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Abstract

Exogenous heterogeneity, for example, in the form
of instrumental variables can help us learn a sys-
tem’s underlying causal structure and predict the
outcome of unseen intervention experiments. In
this paper, we consider linear models in which
the causal effect from covariates X on a response
Y is sparse. We provide conditions under which
the causal coefficient becomes identifiable from
the observed distribution. These conditions can be
satisfied even if the number of instruments is as
small as the number of causal parents. We also de-
velop graphical criteria under which identifiability
holds with probability one if the edge coefficients
are sampled randomly from a distribution that is
absolutely continuous with respect to Lebesgue
measure and Y is childless. As an estimator, we
propose spaceIV and prove that it consistently
estimates the causal effect if the model is identi-
fiable and evaluate its performance on simulated
data. If identifiability does not hold, we show that
it may still be possible to recover a subset of the
causal parents.

1 INTRODUCTION

Instrumental variables [Wright, 1928, Imbens and Angrist,
1994, Newey, 2013] allow us to consistently estimate causal
effects from covariates X on a response Y even if the covari-
ates and response are connected through hidden confound-
ing. These approaches usually rely on identifying moment
equations such as Cov[I, Y −X⊤β] = 0 with I being the
instrumental variable (IV). Under some assumptions such as
the exclusion restriction, this equation is satisfied for the true
causal coefficient β = β∗; in a linear setting, for example,
this is the case if we can write Y = X⊤β∗+ g(H, εY ) with
H, εY being independent of X and I and εY independent of

X . Identifiability of β∗, however, requires that the moment
equation is not satisfied for any other β ̸= β∗. Formally, this
condition is often written as a rank condition on the covari-
ance between I and X , which implies that the dimension of
I must be at least as large as the number of components of
X .

In this work, we consider the case where the causal coeffi-
cient β∗ is assumed to be sparse. This assumption allows
us to relax existing identifiability conditions: it is, for ex-
ample, possible to identify β∗ even if there are much less
instruments than covariates. Our results are proved in the
context of linear structural causal models (SCMs) [Pearl,
2009, Bongers et al., 2021], that is, we also assume linearity
among the X variables. We prove sufficient conditions for
identifiability of β∗ that are based on rank conditions of the
matrix of causal effects from I on the parents of Y . We then
investigate for which graphical structures we can expect
such conditions to hold. Consider, for example, the graph
shown in Figure 1. Square nodes represent instruments, and
hidden variables between variables in X∪{Y } can exist but
are not drawn (we formally introduce such graphs in Sec-
tion 2.1). Sparse identifiability in this graph is not obvious:
Is the causal effect from the parents of Y to Y generically
identifiable if the true underlying and unknown graph is the
one shown (including the two dashed edges)? And what
about the graph excluding the two dashed edges? We trans-
late the rank conditions for identifiability to structural SCMs
whose coefficients are drawn randomly from a distribution
that is absolutely continuous with respect to Lebesgue mea-
sure. This allows us to develop graphical criteria that can
answer these questions.

If identifiability holds, the causal effect can be estimated
from data. We propose an estimator called spaceIV
(‘sparse causal effect IV’). It is based on the limited infor-
mation maximum likelihood (LIML) estimator [Anderson
and Rubin, 1949, Amemiya, 1985]. This estimator has simi-
lar properties as the two stage least squares estimator and
has the same asymptotic normal distribution, for example
[Mariano, 2001]. But as it minimizes the Anderson-Rubin
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Figure 1: Graphical representation of two linear SCMs, as
described in Section 2.1 (hidden variables between X and
Y variables exist but are not drawn). If the data come from
a system corresponding to the unknown graph including (or
excluding) dashed edges, can we identify the causal effect
from X to Y from the joint distribution over I , X , and Y ?
These questions are discussed in Example 4.

test statistic, it allows us to prove theoretical guarantees. We
evaluate the performance of spaceIV on simulated data.
If identifiability does not hold, we prove that it may still be
possible to identify a subset of the causal parents of Y .

Numerous extensions to the classical linear instrumental
variable setting have been proposed. For example, nonlin-
ear effects [Imbens and Newey, 2009, Dunker et al., 2014,
Torgovitsky, 2015, Loh, 2019, Christiansen et al., 2020]
have been considered, often in relation with higher order
moment equations [Hartford et al., 2017, Singh et al., 2019,
Bennett et al., 2019, Muandet et al., 2020, Saengkyongam
et al., 2022]. Furthermore, Belloni et al. [2012], Mckeigue
et al. [2010] assume that the effect from the instruments on
the covariates is sparse. For example, it has been shown that
consistent estimators exist if at least half of all instruments
are valid [Kang et al., 2016]. To the best of our knowledge,
while existing work considers sparsity constraints between
the instruments and the covariates (‘first stage’), the assump-
tion of a sparse causal effect (‘second stage’) and its benefits
has not yet been analyzed.

Our paper is structured as follows. Section 2 introduces the
formal setup. Section 3.1 presents the main identifiability
result for sparse causal effect models and Section 4 develops
the corresponding graphical criteria. Section 5 introduces
the estimator spaceIV and Section 6 includes simulation
experiments. Code is attached as supplementary material.

2 IV MODELS WITH SHIFT
INTERVENTIONS

Consider the following structural causal model (SCM)

X := BX +AI + h(H, εX)

Y := X⊤β∗ + g(H, εY ),
(1)

where h and g are arbitrary measurable functions and
Id−B1 is invertible. Here, X ∈ Rd denotes the observed
variables, H ∈ Rq the unobserved variables, I ∈ Rm the
instrumental variables (following an m-dimensional dis-
tribution, which is not modelled explicitly), Y ∈ R the
response and I , H , εX and εY are jointly independent and
assume that the covariates are non-descendants of Y (see
also Remark 8). In contrast to classical IV settings, we thus
explicitly model the causal effects of the instruments I on
the predictor variables X . Throughout the paper, we as-
sume that Cov[I] is invertible. We assume that we have
access to an i.i.d. data set (X1, Y1, I1), . . . , (Xn, Yn, In)
sampled from the induced distribution and are interested in
estimating the causal effect β∗. We call the set of non-zero
components of β∗ the parents of Y and denote it by PA(Y ).

Our model covers the case, where we observe data from m
different experiments, each of which corresponds to a fixed
intervention shift. More precisely, we can choose I such
that for all k ∈ {1, . . . ,m}, we have P (I = ek) = 1/m,
with ek, k ∈ {1, . . . ,m}, being the k-th unit vector in Rm.
Here, each column in the matrix A specifies a different
experiment in which (a subset of) the X variables is shifted
by the amount specified in that column.

2.1 GRAPHICAL REPRESENTATION

Given a data generating process of the form (1), we represent
it graphically as follows: Each of the d components2 of
X is represented by a node, which we call a prediction
node. There is a directed edge from Xi to Xj if and only if
Bji ̸= 0. In addition, we represent the kth component of I
by a square node with label ‘k’, which we call instrument
node. There is a directed edge from k to Xj if and only if
Aj,k ̸= 0. (There are no connections between instrument
nodes, even though they may be dependent.) Finally, we
represent the response Y with the same node style as is
used for the predictors and include a directed edge from
Xj to Y if and only if βj ̸= 0. In the graph, we do not
represent hidden variables (even though they are allowed to
exist). Consequently, such graphs do not satisfy the Markov
condition [e.g., Lauritzen, 1996].

1Here Id denotes the identity matrix.
2In a slight abuse of notation, we sometimes identify each

component with its index.
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Figure 2: Graphical representation of Example 1, as de-
scribed in Section 2.1 (the hidden variable H is omitted).

Example 1. Consider an SCM of the following formX1

X2

X3

 :=

 0
b21X

1

0

+

a11 a12
0 a22
0 a32

(I1
I2

)
+ h(H, εX)

Y :=
(
X1 X2 X3

) 0
β∗
2

0

+ g(H, εY ), (2)

where I1, I2, H , εY , εX are jointly independent. Figure 2
shows the corresponding graphical representation.

3 IDENTIFIABILITY IN SPARSE-EFFECT
IV MODELS

Consider a data generating process of the form (1). Because
the intervention I does not directly enter the structural as-
signment of Y and (H, εY , I) are jointly independent, the
causal coefficient β∗ satisfies the moment condition

Cov
(
I, Y −X⊤β∗) = 0. (3)

The solution space of the moment condition is given by

B := {β ∈ Rd | Cov(I,X)β = Cov(I, Y )}.

It can be shown that this is a (d− Rank(A))-dimensional
space. The true causal coefficient β∗ is therefore identified
by (3) if and only if Rank(A) = d. This directly implies that
the number of instruments needs to be greater or equal to
the number of predictors, a well-known necessary condition
for identifiability in the linear IV model.

In this work, we investigate the case where B is allowed to
be non-degenerate. To analyse conditions for identifiability,
we define the (m× d)-matrix

C := A⊤(Id−B)−⊤. (4)

The entry Ci,j corresponds to the the i-th component of the
total causal effect from I onto Xj in the SCM given in (1).
This entry correspond to summing over all directed paths
from instrument node i to Xj and for each path, multiplying
the coefficients. The matrix C will play a central role when
analyzing identifiability. For example, using the matrix C,

Proposition 2 characterizes settings under which individual
components of the causal coefficient β∗ are identifiable.
This result does not require any additional assumptions on
the underlying model. In Section 3.1, we then show that
if the causal coefficient β∗ is sparse (i.e., it contains many
zeros) it can still be identifiable even if B is non-degenerate.

Proposition 2 (Partial identifiability of causal coefficient).
Consider a data generating process of the form (1). Then,
for all j ∈ {1, . . . , d} it holds that

β∗
j is identifiable by (3) ⇔ Null(C)j = {0},

where Null(C)j denotes the j-th coordinate of the null
space of C. Moreover, whenever Null(C)j = {0} it holds
that β∗

j = (Cov(I,X)† Cov(I, Y ))j , where (·)† denotes
the Moore-Penrose inverse.

The proof can be found in Appendix A.

3.1 IDENTIFIABILITY OF SPARSE CAUSAL
COEFFICIENTS

We have argued that the causal parameter is in general not
fully identified by the moment condition (3). However, we
can obtain identifiability by additionally assuming that the
causal coefficient β∗ is sparse. To make this more precise,
consider the following optimization

min
β∈B
∥β∥0. (5)

As we will see below, under mild conditions on the inter-
ventions I , the causal coefficient β∗ is a unique solution to
this problem.

We now make the following assumptions3.

(A1) It holds that Rank
(
CPA(Y )

)
= |PA(Y )|.

(A2) For all S ⊆ {1, . . . , d} it holds that

Rank(CS) ≤ Rank
(
CPA(Y )

)
and

Im(CS) ̸= Im
(
CPA(Y )

) }
implies{

∀w ∈ R|S| : CSw ̸= CPA(Y )β
∗
PA(Y ) .

(A3) For all S ⊆ {1, . . . , d} with |S| = |PA(Y )| and S ̸=
PA(Y ) we have Im(CS) ̸= Im

(
CPA(Y )

)
.

(A1) is a necessary assumption in order to identify β∗; it
guarantees that an IV regression based on the true parent
set PA(Y ) identifies the correct coefficients. (A2) is an
assumption on the underlying causal model that ensures

3Here we use the convention that for a matrix D ∈ Rm×d and
a subset S ⊆ {1, . . . , d} the subindexed matrix DS corresponds
to the m× |S|-submatrix of D consisting of all columns that are
indexed by S and Im(D) denotes the image of D.
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that certain types of cancellation cannot occur. It is a rather
mild assumption in the following sense: if one considers
the true causal parameter β∗ as randomly drawn from a
distribution absolutely continuous with respect to Lebesgue
measure it would almost surely lead to a system that satisfies
(A2) (see Proposition 9 in Appendix B). As shown in the
following theorem, (A1) and (A2) are sufficient to ensure
that β∗ solves (5). Additionally assuming (A3) ensures that
the solution is unique; it can be seen as requiring an extra
level of heterogeneity in how the interventions affect the
system (see also Section 4).

Theorem 3 (Identifiability of sparse causal parameters).
Consider a data generating process of the form (1). If (A1)
and (A2) hold, then β∗ is a solution to (5). Moreover, if, in
addition, (A3) holds, then β∗ is the unique solution.

Proof. We use the notation ξX := h(H, εX) and ξY :=
g(H, εX). Then (1) and the assumption of joint indepen-
dence of I , ξX , and ξY imply that

Cov[I,X] = Cov
[
I, (Id−B)−1(AI + ξX)

]
= Cov[I]A⊤(Id−B)−⊤. (6)

Similarly, we get that

Cov[I, Y ] = Cov
[
I, (AI + ξX)⊤(Id−B)−⊤β∗ + ξY

]
= Cov

[
I, β∗⊤(Id−B)−1(AI + ξX) + ξY

]
= Cov[I]A⊤(Id−B)−⊤β∗. (7)

Hence, for any β̃ ∈ B, using the definition of B and com-
bining (6) and (7) we get that

Cov[I]Cβ̃ = Cov[I]Cβ∗.

Here, we used the definition of C in (4). As Cov[I] is in-
vertible, we get

Cβ̃ = Cβ∗, (8)

Furthermore, it holds for4 S = supp(β̃) that

CS β̃S = CPA(Y )β
∗
PA(Y ). (9)

We now prove the first part of the theorem. Assume (A1)
and (A2) are satisfied. We want to show that

β∗ ∈ argmin
β∈B

∥β∥0. (10)

Since β∗ ∈ B, it is sufficient to show that for all β̃ ∈ B
it holds that ∥β̃∥0 ≥ |PA(Y )|. To this end, fix β̃ ∈ B and
set S = supp(β̃). For the sake of contradiction assume
|S| < |PA(Y )|, then using (A1) we get that

Rank
(
CPA(Y )

)
= dim(Im

(
CPA(Y )

)
) = |PA(Y )|

> S ≥ dim(Im(CS)) = Rank(CS) .

4The support of a vector is defined as the set of indices of
non-zero elements.

This implies Rank
(
CPA(Y )

)
≥ Rank(CS) and

Im
(
CPA(Y )

)
̸= Im(CS). Thus, by (A2), this contra-

dicts (9). This completes the first part of the proof.

Next, we prove the second part of the theorem. Assume that
(A1), (A2) and (A3) are satisfied. By the previous part of
the proof, we have seen that β∗ satisfies (10). It therefore
only remains to show that there is no other solution. Assume
for the sake of contradiction that there exists β̃ ∈ B with
S := supp(β̃) such that |S| = |PA(Y )| and S ̸= PA(Y ).
Then by (A3) we have Im(CS) ̸= Im

(
CPA(Y )

)
. By (A1) it

holds that

Rank
(
CPA(Y )

)
= |PA(Y )| = |S| ≥ Rank(CS) .

Hence, together with the condition Im(CS) ̸= Im
(
CPA(Y )

)
we can use (A2) to get a contradiction to (9). This completes
the proof of Theorem 3.

Section 5.1 shows how one can identify a subset of the
causal parents under even milder conditions. Remark 8 dis-
cusses the case where the covariates can also be descendants
of Y .

4 GRAPHICAL CHARACTERIZATION

We now formulate the identifiability result from Section 3.1
in graphical terms. Suppose we are given a data generating
process of the form (1) with corresponding graph G (as
described in Section 2.1), which in this section is assumed
to be acyclic. The parents of Y are denoted by PA(Y ) and
correspond to the non-zero entries of β∗. Moreover, for any
set S ⊆ {1, . . . , d}, we define the set of all intervention
ancestors of variables in S as

ANI [S] := {j ∈ {1, . . . ,m} | j ∈ AN(S)}.5

This set contains the instrument nodes that are ancestors of
S.

We can now state the following graphical assumptions.

(B1) There are at least |PA(Y )| disjoint directed paths (not
sharing any node) from I to PA(Y ).

(B2) The non-zero coefficients of the causal coefficient
β∗
PA(Y ) ∈ R|PA(Y )| and the non-zero entries of A and

B are randomly drawn from a distribution µ which is
absolutely continuous with respect to Lebesgue mea-
sure (and are independent of the other variables).

(B3) For all S ⊆ {1, . . . , d} with |S| = |PA(Y )| and
S ̸= PA(Y ) at least one of the following conditions is
satisfied

5AN(S) denotes the ancestor set of S consisting of all nodes
with a directed path to a node in S. Throughout the paper, we use
the convention that a node is contained in the set of its ancestors.
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(i) ANI [S] ̸= ANI [PA(Y )].
(ii) The smallest set T of nodes such that all di-

rected paths from I to PA(Y ) and from I to S
go through T is of size at least |PA(Y )|+ 1.

We will see in Theorem 5 below that the causal effect be-
comes identifiable if (B1)–(B3) hold. Let us discuss these
assumptions using a few examples.

Example 4. (i) The example from Example 1 and Fig-
ure 2 is discussed in Figure 7 in Appendix E.

(ii) Figure 3 contains another identifiable example.

(iii) We now come back to the example graphs shown in Fig-
ure 1. Consider an SCM with the graph structure shown
including the dashed edges. (B1) is violated, as the ef-
fect of the four instruments is ‘channelled’ through
three variables. Indeed, here, the causal effect from
(X1, X2, X3, X4) on Y is in general non-identifiable –
even though all instruments are connected to all causal
parents of Y (the rank of CPA(Y ) is three and therefore
too small to identify β∗).

(iv) Consider an SCM with the graph structure shown in
Figure 1 (dashed edges not included). Here, (B1) holds.
(B3) is satisfied, too: e.g., for the set S := {X3, X4},
we have ANI [{X3, X4}] = ANI [{X1, X2}], so (B3)
(i) is violated, but (B3) (ii) holds (which implies
Im(CS) ̸= Im

(
CPA(Y )

)
, see proof of Theorem 5):

there is no set of size two such that all directed paths
go through this set (note that |AN({X3, X4})| = 3,
for example). Thus, if additionally (B2) holds, then β∗

is identifiable.

A graphical marginalization of graphs similar to the latent
projection [Richardson, 2003, Verma, 1993] may help to
gain further intuition about the assumptions. Consider a
subset V ⊆ {1, . . . , d} of the covariates. The marginalized
graph GV is then constructed from G by the following pro-
cedure: (i) GV consists of all instrument nodes k from G, all
predictor nodes Xj from G for which j ∈ V , and node Y ;
(ii) GV contains a directed edge from Xi to Xj if and only
if G contains a directed path from Xi to Xj that does not
have any intermediate nodes in V (e.g., because there are no
intermediate nodes); (iii) GV contains a directed edge from
k to Xj if and only if G contains a directed path from k to
Xj that does not have any intermediate nodes in V (e.g.,
because there are no intermediate nodes). The set PAV

I [U ]
denotes the GV -parents of U that are intervention nodes:
PAV

I [U ] := PAGV ∩I . Figure 7, in Appendix E, shows
the marginalized graph corresponding to Example 1 and
Figure 2.

(B1) ensures that there is sufficient heterogeneity coming
from instruments. In particular, there need to be as many
instruments as parents of Y and for all S ⊆ PA(Y ), we have
|PAPA(Y )

I [S]| ≥ |S|. In particular, this implies that for all

Y

X1

X2

X3

X4

X5

1

2

3

Figure 3: Graphical representation of an example SCM, as
described in Section 2.1 (there may be hidden variables
between all predictor variables). Here, (B1) holds as there
are two distinct paths from I to PA(Y ). (B3) is satisfied,
too: {X1, X5} and {X3, X2} are the only sets S violating
(B3) (i) (because ANI [{X1, X5}] = ANI [{X1, X2}] =
ANI [{X3, X2}]), but they satisfy (B3) (ii). Thus, given
(B2), the causal effect from (X1, X2) on Y is identifiable –
even though there are less instruments than covariates.

k ∈ PA(Y ), we have PAPA(Y )
I [k] ̸= ∅. In general, however,

this is not sufficient for identifiability (see Section 6).

We can now state the graphical version of Theorem 3.

Theorem 5 (Identifiability of sparse causal coefficients
(graph version)). Consider a data generating process of
the form (1). If (B1) and (B2) hold, then (A1) and (A2) hold
µ-almost surely. Moreover, if, in addition, (B3) holds, then
(A3) holds µ-almost surely.

Together with Theorem 3 this implies that under (B1) and
(B2), β∗ is µ-almost surely a solution to (5) and (B1), (B2),
and (B3), it is µ-almost surely the unique solution.

Proof. Regarding (A1): With respect to (A1), consider first
the marginalization of model (1) over PA(Y ). To do so, we
repeatedly substitute Xj , j ∈ {1, . . . , d} with its assign-
ment, that is, the corresponding right-hand side of (1) and
obtain

XPA(Y ) := C×⊤
I + h×(H, εX). (11)

We then have
C·,PA(Y ) = C×, (12)

where C·,PA(Y ) is the matrix constructed from the columns
of C corresponding to PA(Y ). Equality (12) holds by con-
struction: The element of C·,PA(Y ) in row i and the column
corresponding to Xj ∈ PA(Y ) equals the i-th component
of the total causal effect from I on Xj ; this is exactly the
same in the marginalized model (11). We now argue that
C× has full rank µ-almost surely. To do so, we perform a
more careful replacement scheme that allows us to write

XPA(Y ) = C1 · C2 · . . . · Cf · I + h×(H, εX). (13)
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It then holds that C× = (C1 ·C2 · . . . ·Cf )
⊤. As a first step

of the replacement scheme, consider all X nodes on directed
paths from I to PA(Y ), that is W := AN(PA(Y ))∩DE(I).
Among these nodes we consider a causal ordering on the
induced graph, that is, we choose i1, . . . , if such that for all
k, ℓ ∈ {1, . . . , f} with k < ℓ, we have Xiℓ ∈ NDGW

(Xik)
(ND denotes the "non-descendants"), where GW is the sub-
graph of G over nodes in W . We now start from the equation
XPA(Y ) = XPA(Y ) and replace, on the right-hand side, Xi1

by its structural equation, yielding

XPA(Y ) = C1 ·XPA1 + h1(H,W c, εXi1 ),

where PA1 = PA(Y ) \ {Xi1} ∪ PAGW
(Xi1) and the h1

term collects error terms and variables not in W . C1 is a
matrix with dimension |PA(Y )| × |PA1 |. We did not re-
place the variables in PA(Y ) \ {Xi1}, the corresponding
submatrix in C1 is the identity. All directed paths from I
to PA(Y ) go through PA1. Condition (B1) therefore im-
plies |PA1 | ≥ |PA1(Y )|. The row corresponding to Xi1

contains the path coefficients from PA(Xi1) to Xi1 , which
are µ-almost surely non-zero. Thus, C1 has µ-almost surely
rank |PA(Y )|. We now repeatedly (for k ∈ {2, . . . , ℓ})
substitute the variable Xik in XPAk−1 with its structural
equation yielding

XPA(Y ) = C1 · C2 · . . . · Ck ·XPAk + hk(H,W c, εXi1 ),

where PAk = PAk−1 \{Xik} ∪ PAGW
(Xik) and Ck con-

tains an identity matrix for the submatrix, corresponding
to PAk ∩PAk−1 and in the row corresponding to Xik a
vector of coefficients. With the same arguments as above,
we have that |PAk | ≥ |PA(Y )|. (Indeed, otherwise, all
directed path would go through a set of nodes of size strictly
smaller than |PA(Y )|.) Furthermore, Ck has rank at least
|PA(Y )|. (Indeed, if |PAk−1 | > |PA(Y )|, then Ck con-
tains a |PA(Y )| × |PA(Y )| submatrix that is equal to
the identity; if |PAk−1 | = |PA(Y )|, then Ck contains
a (|PA(Y )| − 1)× (|PA(Y )| − 1) submatrix that is equal
to the identity, PAk \PAk−1 ̸= ∅, and the entry correspond-
ing to one of the new parents will be non-zero µ-almost
surely.) As W c can be written as a function of εX , the
above replacement scheme yields the desired form (13).
Since C× = (C1 · C2 · . . . · Cf )

⊤ and all non-zero entries
are independent realizations from µ, this proves that C× is
µ-almost surely of rank at least |PA(Y )|, that is, (A1) holds
µ-almost surely.

Regarding (A2): Proposition 9 shows that (A2) holds µ-
almost surely.

Regarding (A3): Consider a set S ⊆ {1, . . . , d} with |S| =
|PA(Y )| and S ̸= PA(Y ). First, we argue that (B3) (i)
implies (A3). To see this, assume ANI [S] ̸= ANI [PA(Y )].
Without loss of generality assume that there is an i∗ such
that i∗ ∈ ANI [S] \ANI [PA(Y )]. This implies that the i∗th
row of CPA(Y ) is entirely zero. Moreover, there is a node
Xj ∈ S such that i∗ ∈ ANI [{j}], and therefore the entry of

the i∗th row of CS that corresponds to Xj must be non-zero
µ-almost surely (Ci,j corresponds to the i-th component of
the total causal effect from I on Xj in the SCM given in
(1)). It therefore follows that µ-almost surely it holds that

Im(CS) ̸= Im
(
CPA(Y )

)
. (14)

Now consider a set S and assume that (B3) (i) does not
hold but (B3) (ii) holds. To argue that (A3) holds, we pro-
ceed similarly as in the part of the proof showing that (B1)
implies (A1). We consider the graph G over the nodes
WS∪PA(Y ) := AN(PA(Y ) ∪ S) ∩ DE(I). As before, we
construct a causal order and substitute the nodes one after
each other. This time, we obtain the equation

XS∪PA(Y ) = C1 · C2 · . . . · Cf ′ · I + h×(H, εX)

and C·,S∪PA(Y ) = (C1 · C2 · . . . · Cf ′)⊤. With the same
argument as above, we conclude that µ-almost surely, the
rank of C·,S∪PA(Y ) is strictly larger than |PA(Y )|. This im-
plies that Im(CS) ̸= Im

(
CPA(Y )

)
µ-almost surely. (Indeed,

if Im(CS) = Im
(
CPA(Y )

)
, then each column of CS can be

written as a linear combination of the columns of CPA(Y ),
which implies that CS∪PA(Y ) is of rank at most |PA(Y )|.)
This completes the proof of Theorem 5.

5 ALGORITHM AND CONSISTENCY

The theoretical identifiability results from the previous sec-
tions highlight that the causal coefficient β∗ can be iden-
tifiable even in cases that are considered non-identifiable
in classical IV literature. We now propose an estimation
procedure called spaceIV (sparse causal effect IV) that
allows us to infer β∗ from a finite data set (X, I, Y ) ∈
Rn×d × Rn×m × Rn. The procedure is based on the opti-
mization problem minβ∈B ∥β∥0. It iterates over the sparsity
level s and searches over all subsets S ⊆ {1, . . . , S} of
predictors for that sparsity level to check whether there is
a β ∈ Rd with supp(β) = S that solves (3). We motivate
our estimator by considering a hypothesis test. To obtain
finite sample guarantees for the test, we assume that the
error term is normally distributed (to obtain asymptotic re-
sults [Anderson and Rubin, 1950], such assumptions can be
relaxed).

Let us consider a fixed sparsity level s ∈ {1, . . . , d} and the
null hypothesis

H0(s) : ∃β ∈ Rd with ∥β∥0 = s such that β ∈ B.

This hypothesis can be tested using the Anderson-Rubin test
[Anderson and Rubin, 1949]. Let PI := I(I⊤I)−1I⊤, then
the Anderson-Rubin test statistic is defined as

T (β) :=
(Y −Xβ)⊤PI(Y −Xβ)

(Y −Xβ)⊤(Id−PI)(Y −Xβ)

n−m

m
, (15)
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and satisfies T (β) ∼ F (n − m,m) for all β ∈ B,
see also Jakobsen and Peters [2022]. It is known [e.g.,
Dhrymes, 2012] that the limited maximum likelihood es-
timator (LIML) minimizes this test statistic. For any set
S ⊆ {1, . . . , d}, denote by β̂LIML(S) ∈ Rd the LIML esti-
mator based on the subset of predictors XS (adding zeros
in the other coordinates). It then holds for all β ∈ Rd with
supp(β) = S that

T (β̂LIML(S)) ≤ T (β). (16)

Next, for each sparsity level s ∈ {1, . . . , d} define

β̂(s) := β̂LIML

(
argmin

S⊆{1,...,d}:|S|=s

T (β̂LIML(S))

)
, (17)

which can be computed by iterating over all subsets with
sparsity level s. Then, by (16). the hypothesis test ϕs :
Rn×d × Rn×m × Rn → {0, 1} defined by

ϕs(X, I, Y ) = 1(T (β̂(s)) > F−1
n−m,m(1− α))

has valid level for the null hypothesis H0(s) if the error vari-
ables are Gaussian (otherwise it has point-wise asymptotic
level).

Motivated by this test, we now define our estimator
spaceIV. It iterates over s ∈ {1, . . . , smax} and in each
step computes β̂(s) by exhaustively searching over all sub-
sets of size s. Then, either ϕs is accepted and spaceIV
returns β̂≤smax

:= β̂(s) as its final estimator or it continues
with s + 1. If none of the tests are accepted, the proce-
dure outputs β̂≤smax

:= β̂(smax) and a warning indicating
that the model assumptions may be violated. The detailed
procedure is presented in Algorithm 1.

The proposed spaceIV estimator β̂≤smax
satisfies the fol-

lowing guarantees.

Theorem 6. Consider i.i.d. data from a data generating
process of the form (1) such that g(H, εY ) is Gaussian
and assume (A1) and (A2). Let smax ∈ N be such that
smax ≥ ∥β∗∥0. Then, the following two statements hold. (i)
We have

lim
n→∞

P (∥β̂≤smax∥0 = ∥β∗∥0) = 1− α.

(ii) If, in addition, (A3) holds, we have, for all ε > 0 that

lim
n→∞

P (∥β̂≤smax
− β∗∥2 < ε) = 1− α.

The proof can be found in Appendix C.

5.1 CAUSAL SUBSET IDENTIFIABILITY

It is possible to identify a subset of the causal parents under
even weaker conditions. This can be done in an idea similar

Algorithm 1: spaceIV
Input: predictors X ∈ Rn×d, response Y ∈ Rn,

instruments I ∈ Rn×m, sparsity threshold
smax ∈ {1, . . . , d}, significance level
α ∈ (0, 1)

1 Initialize sparsity s← 0
2 Initialize test as rejected ϕ← 1
3 while s < smax and ϕ = 1 do
4 Update sparsity s← s+ 1
5 Set Ss to be all subsets in {1, . . . , d} of size s
6 for S ∈ Ss do
7 Compute LIML-estimator β̂LIML(S)

8 Compute test statistic T (β̂LIML(S)) in (15)
9 end

10 Select Smin ← argminS∈Ss
T (β̂LIML(S))

11 Set β̂(s)← β̂LIML(Smin)
12 Test whether H0(s) can be rejected:

ϕ← 1(T (β̂(s)) > F−1
n−m,m(1− α))

13 end
14 Set β̂≤smax

:= β̂(s)

Output: Final estimate β̂≤smax
and test result ϕ

to invariant causal prediction [Peters et al., 2016]. Define
the hypothesis

H0(S) : ∃β ∈ Rd such that supp(β) = S and β ∈ B

and the corresponding Anderson-Rubin test

1(T (β̂LIML(S)) > F−1
n−m,m(1− α)).

We then have the following guarantees.

Proposition 7. (i) Consider i.i.d. data of (I,X, Y ) from
a data generating process of the form

Y := X⊤β∗ + g(H, εY ),

with I ⊥⊥ (H, εY ) and g(H, εY ) Gaussian. Then,

lim
n→∞

P

(⋂
S:|S|=|PA[Y ]| and

H0(S) accepted
S ⊆ PA[Y ]

)
≥ 1− α,

(18)
where we define the intersection over an empty index
set as the empty set.

(ii) Consider now i.i.d. data from a data generating process
of the form (1) such that g(H, εY ) is Gaussian. If (A1)
and (A2) hold, then

lim
n→∞

P

(⋂
S:|S|=M and
H0(S) accepted

S ⊆ PA[Y ]

)
≥ 1− α,

(19)
where M := min{|S| : H0(S) accepted}.
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The first statement requires the sparsity ∥β∗∥0 of β∗ to
be known. It still holds when replacing |PA[Y ]| by any k
such that |PA[Y ]| ≤ k ≤ d. The second statement does
not require knowledge of ∥β∗∥0 and provides a guarantee
when increasing the subset size until one has found a set
that is accepted. The proof of Proposition 7 can be found in
Appendix D.

Remark 8 (Allowing for children of Y ). We now discuss
the scenario where some of the covariates are causal de-
scendants of the response Y . More precisely, we extend the
model in (1) to

X := BX + γY +AI + h(H, εX)

Y := β∗⊤X + g(H, εY ),

where we assume that the matrix

Bext :=

(
B γ

(β∗)⊤ 0

)
∈ R(d+1)×(d+1)

is invertible. Theorem 3 and therefore also the results
in Sections 5 and 5.1 still hold when using Cext :=
(A⊤, 0)(Id−Bext)

−⊤
1:d,· instead of C. Assumption (A2), how-

ever, becomes rather restrictive: If there is a child of Y such
that all directed path from I to that child go through Y ,
(A2) is not satisfied as the exact intervention effect on Y is
recoverable from that child. In particular, in this generalized
setting, Proposition 9 or (B1) and (B2) no longer imply that
(A2) holds almost surely.

6 NUMERICAL EXPERIMENTS

For the numerical experiments, we consider models of the
form (1) with h(H, εX) = H + εX , g(H, εY ) = H + εY

and dimensions d = 20, q = 1 and m = 10. We gener-
ate 2000 random models of this form using the following
procedure:

• Generate a random matrix B ∈ R20×20 by sampling
a random causal order over X1, . . . , X20. B then
has a zero-structure that corresponds to a fully con-
nected graph with this causal order. Each non-zero
entry in B is drawn independently and uniformly from
(−1.5,−0.5) ∪ (0.5, 1.5). Finally, each row of B is
rescaled by the maximal value in each row (using one
if it is a zero row).

• Generate a random matrix A ∈ R20×10 by sam-
pling each entry independently with distribution
Bernoulli(1/10) and setting all diagonal entries to 1.

• Generate the parameter β∗ ∈ R20 by sampling two
random coordinates uniformly from {1, . . . , d} and
setting them to 1. All remaining coordinates are set to
zero.

• The random variables I , H , εX and εY are all drawn
as i.i.d. standard normal.
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OLS-sparse oracle-|PA| oracle-PA spaceIV

Figure 4: Results for all random models that satisfy (A1)-
(A3) (in total 1867 out of 2000 models). The median RSME
of the spaceIV estimator converges to zero as the simple
size increases, which does not hold for OLS-sparse. Note
that some of the outliers are cut-off in this plot.

For each random model we sample 6 data sets with sample
sizes n ∈ {50, 100, 200, 400, 800, 1600}. For each data set,
we apply the following four methods: (i) spaceIV ; this is
our proposed method described in Algorithm 1 with smax =
3. (ii) OLS-sparse; this method goes over all subsets
of size at most smax, fits a linear OLS and then selects the
subset with the smallest AIC. We also compare our estimator
to two oracle methods. (iii) oracle-|PA|; this method
iterates over all subsets with size 2 (correct parent size),
fits the moment equation (3) and selects the best subset in
terms of a squared loss based on the moment equation. (iv)
oracle-PA; this method considers the correct parent set
and fits the moment equation (3). Each method results in
a sparse estimate β̂ of β∗ based on which we compute the
root mean squared error (RMSE) given by ∥β∗ − β̂∥2.

For each random model, we explicitly check whether the
assumptions (A1) and (A3) are satisfied by computing C
and verifying the conditions6. The results, considering only
the random models for which assumptions (A1)–(A3) are
satisfied, are given in Figure 4. As expected, spaceIV
indeed seems to consistently estimate the causal parameter
β∗, while OLS-sparse does not. Furthermore, spaceIV
performs worse as the two oracle methods, illustrating that
the estimation in spaceIV contains three parts: estimating
the correct sparsity, estimating the correct parents set and
finally estimating the correct parameters. A mistake in any
of these three steps may result in substantial RMSE, which
explains the outliers in the plot.

To investigate the consistency of estimating the correct spar-
sity level in more detail, we consider the fraction of times
the correct sparsity level was selected by spaceIV . The

6Assumption (A2) is satisfied by construction because we pick
random coefficients for the B-matrix, see also (B2).
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result is given in Figure 5. It suggests that the sparsity level
is consistently estimated by spaceIV .
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Figure 5: Expected fraction of random models for which
spaceIV estimated the correct sparsity level. Only random
models that satisfy (A1)-(A3) are considered (in total 1867
models). As the sample size increases the estimation of the
sparsity level becomes more accurate.

Finally, to investigate the performance of spaceIV based
on the assumptions (A1)–(A3), we compared the perfor-
mance of all methods at sample size n = 1600 depending
on which assumptions are satisfied. (Assumption (A2) is
satisfied with probability one, see Proposition 9.) The results
are shown in Figure 6. As expected given the theoretical
results presented in Section 3.1, spaceIV only performs
well if all assumptions are satisfied. If only assumption (A1)
is satisfied, there are multiple sets with sparsity 2 for which
the moment equation (3) can be satisfied. Therefore, while
the oracle with the correct parent sets is able to estimate the
causal parameter, spaceIV and the oracle that only uses
the sparsity level may select wrong sets leading to a larger
error. Moreover, if none of the assumptions are satisfied the
causal parameter is not even identifiable if the true parent
set is known.

7 CONCLUSION AND FUTURE WORK

We have analysed some of the benefits that come with as-
suming a sparse causal effect in linear IV models. We have
proved identifiability results that make the causal effect
identifiable even if there are much less instrument nodes
than predictors. Graphical criteria provide intuition on these
results and characterize for which graphs the identifiabil-
ity holds (when randomly choosing coefficients). We have
proposed the estimator spaceIV and evaluated it on fi-
nite samples. The results support our theoretical findings
and show that the estimator is often able to find the correct
sparsity and the correct parent set.

We believe that the power result for the Anderson-Rubin test
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Figure 6: Results for all 2000 random models with n =
1600. We split the models into three cases depending on
which of the assumptions (A1) and (A3) are satisfied (the
group ‘(A1)’ contains 83 models, the group ‘(A1) & (A3)’
contains 1867 models and the group ‘none’ contains 50
models). If none of the assumptions are satisfied, not even
the oracle with known parent set works. If only (A1) is sat-
isfied, multiple sets of size 2 are able to satisfy the moment
equation (3) and spaceIV may not estimate the correct set.
These findings are in par with Theorem 3.

may yield ways for choosing a significance level for finite
samples. Furthermore, it could be interesting to investigate
to which extent our results generalize to nonlinear models.
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