Identifiability of Sparse Causal Effects using Instrumental Variables

Abstract

Exogenous heterogeneity, for example, in the form of instrumental variables can help us learn a system’s underlying causal structure and predict the outcome of unseen intervention experiments. In this paper, we consider linear models in which the causal effect from covariates X on a response Y is sparse. We prove that the causal coefficient becomes identifiable under weak conditions and may even be identified in models, where the number of instruments is as small as the number of causal parents. We also develop graphical criteria under which the identifiability holds with probability one if the edge coefficients are sampled randomly from a distribution that is absolutely continuous with respect to Lebesgue measure. As an estimator, we propose spaceIV and prove that it consistently estimates the causal effect if the model is identifiable and evaluate its performance on simulated data.

1 INTRODUCTION

Instrumental variables [Wright, 1928] [Imbens and Angrist, 1994] [Newey, 2013] allow us to consistently estimate causal effects from covariates X on a response Y even if the covariates and response are connected through hidden confounding. These approaches usually rely on identifying moment equations such as $\text{Cov}[I, Y - X^\top \beta] = 0$ with I being the instrumental variable (IV). Under some assumptions such as the exclusion restriction, this equation is satisfied for the true causal coefficient $\beta = \beta^*$; in a linear setting, for example, this is the case if we can write $Y = X^\top \beta^* + g(H, \varepsilon^Y)$ with H, ε^Y being independent of X and I. Identifiability of β^*, however, requires that the moment equation is not satisfied for any other $\beta \neq \beta^*$. Formally, this condition is often written as a rank condition on the covariance between I and X, which implies that the dimension of I must be at least as large as the number of components of X.

In this work, we consider the case where the causal coefficient β^* is assumed to be sparse. This assumption allows us to relax existing identifiability conditions: it is, for example, possible to identify β^* even if there are much less instruments than covariates. Our results are proved in the context of linear structural causal models (SCMs) [Pearl, 2009] [Bongers et al., 2021], that is, we also assume linearity among the X variables. We prove sufficient conditions for identifiability of β^* that are based on rank conditions of the matrix of causal effects from I on the parents of Y. We then investigate for which graphical structures we can expect such conditions to hold. Consider, for example, the graph shown in Figure 1. Square nodes represent instruments, and hidden variables between variables in $X \cup \{Y\}$ can exist but are not drawn (we formally introduce such graphs in Section 2.1). Sparse identifiability in this graph is not obvious: Is the causal effect from the parents of Y to Y generically identifiable if the true underlying and unknown graph is the one shown (including the two dashed edges)? And what about the graph excluding the two dashed edges? We translate the rank conditions for identifiability to structural SCMs whose coefficients are drawn randomly from a distribution that is absolutely continuous with respect to Lebesgue measure. This allows us to develop graphical criteria that can answer these questions.

If identifiability holds, the causal effect can be estimated from data. We propose an estimator called spaceIV (“sparse causal effect IV”). It is based on the limited information maximum likelihood (LIML) estimator [Anderson and Rubin, 1949] [Amemiya, 1985]. This estimator has similar properties as the two stage least squares estimator and has the same asymptotic normal distribution, for example [Mariano, 2001]. But as it minimizes the Anderson-Rubin test statistic, it allows us to prove theoretical guarantees. We evaluate the performance of spaceIV on simulated data.

Numerous extensions to the classical linear instrumental
variable setting have been proposed. For example, non-linear effects [Imbens and Newey2009, Dunker et al. 2014, Torgovitsky 2015, Loh 2019, Christiansen et al. 2020] have been considered, often in relation with higher order moment equations [Hartford et al. 2017, Singh et al. 2019, Bennett et al. 2019, Muandet et al. 2020, Saengkyongam et al. 2022]. Furthermore, [Belloni et al. 2012, McKeigue et al. 2010] assume that the effect from the instruments on the covariates is sparse. For example, it has been shown that consistent estimators exist if at least half of all instruments are valid [Kang et al. 2016]. To the best of our knowledge, while existing work considers sparsity constraints between the instruments and the covariates (‘first stage’), the assumption of a sparse causal effect (‘second stage’) and its benefits has not yet been analyzed.

Our paper is structured as follows. Section 2 introduces the formal setup. Section 3 presents the main identifiability result for sparse causal effect models and Section 4 develops the corresponding graphical criteria. Section 5 introduces the estimator space IV and Section 6 includes simulation experiments. Code is attached as supplementary material.

2 IV MODELS WITH SHIFT INTERVENTIONS

Consider the following structural causal model (SCM)

\[X := BX + AI + h(H, \varepsilon^X) \]

\[Y := X^\top \beta^* + g(H, \varepsilon^Y), \]

where \(\text{Id} - B \) is invertible. Here, \(X \in \mathbb{R}^d \) denotes the observed variables, \(H \in \mathbb{R}^q \) the unobserved variables, \(I \in \mathbb{R}^m \) the instruments, \(Y \in \mathbb{R} \) is the response and \(I, H, \varepsilon^X \) and \(\varepsilon^Y \) are jointly independent. In contrast to classical IV settings, we thus explicitly model the causal effects of the instruments \(I \) on the predictor variables \(X \). Throughout the paper, we assume that \(\text{Cov}(I) \) is invertible and \(\text{Rank}(A) = m \). We assume that we have access to an i.i.d. data set \((X_1, Y_1, I_1), \ldots, (X_n, Y_n, I_n)\) sampled from the induced distribution and are interested in estimating the causal effect \(\beta^* \). We call the set of non-zero components of \(\beta^* \) the parents of \(Y \) and denote it by \(\text{PA}(Y) \).

Our model covers the case, where we observe data from \(m \) different experiments, each of which corresponds to a fixed intervention shift. More precisely, we can choose \(I = \varepsilon_K \) with \(\varepsilon_k, k \in \{1, \ldots, m\} \), being the \(k \)th unit vector in \(\mathbb{R}^m \) and \(K \sim U(\{1, \ldots, m\}) \), chosen independently of \(H, \varepsilon^X, \varepsilon^Y \). Here, each column in the matrix \(A \) specifies a different experiment in which (a subset of) the \(X \) variables is shifted by the amount specified in that column.

2.1 GRAPHICAL REPRESENTATION

Given a data generating process of the form (1), we represent it graphically as follows: Each component of \(X \) is represented by a node, which we call a prediction node. There is a directed edge from \(X^i \) to \(X^j \) if and only if \(B_{ji} \neq 0 \). In addition, we represent the \(k \)th component of \(I \) by a square node with label ‘\(k \)’, which we call intervention node. There is a directed edge from \(k \) to \(X^j \) if and only if \(A_{ij,k} \neq 0 \). Finally, we represent the response \(Y \) with the same node style as is used for the predictors and include a directed edge from \(X^j \) to \(Y \) if and only if \(\beta^j \neq 0 \). In the graph, we do not represent hidden variables (even though they are allowed to exist). Consequently, such graphs do not satisfy the Markov condition [e.g., Lauritzen 1996].

Example 1. Consider an SCM of the following form

\[
\begin{pmatrix}
X^1 \\
X^2 \\
X^3
\end{pmatrix} :=
\begin{pmatrix}
0 \\
b_{21} X^1 \\
0
\end{pmatrix}
+ \begin{pmatrix}
a_{11} & a_{12} \\
0 & a_{22} \\
0 & a_{32}
\end{pmatrix} \begin{pmatrix}
I^1 \\
I^2
\end{pmatrix}
+ h(H, \varepsilon^X)
\]

\[Y := \begin{pmatrix}
0 \\
\beta^2 \\
0
\end{pmatrix} + g(H, \varepsilon^Y), \tag{2} \]

where \(I^1, I^2, H, \varepsilon^Y, \varepsilon^X \) are jointly independent. Figure 2 shows the corresponding graphical representation.

3 IDENTIFIABILITY IN SPARSE-EFFECT IV MODELS

Consider a data generating process of the form (1). Because the intervention \(I \) does not directly enter the structural assignment of \(Y \) and \((H, \varepsilon^Y, I) \) are jointly independent, the
Moreover, whenever we define the \(C \) as described in Section 2.1 (the hidden variable \(H \) is omitted). causal coefficient \(\beta^* \) satisfies the moment condition

\[
\text{Cov} \left(I, Y - X^T \beta^* \right) = 0. \tag{3}
\]

The solution space of the moment condition is given by

\[
B := \{ \beta \in \mathbb{R}^d | \text{Cov}(I, X) \beta = \text{Cov}(I, Y) \}.
\]

It can be shown that this is a \((d - m)\)-dimensional space. The true causal coefficient \(\beta^* \) is therefore identified by \(\beta^* \) if and only if \(m = d \). This directly implies that the number of instruments needs to be greater or equal to the number of predictors, a well-known necessary condition for identifiability. For example, using the matrix \(B \), Proposition 2 characterizes settings under which individual components of the causal coefficient \(\beta^* \) are identifiable. This result does not require any additional assumptions on the underlying model. In Section 3.1, we then show that if the causal coefficient \(\beta^* \) is sparse (i.e., it contains many zeros) it can still be identifiable even in conditions in which \(B \) is non-degenerate.

Proposition 2 (Partial identifiability of causal coefficient). Consider a data generating process of the form \(Y = \beta X + \varepsilon \). Then, for all \(j \in \{1, \ldots, d\} \) it holds that

\[
\beta^*_j \text{ is identifiable by } (3) \iff \text{Null}(C)_j = \{0\}.
\]

Moreover, whenever \(\text{Null}(C)_j = \{0\} \) it holds that \(\beta^*_j = (\text{Cov}(I, X)^\dagger \text{Cov}(I, Y))_j \).

The proof can be found in Appendix A.

3.1 Identifiability of Sparse Causal Coefficients

We have argued that the causal parameter is in general not fully identified by the moment condition \((3) \). However, we can obtain identifiability by additionally assuming that the causal coefficient \(\beta^* \) is sparse. To make this more precise, consider the following optimization

\[
\min_{\beta \in B} \| \beta \|_0. \tag{5}
\]

As we will see below, under mild conditions on the interventions \(I \), the causal coefficient \(\beta^* \) is a unique solution to this problem.

We now make the following assumptions\(^4\)

1. \(\text{A1} \) It holds that \(\text{Rank}(C_{PA(Y)}) = |PA(Y)| \).
2. \(\text{A2} \) For all \(S \subseteq \{1, \ldots, d\} \) it holds that

\[
\text{Im}(C_S) \neq \text{Im}(C_{PA(Y)}) \quad \text{and} \quad \text{Rank}(C_S) \leq \text{Rank}(C_{PA(Y)}) \implies \forall w \in \mathbb{R}^{|S|} : C_S w \neq C_{PA(Y)} \beta^*_{PA(Y)}.
\]

3. \(\text{A3} \) For all \(S \subseteq \{1, \ldots, d\} \) with \(|S| = |PA(Y)| \) and \(S \neq PA(Y) \) we have \(\text{Im}(C_S) \neq \text{Im}(C_{PA(Y)}) \).

\(\text{A1} \) is a necessary assumption in order to identify \(\beta^* \); it guarantees that an IV regression based on the true parent set \(PA(Y) \) identifies the correct coefficients. \(\text{A2} \) is an assumption on the underlying causal model that ensures that certain types of cancellation cannot occur. It is a rather mild assumption in the following sense: if one considers the true causal parameter \(\beta^* \) as randomly drawn from a distribution absolutely continuous with respect to Lebesgue measure it would almost surely lead to a system that satisfies \(\text{A2} \) (see Proposition 7 in Appendix B). As shown in the following theorem, \(\text{A1} \) and \(\text{A2} \) are sufficient to ensure that \(\beta^* \) solves \((5) \). Additionally assuming \(\text{A3} \) ensures that the solution is unique; it can be seen as requiring an extra level of heterogeneity in how the interventions affect the system (see also Section 4).

Theorem 3 (Identifiability of sparse causal parameters). Consider a data generating process of the form \(Y = \beta X + \varepsilon \). If \(\text{A1} \) and \(\text{A2} \) hold, then \(\beta^* \) is a solution to \((5) \). Moreover, if, in addition, \(\text{A3} \) holds, then \(\beta^* \) is the unique solution.

Proof. We use the notation \(\varepsilon^X := h(H, \varepsilon^X) \) and \(\varepsilon^Y := g(H, \varepsilon^X) \). Then \((1) \) and the assumption of joint indepen-
We now prove the first part of the theorem. Assume (A1) we can use (A2) to get a contradiction to (9). This completes where we also used that (A1), (A2) and (A3) are satisfied. By the previous part of

\[\text{Rank}(S) = \text{dim}(\text{Im}(\tilde{S})) \]

which is (as
denence of I, \(\xi^X \), and \(\xi^Y \) imply that

\[
\text{Cov}[I, X] = \text{Cov} \left[I, (\text{Id} - B)^{-1} (A I + \xi^X) \right] = (\text{Id} - B)^{-1} A \text{Cov}(I) A^\top (\text{Id} - B)^{-\top}. \tag{6}
\]

Similarly, we get that

\[
\text{Cov}[I, Y] = \text{Cov} \left[I, (A I + \xi^X)^\top (\text{Id} - B)^{-\top} \beta^* + \xi_Y \right] = (\text{Id} - B)^{-1} A \text{Cov}(I) A^\top (\text{Id} - B)^{-\top} \beta^*. \tag{7}
\]

Hence, for any \(\tilde{\beta} \in \mathcal{B} \), using the definition of \(\mathcal{B} \) and combining (6) and (7) we get that

\[
A \text{Cov}(I) C \tilde{\beta} = A \text{Cov}(I) \beta^*.
\]

Here, we used the definition of \(C \) in (4). Finally, since \(\text{Rank}(A) = m \) we know that \(A \) has a left-inverse (given by \((A^\top A)^{-1} A^\top \)), hence we get

\[
C \tilde{\beta} = \beta^*, \tag{8}
\]

where we also used that \(\text{Cov}(I) \) is invertible. Furthermore, it holds for any set \(S \subseteq \text{supp}(\tilde{\beta}) \) that

\[
C_S \tilde{\beta}_S = C_{PA(Y)} \beta_{PA(Y)}. \tag{9}
\]

We now prove the first part of the theorem. Assume (A1) and (A2) are satisfied. We want to show that

\[
\beta^* \in \arg \min_{\beta \in \mathcal{B}} \|\beta\|_0. \tag{10}
\]

Since \(\beta^* \in \mathcal{B} \), it is sufficient to show that for all \(\tilde{\beta} \in \mathcal{B} \) it holds that \(\|\tilde{\beta}\|_0 \geq |PA(Y)| \). To this end, fix \(\tilde{\beta} \in \mathcal{B} \) and set \(S = \text{supp}(\tilde{\beta}) \). For the sake of contradiction assume \(|S| < |PA(Y)| \), then using (A1) we get that

\[
\text{Rank}(C_{PA(Y)}) = \text{dim}(\text{Im}(C_{PA(Y)})) = |PA(Y)| > S \geq \text{dim}(\text{Im}(C_S)) = \text{Rank}(C_S).
\]

This implies \(\text{Rank}(C_{PA(Y)}) \geq \text{Rank}(C_S) \) and \(\text{Im}(C_{PA(Y)}) \neq \text{Im}(C_S) \). Thus, by (A2), this contradicts (9). This completes the first part of the proof.

Next, we prove the second part of the theorem. Assume that (A1), (A2) and (A3) are satisfied. By the previous part of the proof, we have seen that \(\beta^* \) satisfies (10). It therefore only remains to show that there is no other solution. Assume for the sake of contradiction that there exists \(\hat{\beta} \in \mathcal{B} \) with \(S := \text{supp}(\hat{\beta}) \) such that \(|S| = |PA(Y)| \) and \(S \neq PA(Y) \). Then by (A3) we have \(\text{Im}(C_S) \neq \text{Im}(C_{PA(Y)}) \). By (A1) it holds that

\[
\text{Rank}(C_{PA(Y)}) = |PA(Y)| = |S| \geq \text{Rank}(C_S).
\]

Hence, together with the condition \(\text{Im}(C_S) \neq \text{Im}(C_{PA(Y)}) \) we can use (A2) to get a contradiction to (9). This completes the proof of Theorem 3.

\[\square\]

4 GRAPHICAL CHARACTERIZATION

We now formulate the identifiability result from Section 3.1 in graphical terms. Suppose we are given a data generating process of the form (1) with corresponding graph \(\mathcal{G} \) (as described in Section 2.1). The parents of \(Y \) are denoted by \(PA(Y) \) and correspond to the non-zero entries of \(\beta^* \). Moreover, for any set \(S \subseteq \{1, \ldots, d\} \), we define the set of all intervention ancestors of variables in \(S \) as

\[
AN_I[S] := \{ j \in \{1, \ldots, m\} \mid j \in AN(S) \}.
\]

This set contains the intervention nodes that are ancestors of \(S \).

We can now state the following graphical assumptions.

(B1) There are at least \(|PA(Y)| \) disjoint directed paths (not sharing any node) from \(I \) to \(PA(Y) \).

(B2) The non-zero coefficients of the causal coefficient \(\beta^*_{PA(Y)} \in \mathbb{R}^{|PA(Y)|} \) and the non-zero entries of \(A \) and \(B \) are randomly drawn from a distribution \(\mu \) which is absolutely continuous with respect to Lebesgue measure (and are independent of the other variables).

(B3) For all \(S \subseteq \{1, \ldots, d\} \) with \(|S| = |PA(Y)| \) and \(S \neq PA(Y) \) at least one of the following conditions is satisfied

(i) \(AN_I[S] \neq AN_I[PA(Y)] \).

(ii) The smallest set \(T \) of nodes such that all directed paths from \(I \) to \(PA(Y) \) and from \(I \) to \(S \) go through \(T \) is of size at least \(|PA(Y)| + 1 \).

We will see in Theorem 5 below that the causal effect becomes identifiable if (B1)–(B3) hold. Let us discuss these assumptions using a few examples.

Example 4. (i) The example from Example 7 and Figure 2 is discussed in Figure 7 in Appendix D.

(ii) Figure 2 contains another identifiable example.

(iii) We now come back to the example graphs shown in Figure 7. Consider an SCM with the graph structure shown including the dashed edges. (B1) is violated, as the effect of the four instruments is ‘channelled’ through three variables. Indeed, here, the causal effect from \((X^1, X^2, X^3, X^4) \) on \(Y \) is in general non-identifiable – even though all instruments are connected to all causal parents of \(Y \) (the rank of \(C_{PA(Y)} \) is three and therefore too small to identify \(\beta^* \)).

(iv) Consider an SCM with the graph structure shown in Figure 7 (dashed edges not included). Here, (B1) holds. (B3) is satisfied, too: e.g., for the set \(S := \{X_3, X_4\} \), we have \(AN_I[\{X_3, X_4\}] = AN_I[\{X_1, X^2\}] \), so (B3) (i) is violated, but (B3) (ii) holds (which implies \(\text{Im}(C_S) \neq \text{Im}(C_{PA(Y)}) \), see proof of Theorem 5), there is no set of size two such that all directed paths.
We can now state the graphical version of Theorem 3.

A graphical marginalization of graphs similar to the latent (graph version)

Theorem 5

\(G \) (ii) the causal effect from \(B_2 \), the causal effect from \(\text{AN} \) \(\beta^* \) is \(\mu \)-almost surely a solution to \(\text{B1} \) and \(\text{B2} \), \(\beta^* \) is \(\mu \)-almost surely a solution to \(\text{B1} \) and \(\text{B2} \), and \(\text{B3} \), it is \(\mu \)-almost surely the unique solution.

Proof. We prove the statement by showing that (A1), (A2), and (A3) from Theorem 3 hold \(\mu \)-almost surely.

(B1) \(\Rightarrow \) (A1): With respect to (A1), consider first the marginalization of model \(\text{I} \) over \(\text{PA}(Y) \). To do so, we repeatedly substitute \(X_3 \), \(j \in \{1, \ldots, d\} \) with its assignment, that is, the corresponding right-hand side of \(\text{I} \) and obtain

\[
X^{\text{PA}(Y)} := C^X I + h^X (H, \varepsilon^X). \tag{11}
\]

We then have \(C_{-\text{PA}(Y)} = C^X \),

(12)

where \(C_{-\text{PA}(Y)} \) is the matrix constructed from the columns of \(C \) corresponding to \(\text{PA}(Y) \). Equality \(\text{I} \) holds by construction: The element of \(C_{-\text{PA}(Y)} \) in row \(i \) and the column corresponding to \(X_3 \in \text{PA}(Y) \) equals the total causal effect from \(I \) on \(X_i \); this is exactly the same in the marginalized model \(\text{I} \). We now argue that \(C^X \) has full rank \(\mu \)-almost surely. To do so, we explicitly construct \(C^X \) by writing

\[
X^{\text{PA}(Y)} = C_1 \cdots C_j \cdots C_f \cdot I + h^X (H, \varepsilon^X).
\]

It then holds that \(C^X = (C_1 \cdots C_j \cdots C_f)^\top \). First, consider all \(X \) nodes on directed paths from \(I \) to \(\text{PA}(Y) \), that is \(W := \text{AN}(\text{PA}(Y)) \cap \text{DE}(I) \) (throughout the paper, we use the convention that a node is contained in the set of its ancestors). Among these nodes we consider a causal ordering on the induced graph, that is, we choose \(i_1, \ldots, i_f \) such that for all \(k, \ell \in \{1, \ldots, f\} \) with \(k < \ell \), we have \(X^{i_k} \in \text{ND}_{\text{pw}}(X^{i_\ell}) \), where \(\text{pw} \) is the subgraph of \(\text{G} \) over nodes in \(W \). Now we start by replacing the \(X_3 \) by its structural equation, yielding

\[
X^{\text{PA}(Y)} = C_1 \cdot X^{\text{PA}_1} + h_1 (H, W^C, \varepsilon^{X_1}),
\]

where \(\text{PA}_1 = \text{PA}(Y) \setminus \{X_3\} \cup \text{PA}_{\text{pw}}(X_3) \) and the \(h \) terms collect error terms and variables not in \(W \). \(C_1 \) is a matrix with dimension \(|\text{PA}(Y)| \times |\text{PA}_1| \). We did not replace the variables in \(\text{PA}(Y) \setminus \{X_3\} \), the corresponding submatrix in \(C_1 \) is the identity. All directed path from \(I \) to \(\text{PA}(Y) \) go through \(\text{PA}_1 \). Condition (B1) therefore implies \(|\text{PA}_1| \geq |\text{PA}(Y)| \). The row corresponding to \(X_3 \) contains the path coefficients from \(\text{PA}(X_3) \) to \(X_3 \), which are \(\mu \)-almost surely non-zero. Thus, \(C_1 \) has \(\mu \)-almost surely rank \(|\text{PA}(Y)| \). We now repeatedly (for \(k \in \{2, \ldots, f\} \)) substitute the variable \(X_3 \) in \(X^{\text{PA}_{k-1}} \) with its structural equation yielding

\[
X^{\text{PA}(Y)} = C_1 \cdot C_2 \cdots C_k \cdot X^{\text{PA}_{k-1}} + h_k (H, W^C, \varepsilon^{X_3}),
\]

\[\mu\text{-almost surely. Moreover, if, in addition, (B3) holds, then (A3) holds \(\mu \)-almost surely.}\]

Together with Theorem 3 this implies that under (B1) and (B2), \(\beta^* \) is \(\mu \)-almost surely a solution to \(\text{B1} \) and (B1), (B2), and (B3), it is \(\mu \)-almost surely the unique solution.

Theorem 5 (Identifiability of sparse causal coefficients (graph version)). Consider a data generating process of the form \(\text{I} \). If (B1) and (B2) hold, then (A1) and (A2) hold

\[\mu\text{-almost surely. Moreover, if, in addition, (B3) holds, then (A3) holds \(\mu \)-almost surely.}\]
where $PA_k = PA_{k-1} \setminus \{X^k\} \cup PA_W(X^k)$ and C_k contains an identity matrix for the submatrix, corresponding to $PA_k \cap PA_{k-1}$ and in the row corresponding to X^k a vector of coefficients. With the same arguments as above, we have that $|PA_k| \geq |PA(Y)|$. (Indeed, otherwise, all directed path would go through a set of nodes of size strictly smaller than $|PA(Y)|$.) Furthermore, C_k has rank at least $|PA(Y)|$. (Indeed, if $|PA_{k-1}| > |PA(Y)|$, then C_k contains a $|PA(Y)| \times |PA(Y)|$ submatrix that is equal to the identity; if $|PA_{k-1}| = |PA(Y)|$, then C_k contains a $(|PA(Y)| - 1) \times (|PA(Y)| - 1)$ submatrix that is equal to the identity, $PA_k \cap PA_{k-1} \neq \emptyset$, and the entry corresponding to one of the new parents will be non-zero μ-almost surely).

Since $C^X = (C_1 \cdot C_2 \cdot ... \cdot C_f)^T$ and all non-zero entries are independent realizations from μ, this proves that C^X is μ-almost surely of rank at least $|PA(Y)|$, see (A1).

(B2) \Rightarrow (A2): Proposition[7] shows that (A2) holds μ-almost surely.

(B3) \Rightarrow (A3): Consider a set $S \subseteq \{1, \ldots, d\}$ with $|S| = |PA(Y)|$ and $S \neq PA(Y)$. First, we argue that (B3) (i) implies (A3) (ii). To see this, assume $AN_I[S] \neq AN_I[PA(Y)]$. Without loss of generality assume that there is an $i^* \in AN_I[S] \setminus AN_I[PA(Y)]$. This implies that the i^*th row of $C_{PA(Y)}$ is entirely zero. There is a node $X^j \in S$ such that $i^* \in AN_I[S]$, and the entry of the i^*th row of CS that corresponds to X^j must be non-zero μ-almost surely (the kth corresponds to the total effect of intervention I^k on X^j in the SCM given in (I)). It therefore follows that μ-almost surely it holds that

$$\text{Im}(C_S) \neq \text{Im}(C_{PA(Y)}).$$ \hspace{1cm} (13)

Now consider a set S and assume that (B3) (i) does not hold but (B3) (ii) holds. To argue that (A3) (ii) holds, we proceed similarly as in the part of the proof showing that (B1) implies (A1). We consider the graph G over the nodes $W_{S,PA(Y)} := AN(PA(Y)) \cup S$ $\setminus DE(I)$. As before, we construct a causal order and perform the nodes, one after each other by substitution. This time, we obtain the equation

$$X^{S,PA(Y)} = C_1 \cdot C_2 \cdot ... \cdot C_f \cdot I + h^X(H, Z^X)$$

and $C_{S,PA(Y)} = (C_1 \cdot C_2 \cdot ... \cdot C_f)^T$. With the same argument as above, we conclude that μ-almost surely, the rank of $C_{S,PA(Y)}$ is strictly larger than $|PA(Y)|$. This implies that $\text{Im}(C_S) \neq \text{Im}(C_{PA(Y)})$ μ-almost surely (indeed, if $\text{Im}(C_S) \neq \text{Im}(C_{PA(Y)})$, then each column of C_S can be written as a linear combination of the columns of $C_{PA(Y)}$, which implies that $C_{S,PA(Y)}$ is of rank at most $|PA(Y)|$).

As the assumptions (A1), (A2) and (A3) all hold μ-almost surely, Theorem[3] can be applied, which completes the proof of Theorem[5].

5 ALGORITHM AND CONSISTENCY

The theoretical identifiability results from the previous sections highlight that the causal coefficient β^* can be identifiable even in cases that are considered non-identifiable in classical IV literature. We now propose an estimation procedure called space IV (sparse causal effect IV) that allows us to infer β^* from a finite data set. The procedure is based on the optimization problem $\min_{\beta \in \mathcal{B}} \|\beta\|_0$, see [5]. It iterates over the sparsity level s and searches over all subsets $S \subseteq \{1, \ldots, d\}$ of predictors for that sparsity level to check whether there is a $\beta \in \mathbb{R}^d$ with supp(β) = S that solves (3). We motivate our estimator by considering a hypothesis test.

Let us therefore consider a fixed sparsity level $s \in \{1, \ldots, d\}$ and the null hypothesis

$$H_0(s) : \exists \beta \in \mathbb{R}^d \text{ with } \|\beta\|_0 = s \text{ such that } \beta \in \mathcal{B}.$$ \hspace{1cm} (14)

This hypothesis can be tested using the Anderson-Rubin test [Anderson and Rubin 1949], see also [Jakobsen and Peters 2021]. Let $P_I := I(I^T I)^{-1} I^T$, then the Anderson-Rubin test statistic is defined as

$$T(\beta) := \frac{(Y - X\beta)^T P_I (Y - X\beta)}{(Y - X\beta)^T (I - P_I) (Y - X\beta)} \frac{n - m}{m},$$

and satisfies $T(\beta) \sim F(n - m, m)$ for all $\beta \in \mathcal{B}$. It is known [e.g., Dhrymes 2012] that the limited maximum likelihood estimator (LIML) minimizes this test statistic. For any set $S \subseteq \{1, \ldots, d\}$, denote by $\hat{\beta}_{\text{LIML}}(S) \in \mathbb{R}^d$ the LIML estimator based on the subset of predictors X^S (adding zeros in the other coordinates). It then holds for all $\beta \in \mathbb{R}^d$ with supp(β) = S that

$$T(\hat{\beta}_{\text{LIML}}(S)) \leq T(\beta).$$

Next, for each sparsity level $s \in \{1, \ldots, d\}$ define

$$\hat{\beta}(s) := \hat{\beta}_{\text{LIML}} \left(\arg \min_{S \subseteq \{1, \ldots, d\} : |S| = s} T(\hat{\beta}_{\text{LIML}}(S)) \right),$$

which can be computed by iterating over all subsets with sparsity level s. Then, by (15), the hypothesis test $\phi_s : \mathbb{R}^d \times \mathbb{R}^m \rightarrow \{0, 1\}$ defined by

$$\phi_s(X, I, Y) = 1(\hat{\beta}(s)) > F^{-1}_{n - m, m}(1 - \alpha)$$

has valid level for the null hypothesis $H_0(s)$ if the error variables are Gaussian (otherwise it has point-wise asymptotic level).

Motivated by this test, we now define our estimator space IV. It iterates over $s \in \{1, \ldots, s_{\text{max}}\}$ and in each step computes $\hat{\beta}(s)$ by exhaustively searching over all subsets of size s. Then, either ϕ_s is accepted and space IV returns $\hat{\beta}_{\leq s_{\text{max}}} := \hat{\beta}(s)$ as its final estimator or it continuous.
Algorithm 1: spaceIV

Input: predictors $X \in \mathbb{R}^{n \times d}$, response $Y \in \mathbb{R}^n$, instruments $I \in \mathbb{R}^{n \times m}$, sparsity threshold $s_{\text{max}} \in \{1, \ldots, d\}$, significance level $\alpha \in (0, 1)$

1. Initialize sparsity $s \leftarrow 0$
2. Initialize test as rejected $\phi \leftarrow 1$
3. while $s < s_{\text{max}}$ and $\phi = 1$
 4. Update sparsity $s \leftarrow s + 1$
 5. Set S_s to be all subsets in $\{1, \ldots, d\}$ of size s
 6. for $S \in S_s$
 7. Compute LIML-estimator $\hat{\beta}_{\text{LIML}}(S)$
 8. Compute test statistic $T(\hat{\beta}_{\text{LIML}}(S))$ in (14)
 9. end
10. Select $S_{\min} \leftarrow \arg \min_{S \in S_s} T(\hat{\beta}_{\text{LIML}}(S))$
11. Set $\hat{\beta}(s) \leftarrow \hat{\beta}_{\text{LIML}}(S_{\min})$
12. Test whether $H_0(s)$ can be rejected:
13. $\phi \leftarrow \mathbb{I}(T(\hat{\beta}(s)) > F_{n-m,m}(1-\alpha))$
14. end

Set $\hat{\beta}_{\leq s_{\text{max}}} := \hat{\beta}(s)$

Output: Final estimate $\hat{\beta}_{\leq s_{\text{max}}}$ and test result ϕ

The proposed spaceIV estimator $\hat{\beta}_{\leq s_{\text{max}}}$ satisfies the following guarantees.

Theorem 6. Consider i.i.d. data from a data generating process of the form (1) with Gaussian errors and assume (A1) and (A2). Let $s_{\text{max}} \in \mathbb{N}$ be such that $s_{\text{max}} \geq \|\beta^*\|_0$. Then, the following two statements hold.

(i) We have

$$\lim_{n \to \infty} P(\|\hat{\beta}_{\leq s_{\text{max}}} - 0 \| - \|\beta^*\|_0) = 1 - \alpha.$$

(ii) If, in addition, (A3) holds, we have, for all $\varepsilon > 0$ that

$$\lim_{n \to \infty} P(\|\hat{\beta}_{\leq s_{\text{max}}} - \beta^*\|_2 < \varepsilon) = 1 - \alpha.$$

The proof can be found in Appendix C.

6 NUMERICAL EXPERIMENTS

For the numerical experiments, we consider models of the form (1) with $h(H, \varepsilon^X) = H + \varepsilon^X, g(H, \varepsilon^Y) = H + \varepsilon^Y$ and dimensions $d = 20, q = 1$ and $m = 10$. We generate 2000 random models of this form using the following procedure:

- Generate a random matrix $B \in \mathbb{R}^{20 \times 20}$ by sampling a random causal order over X^1, \ldots, X^{20}. B then has a zero-structure that corresponds to a fully connected graph with this causal order. Each non-zero entry in B is drawn independently and uniformly from $(-1.5, -0.5) \cup (0.5, 1.5)$. Finally, each row of B is rescaled by the maximal value in each row (using one if it is a zero row).
- Generate a random matrix $A \in \mathbb{R}^{20 \times 10}$ by sampling each entry independently with distribution Bernoulli(1/10) and setting all diagonal entries to 1.
- Generate the parameter $\beta^* \in \mathbb{R}^{20}$ by sampling two random coordinates uniformly from $\{1, \ldots, d\}$ and setting them to 1. All remaining coordinates are set to zero.
- The random variables I, H, ε^X and ε^Y are all drawn as i.i.d. standard normal.

For each random model we sample 6 data sets with sample sizes $n \in \{50, 100, 200, 400, 800, 1600\}$. For each data set, we apply the following methods: (1) spaceIV; this is our proposed method described in Algorithm 1 with $s_{\text{max}} = 3$. Due to computational reasons, in the experiments we use the two-stage least squares estimator instead of LIML. The former estimator minimises the enumerator of (14) and has the same asymptotic distribution. (2) OLS-sparse; this method goes over all subsets of size at most s_{max}, fits a linear OLS and then selects the subset with the smallest AIC. We also compare our estimator to two oracle methods. (3) oracle-|PA|; this method goes over all subsets with size 2 (correct parent size), fits the moment equation (5) and selects the best subset in terms of a squared loss based on the moment equation. (4) oracle-PA; this method considers the correct parent set and fits the moment equation (3). Each method results in a sparse estimate $\hat{\beta}$ of β^* based on which we compute the root mean squared error (RMSE) given by $\|\beta^* - \hat{\beta}\|_2$.

Figure 4: Results for all random models that satisfy (A1)-(A3) (in total 1871 out of 2000 models). The median RSME of the spaceIV estimator converges to zero as the simple size increases, which does not hold for OLS-sparse. Note that some of the outliers are cut-off in this plot.
For each random model, we are furthermore able to explicitly check whether the assumptions (A1) and (A3) are satisfied by computing C and verifying the conditions. The results, considering only the random models for which assumptions (A1)–(A3) are satisfied, are given in Figure 4. As expected, spaceIV indeed seems to consistently estimate the causal parameter β^*, while OLS-sparse does not. Furthermore, spaceIV performs worse as the two oracle methods, illustrating that the estimation in spaceIV contains three parts: estimating the correct sparsity, estimating the correct parents set and finally estimating the correct parameters. A mistake in any of these three steps may result in substantial RMSE, which explains the outliers in the plot.

To investigate the consistency of estimating the correct sparsity level in more detail, we consider the fraction of times the correct sparsity level was selected by spaceIV. The result is given in Figure 5. It suggests that the sparsity level is consistently estimated by spaceIV.

Finally, to investigate the performance of spaceIV based on the assumptions (A1)–(A3), we compared the performance of all methods at sample size $n = 1600$ depending on which assumptions are satisfied. The results are shown in Figure 6. As expected given the theoretical results presented in Section 3.1, spaceIV only performs well if all assumptions are satisfied. If only assumption (A1) is satisfied, there are multiple sets with sparsity 2 for which the moment equation can be satisfied. Therefore, while the oracle with the correct parent sets is able to estimate the causal parameter, spaceIV and the oracle that only uses the sparsity level may select wrong sets leading to a larger error. Moreover, if none of the assumptions are satisfied the causal parameter is not even identifiable if the true parent set is known.

Figure 6: Results for all 2000 random models with $n = 1600$. We split the models into three cases depending on which of the assumptions (A1) and (A3) are satisfied (the group '(A1)' contains 88 models, the group '(A1) & (A3)' contains 1871 models and the group 'none' contains 41 models). If none of the assumptions are satisfied, not even the oracle with known parent set works. If only (A1) is satisfied, multiple sets of size 2 are able to satisfy the moment equation and spaceIV may not estimate the correct set. These findings are in par with Theorem 3.

7 CONCLUSION AND FUTURE WORK

We have analysed some of the benefits that come with assuming a sparse causal effect in linear IV models. We have proved identifiability results that make the causal effect identifiable even if there are much less intervention nodes than predictors. Graphical criteria provide intuition on these results and characterise for which graphs the identifiability hold (when randomly choosing coefficients). We have proposed the estimator spaceIV and evaluated it on finite samples. The results support our theoretical findings and show that the estimator is often able to find the correct sparsity and the correct parent set.

We believe that the power result for the Anderson-Rubin test may yield ways for choosing a significance level for finite samples. Furthermore, it could be interesting to investigate to which extent our results generalize to nonlinear models.

References

A PROOF OF PROPOSITION 2

Proof. Fix $j \in \{1, \ldots, d\}$, then it holds that β^*_j is identifiable by (3) if and only if the space B is degenerate in the j-th coordinate, that is, $B_j = \{\beta^*_j\}$. Next, define $M := \text{Cov}(I, X)$ and $v := \text{Cov}(I, Y)$. Then, denoting the Moore-Penrose inverse of M by M^\dagger, we get that for any solution $\beta \in B$ there exists $w \in \text{Null}(M) \subseteq \mathbb{R}^d$ such that

$$\beta = M^\dagger v + w. \quad (17)$$

Therefore, the space B has a degenerate j-th coordinate if and only if $\text{Null}(M)_j = \{0\}$. Denoting the Moore-Penrose inverse by M^\dagger, the null space of M can be expressed as

$$\text{Null}(M) = \{(\text{Id} - M^\dagger M)w \mid w \in \mathbb{R}^d\}. \quad (18)$$

Next, (1) and the assumption of joint independence of I, ξ^k, and ξ^ℓ imply that

$$M = \text{Cov}[I, X] = \text{Cov}[I, (\text{Id} - B)^{-1}(AI + \xi^k)] = (\text{Id} - B)^{-1}A \text{Cov}(I)A^\top(\text{Id} - B)^{-\top} = C^\top \text{Cov}(I)C.$$}

Hence, together with (15), we get that $M^\dagger M = C^\dagger C = (A^\dagger A)^\top = \text{Id}$. This proves the first part of the statement. The second part of the theorem uses (17) together with $\text{Null}(M) = \text{Null}(C)$. This completes the proof of Theorem 2.

B FURTHER RESULTS

Proposition 7. Let $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{n \times r}$ be two matrices satisfying

$$\text{Rank}(B) \leq \text{Rank}(A) \quad \text{and} \quad \text{Im}(A) \neq \text{Im}(B)$$

and let $W \in \mathbb{R}^m$ be a random variable with a distribution on \mathbb{R}^m that is absolutely continuous with respect to Lebesgue measure. Then it holds that

$$\mathbb{P}(AW \in \text{Im}(B)) = 0. \quad (19)$$

Proof. We begin by showing that

$$\text{Im}(B) ^\perp \cap \text{Im}(A) \neq \emptyset. \quad (19)$$

Assume for the sake of contradiction this is not true. Then it would hold that $\text{Im}(A) \subseteq \text{Im}(B)$. Moreover, since by assumption $\text{Rank}(B) \leq \text{Rank}(A)$ this would imply that $\text{Im}(A) = \text{Im}(B)$, which contradicts the assumptions on A and B. Hence, (19) is true.

Next, let $b_1, \ldots, b_n \in \mathbb{R}^n$ be an orthogonal basis of \mathbb{R}^n such that $\text{span}(b_1, \ldots, b_k) = \text{Im}(B) ^\perp$ and $\text{span}(b_k+1, \ldots, b_n) = \text{Im}(B)$. Then, for every $\ell \in \{1, \ldots, m\}$ there exists unique $\alpha_1^\ell, \ldots, \alpha_n^\ell \in \mathbb{R}$ such that

$$A\ell = \sum_{i=1}^{n} \alpha_i^\ell b_i.$$}

Furthermore, by (19), it holds that there exists at least one $i^* \in \{1, \ldots, k\}$ and $\ell^* \in \{1, \ldots, m\}$ such that $\alpha_i^{\ell^*} \neq 0$. Furthermore, for every $w \in \mathbb{R}^m$ it holds that

$$Aw = \sum_{\ell=1}^{m} w^{\ell} A\ell = \sum_{\ell=1}^{m} \sum_{i=1}^{n} w^{\ell} \alpha_i^{\ell} b_i = \sum_{i=1}^{n} \left(\sum_{\ell=1}^{m} w^{\ell} \alpha_i^{\ell} \right) b_i.$$}

This implies that $Aw \in \text{Im}(B)$ if and only if $\sum_{\ell=1}^{m} w^{\ell} \alpha_i^{\ell} = 0$ for all $i \in \{1, \ldots, \ell\}$. Using this we get

$$\mathbb{P}(AW \in \text{Im}(B)) = \mathbb{P}(\forall i \in \{1, \ldots, \ell\} : \sum_{\ell=1}^{m} w^{\ell} \alpha_i^{\ell} = 0) = \mathbb{P}(\sum_{\ell\neq \ell^*} W^{\ell^*} \alpha_i^{\ell^*} = 0),$$

where for the last step we used that the distribution of W is absolutely continuous with respect to Lebesgue measure. This completes the proof of Lemma 7.

C PROOF OF THEOREM 6

Proof. It is known that for $\beta \in \mathbb{R}^d \setminus B$ with $\beta \neq \beta^*$ the Anderson-Rubin test statistic (given Gaussian noise variables and conditioned on the observations of I and X) satisfies

$$T(\beta) \sim \chi^2 \left(1, \frac{\|\text{Cov}(I, X)(\beta^* - \beta)\|^2}{\sigma^2}\right),$$

where $\chi^2(1, \lambda)$ is the non-central distribution with one degree of freedom and non-centrality parameter λ.

We first prove (i). Fix $s \in \mathbb{N}$ such that $s < \|\beta^*\|_0$ (if $\|\beta^*\|_0 = 1$, the proof simplifies and one can consider (21) directly). Then, for all $\beta \in \mathbb{R}^d$ such that $\|\beta\|_0 = s$, we have by Theorem 3 that $\text{Cov}(I, Y - X^\top \beta) \neq 0$. Furthermore, there exists $\epsilon > 0$ such that for all $\beta \in \mathbb{R}^d$ with $\|\beta\|_0 = s$ it holds that $\|\beta - \beta^*\|^2 > \epsilon$. Therefore, since $\beta \mapsto \|\text{Cov}(I, Y - X^\top \beta)\|^2_2 = $
Conditioning on the observed data of X and I, we have

$$P\left(\inf_{\beta : \|\beta\|_0 = s} T(\beta) > c_\alpha \mid (X_1, I_1), \ldots, (X_n, I_n)\right) = 1 - \kappa\left(c_\alpha, n \inf_{\beta : \|\beta\|_0 = s} \frac{\|\text{Cov}(I, X)(\beta^* - \beta)\|_2}{\sigma^2}\right),$$

(20)

where $\kappa(\cdot, \lambda)$ is the $\chi^2(1, \lambda)$-distribution function; here, we have exploited that for all $x, \lambda \mapsto \kappa(x, \lambda)$ is monotonically decreasing.

As n tends to infinity, it holds that $\|\text{Cov}(I, X)(\beta^* - \beta)\|_2^2 \rightarrow \|\text{Cov}(I, X)(\beta^* - \beta)\|_2^2 > c$. Hence, since c does not depend on β, the non-centrality parameter in the χ^2-distribution tends to infinity and (20) converges to 1. Thus,

$$\lim_{n \rightarrow \infty} P(\phi_s = 1) = 1.$$

Since this holds for any $s \in \mathbb{N}$ such that $s < \|\beta^*\|_0$, we have

$$\lim_{n \rightarrow \infty} P(\|\hat{\beta} \leq s_{\text{max}}\|_0 = \|\beta^*\|_0) = \lim_{n \rightarrow \infty} P\left(\min_{\|\beta\|_0 = \|\beta^*\|_0} \phi_s = 1, \phi_{\|\beta^*\|_0 = 0}\right) = \lim_{n \rightarrow \infty} P(\phi_{\|\beta^*\|_0 = 0}) = 1 - \alpha,$$

(21)

where the last statement follows from the fact that ϕ_s has valid level.

Statement (ii) follows with the same argument noting that for all $\varepsilon > 0$ there exists a $c > 0$ such that for all $\beta \in \mathbb{R}^d$ satisfying $\|\beta\|_0 < \|\beta^*\|_0$ or $\|\beta\|_0 = \|\beta^*\|_0$ and $\|\beta^* - \beta\|_2 \geq \varepsilon$, we have $\text{Cov}(I, Y - X^T \beta) > c > 0$, again, using Theorem 5. This concludes the proof of Theorem 6.

D EXAMPLE[1] CONTINUED

Figure 7 discusses the example graph mentioned in Example 1.

Assumption (B1) holds because of the path $2 \rightarrow X^2$, for example. For $S = \{1\}$, (B3) (i) is not satisfied but (B3) (ii) holds: there is no set T of size one, such that all directed paths from I to $\text{PA}(Y)$ go through T. Therefore, if (B2) holds, the effect β^* is identifiable (see Theorem 5). If, however, we were to remove the second intervention node from Example 1, (B3)(i) and (ii) would be violated (for set $S = \{X^1\}$).

Figure 7: Top: Graph copied from Example 1 and Figure 2. Assumption (B1) holds because of the path $2 \rightarrow X^2$, for example. For $S = \{1\}$, (B3) (i) is not satisfied but (B3) (ii) holds: there is no set T of size one, such that all directed paths from I to $\text{PA}(Y)$ go through T. Therefore, if (B2) holds, the effect β^* is identifiable (see Theorem 5). If, however, we were to remove the second intervention node from Example 1, (B3)(i) and (ii) would be violated (for set $S = \{X^1\}$). Bottom: Marginalized graph $\mathcal{G}^{\text{PA}(Y)}$.

Submitted to the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022). To be used for reviewing only.