromov-
Wasserstein (EGW) distance serves as a computationally efficient proxy for the
GW distance. Recently, it was shown that the quadratic GW and EGW distances
admit variational forms that tie them to the well-understood optimal transport (OT)
and entropic OT (EOT) problems. By leveraging this connection, we establish
convexity and smoothness properties of the objective in this variational problem.
This results in the first efficient algorithms for solving the EGW problem that are
subject to formal guarantees in both the convex and non-convex regimes.

1 Introduction

The Gromov-Wasserstein (GW) distance compares probability distributions that are supported on
possibly distinct metric spaces by aligning them with one another. Given two metric measure (mm)
spaces (X0, d0, µ0) and (X1, d1, µ1), the (p, q)-GW distance between them is

Dp,q(µ0, µ1) := inf
π∈Π(µ0,µ1)

(∫
|dq0(x, x′)− dq1(y, y

′)|p dπ ⊗ π(x, y, x′, y′)
) 1
p

, (1)

where Π(µ0, µ1) is the set of couplings between µ0 and µ1. This approach, proposed in [25], is
an optimal transport (OT) based Lp relaxation of the classical Gromov-Hausdorff distance between
metric spaces. The GW distance defines a metric on the quotient space of all mm spaces modulo
obtained by identifying isomorphic mm spaces (i.e. the underlying measures µ0, µ1) are such that
µ0 ◦ T−1 = µ1 for some isometry T : X0 → X1). From an applied standpoint, a solution to
the GW problem between two heterogeneous datasets yields both a quantification of discrepancy,
and an optimal matching π⋆ between them. As such, the GW distance has seen many applications,
encompassing single-cell genomics [5, 15], alignment of language models [1], shape matching [23,
24], graph matching [39, 40], heterogeneous domain adaptation [41], and generative modeling [8].

Exact computation of the GW distance is a quadratic assignment problem, which is known to be
NP-complete [11]. The computational intractability of the GW problem in (1) has inspired several
reformulations that aim to alleviate this issue. Recent approaches include slicing [38], relaxing
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the strict marginal constraints using f -divergence penalties [33], and optimizing over bi-directional
maps [44]. While these methods offer certain advantages, it is the approach based on entropic
regularization [29, 36] that is most frequently used in application. In [29], it is proposed to solve the
entropic Gromow-Wasserstein problem (EGW) via a mirror descent algorithm with a complexity of
O(N3) for marginals supported on N distinct points (see, e.g., Remark 1 in [29]). The follow-up
work [32] proposes a low-rank variant of the EGW problem which can be solved in linear time,
wherein only couplings admitting a certain low-rank structure are considered. As an intermediate
step of their analysis, they show that the complexity of mirror descent can be reduced to O(N2) by
assuming that the matrices of pairwise costs admit a low-rank decomposition (without imposing any
structure on the couplings). This decomposition holds, for instance, when the cost is quadratic and
N dominates the ambient dimensions. Although mirror descent seems to solve the EGW problem
well in practice, formal guarantees concerning convergence rates or local optimality are lacking.

The goal of this work is to address the computational gap described above, targeting algorithms with
non-asymptotic guarantees and establishing convexity regimes of the EGW problem—all of which
are consequences of a new stability analysis of the EGW variational representation from [43].

2 Notation and preliminaries

For a topological space S, we let P(S) be the collection of all Borel probability distributions on S.
The Frobenius inner product on Rd0×d1 is defined by ⟨A,B⟩F = tr (A⊺B); the associated norm is
denoted by ∥·∥F . A function f : Rd → R is ρ-weakly convex if f+ ρ

2∥·∥
2 is convex, it is L-smooth

if its gradient is L-Lipschitz. For a Fréchet differentiable map F : U → V between normed vector
spaces U and V , we denote the derivative of F at the point u ∈ U evaluated at v ∈ V by DF[u](v).
We adopt the shorthands a ∧ b = min{a, b} and a ∨ b = max{a, b}.

2.1 Entropic optimal transport

Entropic regularization transforms the linear OT problem into a strongly convex one. Given distri-
butions µi ∈ P(Rdi), i = 0, 1, and a cost function c : Rd0 × Rd1 → R, the primal EOT problem
is obtained by regularizing the standard OT problem via the Kullback-Leibler (KL) divergence,
OTε(µ0, µ1) = infπ∈Π(µ0,µ1)

∫
c dπ + εDKL(π∥µ0 ⊗ µ1), where ε > 0 is a regularization param-

eter and DKL(µ∥ν) =
∫
log
(

dµ
dν

)
dµ, if µ ≪ ν, and∞, otherwise. Classical OT is obtained from

the above by setting ε = 0. When c ∈ L1(µ0 ⊗ µ1), EOT admits the following dual formulation,

OTε(µ0, µ1) = sup
(φ0,φ1)∈L1(µ0)×L1(µ1)

∫
φ0dµ0 +

∫
φ1dµ1 − ε

∫
e
φ0⊕φ1−c

ε dµ0 ⊗ µ1 + ε,

where φ0 ⊕ φ1(x, y) = φ0(x) + φ1(y). The set of solutions to the dual problem coincides with the
set of solutions to the so-called Schrödinger system,∫

e
φ0(x)+φ1−c(x,·)

ε dµ1 = 1, µ0-a.e. x ∈ Rd0 ,

∫
e
φ0+φ1(y)−c(·,y)

ε dµ0 = 1, µ1-a.e. y ∈ Rd1 ,

(2)
for (φ0, φ1) ∈ L1(µ0) × L1(µ1). A pair (φ0, φ1) ∈ L1(µ0) × L1(µ1) solving (2) is known
to be a.s. unique up to additive constants in the sense that any other solution (φ̄0, φ̄1) satisfies
φ̄0 = φ0 + a µ0-a.s. and φ̄1 = φ1 − a µ1-a.s. for some a ∈ R. The unique EOT coupling πε is
characterized by dπε

dµ0⊗µ1
(x, y) = e

φ0(x)+φ1(y)−c(x,y)
ε , and, under some additional conditions on the

cost and marginals, (2) admits a pair of continuous solutions which is unique up to additive constants
and satisfies the system everywhere, i.e., at all points (x, y) ∈ Rd0 × Rd1 . We call such continuous
solutions EOT potentials. The reader is referred to [28] for a comprehensive overview of EOT.

2.2 Entropic Gromov-Wasserstein distance

This work studies stability and computational aspects of the entropically regularized GW distance
under the quadratic and the inner product cost. By analogy to OT, EGW serves as a proxy of the
standard (p, q)-GW distance. From here on out we instantiate the mm spaces as the Euclidean spaces
(Rdi , ∥ · ∥, µi), for i = 0, 1, and proceed to define the EGW distance for the quadratic cost.
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The quadratic EGW distance, which corresponds to the p = q = 2 case, is defined as

Sε(µ0, µ1) = inf
π∈Π(µ0,µ1)

∫ ∣∣∥x− x′∥2 − ∥y − y′∥2∣∣2 dπ⊗π(x, y, x′, y′)+εDKL(π∥µ0⊗µ1). (3)

One readily verifies that, like the standard GW distance, EGW is invariant to isometric actions on
the marginal spaces such as orthogonal rotations and translations. When µ0, µ1 are centered, which
we may assume without loss of generality, the EGW distance decomposes as

Sε(µ0, µ1) = S1(µ0, µ1) + S2,ε(µ0, µ1),

S1(µ0, µ1)=

∫
∥x−x′∥4dµ0⊗µ0(x, x

′)+

∫
∥y−y′∥4dµ1⊗µ1(y, y

′)− 4M2(µ0)M2(µ1),

S2,ε(µ0, µ1) = inf
A∈Rd0×d1

32∥A∥2F + OTA,ε(µ0, µ1),

(4)

where OTA,ε(µ0, µ1) is the EOT problem with the cost function cA : (x, y) ∈ Rd0 × Rd1 7→
−4∥x∥2∥y∥2−32x⊺Ay and regularization parameter ε. Moreover, the infimum is achieved at some
A⋆ ∈ DM := [−M/2,M/2]d0×d1 for any M ≥

√
M2(µ0)M2(µ1) =: Mµ0,µ1

. The proof of
Theorem 1 in [43] demonstrates that if µ0 and µ1 are centered and π⋆ is optimal for the original
EGW formulation, then A⋆ = 1

2

∫
xy⊺ dπ⋆(x, y) is optimal for S2,ε and π⋆ = πA⋆ , where πA⋆

is the unique EOT coupling for OTA⋆,ε(µ0, µ1). Corollary 1 ahead expands on this connection by
establishing a one-to-one correspondence between solutions of Sε and S2,ε.

Although (4) illustrates a connection between the EGW and EOT problems, the outer minimization
over DM necessitates studying EOT with an a priori unknown cost function cA.

A similar decomposition holds for the inner product GW problem, where the difference of squared
Euclidean norms is replaced by a difference of inner products. In that case, Fε(µ0, µ1) =
F1(µ0, µ1)+F2,ε(µ0, µ1), for F1(µ0, µ1) =

∫
|⟨x, x′⟩|2dµ0⊗µ0(x, x

′)+
∫
|⟨y, y′⟩|2dµ0⊗µ0(y, y

′),
and F2,ε(µ0, µ1) = infA∈Rd0×d1 8∥A∥2F + IOTA,ε(µ0, µ1), with the distinction that no centering is
needed and IOTA,ε(µ0, µ1) is the EOT problem with the cost function cA(x, y) = −8x⊺Ay. We
restrict our attention to the quadratic EGW problem, similar results hold in the inner product case.

3 Stability of entropic Gromov-Wasserstein distances

We now analyze the stability of the EGW problem with respect to the matrix A appearing in its
variational form (4). Specifically, we characterize the first and second derivatives of the objective
function whose optimization defines S2,ε which elucidates its convexity properties and enables us
to devise novel approaches for computing the EGW distance with formal convergence guarantees.
Throughout this section, we restrict attention to compactly supported distributions, as some of the
technical details do not directly translate to the unbounded setting (e.g., the proof of Lemma 2).

Fix compactly supported distributions (µ0, µ1) ∈ P(Rd0)× P(Rd1) and some ε > 0. Let

Φ : A ∈ Rd0×d1 7→ 32∥A∥2F + OTA,ε(µ0, µ1)

denote the objective in S2,ε(µ0, µ1). We first characterize the derivatives of Φ and then prove that
this map is weakly convex and L-smooth.
Proposition 1 (First and second derivatives). Φ : A ∈ Rd0×d1 7→ 32∥A∥2F + OTA,ε(µ0, µ1) is
smooth, coercive, and has first and second-order Fréchet derivatives at A ∈ Rd0×d1 given by

DΦ[A](B) = 64 tr(A⊺B)− 32

∫
x⊺By dπA(x, y),

D2Φ[A](B,C) = 64 tr(B⊺C) + 32ε−1

∫
x⊺By

(
hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy
)
dπA(x, y),

where B,C ∈ Rd0×d1 , πA is the unique EOT coupling for OTA,ε(µ0, µ1), and
(
hA,C
0 , hA,C

1

)
is

the unique (up to additive constants) pair of functions in C(spt(µ0))× C(spt(µ1)) satisfying∫ (
hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy
)
e
φA
0 (x)+φA

1 (y)−cA(x,y)

ε dµ1(y) = 0, ∀x ∈ spt(µ0),∫ (
hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy
)
e
φA
0 (x)+φA

1 (y)−cA(x,y)

ε dµ0(x) = 0, ∀ y ∈ spt(µ1).

(5)
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Here, (φA
0 , φ

A
1 ) is any pair of EOT potentials for OTA,ε(µ0, µ1).

Proposition 1 essentially follows from the implicit mapping theorem, which enables us to compute
the Fréchet derivative of the EOT potentials for OT(·),ε(µ0, µ1) using the Schrödinger system (2).
The derivative of OT(·),ε(µ0, µ1), which is a simple function of the EOT potentials, is then readily
obtained. By differentiating the Frobenius norm, this yields the derivative of Φ. See Appendix A.1.

As DΦ[A](B) =
〈
64A− 32

∫
xy⊺ dπA(x, y),B

〉
F

, we can interpret 64A − 32
∫
xy⊺ dπA(x, y)

as the gradient of Φ which we denoteDΦ[A]. This perspective is utilized in Section 4 when studying
computational guarantees for the EGW distance, as it is simpler to view iterates as matrices.

As a direct corollary to Proposition 1, we provide an (implicit) characterization of the stationary
points of Φ and connect its minimizers to solutions of Sε. Details are provided in Appendix A.2.
Corollary 1 (Stationary points and correspondence between Sε and S2,ε).

(i) A matrix A∈ Rd0×d1 is a stationary point of Φ if and only if A = 1
2

∫
xy⊺ dπA(x, y). As Φ is

coercive, all minimizers of Φ are stationary points and hence contained in DMµ0,µ1
.

(ii) If µ0 and µ1 are centered, then a given matrix A minimizes Φ if and only if πA is optimal for
Sε and satisfies 1

2

∫
xy⊺ dπA(x, y) = A.

(iii) Suppose µ0 and µ1 are centered. If Sε admits a unique optimal coupling π⋆, then Φ admits a
unique minimizer A⋆ and π⋆ = πA⋆ . Conversely, if Φ admits a unique minimizer A⋆, then πA⋆

is a unique optimal coupling for Sε.

Although the second derivative of Φ involves the implicitly defined functions (hA,C
0 , hA,C

1 ), its
maximal and minimal eigenvalues, λmax

(
D2Φ[A]

)
and λmin

(
D2Φ[A]

)
, can be controlled which

enables us to characterize convexity and smoothness of Φ.
Theorem 1 (Convexity and L-smoothness). The map Φ is weakly convex with parameter at
most 322ε−1

√
M4(µ0)M4(µ1) − 64 and, if

√
M4(µ0)M4(µ1) < ε

16 , then it is strictly con-
vex and admits a unique minimizer. Moreover, for any M > 0, Φ is L-smooth on DM with
L ≤ 64 ∨

(
322ε−1

√
M4(µ0)M4(µ1)− 64

)
.

Theorem 1 follows from Proposition 1 by considering the variational form of the maximal and
minimal eigenvalues; see Appendix A.3 for details. In general, optimal EGW couplings may not be
unique. Theorem 1 provides sufficient conditions for uniqueness of solutions to both S2,ε and the
EGW problem by the connection discussed in Corollary 1 when the marginals are centered.

4 Computational guarantees

Building on this stability theory, we now study computation of the EGW problem. The goal is to
compute the distance between two discrete distributions µ0 ∈ P(Rd0) and µ1 ∈ P(Rd1) supported
on N0 and N1 atoms (x(i))N0

i=1 and (y(j))N1
j=1, respectively. In light of the decomposition (4), we

focus on S2,ε, which is given by a smooth optimization problem whose convexity depends on the
value of ε. Throughout, we treat DΦ[A], for A ∈ Rd0×d1 , as the matrix 64A−32

∫
xy⊺ dπA(x, y).

4.1 Inexact Oracle Methods

As these problems are already d0d1-dimensional and computing the second Fréchet derivative of
Φ may be infeasible (in particular, it requires solving Eq. (5)), we focus on first-order methods.
Given the regularity of the S2,ε optimization problem, standard out-of-the-box numerical routines
are likely to yield good results in practice. However, to provide meaningful formal guarantees one
must account for the fact that evaluation of Φ and its gradient requires computing the corresponding
EOT plan, which entails an approximation. We model this under the scope of gradient methods with
inexact gradient oracles [13, 16, 17].

For a fixed ε > 0 and µ0, µ1 as above, we seek to solve minA∈DM 32∥A∥2F +OTA,ε(µ0, µ1),where
M > Mµ0,µ1

, which guarantees that all the optimizers are within the optimization domain (cf.
Corollary 1). As we are in the discrete setting, the EOT coupling πA for OTA,ε(µ0, µ1), A ∈ DM ,
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is represented by ΠA ∈ RN0×N1 , where ΠA
ij = πA(x(i), y(j)). The inexact oracle paradigm

assumes that, for any A ∈ DM , we have access to a δ-oracle Π̃A for ΠA with ∥Π̃A−ΠA∥∞ < δ.
Such oracles can be obtained, for instance, by Sinkhorn’s algorithm [12, 35].

Proposition 2 (Inexact oracle via Sinkhorn iterations). Fix δ > 0. Then, Sinkhorn’s algorithm
(Algorithm 3) returns a δ-oracle approximation Π̃A of ΠA in at most k̃ iterations, where k̃ depends
only on µ0, µ1,A, δ, and ε, and is given explicitly in (17).

The proof of Proposition 2 follows by combining a number of known results, see Appendix C. With
these preparations, we first discuss the case where Φ is known to be convex on DM .

4.2 Convex case

Assume that Φ is convex on DM , e.g., under the setting of Theorem 1. As convexity implies that
the minimal eigenvalue of D2Φ[A] is positive for any A ∈ DM , Theorem 1 further yields that Φ is
64-smooth. With that, we can the apply inexact oracle first-order method from [13]. To describe the
approach, assume that we are given a δ-oracle Π̃A for the EOT plan ΠA for OTA,ε(µ0, µ1), and
define the corresponding gradient approximation

D̃Φ[A] = 64A− 32
∑

1≤i≤N0
1≤j≤N1

x(i)(y(j))⊺Π̃A
ij . (6)

Algorithm 1 Fast gradient method with inexact oracle

Fix L = 64 and let αk = k+1
2 , and τk = 2

k+3

1: k ← 0, A0 ← 0, G0 ← D̃Φ[A0], W0 ← α0G0

2: while stopping condition is not met do
3: Dk ← Ak − L−1Gk

4: Bk ← M
2 sign(Dk)min

(
2
M |Dk| , 1

)
5: Ck ← M

2 sign(−Wk

L )min
(

2
M

∣∣Wk

L

∣∣ , 1)
6: Ak+1 ← τkCk + (1− τk)Bk

7: Gk+1 ← D̃Φ[Ak+1]

8: Wk+1 ←Wk + αk+1Gk+1

9: k ← k + 1
10: return Bk

We now present the algorithm and fol-
low it with formal convergence guaran-
tees.

The sign, min, and multiplication oper-
ations in Algorithm 1 are applied entry-
wise. Due to inexactness, stopping con-
ditions based on insufficient progress
of functions values or setting a thresh-
old on the norm of the gradient require
care. A condition based on the number
of iterations is discussed in Remark 1.

We now provide formal convergence
guarantees for Algorithm 1.

Theorem 2 (Fast convergence rates). Assume that Φ is convex and L-smooth on DM and that
Π̃A is a δ-oracle for ΠA. Then, the iterates Bk in Algorithm 1 with D̃Φ[Ak] given by (6) sat-

isfy Φ(Bk) − Φ(B⋆) ≤ 2L∥B⋆∥2
F

(k+1)(k+2) + 3δ′, where B⋆ is a global minimizer of Φ and δ′ =

32Mδ
∑

1≤i≤N0
1≤j≤N1

∥∥x(i)(y(j))⊺∥∥
1

where ∥ · ∥1 denotes the entrywise 1-norm. Moreover, for any η >

3δ′, Algorithm 1 requires at most k =

⌈
− 3

2 + 1
2

√
1 +

8L∥B⋆∥2
F

η−3δ′

⌉
≤
⌈
− 3

2 + 1
2

√
1 +

128M2d2
0d

2
1

η−3δ′

⌉
iterations to achieve an η-approximate solution.

The proof of Theorem 2, given in Appendix A.4, follows from Theorem 2.2 in [13] after casting our
problem as an instance of their setting. Some implications of Theorem 2 are discussed next.

Remark 1 (Optimal rates and stopping conditions). First, consider the convergence rate of the
function values. The first term on the right-hand side exhibits the optimal complexity bound for
smooth constrained optimization of O(1/k2) (cf., e.g., [27]). The second term accounts for the
underlying oracle error. Notably, the progress of the optimization procedure and the oracle error
are completely decoupled in this bound.

Next, observe that all terms involved in the upper bound for the number of iterations are explicit as
soon as a desired precision η is chosen since the oracle error δ can be fixed according to Proposi-
tion 2. Consequently, it can be used as an explicit stopping condition for Algorithm 1.
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4.3 General case

Algorithm 2 Adaptive gradient method with
inexact oracle

Given C0 ∈ DM , fix the sequences βk =
1
2L , γk = k

4L , and τk = 2
k+2 .

1: k ← 1, A1 ← C0, G1 ← D̃Φ[A1]

2: while stopping condition is not met do
3: Dk ← Ak − βkGk

4: Bk ← M
2 sign(Dk)min

(
2
M |Dk| , 1

)
5: Ek ← Ck−1 − γkGk

6: Ck ← M
2 sign(Ek)min

(
2
M |Ek| , 1

)
7: Ak+1 ← τkCk + (1− τk)Bk

8: Gk+1 ← D̃Φ[Ak+1]

9: k ← k + 1
10: return Bk

We now discuss an optimization procedure which
does not require convexity of the objective. This
accounts for the fact that outside the sufficient
conditions of Theorem 1, convexity of Φ is
generally unknown. However, the same result
shows that Φ is L-smooth with L = 64 ∨(
322ε−1

√
M4(µ0)M4(µ1)− 64

)
and OT(·),ε is

L′-smooth with L′ = 322ε−1
√
M4(µ0)M4(µ1).

Hence, we adapt the smooth non-convex optimiza-
tion routine of [21] to account for our inexact ora-
cle. Notably, their method adapts to the convexity
of Φ as described in Theorem 3.

Unlike Algorithm 1, which is initialized at any
fixed A0, the starting point in Algorithm 2 should
be chosen according to some selection rule that
avoids initializing at a stationary point (e.g., ran-

dom initialization). Indeed, if A0 is set to a stationary point of Φ, then DΦ[A0] = 0 and, conse-
quently D̃Φ[A0] ≈ 0 (given that the approximate gradient is reasonably accurate), which may result
in premature and undesirable termination. Clearly, this is not a concern for Algorithm 1 since it
assumes convexity of Φ, whereby any stationary point is a global optimum.

The following result follows by adapting the proofs of Theorem 2 and Corollary 2 in [21]. For
completeness, we provide a self-contained argument in Appendix D along with a discussion of how
this problem fits in the framework of [21].

Theorem 3 (Adaptive convergence rate). Assume that Φ is L-smooth on DM and that Π̃A is a
δ-oracle for ΠA. Then, the iterates Ak,Bk in Algorithm 2 with D̃Φ[Ak] given by (6) satisfy

1. If Φ is non-convex and OT(·),ε(µ0, µ1) is L′-smooth, then min1≤i≤k

∥∥β−1
i (Bi−Ai)

∥∥2
F
≤

96L2

k(k+1)(k+2)∥C0 −B⋆∥2F + 24LL′

k

(
∥B⋆∥2F +

5M2d2
0d

2
1

16

)
+8Lδ′, where B⋆ is a global minimizer

of Φ, and δ′ = 32Mδ
∑

1≤i≤N0
1≤j≤N1

∥∥x(i)(y(j))⊺∥∥
1
.

2. If Φ is convex, then min1≤i≤k

∥∥β−1
i (Bi −Ai)

∥∥2
F
≤ 96L2

k(k+1)(k+2)∥C0 −B⋆∥2F + 8Lδ′.

We first show that when
∥∥β−1

k (Bk −Ak)
∥∥
F

is small, DΦ[Ak] is approximately stationary.
Corollary 2 (Approximate stationarity). Let Ak,Bk be iterates from Algorithm 2 and assume that
Bk ∈ int(DM ). Then, ∥DΦ[Ak]∥F < 32δ

∑
1≤i≤N0
1≤j≤N1

∥x(i)∥∥y(j)∥+
∥∥β−1

k (Bk −Ak)
∥∥
F
.

The proof of Corollary 2 follows from the δ-oracle assumption and the fact that when Bk is an
interior point ofDM , we have Bk = Ak−βkGk. See Appendix A.5 for details. When Bk is not an
interior point of DM , the interpretation of ∥β−1

k (Bk −Ak)∥F is less straightforward. However, as
all stationary points of Φ are contained in DMµ0,µ1

, it is expected that Algorithm 2 will converge to
an interior point. By analogy with Remark 1, when all iterates are interior points Algorithm 2 yields
a bound on the number of iterations required to achieve an approximate stationary point.

The following remark addresses the distinctions between the convex and non-convex settings.
Remark 2 (Adaptivity of Algorithm 2). As in Theorem 2, the convergence rates are decoupled into
a term related to the progress of the optimization procedure and a term related to the oracle error.
In the case where Φ is non-convex, the dominant term in the optimization error is O(1/k), which
coincides with the best known rates for solving general unconstrained nonlinear programs [21]. On
the other hand, when Φ is convex, the rate of convergence improves to O(1/k3) which essentially
matches the best known rates for the norm of the gradient in the unconstrained accelerated gradient
method applied to a convex L-smooth function (see Theorem 6 in [34] and Theorem 3.1 in [10]).
This adaptivity is beneficial, as Φ may be convex beyond the conditions derived in Theorem 1.
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An empirical comparison of Algorithms 1 and 2 in the convex setting is included in Section 4.4. In
particular, Algorithm 1 is seen to outperform Algorithm 2 in terms of average runtime despite having
the same per iteration complexity when the inexact gradient is computed using Sinkhorn iterations.
Remark 3 (Computational complexity of Algorithms 1 and 2). As Sinkhorn’s algorithm is known
to have a complexity ofO(N0N1) (cf. e.g. [32]), the gradient approximation (6) can be computed in
O(N0N1) time. It follows that Algorithms 1 and 2 admit a computational complexity of O(N0N1).

4.4 Numerical Experiments

We conclude this section with some experiments that empirically validate the rates obtained in The-
orems 2 and 3 and the computational complexity discussed in Remark 3. All experiments were
performed on a desktop computer with 16 GB of RAM and an Intel i5-10600k CPU using the
Python programming language. Blown-up figures are included in Appendix F

Figure 1: The top row compiles plots of Φ for
the different examples. The bottom row con-
sists of plots tracking the progress of the iter-
ates. In (b) and (c), Algorithm 2 is initialized
at C0 = (1, 1) × 10−5 and C0 = 1 × 10−5,
respectively.

Convergence rates. Figure 1 (a) presents an exam-
ple of applying Algorithm 1 to a convex Φ, where
the marginals are µ0 = 0.4δ−1.4 + 0.6δ1.2 and
µ1 = 0.4δ−1.01 + 0.6δ1.31, with ε chosen large
enough to guarantee convexity. The theoretical rate
of O(k−2) from Theorem 2 on the optimality gap
Φ(Bk) − Φ(B⋆) is seen to hold.1 Figure 1 (b) il-
lustrates the progress of Algorithm 2 applied to a
non-convex Φ, for µ0 = 1

3 (δ0.3 + δ−0.8 + δ−0.5)

and µ1 = 1
3

(
δ(0.1,0.6) + δ(−0.5,0.3) + δ(0.4,−0.3)

)
,

with ε = 0.07 which makes Φ non-convex. The
O(k−1) rate for min1≤i≤k

∥∥β−1
i (Bi−Ai)

∥∥2
F

in the
non-convex case from Theorem 3 is well reflected in
this example. Figure 1 (c) shows that Algorithm 2
can match the theoretical rate of O(k−3) in the con-
vex regime when initialized in a region of local con-
vexity. In this example, the generated marginals are

µ0 = 1
5 (δ−0.1 + δ−0.2 + δ0.2 + δ−0.3 + δ0.3) and µ1 = 1

5 (δ0.2 + δ−0.3 + δ0.3 + δ−0.4 + δ0.4) and
ε = 0.03. The stopping condition used in all these example is ∥Gk∥F < 5× 10−8 and the approxi-
mate gradient (6) is computed using the implementation of Sinkhorn’s algorithm from [19].

Figure 2: The various plots compile the aver-
age runtime of Algorithms 1 and 2, and two
versions of the mirror descent algorithm in
the convex regime for different combinations
of d and N .

Time complexity. To study the time complex-
ity of Algorithms 1 and 2, we first choose the di-
mension d ∈ {1, 16, 64, 128} and let µ0, µ1 ∈
P(Rd) be supported on N ∈ {16, 32, 64, 128, 256,
512, 1024, 2048, 4096, 8192, 16384} samples of a
mean-zero normal distribution with standard devi-
ation 0.05 for µ0 and 0.1 for µ1. The weights are
chosen uniformly at random from [0, 1) and normal-
ized so as to sum to 1. This procedure is repeated
to generate a collection of pairs of random distribu-
tions {(µ0,i, µ1,i)}500i=1. In the sequel, a single ex-
periment refers to the process of timing the compu-
tation of Sε(µ0,i, µ1,i) for some fixed d,N and all
i = 1, . . . , 500. For practical reasons, we choose to
abort an experiment before all 500 EGW distances
have been computed if the total runtime for this ex-
periment exceeds 20 minutes. The average runtime
is then computed among all completed calculations
in a single experiment.

The convex case: First, ε is chosen as 1.05 × 16
√
M4(µ0)M4(µ1) so as to guarantee convexity

of Φ for each instance by Theorem 1. Figure 2 presents the average runtime of both algorithms
in this setting with the stopping condition ∥Gk∥F < 10−6. We compare the performance of our

1The plot shows the approximate gap Φ(Bk)− Φ(B̄⋆), where B̄⋆ is the approximate minimizer.
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methods with the two implementations of the O(N2) mirror descent algorithm provided in [32].
The first implementation includes certain algorithmic tweaks when d2 ≪ N , whereas the second
only requires d≪ N to achieve the quadratic complexity. Our implementation of the mirror descent
algorithm is based on the code provided in [32] with some small modifications (e.g., EOT couplings
are computed using Sinkhorn’s algorithm from the Python Optimal Transport package [19] and
some extraneous logging features are removed). We note that the first version of the mirror descent
algorithm encounters “out of memory” errors for N = 16384.

The plots show that the four algorithms perform similarly on the considered examples, and empir-
ically validate the O(N2) computational complexity from Remark 3. To verify that the algorithms
all converge to solutions with similar objective values, we evaluate the relative error2 between all
pairs of algorithms for each d,N . The largest relative error we observe is 6.6× 10−6 for d = 1 and,
for the other choices of d, is at most 4.2× 10−12. The values obtained are thus in good agreement.

Figure 3: The various plots compile the av-
erage runtime of Algorithm 2 with the two
methods for choosing L, and two versions
of the mirror descent algorithm in the non-
convex regime for different combinations of
d and N .

The non-convex case: To evaluate the performance
of Algorithm 2 when convexity is unknown, we set
ε to violate the condition of Theorem 1, but still
be large enough so as to avoid numerical errors.
If errors in running Algorithm 2 or the mirror de-
scent methods occur, we double ε until all algo-
rithms converge without errors. The initial point
C0 for Algorithm 2 is taken as the matrix of all
ones scaled by min{M, 1} × 10−5. We consider
two ways of choosing the smoothness parameter
L, which effectively dictates the rate of conver-
gence. The first is to set L equals to the theoreti-
cal upper bound from Theorem 1, i.e., L = 64 ∨(
322ε−1

√
M4(µ0)M4(µ1)− 64

)
. As this choice

may be too conservative in practice, we also con-
sider setting L via a line search. Namely, we fix a
value for L (e.g., the theoretical upper bound or an
arbitrary value) and check if the algorithm converges
for a given choice of d,N, µ0,i, µ1,i. If so, we mul-
tiply L by 0.99 and repeat this procedure until the

algorithm no longer converges. For each d and N , we choose the value of L that attains the fastest
convergence, and repeat this procedure for 5 pairs of distributions. For Algorithm 2 with the choice
of L that comes from the theoretical bound and the two versions of mirror descent we follow the
same methodology as in the convex case. The average runtimes of all methods are reported in Figure
3. The restriction to 5 runs in the line search case is only out of convenience and we note that all
algorithms yield similar results if we restrict to 5 runs throughout.

The plots again validate the O(N2) time complexity for all four approaches. However, we see that
choosing L in Algorithm 2 according to the theoretical upper bound may indeed be too conservative,
as it results in a 10× slowdown compared to the other methods. By setting L via the line search, on
the other hand, Algorithm 2 and mirror descent exhibit similar performance. This suggests that the
longer runtime of Algorithm 2 with the theoretical L value can be attributed to this being an overly
conservative choice as opposed to a fundamental limitation of this method. Optimization routines
that update L at each iteration have been proposed in [3, 26, 37], but require solving an additional
EOT problem at each step for our application. As such, these approaches may reduce the number of
iterations required for convergence, but at the cost of increasing the per iteration complexity.

5 Conclusion

In this work, we have addressed stability for the EGW problem over Euclidean spaces with quadratic
cost. The analysis leveraged variational characterizations of these EGW distances that tie them to
EOT with a certain parametrized cost function. The stability analysis was used to study convexity

2Relative error is measured by maxi∈C(d,N)

∣∣SA1
ε (µ0,i, µ1,i) − SA2

ε (µ0,i, µ1,i)
∣∣/(SA1

ε (µ0,i, µ1,i) ∧
SA2
ε (µ0,i, µ1,i)

)
, where SA1

ε (µ0,i, µ1,i) and SA2
ε (µ0,i, µ1,i) denote the objective values achieved by the first

and second algorithm of the pair, and C(d,N) is the collection of completed runs from a given experiment.
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and smoothness properties of this variational problem, which led to two new efficient algorithms
for computing the EGW distance. The complexity of these algorithms agrees with the best known
complexity of O(N2) for computing the quadratic EGW distance directly, but unlike previous ap-
proaches, we provide, for the first time, non-asymptotic convergence rate guarantees in both the
convex and non-convex regimes. This stability analysis also lays the groundwork for solving the
EGW problem via smooth optimization methods.
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A Proofs

A.1 Proof of Proposition 1

We first fix some notation. Let Si = spt(µi) for i = 0, 1 and define the Banach spaces

E =

{
(f0, f1) ∈ C(S0)× C(S1) :

∫
f0dµ0 = 0

}
,

F =

{
(f0, f1) ∈ C(S0)× C(S1) :

∫
f0dµ0 =

∫
f1dµ1

}
.

Consider the map Υ : Rd0×d1 × E→ C(S0)× C(S1) given by

Υ : (A, φ0, φ1) 7→

(∫
e
φ0(·)+φ1(y)−cA(·,y)

ε dµ1(y)− 1,

∫
e
φ0(x)+φ1(·)−cA(x,·)

ε dµ0(x)− 1

)
.

For fixed A ∈ Rd0×d1 , the solution to the equation Υ(A, ·, ·) = 0 is the unique pair of EOT
potentials (φA

0 , φ
A
1 ) for µ0, µ1 with the cost cA satisfying the normalization from E. Observe that,

by compactness of S0 and S1, the potentials are bounded.

The following lemmas verify the conditions to apply the implicit mapping theorem to Υ in order to
obtain the Fréchet derivative of the map A ∈ Rd0×d1 7→ (φA

0 , φ
A
1 ). Given that OTA,ε(µ0, µ1) =∫

φA
0 dµ0+

∫
φA
1 dµ1, the derivative of the map A 7→ OTA,ε(µ0, µ1) and that of Φ itself will readily

follow.
Lemma 1. The map Υ is smooth with first derivative at (A, φ0, φ1) ∈ Rd0×d1 × E given by,

DΥ[A,φ0,φ1](B, h0, h1) = ε−1

(∫
(h0(·) + h1(y) + 32(·)⊺By)e

φ0(·)+φ1(y)−cA(·,y)
ε dµ1(y),

∫
(h0(x) + h1(·) + 32x⊺B(·))e

φ0(x)+φ1(·)−cA(x,·)
ε dµ0(x)

)
,

where (B, h0, h1) ∈ Rd0×d1 × E.

The proof of this result is straightforward, but included in Appendix E.1 for completeness. Now,
define ξA := εDΥ[A,φA

0 ,φA
1 ](0, ·, ·) and let πA be the EOT coupling for OTA,ε(µ0, µ1). Note that

for any (h0, h1) ∈ E, we have ξA(h0, h1) ∈ F, which follows by recalling that dπA

dµ0⊗µ1
(x, y) =

e
φA
0 (x)+φA

1 (y)−cA(x,y)

ε and observing∫ (
ξA(h0, h1)

)
1
dµ0 =

∫
h0dµ0 +

∫
h1dπA =

∫
h0dµ0 +

∫
h1dµ1∫ (

ξA(h0, h1)
)
2
dµ1 =

∫
h0dπA +

∫
h1dµ1 =

∫
h0dµ0 +

∫
h1dµ1.

We next prove that ξA is an isomorphism between E and F by following the proof of Proposition
3.1 in [9].
Lemma 2. The map ξA is an isomorphism between E and F.

Proof. Observe that ξA extends naturally to a map onL2(µ0)×L2(µ1) and admits the representation

ξA : (f0, f1) ∈ L2(µ0)× L2(µ1) 7→ (f0, f1) + L(f0, f1) ∈ L2(µ0)× L2(µ1),

where

L(f0, f1) =
(∫

f1(y)e
φA
0 (·)+φA

1 (y)−cA(·,y)
ε dµ1(y),

∫
f0(x)e

φA
0 (x)+φA

1 (·)−cA(x,·)
ε dµ0(x)

)
.

Lemma 11 in Appendix E.2 demonstrates that L is a compact linear self-map of L2(µ0)× L2(µ1).
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We first show that ξA is injective on E := {(f0, f1) ∈ L2(µ0)× L2(µ1) :
∫
f0dµ0 = 0}. Suppose

that (f̄0, f̄1) satisfies ξA(f̄0, f̄1) = 0. Multiplying (ξA(f̄0, f̄1))1 by f̄0 and (ξA(f̄0, f̄1))2 by f̄1, we
have ∫ (

f̄20 (·) + f̄0(·)f̄1(y)
)
e
φA
0 (·)+φA

1 (y)−cA(·,y)
ε dµ1(y) = 0,∫ (

f̄0(x)f1(·) + f̄21 (·)
)
e
φA
0 (x)+φA

1 (·)−cA(x,·)
ε dµ0(x) = 0,

and summing these equations gives
∫
(f̄0 + f̄1)

2dπA = 0. As πA is equivalent to µ0 ⊗ µ1, we have
f̄0 + f̄1 = 0 µ0 ⊗ µ1-a.e., which further implies that (f̄0, f̄1) = (a,−a) µ0 ⊗ µ1-a.e. for some
a ∈ R. Consequently, ker(ξA) is 1-dimensional and ξA is injective on E.

Next, we show that ξA is onto F := {(f0, f1) ∈ L2(µ0) × L2(µ1) :
∫
f0dµ0 =

∫
f1dµ1}.

As in the lead-up to this lemma, ξA(E) ⊂ F . By the Fredholm alternative (cf. Theorem 6.6 in
[7]), (Id+L)(L2(µ0) × L2(µ1)) has codimension 1 and, as F has codimension 1, we must have
ξA(E) = F .

As such, for any (g0, g1) ∈ F ⊂ F , there exists (h0, h1) ∈ E for which

ξA(h0, h1) = (h0, h1) + L(h0, h1) = (g0, g1).

AsL(h0, h1) ∈ C(S0)×C(S1), (h0, h1) = (g0, g1)−L(h0, h1) ∈ C(S0)×C(S1) with
∫
h0dµ0 = 0,

and thus (h0, h1) ∈ E. This implies that ξA(E) ⊃ F and from before we have ξA(E) ⊂ F, yielding
ξA(E) = F. We have shown that ξA : E → F is a continuous linear bijection and hence an
isomorphism by the open mapping theorem (cf. Corollary 2.7 in [7]).

We now apply the implicit mapping theorem to obtain the Fréchet derivative of (φ(·)
0 , φ

(·)
1 ).

Lemma 3. The map A ∈ Rd0×d1 7→ (φA
0 , φ

A
1 ) ∈ E is smooth with Fréchet derivative

D
(
φ
(·)
0 , φ

(·)
1

)
[A]

(B) = −
(
hA,B
0 , hA,B

1

)
,

where
(
hA,B
0 , hA,B

1

)
∈ E satisfies∫ (

hA,B
0 (x) + hA,B

1 (y)− 32x⊺By
)
e
φA
0 (x)+φA

1 (y)−cA(x,y)

ε dµ1(y) = 0, ∀x ∈ spt(µ0),∫ (
hA,B
0 (x) + hA,B

1 (y)− 32x⊺By
)
e
φA
0 (x)+φA

1 (y)−cA(x,y)

ε dµ0(x) = 0, ∀ y ∈ spt(µ1),

(7)

with (φA
0 , φ

A
1 ) being any pair of EOT potentials for (µ0, µ1) with the cost cA.

Proof. Fix A ∈ Rd0×d1 with corresponding EOT potentials
(
φA
0 , φ

A
1

)
. For notational conve-

nience, define the shorthands D1ΥA = DΥ[A,φA
0 ,φA

1 ](·, 0, 0) and D2ΥA = DΥ[A,φA
0 ,φA

1 ](0, ·, ·)
(cf. Lemma 1). By Lemma 2, D2ΥA is an isomorphism and we may invoke the implicit mapping
theorem (cf. Theorem 5.14 in [6]). This implies that there exists an open neighborhood U ⊂ Rd0×d1

of A and a smooth map g : U → E for which Υ
(
B, g(B)

)
= 0 for every B ∈ U and

Dg[A](B) = −(D2ΥA)−1 (D1ΥA(B)) ,

i.e., −Dg[A](B) solves (7). By construction, g(B) = (φB
0 , φ

B
1 ) and by repeating this process at

any A ∈ Rd0×d1 , we extend the differentiability of the potentials to the entire space Rd0×d1 .

Given the dual form of the EOT cost, Lemma 3 suffices to prove Proposition 1.

Proof of Proposition 1. As OTA,ε(µ0, µ1) =
∫
φA
0 dµ0 +

∫
φA
1 dµ1, Lemma 3 implies that

OT(·),ε(µ0, µ1) is smooth with first derivative at A ∈ Rd0×d1 given by

D
(
OT(·),ε(µ0, µ1)

)
[A]

(B) = −
∫
hA,B
0 dµ0 −

∫
hA,B
1 dµ1,

13



where B ∈ Rd0×d1 . Integrating the first equation in (7) w.r.t. µ0 while using dπA

µ0⊗µ1
(x, y) =

e
φA
0 (x)+φA

1 (y)−cA(x,y)

ε , yields∫ (
hA,B
0 (x) + hA,B

1 (y)
)
dπA(x, y) =

∫
hA,B
0 dµ0 +

∫
hA,B
1 dµ1 = 32

∫
x⊺By dπA(x, y),

(8)
whence

D
(
OT(·),ε(µ0, µ1)

)
[A]

(B) = −32
∫
x⊺By dπA(x, y).

As ∥A∥2F = tr(A⊺A), we haveD
(
32∥·∥2F

)
[A]

(B) = 64tr(A⊺B), which together with the display
above yields

DΦ[A](B) = 64 tr(A⊺B)− 32

∫
x⊺By dπA(x, y),

as desired.

For the second-order derivative, recall from Section 2.1 that dπA

dµ0⊗µ1
(x, y) = e

φA
0 (x)+φA

1 (y)−cA(x,y)

ε .
As in the proof of Lemma 1, as the map

A ∈ Rd0×d1 7→
(
(x, y) ∈ S0 × S1 7→ φA

0 (x) + φA
1 (y)− cA(x, y)

)
∈ C(S0 × S1)

is differentiable at A ∈ Rd0×d1 with derivative

C ∈ Rd0×d1 7→
(
(x, y) ∈ S0 × S1 7→ −

(
hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy
))
∈ C(S0 × S1),

the expansion

dπA+C

dµ0 ⊗ µ1
(x, y)− dπA

dµ0 ⊗ µ1
(x, y) = −ε−1zA,C(x, y)

dπA
dµ0 ⊗ µ1

(x, y) +RC(x, y),

holds uniformly over (x, y) ∈ S0 × S1, where RC(x, y) = o(C) as ∥C∥F → 0 and zA,C(x, y) =

hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy. Thus,

sup
∥B∥F=1

∣∣∫ x⊺By dπA+C(x, y)−
∫
x⊺By dπA(x, y)− ε−1

∫
x⊺ByzA,C(x, y)dπA(x, y)

∣∣
∥C∥F

= sup
∥B∥F=1

∣∣∣∣∫ x⊺By∥C∥−1
F RC(x, y)dµ0 ⊗ µ1(x, y)

∣∣∣∣
≤ sup

(x,y)∈S1×S2

∥x∥∥y∥
∫
∥C∥−1

F |RC(x, y)| dµ0 ⊗ µ1(x, y).

As RC(x, y) = o(C), this final term converges to 0 as ∥C∥F → 0, so

D2
(
OT(·),ε(µ0, µ1)

)
[A]

(B,C) = 32ε−1

∫
x⊺By

(
hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy
)
dπA(x, y).

As D
(
32∥ · ∥2F

)
[A]

(B) = 64tr(A⊺B), D2
(
32∥ · ∥2F

)
[A]

(B,C) = 64tr(C⊺B). Altogether,

D2Φ[A](B,C) = 64 tr(B⊺C) + 32ε−1

∫
x⊺By

(
hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy
)
dπA(x, y).

Coercivity of Φ follows from the fact that

OTA,ε(µ0, µ1) = inf
π∈Π(µ0,µ1)

{∫
−4∥x∥2∥y∥2 − 32x⊺Ay dπ(x, y) + εDKL(π∥µ0 ⊗ µ1)

}
,

≥ inf
π∈Π(µ0,µ1)

{∫
−4∥x∥2∥y∥2 − 32∥A∥F ∥x∥∥y∥dπ(x, y)

}
≥ −4

√
M4(µ0)M4(µ1)− 32∥A∥F

√
M2(µ0)M2(µ1),

such that Φ(A) = 32∥A∥2F + OTA,ε(µ0, µ1)→ +∞ as ∥A∥F →∞.
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A.2 Proof of Corollary 1

Item (i). The expression for the stationary points follows immediately from Proposition 1. To see
that all stationary points are elements of DMµ0,µ1

, observe that if A is a stationary point, then

|Aij | =
1

2

∣∣∣∣∫ xiyj dπA(x, y)

∣∣∣∣ ≤ 1

2

∫
|xiyj |dπA(x, y) ≤ 1

2

√
M2(µ0)M2(µ1).

Item (ii). As discussed in Section 2.2, if π⋆ is optimal for Sε then 1
2

∫
xy⊺ dπ⋆(x, y) minimizes Φ.

On the other hand, if A minimizes Φ, then we have A = 1
2

∫
xy⊺ dπA and hence

S2,ε(µ0, µ1) = 8

∥∥∥∥∫ xy⊺ dπA(x, y)

∥∥∥∥2
F

− 4

∫
∥x∥2∥y∥2dπA(x, y)

− 32

〈
1

2

∫
xy⊺ dπA,

∫
xy⊺ dπA

〉
F

+ εDKL(πA||µ0 ⊗ µ1)

= −4
∫
∥x∥2∥y∥2dπA(x,y) − 8

∥∥∥∥∫ xy⊺ dπA(x, y)

∥∥∥∥2
F

+ εDKL(πA||µ0 ⊗ µ1).

By (4),

Sε(µ0, µ1) = Sε(µ0, µ1) + S2,ε(µ0, µ1)

=

∫ ∣∣∥x− x′∥2 − ∥y − y′∥2∣∣2 + 2∥x− x′∥2∥y − y′∥2dπA ⊗ πA(x, y, x′, y′)

− 4

∫
∥x∥2∥y∥2dµ0 ⊗ µ1(x, y)− 4

∫
∥x∥2∥y∥2dπA(x, y)

− 8

∥∥∥∥∫ xy⊺ dπA(x, y)

∥∥∥∥2
F

+ εDKL(πA||µ0 ⊗ µ1).

(9)

As ∥x− x′∥2∥y − y′∥2 =
(
∥x∥2 − 2x⊺x′ + ∥x′∥2

) (
∥y∥2 − 2y⊺y′ + ∥y′∥2

)
, we have∫

∥x− x′∥2∥y − y′∥2dπA ⊗ πA(x, y, x′, y′)

= 2

∫
∥x∥2∥y∥2dµ0 ⊗ µ1(x, y) + 2

∫
∥x∥2∥y∥2dπA(x, y)

+ 4

∫
x⊺x′y⊺y′ dπA ⊗ πA(x, y, x′, y′),

which, together with (9) yields

Sε(µ0, µ1) =

∫ ∣∣∥x− x′∥2 − ∥y − y′∥2∣∣2 dπA ⊗ πA(x, y, x′, y′) + εDKL(πA||µ0 ⊗ µ1),

proving optimality of πA.

Item (iii). Suppose Sε admits a unique optimal coupling. If two matrices A and B minimize Φ,
then πA = πB by uniqueness, so A = 1

2

∫
xy⊺ dπA(x, y) = 1

2

∫
xy⊺ dπB(x, y) = B. Conversely,

suppose Φ admits a unique minimizer A⋆. If π is optimal for Sε, then π solves the EOT problem
OTA⋆,ε(µ0, µ1), so π = πA⋆ .

A.3 Proof of Theorem 1

The proof of Theorem 1 depends on the following lemma. The variance bound is seen to be sharp
up to constants in Appendix B.
Lemma 4 (Hessian eigenvalue bounds). The following hold for any A ∈ Rd0×d1 :

(i) The minimal eigenvalue of D2Φ[A], λmin

(
D2Φ[A]

)
, admits the lower bound 64 −

322ε−1 sup∥C∥F=1 VarπA
(X⊺CY ), where sup∥C∥F=1VarπA

(X⊺CY )≤
√
M4(µ0)M4(µ1).
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(ii) The maximal eigenvalue of D2Φ[A] satisfies λmax

(
D2Φ[A]

)
≤ 64.

Proof. We first prove Item (i). The minimal eigenvalue of D2Φ[A] is given in variational form as

inf
∥C∥F=1

D2Φ[A](C,C)

= inf
∥C∥F=1

{
64∥C∥2F + 32ε−1

∫
x⊺Cy

(
hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy
)
dπA(x, y)

}
≥ 64 + 32ε−1 inf

∥C∥F=1

{∫
x⊺Cy

(
hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy
)
dπA(x, y)

}
,

using the formula for D2Φ[A] from Proposition 1. Recall that (hA,C
0 , hA,C

1 ) satisfy∫ (
hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy
)
e
φA
0 (x)+φA

1 (y)−cA(x,y)

ε dµ1(y) = 0, ∀x ∈ spt(µ0),∫ (
hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy
)
e
φA
0 (x)+φA

1 (y)−cA(x,y)

ε dµ0(x) = 0, ∀ y ∈ spt(µ1),

such that, multiplying the top equation by hA,C
0 and integrating w.r.t. µ0 and performing the same

operations on the lower equation with hA,C
1 and µ1 respectively,∫ [(

hA,C
0 (x)

)2
+ hA,C

1 (y)hA,C
0 (x)− 32x⊺CyhA,C

0 (x)

]
dπA(x, y) = 0,∫ [

hA,C
0 (x)hA,C

1 (y) +
(
hA,C
1 (y)

)2
− 32x⊺CyhA,C

1 (y)

]
dπA(x, y) = 0.

Summing these equations gives

32

∫
x⊺Cy

(
hA,C
0 (x) + hA,C

1 (y)
)
dπA(x, y) =

∫ (
hA,C
0 (x) + hA,C

1 (y)
)2
dπA(x, y),

such that

32

∫
x⊺Cy

(
hA,C
0 (x) + hA,C

1 (y)− 32x⊺Cy
)
dπA(x, y)

=

∫ (
hA,C
0 (x) + hA,C

1 (y)
)2
dπA(x, y)− 322

∫
(x⊺Cy)2dπA(x, y),

which proves the first part of Item (i). It remains to show that∫ (
hA,C
0 (x) + hA,C

1 (y)
)2
dπA(x, y)− 322

∫
(x⊺Cy)2dπA(x, y) ≥ −322VarπA

[X⊺CY ].

By Jensen’s inequality, we have∫ (
hA,C
0 (x) + hA,C

1 (y)
)2
dπA(x, y) ≥

(∫
hA,C
0 (x) + hA,C

1 (y)dπA(x, y)

)2

= 322
(∫

x⊺Cy dπA(x, y)

)2

,

where the equality follows from (8), proving the desired inequality.

To prove the uniform bound on the variance in Item (i), observe that

sup
∥C∥F=1

VarπA
[X⊺CY ] ≤ sup

∥C∥F=1

EπA
[(X⊺CY )2]

≤ sup
∥C∥F=1

∥C∥2F
∫
∥x∥2∥y∥2dπA(x, y),

≤
√
M4(µ0)M4(µ1)

where the final two inequalities follow from the Cauchy-Schwarz inequality.

16



We now prove the upper bound on the maximum eigenvalue of D2Φ[A] from Item (ii) again using
its variational characterization,

λmax

(
D2Φ[A]

)
= sup

∥C∥F=1

D2Φ[A](C,C) = 64 + λmax

(
D2OT(·),ε(µ0, µ1)[A]

)
.

Observe that OTA,ε(µ0, µ1) = infπ∈Π(µ0,µ1) g(A, π, µ0, µ1, ε), where g depends on A only
through the term 32tr(A⊺

∫
xy⊺ dπ(x, y)) which is linear in A. It follows from, e.g., Proposi-

tion 2.1.2 in [22] that OT(·),ε(µ0, µ1) is concave. As such, λmax

(
D2OT(·),ε(µ0, µ1)[A]

)
≤ 0, so

λmax

(
D2Φ[A]

)
≤ 64.

Proof of Theorem 1. We first discuss the convexity properties of Φ. By Lemma 4,
λmin

(
D2Φ[A] +

ρ
2∥A∥

2
F

)
≥ 64 − 322ε−1

√
M4(µ0)M4(µ1) + ρ for any A ∈ Rd0×d1 and ρ ≥ 0.

When this lower bound is non-negative, Φ is ρ-weakly convex on Rd0×d1 by definition. It fol-
lows that Φ is always ρ-weakly convex for ρ = 322ε−1

√
M4(µ0)M4(µ1) − 64. Moreover, if√

M4(µ0)M4(µ1) <
ε
16 , then λmin

(
D2Φ[A]

)
> 0 such that Φ is strictly convex.

L-smoothness of Φ follows from the mean value inequality (see e.g. Example 2 [2, p.356])

∥DΦ[A] −DΦ[B]∥F ≤ sup
C∈[A,B]

sup
∥E∥F=1

∣∣D2Φ[C] (A−B,E)
∣∣ ,

≤ sup
C∈[A,B]

(∣∣λmin

(
D2Φ[C]

)∣∣ ∨ ∣∣λmax

(
D2Φ[C]

)∣∣) ∥A−B∥F ,

for any A,B ∈ Rd0×d1 , where [A,B] denotes the line segment connecting A and B. The claimed
result then follows by noting that, for any A,B ∈ DM , [A,B] ⊂ DM by convexity and the supre-
mum over DM is achieved by compactness and the fact that the objective is continuous. Indeed, the
maps λmax(·), λmin(·) are continuous on the space of symmetric matrices, and D2Φ[·] is continuous
as Φ is smooth.

A.4 Proof of Theorem 2

In this section, we show that Theorem 2.2 in [13] on the convergence rate of Algorithm 1 is applica-
ble in our setting. We particularize their result to a fixed prox-function d = 1

2∥ · ∥
2
F which is smooth

and 1-strongly convex.

First, we justify the expressions for the iterates Bk,Ck in Algorithm 1, which are defined in [13] as
the proximal operators

Bk = argmin
V ∈DM

{
tr (G⊺

kV ) +
L

2
∥V −Ak∥2F

}
,

Ck = argmin
V ∈DM

{
tr (W ⊺

k V ) +
L

2
∥V ∥2F

}
.

Rearranging terms, both problems can be written, equivalently, as

argmin
V ∈DM

{
∥V −U∥2F

}
, (10)

for U = Ak −L−1Gk and U = −L−1Wk for the Bk and Ck iterations respectively. The solution
of (10) is given by V ⋆ defined entrywise by (cf. Section 5.2.2 in [14])

V ⋆ =
M

2
sign(U)min

(
2

M
|U |, 1

)
.

Next, we show that our notion of δ-oracle yields a δ′-approximate gradient in the sense of Equation
(2.3) in [13]. Precisely, we prove that∣∣∣tr((D̃Φ[A] −DΦ[A]

)⊺
(B −C)

)∣∣∣ ≤ δ′, (11)

for any A,B,C ∈ DM . By Hölder’s inequality,∣∣∣tr((D̃Φ[A] −DΦ[A]

)⊺
(B −C)

)∣∣∣ ≤M ∥∥∥D̃Φ[A] −DΦ[A]

∥∥∥
1
,
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and the choice B = −C = M
2 sign

(
D̃Φ[A] −DΦ[A]

)
saturates the above bound. Recall that

D̃Φ[A] −DΦ[A] = 32
∑

1≤i≤N0
1≤j≤N1

x(i)
(
y(j)
)⊺ (

Π̃A
ij −ΠA

ij

)
, (12)

where
∥∥∥Π̃A −ΠA

∥∥∥
∞
< δ uniformly in A ∈ DM by the δ-oracle such that∥∥∥D̃Φ[A] −DΦ[A]

∥∥∥
1
≤ 32

∥∥∥Π̃A −ΠA
∥∥∥
∞

∑
1≤i≤N0
1≤j≤N1

∥∥∥x(i) (y(j))⊺∥∥∥
1
< 32δ

∑
1≤i≤N0
1≤j≤N1

∥∥∥x(i) (y(j))⊺∥∥∥
1
,

where | · | is applied componentwise in the above display. Combining the displayed equations yields∣∣∣tr((D̃Φ[A] −DΦ[A]

)⊺
(B −C)

)∣∣∣ ≤ 32Mδ
∑

1≤i≤N0
1≤j≤N1

∥∥∥x(i) (y(j))⊺∥∥∥
1
= δ′,

proving Eq. (11).

With these preparations Theorem 2 follows from Theorem 2.2 in [13] and the discussion following
its proof, noting that

∑k
i=0

i+1
2 = (k+1)(k+2)

4 .

A.5 Proof of Corollary 2

As Ak,Bk be iterates from Algorithm 2 with Bk ∈ int(DM ) such that Bk = Ak − βkD̃Φ[Ak] by
definition. By the triangle inequality,

∥DΦ[Ak]∥F ≤ ∥DΦ[Ak]−D̃Φ[Ak]∥F+∥D̃Φ[Ak]∥F = ∥DΦ[Ak]−D̃Φ[Ak]∥F+∥β
−1
k (Bk −Ak) ∥F .

It remains to bound ∥DΦ[Ak] − D̃Φ[Ak]∥F using the δ-oracle. By (12),

∥DΦ[A] − D̃Φ[A]∥F = 32

∥∥∥∥∥ ∑
1≤i≤N0
1≤j≤N1

x(i)
(
y(j)
)⊺ (

Π̃A
ij −ΠA

ij

)∥∥∥∥∥
F

≤ 32
∑

1≤i≤N0
1≤j≤N1

|Π̃A
ij −ΠA

ij |
∥∥∥x(i) (y(j))⊺∥∥∥

F

≤ 32∥Π̃A −ΠA∥∞
∑

1≤i≤N0
1≤j≤N1

∥x(i)∥∥y(j)∥

< 32δ
∑

1≤i≤N0
1≤j≤N1

∥x(i)∥∥y(j)∥

B Sharpness of variance bound from Lemma 4

Let µ0 = 1
2 (δ0 + δa) and µ1 = 1

2 (δ0 + δb) for a ∈ Rd0 and b ∈ Rd1 . In this case, any coupling
π ∈ Π(µ0, µ1) is of the form π00δ(0,0) + π0bδ(0,b) + πa0δ(a,0) + πabδ(a,b) with the constraint that
π00 = πab and π0b = πa0 = 1

2 − πab. For any A ∈ DM , OTA,ε(µ0, µ1) is given by

inf
π∈Π(µ0,µ1)

{∫
−4∥x∥2∥y∥2 − 32x⊺Ay dπ(x, y) + εDKL(π∥µ0 ⊗ µ1)

}
= inf

πab∈(0,1/2)

{
−πab(4∥a∥2∥b∥2 + 32a⊺Ab) + 2επab log(4πab) + (1− 2πab) ε log (2− 4πab)

}
,
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the objective is a sum of convex functions and the first-order optimality condition reads

4∥a∥2∥b∥2 + 32a⊺Ab = 2ε log(4πab)− 2ε log(2− 4πab) ⇐⇒ πab =
ez

2 (1 + ez)
,

for z =
(
2∥a∥2∥b∥2 + 16a⊺Ab

)
/ε. Let π⋆ be the corresponding EOT coupling for OTA,ε(µ0, µ1).

For any C ∈ Rd0×d1 ,
Varπ⋆ [X

⊺CY ] = π⋆
ab(1− π⋆

ab)(a
⊺Cb)2 ≤ π⋆

ab(1− π⋆
ab)∥C∥2F ∥a∥2∥b∥2,

with equality for C = Cab⊺ with C ∈ R. Hence,
sup

∥C∥F=1

{Varπ⋆ [X⊺CY ]} = π⋆
ab(1− π⋆

ab)∥a∥2∥b∥2,

which can be made arbitrarily close to 1
4∥a∥

2∥b∥2 for fixed a, b by choosing A ∈ DM and ε > 0

as to make z sufficiently large. On the other hand,
√
M4(µ0)M4(µ1) =

1
2∥a∥

2∥b∥2, such that the
variance bound in Lemma 4 is tight up to a constant factor.

C Sinkhorn’s Algorithm as an inexact oracle

Given µ0 =
∑N0

i=1 aiδx(i) ∈ P(Rd0) and µ1 =
∑N1

j=1 bjδx(j) ∈ P(Rd1), let a, b denote the corre-
sponding (positive) probability vectors. Fix an underlying cost function c : Rd0 × Rd1 → R and

ε > 0, and let K ∈ RN0×N1 with Kij = e−
c(x(i),y(j))

ε . Consider the standard implementation of
Sinkhorn’s algorithm (cf. e.g. [12, 19]).

Algorithm 3 Sinkhorn Algorithm

1: Fix a threshold γ and a maximum iteration number kmax.
2: v0 ← 1N1

/N1

3: k ← 1
4: repeat
5: uk ← a/(Kvk−1)
6: vk ← b/(K⊺uk)
7: Πk ← diag(uk)Kdiag(vk)
8: k ← k + 1
9: until ∥Πk1N1 − a∥2 < γ or k > kmax

10: return Πk

In Algorithm 3, the division of two vectors is understood componentwise. The stopping condition
is based only on one of the marginal constraints as 1⊺

N0
Πk = b⊺ by construction.

The following definitions enable describing the convergence properties of Algorithm 3; we follow
the approach of [20] with only minor modifications. Let Rd

+ denote the set of vectors with positive
entries and, for x, y ∈ Rd

+ let

dH(x, y) = log max
1≤i,j≤d

xiyj
yixj

,

denote Hilbert’s projective metric3 on Rd
+. By definition,

dH(x, y) = dH(x/y,1d), (13)

for any x, y ∈ Rd
+ and, setting x = ew, y = ez componentwise,

dH(x, y) = log max
1≤i,j≤d

ewi+zj−wj−zi ,

= max
1≤i,j≤d

wi + zj − wj − zi,

= max
1≤i≤d

(log xi − log yi)− min
1≤i≤d

(log xi − log yi),

= max
1≤i≤d

log

(
xi
yi

)
− min

1≤i≤d
log

(
xi
yi

)
.

(14)

3dH(x, y) = 0 if and only if x = αy for α > 0, dH is symmetric and satisfies the triangle inequality.
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It was proved in [4, 31] that multiplication with a positive matrix is a strict contraction w.r.t. dH .
Precisely,

dH(Ax,Ay) ≤ λ(A)dH(x, y), (15)

for any A ∈ Rd′×d
+ and x, y ∈ Rd

+, where

λ(A) =

√
η(A)− 1√
η(A) + 1

< 1, η(A) = max
1≤i,j≤d′

1≤k,l≤d

AikAjl

AjkAil
.

Let
E = {A ∈ RN0×N1

+ : A = diag(x)Kdiag(y) for some x ∈ RN0
+ , y ∈ RN1

+ },
and observe that if A,B ∈ E, there exists xA,B ∈ RN0

+ , yA,B ∈ RN1
+ for which A =

diag(xA,B)Bdiag(yA,B). In this setting, let d : E × E 7→ [0,∞) be such that

d(A,B) = dH(xA,B,1N0
) + dH(yA,B,1N1

),

then d is a metric on E. As the EOT coupling Π⋆ satisfies

Π⋆
ij

aibj
= e

φ(x(i))+ψ(y(j))−c(x(i),y(j))
ε ,

where (φ,ψ) is any pair of EOT potentials, Π⋆ = diag(u⋆)Kdiag(v⋆) ∈ E for

u⋆i = aie
φ(x(i))

ε , v⋆j = bje
ψ(y(j))

ε .

Note that u⋆ = a/(Kv⋆) and v⋆ = b/(K⊺u⋆).

In the sequel, we analyze the convergence of Πk to Π⋆ under d. The following result translates
bounds on d(Πk,Π⋆) to bounds on ∥Πk −Π⋆∥∞.

Lemma 5. Fix δ > 0. If d(Πk,Π⋆) ≤ δ, it follows that ∥Πk −Π⋆∥∞ ≤ eδ − 1.

Proof. By Lemma 3 in [20], whenever d(Πk,Π⋆) ≤ δ it holds that

e−δ − 1 ≤
Π⋆

ij

Πk
ij

− 1 ≤ eδ − 1,

for every 1 ≤ i ≤ N0, 1 ≤ j ≤ N1. As such,

|Π⋆
ij −Πk

ij | ≤ Πk
ij

(
(1− e−δ) ∨ (eδ − 1)

)
≤ (1− e−δ) ∨ (eδ − 1) = eδ − 1,

yielding ∥Π⋆ −Πk∥∞ ≤ eδ − 1.

Towards bounding d(Πk,Π⋆), we first show that the iterates uk, vk defined in Algorithm 3 converge
to u⋆, v⋆ under dH .
Lemma 6. Let uk, vk be iterates generated by Algorithm 3. Then,

dH(uk, u
⋆) ≤ λ(K)2(k−1)dH(u1, u

⋆)

dH(vk, v
⋆) ≤ λ(K)2kdH(v0, v

⋆).

In particular, dH(uk, u
⋆)→ 0, dH(vk, v

⋆)→ 0 as k →∞.

Proof. The second claim follows from the first and the fact that λ(K) < 1. To prove the first claim,
we have, by definition,

dH(uk+1, u
⋆) = dH

(
a

Kvk
,

a

Kv⋆

)
= dH (Kvk,Kv⋆) ≤ λ(K)dH (vk, v

⋆) ,

dH(vk, v
⋆) = dH

(
b

K⊺uk
,

b

K⊺u⋆

)
= dH (K⊺uk,K

⊺u⋆) ≤ λ(K)dH (uk, u
⋆) ,

(16)

as λ(K) = λ(K⊺). Thus, dH(uk+1, u
⋆) ≤ λ(K)2dH(uk, u

⋆) and dH(vk+1, v
⋆) ≤

λ(K)2dH(vk, v
⋆). The conclusion follows by applying these bounds repeatedly.
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Next, we bound the progress of the iterates Πk to Π⋆ under d in terms of dH(uk, u
⋆), dH(vk, v

⋆).

Lemma 7. In the setting of Lemma 6, we have that

d(Πk,Π⋆) = dH(uk, u
⋆) + dH(vk, v

⋆) ≤ λ(K)2(k−1)dH(u1, u
⋆) + λ(K)2kdH(v0, v

⋆).

Proof. The second inequality follows from the first by Lemma 6. By construction,

Πk+j = diag

(
uj
uk

)
Πkdiag

(
vj
vk

)
,

such that

d(Πk,Πk+j) = dH

(
uj
uk
,1N0

)
+ dH

(
vj
vk
,1N1

)
,

= dH (uj , uk) + dH (vj , vk) ,

taking the limit as j →∞ and applying Lemma 6 yields

d(Πk,Π⋆) = dH (uk, u
⋆) + dH (vk, v

⋆) ,

where we have also used the fact that limj→∞ d(Πk,Πk+j) = d(Πk,Π⋆) as follows from [20, p.
731] and [35].

As u⋆ and v⋆ are a priori unknown, we now bound d(uk, u⋆) in terms of d(a, uk ⊙Kvk), which is
a measure of how much Πk violates the marginal constraint,4 and another analogous term.

Lemma 8. In the setting of Lemma 6, we have that

dH(uk, u
⋆) ≤ dH(a, uk ⊙Kvk)

1− λ(K)2
, dH(vk, v

⋆) ≤ dH(a, vk ⊙K⊺uk+1)

1− λ(K)2
.

Proof. By construction, we have that

dH(uk, u
⋆) ≤ dH(uk+1, uk) + dH(uk+1, u

⋆),

≤ dH

(
a

Kvk
, uk

)
+ λ(K)2dH(uk, u

⋆),

= dH (a, uk ⊙Kvk) + λ(K)2dH(uk, u
⋆),

where we have applied the triangle inequality and (16). The claimed result for vk follows from the
same argument.

Combined, Lemmas 7 and 8 provide an explicit bound on the total number of iterations required to
ensure that d(Πk,Π⋆) achieves a given precision.

Proposition 3. Let Πk be given by Algorithm 3 and fix δ > 0. Then, for every

k ≥ 1 +
1

2 log (λ(K))
log

(
δ(1− λ(K)2)

dH(a, u1 ⊙Kv1) + λ(K)2dH(b, v0 ⊙K⊺u1)

)
,

d(Πk,Π⋆) ≤ δ.

Proof. It follows from Lemma 7 and Lemma 8 that

d(Πk,Π⋆) ≤ λ(K)2(k−1)dH(a, u1 ⊙Kv1) + λ(K)2kdH(b, v0 ⊙K⊺u1)

1− λ(K)2
.

The upper bound on the number of iterations required to achieve d(Πk,Π⋆) ≤ δ then follows from
basic algebra.

4Πk1N1 = uk ⊙Kvk, where ⊙ denotes elementwise multiplication.
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Now, we demonstrate why the termination condition based on the 2-norm (or an equivalent condition
based on the 1-norm) endows us with a δ-oracle approximation and provide a bound on the number
of iterations required to achieve it. Theorem 1 in [18] proves that there exists k̄ ≤ 1 + R

δ satisfying

∥uk̄ ⊙Kvk̄ − a∥1 + ∥vk̄ ⊙K⊺uk̄+1 − b∥1 ≤ δ,

for R = −2 log
(
e−∥C∥∞/ε min1≤i≤N0

1≤j≤N1

ai ∧ bj
)

. This gives a bound on the maximal number of

iterations to achieve the 2-norm termination condition via the standard inequality ∥ · ∥2 ≤ ∥ · ∥1.

We now bound dH in terms of the Euclidean distance as to control d(Πk,Π⋆) by ∥uk⊙Kvk−a∥2.

Lemma 9. Let r, s ∈ Rd
+ be arbitrary, then

dH(s, r) ≤ (r−1
i⋆ + s−1

i⋆
)∥r − s∥2,

where i∗ ∈ argmax1≤i≤d r
−1
i (si − ri) and i∗ ∈ argmin1≤i≤d s

−1
i (si − ri).

Proof. We have by (14) that

dH(s, r) = max
1≤i≤N0

log

(
si
ri

)
− min

1≤i≤N0

log

(
si
ri

)
.

Observe that

1− ri
si
≤ log

(
si
ri

)
≤ si
ri
− 1,

using the inequalities x
1+x ≤ log(1 + x) ≤ x for x > −1. Whence,

dH(s, r) ≤ max
1≤i≤N0

r−1
i (si − ri)− min

1≤i≤N0

s−1
i (si − ri)

= r−1
i⋆ (si⋆ − ri⋆)− s−1

i⋆
(si⋆ − ri⋆)

≤
(
r−1
i⋆ + s−1

i⋆

)
∥s− r∥2 .

By combining Lemmas 7 and 9 we arrive at the desired result.

Proposition 4. Let a = min1≤i≤N0 ai. In the setting of Lemma 9, the iterates Πk generated by
Algorithm 3 with the threshold a ≥ γ > 0 satisfy

d(Πk,Π⋆) ≤ Ek∥a− uk ⊙Kvk∥2
1− λ(K)

,

where Ek denotes the constant from Lemma 9. Hence, the 2-norm termination criterion in Algo-
rithm 3 is satisfied in k̄ iterations for some k̄ ≤ 1 + R

γ and

d(Πk̄,Π⋆) ≤ Ek̄γ

1− λ(K)
≤ γ

1− λ(K)

(
a−1 + (a− γ)−1

)
.

Proof. The first claim follows directly from Lemmas 7 and 9 together with the fact that
dH(vk, v

⋆) ≤ λ(K)dH(uk, u
⋆) (see (16)).

It is clear from the discussion preceding Lemma 9 that ∥uk̄ ⊙Kvk̄ − a∥2 ≤ γ for some k̄ ≤ 1+ R
γ ,

which corresponds to the 2-norm termination condition for Algorithm 3. To see that Ek̄ ≤ a−1 +
(a − γ)−1, let wk = uk ⊙Kvk and observe that ∥a − wk∥∞ ≤ ∥a − wk∥2 ≤ γ. Hence, for any
index 1 ≤ i ≤ N0, ai − γ ≤ wk

i and, as such, (wk
i )

−1 ≤ 1
ai−γ ≤

1
a−γ .

The proof of Proposition 2 then follows by combining Propositions 3 and Proposition 4. The max-
imal number of iterations for Algorithm 3 to output a δ-oracle approximation of the EOT coupling
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ΠA is thus

k̃ = min

{
1 +

1

2 log (λ(K))
log

(
δ(1− λ(K)2)

dH(a, u1 ⊙Kv1) + λ(K)2dH(b, v0 ⊙K⊺u1)

)
,

1− 2δ−1 log

(
e−∥C∥∞/ε min

1≤i≤N0
1≤j≤N1

ai ∧ bj

)}
.

(17)

D Convergence of Algorithm 2

In what follows, we slightly adapt the proof of Theorem 2 in [21] to conform to the inexact setting.

We first clarify that they treat the composite problem

inf
x∈Rd

f(x) + g(x) +Q(x),

where f is L′-smooth and non-convex, g is L′′-smooth and convex, andQ is non-smooth and convex
with a bounded domain. Hence f + g is L = L′ + L′′ smooth and possibly non-convex.

Our problem conforms to this setting (up to vectorization) with f = OT(·),ε(µ0, µ1), g = 32∥ · ∥2F ,
and Q = IDM , the indicator function of the set DM , defined by

IDM (A) =

{
0, if A ∈ DM ,

+∞, otherwise.

When Φ is convex, we set f = 0 and g = Φ hence L′ = 0, L = L′′.

As Φ is L-smooth, by Lemma 5 in [21],

Φ(Bk) ≤ Φ(Ak) + tr
(
DΦ⊺

[Ak]
(Bk −Ak)

)
+
L

2
∥Bk −Ak∥2F , (18)

and for any H ∈ Rd0×d1 , letting L′ denote the Lipschitz constant of OT(·),ε(µ0, µ1), the same
result gives

Φ(Ak)− ((1− τk)Φ(Bk−1) + τkΦ(H))

= τk (Φ(Ak)− Φ(H)) + (1− τk) (Φ(Ak)− Φ(Bk−1))

≤ τk
(
tr
(
DΦ⊺

[Ak]
(Ak −H)

)
+
L′

2
∥H −Ak∥2F

)
+ (1− τk)

(
tr
(
DΦ⊺

[Ak]
(Ak −Bk−1)

)
+
L′

2
∥Bk−1 −Ak∥2F

)
= tr

(
DΦ⊺

[Ak]
(Ak − τkH − (1− τk)Bk−1)

)
+
L′τk
2
∥H −Ak∥2F +

L′(1− τk)
2

∥Bk −Ak∥2F︸ ︷︷ ︸
τ2
k∥Bk−1−Ck−1∥2

F

,

(19)

recalling the update Ak = τkCk−1 + (1− τk)Bk−1.

Denote the subdifferential of IDM at A ∈ Rd0×d1 by

∂IDM (A) :=
{
P ∈Rd0×d1 : IDM (X)−IDM (A) ≥ tr (P ⊺(X−A)) , for every X ∈Rd0×d1

}
.

As Ck is optimal for the problem argminV ∈Rd0×d1

{
1

2γk
∥V − (Ck−1 − γkGk) ∥2F + IDM (V )

}
,

there exists P ∈ ∂IDM (Ck) for which Gk+P + 1
γk
(Ck−Ck+1) = 0 (see Theorem 23.8, Theorem

25.1, and p. 264 in [30]). Thus, for any U ∈ Rd0×d1 ,

tr ((Gk + P )⊺(Ck −U)) =
1

γk
tr ((Ck −Ck−1)

⊺(U −Ck))

=
1

2γk

(
∥Ck−1 −U∥2F − ∥Ck −U∥2F − ∥Ck −Ck−1∥2F

)
,
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where the final line follows from some simple algebra. As P ∈ ∂IDM (Ck), tr(P ⊺(Ck − U)) ≥
IDM (Ck)− IDM (U) = −IDM (U), whence

tr (G⊺
k(Ck −U)) ≤ IDM (U) +

1

2γk

(
∥Ck−1 −U∥2F − ∥Ck −U∥2F − ∥Ck −Ck−1∥2F

)
. (20)

By the same steps applied to the other subproblem with Bk and Ak taking the place of Ck and
Ck−1 respectively,

tr (G⊺
k(Bk −U)) ≤ IDM (U) +

1

2βk

(
∥Ak −U∥2F − ∥Bk −U∥2F − ∥Bk −Ak∥2F

)
.

Setting U = τkCk + (1 − τk)Bk−1 ∈ DM (by convexity) in the previous display, bounding
−∥Bk −U∥2F above by 0, and recalling that Ak = τkCk−1 + (1− τk)Bk−1 such that Ak −U =
τk(Ck−1 −Ck),

tr (G⊺
k(Bk − τkCk + (1− τk)Bk−1)) ≤

1

2βk

(
τ2k∥Ck −Ck−1∥2F − ∥Bk −Ak∥2F

)
.

Combining with (20) upon scaling by τk,

tr (G⊺
k(Bk − τkU + (1− τk)Bk−1)) ≤ τkIDM (U) +

1

2βk

(
τ2k∥Ck −Ck−1∥2F − ∥Bk −Ak∥2F

)
,

+
τk
2γk

(
∥Ck−1 −U∥2F − ∥Ck −U∥2F − ∥Ck −Ck−1∥2F

)
,

by the choice of τk, βk, γk, we have that τ2
k

βk
− τk

γk
≤ 0 such that

tr (G⊺
k(Bk − τkU + (1− τk)Bk−1)) ≤ τkIDM (U) +

τk
2γk

(
∥Ck−1 −U∥2F − ∥Ck −U∥2F

)
− 1

2βk
∥Bk −Ak∥2F .

Combining the equation above with Eq. (18) and Eq. (19) and setting H = U ∈ DM (otherwise the
bound is vacuous),

Φ(Bk)−Φ(H)≤ (1−τk) (Φ(Bk−1)−Φ(H))+tr
(
DΦ⊺

[Ak]
(Bk−τkH−(1−τk)Bk−1)

)
+
L′τk
2
∥H−Ak∥2F +

L′(1−τk)
2

τ2k ∥Bk−1−Ck−1∥2F +
L

2
∥Bk−Ak∥2F

≤ (1−τk) (Φ(Bk−1)− Φ(H))+δ′+
τk
2γk

(
∥Ck−1−H∥2F −∥Ck−H∥2F

)
+
L′τk
2
∥H−Ak∥2F +

L′(1−τk)
2

τ2k ∥Bk−1−Ck−1∥2F +

(
L

2
− 1

2βk

)
∥Bk−Ak∥2F ,

where the inequality follows from the δ-oracle which implies the bound (cf. (11))

sup
Y ,Z∈DM

{∣∣tr (Gk −DΦ[Ak])
⊺(Y −Z)

)∣∣} ≤ δ′,
observing that Bk, τkH + (1− τk)Bk−1 ∈ DM by convexity (τk ∈ (0, 1]).

Applying Lemma 1 in [21] yields, for Ai =
2

i(i+1) ,

Φ(Bk)− Φ(H)

Ak
≤

k∑
i=1

A−1
i

(
δ′ +

τi
2γi

(
∥Ci−1 −H∥2F − ∥Ci −H∥2F

)
+
L′τi
2
∥H −Ai∥2

+
L′(1− τi)

2
τ2i ∥Bi−1 −Ci−1∥2F +

(
L

2
− 1

2βi

)
∥Bi −Ai∥2

)
≤ ∥C0 −H∥2F

2γ1
+

k∑
i=1

A−1
i

(
δ′ +

L′τi
2
∥H −Ai∥2

+
L′(1− τi)

2
τ2i ∥Bi−1 −Ci−1∥2F +

(
L

2
− 1

2βi

)
∥Bi −Ai∥2

)
.
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By convexity of ∥ · ∥2F ,

∥H −Ai∥2F + τi(1− τi)∥Bi−1 −Ci−1∥2F
≤ 2

(
∥H∥2F + ∥Ai∥2F + τi(1− τi)

(
∥Bi−1∥2F + ∥Ci−1∥2F

))
≤ 2

(
∥H∥2F + (1− τi)∥Bi−1∥2F + τi∥Ci−1∥2F + τi(1− τi)

(
∥Bi−1∥2F + ∥Ci−1∥2F

))
≤ 2

(
∥H∥2F + (1 + τi(1− τi))max

DM
∥ · ∥2F

)
≤ 2

(
∥H∥2F +

5

16
M2d20d

2
1

)
,

observing that τi ∈ (0, 1] hence τi(1− τi) ≤ 1
4 . Thus, for H = B⋆, a global minimizer of Φ,

Φ(Bk)− Φ(B⋆)

Ak
+

k∑
i=1

1− Lβi
2Aiβi

∥Bi −Ai∥2F ≤
∥C0 −B⋆∥2F

2γ1

+

k∑
i=1

A−1
i

(
δ′+L′τi

(
∥B⋆∥2F +

5

16
M2d20d

2
1

))
.

By construction,
∑k

i=1A
−1
i L′τi =

L′

Ak
, and Φ(Bk)− Φ(B⋆) ≥ 0. It follows that

k
min
i=1

∥∥β−1
i (Bi −Ai)

∥∥2
F

≤ 2

(
k∑

i=1

βi (1− Lβi)
Ai

)−1(
∥C0 −B⋆∥2F

2γ1
+

k∑
i=1

A−1
i δ′ +

L′

Ak

(
∥B⋆∥2F +

5

16
M2d20d

2
1

))
.

As βi = L
2 , γ1 = 1

4L , and Ai =
2

i(i+1) ,
∑k

i=1
βi(1−Lβi)

Ai
= 1

4L

∑k
i=1A

−1
i = k(k+1)(k+2)

24L , so

k
min
i=1

∥∥β−1
i (Bi−Ai)

∥∥2
F
≤ 96L2

k(k+1)(k+2)
∥C0−B⋆∥2F + 8Lδ′ +

24LL′

N

(
∥B⋆∥2F +

5M2d20d
2
1

16

)
.

This proves the claimed result in the non-convex setting.

In the convex regime, recall from the prior discussion that we may set L′ = 0 in the previous display,
proving the claim.

E Additional Results

E.1 Proof of Lemma 1

The proof of Lemma 1 follows from the following lemma coupled with the chain rule for Fréchet
differentiable maps.

Lemma 10. Let µi ∈ P(Rdi), for i = 0, 1, be compactly supported with spt(µi) = Si. Then, the
map f ∈ C(S0 × S1) 7→

(∫
ef(·,y)dµ1(y),

∫
ef(x,·)dµ0(x)

)
∈ C(S0) × C(S1) is smooth with first

derivative at f ∈ C(S0 × S1) given by

h ∈ C(S0 × S1) 7→
(∫

h(·, y)ef(·,y)dµ1(y),

∫
h(x, ·)ef(x,·)dµ0(x)

)
∈ C(S0)× C(S1).

Proof. First, we show that the map f ∈ C(S0 × S1) 7→ ef ∈ C(S0 × S1) is Fréchet differentiable
with D(e(·))[f ](h) = hef . Fix f ∈ C(S0 × S1) and consider

lim
h∈C(S0×S1)

∥h∥∞,S0×S1→0

∥∥ef+h − ef − hef
∥∥
∞,S0×S1

∥h∥∞,S0×S1

≤ ∥ef∥∞,S0×S1
lim

h∈C(S0×S1)
∥h∥∞,S0×S1→0

∥∥eh − 1− h
∥∥
∞,S0×S1

∥h∥∞,S0×S1

.
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Fix arbitrary (x, y) ∈ S0 × S1. By a Taylor expansion,

eh(x,y) = 1 + h(x, y) +
1

2
eξ(x,y)h2(x, y),

where |ξ(x, y)| ∈ [0, |h(x, y)|] i.e. ∥ξ∥∞,S0×S1 ≤ ∥h∥∞,S0×S1 . That is,

lim
h∈C(S0×S1)

∥h∥∞,S0×S1→0

∥∥eh − 1− h
∥∥
∞,S0×S1

∥h∥∞,S0×S1

≤ lim
h∈C(S0×S1)

∥h∥∞,S0×S1→0

1

2
e∥ξ∥∞,S0×S1∥h∥∞,S0×S1

= 0.

On the other hand, the derivative of f ∈ C(S0 × S1) 7→
∫
f(x, y)dµ1(y) ∈ C(S0) at any point

is given by h ∈ C(S0 × S1) 7→
∫
h(x, y)dµ1(y) ∈ C(S0). The claimed expression for the first

derivative then follows by the chain rule. The derivatives of this map can be computed to arbitrary
order inductively by the prior argument.

Proof of Lemma 1. Observe that the map (A, φ0, φ1) ∈ Rd0×d1×E 7→ φ0⊕φ1−cA ∈ C(S0×S1)
is smooth with first derivative at (A, φ0, φ1) ∈ Rd0×d1 × E given by

(B, h0, h1) ∈ Rd0×d1 × E 7→ h0 ⊕ h1 + 32x⊺By ∈ C(S0 × S1).

The result then follows from Lemma 10 by applying the chain rule.

E.2 Compactness of L

Lemma 11 (Example 2 in [42]). Let ε > 0, µ0 ∈ P(Rd0), µ1 ∈ P(Rd1), and A ∈ Rd0×d1 be
arbitrary and let (φA

0 , φ
A
1 ) be EOT potentials for OTA,ε(µ0, µ1). Then, the map L : L2(µ0) ×

L2(µ1) 7→ L2(µ0)× L2(µ1) defined by

L(f0, f1) =
(∫

f1(y)e
φA
0 (x)+φA

1 (y)−cA(x,y)

ε dµ1(y),

∫
f0(x)e

φA
0 (x)+φA

1 (y)−cA(x,y)

ε dµ0(x)

)
,

is compact.

Proof. For simplicity, we prove only that

L2 : f ∈ L2(µ0) 7→
∫
f(x)ξ(x, ·)dµ0(x) ∈ L2(µ1),

is a compact operator for ξ : (x, y) ∈ Rd0 × Rd1 7→ e
φA
0 (x)+φA

1 (y)−cA(x,y)

ε . For any y ∈ Rd1 and
f ∈ L2(µ0), |L2(f)(y)|2 ≤ ∥f∥2L2(µ0)

∫
|ξ(·, y)|2dµ0, as ξ(·, y) is bounded on spt(µ0) such that

this operator is well-defined.

Let fn be a bounded sequence in L2(µ0). By the Eberlein-Šmulian theorem [42, p. 141], up to
passing to a subsequence, fn converges weakly to f ∈ L2(µ0). For fixed y ∈ Rd1 , ξ(·, y) ∈ L2(µ0),
hence L2(fn)(y)→ L2(f)(y) and it follows from the dominated convergence theorem that, for any
g ∈ L2(µ1),

∫
L2(fn)gdµ1 →

∫
L2(f)gdµ1 such that L2(fn) → L2(f) weakly in L2(µ1). Also,

by dominated convergence,

∥L2(fn)∥2L2(µ1)
=

∫
L2(fn)

2dµ1 →
∫
L2(f)

2dµ1 = ∥L2(f)∥2L2(µ1)
,

such that L2(fn)→ L2(f) strongly in L2(µ1). As fn was an arbitrary bounded sequence in L2(µ0)
and L2(fn)→ L2(f) strongly in L2(µ1) up to a subsequence, L2 is a compact operator.

F Blown-up figures
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Figure 1: The top row compiles plots of Φ for the different examples described in the text. The
bottom row consists of plots tracking the progress of the iterates. In (b) and (c), Algorithm 2 is
initialized at C0 = (1, 1)× 10−5 and C0 = 1× 10−5, respectively.
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Figure 2: The various plots compile the average runtime of Algorithms 1 and 2, and two versions of
the mirror descent algorithm in the convex regime for different combinations of d and N .
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Figure 3: The various plots compile the average runtime of Algorithm 2 with the two methods for
choosing L, and two versions of the mirror descent algorithm in the non-convex regime for different
combinations of d and N .
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