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ABSTRACT

This paper studies the problem of modeling multi-agent dynamical systems, where
agents could interact mutually to influence their behaviors. Recent research pre-
dominantly uses geometric graphs to depict these mutual interactions, which are
then captured by powerful graph neural networks (GNNs). However, predict-
ing interacting dynamics in challenging scenarios such as out-of-distribution shift
and complicated underlying rules remains unsolved. In this paper, we propose
a new approach named Prototypical Graph ODE (PGODE) to address the prob-
lem. The core of PGODE is to incorporate prototype decomposition from contex-
tual knowledge into a continuous graph ODE framework. Specifically, PGODE
employs representation disentanglement and system parameters to extract both
object-level and system-level contexts from historical trajectories, which allows
us to explicitly model their independent influence and thus enhances the general-
ization capability under system changes. Then, we integrate these disentangled la-
tent representations into a graph ODE model, which determines a combination of
various interacting prototypes for enhanced model expressivity. The entire model
is optimized using an end-to-end variational inference framework to maximize the
likelihood. Extensive experiments in both in-distribution and out-of-distribution
settings validate the superiority of PGODE.

1 INTRODUCTION

Multi-agent dynamical systems are ubiquitous in the real world where agents can be vehicles (Yıldız
et al., 2022) and microcosmic particles (Shao et al., 2022). These agents could have complicated
interactions resulting from behavioral or mechanical influences, which result in complicated fu-
ture trajectories of the whole system. Modeling the interacting dynamics is a crucial challenge
in machine learning with broad applications in fluid mechanics (Pfaff et al., 2021; Mayr et al.,
2023), autonomous driving (Yu et al., 2020; Zhu et al., 2023) and human-robot (Schaefer et al.,
2021; Abeyruwan et al., 2023). Extensive time-series approaches based on recurrent neural net-
works (Weerakody et al., 2021) and Transformers (Zhou et al., 2021) are generally designed for
single-agent dynamical systems (Fotiadis et al., 2023), which fall short when it comes to capturing
the intricate relationships among interacting objects. To address this gap, geometric graphs (Kofinas
et al., 2021) are usually employed to represent the interactions between objects where nodes rep-
resent individual objects, and edges are built when a connection exists between two nodes. These
connections can be obtained from geographical distances between atoms in molecular dynamics (Li
et al., 2022b) and underlying equations in mechanical systems (Huang et al., 2020).

In the literature, graph neural networks (GNNs) (Kipf & Welling, 2017; Xu et al., 2019a; Zheng
et al., 2022; Li et al., 2022a; He et al., 2022) have been increasingly prevailing for learning from
geometric graphs in interacting dynamical systems (Pfaff et al., 2021; Shao et al., 2022; Sanchez-
Gonzalez et al., 2020; Han et al., 2022; Meirom et al., 2021; Yıldız et al., 2022). These GNN-based
approaches primarily focus on predicting the future states of dynamic systems with the message
passing mechanism. Specifically, they begin with encoding the states of trajectories and then itera-
tively update each node representation by incorporating information from its adjacent nodes, which
effectively captures the complex interacting dynamics among the objects in systems.

Despite the significant advancements, GNN-based approaches often suffer from performance de-
creasement in challenging scenarios such as long-term dynamics (Lippe et al., 2023), complicated
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governing rules (Gu et al., 2022), and out-of-distribution shift (Dendorfer et al., 2021). As a con-
sequence, developing a high-quality data-driven model requires us to consider the following critical
points: (1) Capturing Continuous Dynamics. The majority of existing methods predict the whole
trajectories in an autoregressive manner (Pfaff et al., 2021; Shao et al., 2022; Sanchez-Gonzalez
et al., 2020), which iteratively feed next-time predictions back into the input. These rollouts could
lead to error accumulation and thus fail to capture long-term dynamics accurately. (2) Expressiv-
ity. There are a variety of interacting dynamical systems governed by complex partial differential
equations (PDEs) in physics and biology (Rao et al., 2023). Therefore, a high-quality model with
strong expressivity is anticipated for sufficient learning. (3) Generalization. In practical applica-
tions, the distributions of training and test trajectories could differ due to variations in system pa-
rameters (Sanchez-Gonzalez et al., 2020; Li et al., 2023). Current data-driven models could perform
poorly when confronting system changes during the inference phase (Goyal & Bengio, 2022).

In this paper, we propose a novel approach named Prototypical Graph ODE (PGODE) for compli-
cated interacting dynamics modeling. The core of PGODE lies in exploring disentangled contexts,
i.e., object states and system states, inferred from historical trajectories for graph ODE with high
expressivity and generalization. To begin, we extract both object-level and system-level contexts via
message passing and attention mechanisms for subsequent dynamics modeling. Object-level con-
texts refer to individual attributes such as initial states and local heterophily (Luan et al., 2022), while
system-level contexts refer to shared parameters such as temperature and viscosity. To improve gen-
eralization under system changes, we focus on two strategies. First, we enhance the invariance of
object-level contexts under system changes through representation disentanglement. Second, we
establish a connection between known system parameters and system-level latent representations.
Furthermore, we incorporate this contextual information into a graph ODE framework to capture
long-term dynamics through continuous evolution instead of discrete rollouts. More importantly,
we introduce a set of learnable GNN prototypes that can be trained to represent different interac-
tion patterns. The weights for each object are then derived from its hierarchical representations
to provide individualized dynamics. Our framework can be illustrated from a mixture-of-experts
perspective, which boosts the expressivity of the model. Finally, we integrate our method into an
end-to-end variational inference framework to optimize the evidence lower bound (ELBO) of the
likelihood. Comprehensive experiments in different settings validate the superiority of PGODE.

The contributions of this paper can be summarized in three points: (1) New Connection. To the best
of our knowledge, this work is the first to connect context mining with a prototypical graph ODE
approach for modeling challenging interacting dynamics. (2) Methodology. We extract hierarchical
contexts with representation disentanglement and system parameters, which are then integrated into
a graph ODE model that utilizes prototype decomposition. (3) Superior Performance. Extensive
experiments validate the efficacy of our approach in different challenging settings.

2 BACKGROUND

Problem Definition. Given a multi-agent dynamical system, we characterize the agent states and
interaction at the t-th timestamp as a graph Gt = (V, Et,Xt), where each node in V is an object,
Et comprises all the edges and Xt is the object attribute matrix. N represents the number of ob-
jects. Given the observations G1:Tobs = {G1, · · · , GTobs}, our goal is to learn a model capable of
predicting the future trajectories XTobs+1:T . Our interacting dynamics system is governed by a set
of equations with system parameters denoted as ξ. Different values of ξ could influence underlying
dynamical principles, leading to potential shift in trajectory distributions. Therefore, it is essential
to extract contextual information related to both system parameters and node states from historical
observations for faithful trajectory predictions.

Neural ODEs for Multi-agent Dynamical Systems. Neural ODEs have been shown effective
in modeling various dynamical systems (Chen et al., 2018; Huang et al., 2021). For single-agent
dynamical systems, the evolution of latent representations zt can be expressed via a given ODE
dzt

dt = f(zt). Then, the entire trajectory of the system can be determined using zT = z0 +∫ T
t=0

f (zt) dt. For multi-agent dynamical systems, the formulation can be extended as follows:

zTi = z0
i +

∫ T

t=0

fi
(
zt1, z

t
2 · · · ztN

)
dt, (1)
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Figure 1: An overview of the proposed PGODE. PGODE first constructs a temporal graph and
then utilizes different encoders to extract object-level and system-level contexts using representation
disentanglement and system parameters. These contexts would generate weights for a prototypical
graph ODE framework, which models the evolution of objects. Finally, object representations are
fed into a decoder to output the states at any timestamp.

where zti represents the latent state embedding for object i at timestamp t, and fi models the inter-
acting dynamics specifically for object i. With Eqn. 1, we can calculate zti using numerical solvers
such as Runge-Kutta (Schober et al., 2019) and Leapfrog (Zhuang et al., 2021), which produce
accurate predictions of future trajectories in the multi-agent systems.

3 THE PROPOSED APPROACH

This paper introduces a novel approach PGODE for modeling interacting system dynamics in chal-
lenging scenarios such as out-of-distribution shift and complicated underlying rules. The core of
PGODE lies in exploring disentangled contexts for prototype decomposition for a high-quality graph
ODE framework. Specifically, we first construct a temporal graph to learn disentangled object-level
and system-level contexts from historical data and system parameters. These contexts further de-
termine prototype decomposition, which characterizes distinct interacting patterns in a graph ODE
framework for modeling continuous dynamics. We adopt a decoder to output the trajectories and
the whole model is optimized via an end-to-end variational inference framework. An overview of
PGODE is depicted in Figure 1, and the details will be presented below.

3.1 HIERARCHICAL CONTEXT DISCOVERY WITH DISENTANGLEMENT

A promising solution to formulating the dynamics of interacting systems is the introduction of GNNs
into Eqn. 1 where different GNNs are tailored for distinct nodes across diverse systems. Gener-
ally, the interacting dynamics of each object are influenced by both system-level and object-level
contexts. System-level contexts include temperature, viscosity, and coefficients in underlying equa-
tions (Rämä & Sipilä, 2017), which are shared in the whole system. Object-level contexts refer
to object attributes such as initial states, and local heterophily (Luan et al., 2022), which give rise
to distinct interacting patterns for individual objects. To design GNNs for a variety of objects and
system configurations, it is essential to derive object-level and system-level latent embeddings from
historical trajectories. Additionally, note that system parameters could differ between training and
test datasets (Kim et al., 2021), thereby leading to potential distribution shift. To mitigate its influ-
ence, we disentangle object-level and system-level embeddings with known system parameters for
a more precise and independent description of complex dynamical systems.

Object-level Contexts. We aim to condense the historical trajectories into informative object rep-
resentations. To achieve this, we conduct the message passing procedure on a temporal graph for
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observation representation updating. Then, object representations are generated by summarizing all
the observations using the attention mechanism (Niu et al., 2021).

In detail, a temporal graph is first constructed where each node represents an observation, and edges
represent temporal and spatial relationships. Temporal edges connect consecutive observations of
the same object, while spatial edges are built when observations from two different objects are
connected at the same timestamp. In formulation, we have NT obs nodes in the temporal graph
Gtem and its adjacency matrix can be written as:

Atem(it, jt
′
) =





wtij t = t′, ,
1 i = j, t′ = t+ 1,
0 otherwise,

(2)

where it represents the observation of i at timestamp t andwtij is the edge weight fromGt. Then, we
adopt the message passing mechanism to learn from the temporal graph. Denote the representation
of it at the l-th layer as ht,(l)i , and the interaction scores can be obtained by comparing representa-
tions between the query and key spaces as follows:

α(l)(is, js
′
) =

1√
d
Atem(is, js

′
)(Wqueryĥ

s,(l)
i )T (Wkeyĥ

s′,(l)
j ), (3)

where d denotes the hidden dimension and ĥ
t,(l)
i = h

t,(l)
i + TE(t). Here TE(t) is the temporal

embedding with TE(t)[2i] = sin
(

t
100002i/d

)
and TE(t)[2i+1] = cos

(
t

100002i/d

)
. Wquery ∈ Rd×d

and Wkey ∈ Rd×d are two weight matrices for feature transformation. Then, we update each
representation by aggregation semantics from its neighborhood as follows:

h
s,(l+1)
i = h

s,(l)
i + σ


 ∑

js′∈S(is)

α(l)(is, js
′
)Wvalueĥ

s′,(l)
j


 , (4)

where Wvalue ∈ Rd×d is to project representations into values and S(·) collects all the neighbor-
ing nodes. Finally, we summarize all observation representations for every object i into a latent
representation ui using the attention mechanism:

qti = h
t,(L)
i +TE(t), ui =

1

Nobs

Nobs∑

t=1

σ(Wsumqti), (5)

in which Wsum is for feature transformation. In this manner, we incorporate semantics from both
the observed trajectories and geometric structures into expressive object-level latent representations,
i.e., {ui}Ni=1 for predicting future complicated interacting dynamics in systems.

System-level Contexts. In real-world applications, system parameters may vary between training
and test datasets, leading to out-of-distribution shift in trajectories (Mirza et al., 2022; Ragab et al.,
2023). To robustly capture these variations and enhance model performance, we employ a separate
network to infer system-level contexts from historical trajectories, which are guided by system pa-
rameters in the training data. Moreover, we employ mutual information minimization to disentangle
object-level and system-level representations, which allows for a clear separation of influences and
thus enables the invariance of object-level contexts under system changes.

In particular, we employ the same network architecture but with different parameters to generate
the latent representation u′

i for object i. Then, a pooling operator is adopted to summarize all
these object-level representations into a system-level representation g as g =

∑N
i=1 u

′
i. To cap-

ture contexts from system parameters, we maximize the mutual information between the system-
level representation and known parameters, i.e., I(g; ξ). Meanwhile, to disentangle object-level and
system-level latent representation, we minimize their mutual information, i.e., I(g;ui), which en-
ables us to better handle the variations introduced by out-of-distribution system parameters. In our
implementation, we make use of Jensen-Shannon mutual information estimator Tγ(·, ·) (Chen et al.,
2019) with parameters γ, and the loss objective for learning system parameters can be:

Lsys =
1

|P|
∑

(g,ξ)∈P
−sp(−Tγ(g, ξ)) +

1

|P|2
∑

(g,ξ)/∈P
sp(−Tγ(g, ξ)), (6)
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where sp(x) = log(1 + ex) denotes the softplus function and P collects all the positive pairs from
the same system. Similarly, the loss objective for representation disentanglement is formulated as:

Ldis = maxγ′{ 1

|P ′|
∑

(g,ui)∈P′

sp(−Tγ′(g,ui)) +
1

|P ′||P|
∑

(g,ui)/∈P′

−sp(−Tγ′(g,ui))}, (7)

where Tγ′ is optimization in an adversarial manner and P ′ collects all the positive object-system
pairs. Differently, Tγ′ is trained adversarially for precise measurement of mutual information. On
this basis, we establish the connection between system-level contexts and explicit parameters while
simultaneously minimizing their impact on the object-level contexts through representation disen-
tanglement. In this way, our model separates and accurately captures the influence of these two
factors, enhancing the generalization capacity when system parameters vary during evaluation.

3.2 PROTOTYPICAL GRAPH ODE

After extracting context embeddings, we intend to integrate them into a graph ODE framework for
multi-agent dynamic systems. However, training a separate GNN for each node would introduce an
excessive number of parameters, which could result in overfitting and a complicated optimization
process (Zhao et al., 2020). To address this, we learn a set of GNN prototypes to characterize the
entire GNN space, and then use prototype decomposition for each object in the graph ODE. Specif-
ically, we start by initializing state representations for each node and then determine the weights for
each object based on both object-level and system-level contexts.

To begin, we utilize object-level contexts with feature transformation for initialization. Here, the
initial state representations are sampled from an approximate posterior distribution q(z0

i |Gtem),
which would be close to a prior distribution p(z0

i ). The mean and variance are learned from ui as:

q
(
z0
i | Gtem

)
= N (ψm (ui) , ψ

v (ui)) , (8)

where ψm(·) and ψv(·) are two feed-forward networks (FFNs) to compute the mean and variance.
Then, we introduce K GNN prototypes, each with two FFNs ψkr (·) and ψka(·) for relation learn-
ing and feature aggregation, respectively. The updating rule of the k-th prototypes for object i is
formulated as follows:

fki
(
zt1, z

t
2 · · · ztN

)
= ψka(

∑

jt∈S(it)

ψkr ([z
t
i , z

t
j ])), (9)

where jt represents the neighbor of i at timestamp t. Then, we take a weighted combination of these
GNN prototypes for each object, and the prototypical interacting dynamics can be formulated as:

dzti
dt

=
K∑

k=1

wk
i ψ

k
a(

∑

jt∈S(it)

ψkr ([z
t
i , z

t
j ]))− zti . (10)

The last term indicates natural recovery, which usually benefits semantics learning in practice. To
generate the weights for each object, we merge both object-level and system-level latent variables
and adopt a FFN ρ(·) as follows:

wi = [w1
i , · · · ,wK

i ] = ρ([ui, g]), (11)

where the softmax activation is adopted to ensure
∑K
k=1 w

k
i = 1.

A Mixture-of-Experts Perspective. We will demonstrate that our graph ODE model can be in-
terpreted through the lens of the mixture of experts (MoE) (Du et al., 2022). Specifically, each
prototype serves as an ODE expert, while wi acts as the gating weights that control the contribution
of each expert. Through this, we are the first to get the graph ODE married with MoE, enhancing
the expressivity to capture complex interacting dynamics. More importantly, different from previ-
ous works that employ black-box routing functions (Zhou et al., 2022), the routing function in our
PGODE is derived from hierarchical contexts with representation disentanglement, which further
equips our model with the generalization capability to handle potential shift in data distributions.

Existence and Uniqueness. Moreover, we give a theoretical analysis about the existence and
uniqueness of our proposed graph ODE to show that it is well-defined under certain conditions.
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Lemma 3.1. We first assume that the learnt functions ψkr : R2d → Rd, ψka : Rd → Rd have
bounded gradients. In other words, there existsA,R > 0, such that the following Jacobian matrices
have the bounded matrix norms:

Jψk
r
(x,y) =




∂ψk
r,1

∂x1
· · · ∂ψk

r,1

∂xd

∂ψk
r,1

∂y1
· · · ∂ψk

r,1

∂yd
...

. . .
...

...
. . .

...
∂ψk

r,d

∂x1
· · · ∂ψk

r,d

∂xd

∂ψk
r,d

∂y1
· · · ∂ψk

r,d

∂yd


 , ∥Jψk

r
(x,y)∥ ≤ R, (12)

Jψk
a
(x) =




∂ψk
a,1

∂x1
· · · ∂ψk

a,1

∂xd
,

...
. . .

...
∂ψk

a,d

∂x1
· · · ∂ψk

a,d

∂xd


 , ∥Jψk

a
(x)∥ ≤ A. (13)

Then, given the initial state (t0, z
t0
1 , · · · , zt0N ,w1, · · · ,wN ), we claim that there exists ε > 0, such

that the ODE system Eqn. 10 has a unique solution in the interval [t0 − ε, t0 + ε].

The proof is shown in Appendix A. Our analysis demonstrates that based on given observations,
future trajectories are predictable using our graph ODE, which is an essential property in interacting
dynamics modeling (Chen et al., 2018; Kong et al., 2020).

3.3 DECODER AND OPTIMIZATION

Finally, we introduce a decoder to forecast future trajectories, along with an end-to-end variational
inference framework for the maximization of the likelihood.

In particular, we build a connection between latent states and trajectories by calculating the likeli-
hood for each observation p(xti|zti). Following the maximum likelihood estimation of a Gaussian
distribution, here we solely produce the mean of each distribution, i.e., µti = ϕ(zti), where ϕ(·) is an
FFN serving as the decoder implemented. In the variational inference framework, we maximize the
evidence lower bound (ELBO) of the likelihood, which involves the maximization of the likelihood
for observed trajectories and the minimization of the divergence between the prior and posterior
distributions. Formally,

Lelbo = EZ0∼∏N
i=1 q(z0

i |G1:Tobs)
[
log p(XTobs+1:T )

]
−KL

[∏N
i=1 q(z

0
i |G1:Tobs)∥p

(
Z0

)]
,

(14)
in which KL(·||·) outputs the Kullback-Leibler (KL) divergence. Eqn. 14 can be re-written into the
following equation by incorporating the independence of each node:

Lelbo = −∑N
i=1

∑T
t=Tobs+1

∥xt
i−µt

i∥2

2σ2 −KL
[∏N

i=1 q(z
0
i |G1:Tobs)∥p

(
Z0

)]
, (15)

in which σ2 represents the variance of the prior distribution. To summarize, the final loss objective
for the optimization is written as:

L = Lelbo + Lsys + Ldis, (16)

where the last two loss terms serve as a regularization mechanism using mutual information to
constrain the model parameters (Xu et al., 2019b; Rhodes & Lee, 2021). We have summarized the
whole algorithm in Appendix D.

4 EXPERIMENT

Our proposed GOAT is evaluated on both physical and molecular dynamical systems. Each trajec-
tory sample is further split into two parts, i.e., a conditional part for initializing object-level context
representations and global-level context representations, and a prediction part for supervision. We
denote the size of the two parts as conditional length and prediction length, respectively. Our ap-
proach is compared with seven baselines, i.e., LSTM (Hochreiter & Schmidhuber, 1997), GRU (Cho
et al., 2014), NODE (Chen et al., 2018), LG-ODE (Huang et al., 2020), MPNODE (Chen et al.,
2022), SocialODE (Wen et al., 2022) and HOPE (Luo et al., 2023). The details about in-distribution
(ID) and out-of-distribution (OOD) settings are in Appendix G.
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Table 1: Mean Squared Error (MSE) ×10−2 on physical dynamics simulations.
Prediction Length 12 (ID) 24 (ID) 36 (ID) 12 (OOD) 24 (OOD) 36 (OOD)

Variable q v q v q v q v q v q v

Springs

LSTM 0.287 0.920 0.659 2.659 1.279 5.729 0.474 1.157 0.938 2.656 1.591 5.223
GRU 0.394 0.597 0.748 1.856 1.248 3.446 0.591 0.708 1.093 1.945 1.671 3.423
NODE 0.157 0.564 0.672 2.414 1.608 6.232 0.228 0.791 0.782 2.530 1.832 6.009
LG-ODE 0.077 0.268 0.155 0.513 0.527 2.143 0.088 0.299 0.179 0.562 0.614 2.206
MPNODE 0.076 0.243 0.171 0.456 0.600 1.737 0.094 0.249 0.212 0.474 0.676 1.716
SocialODE 0.069 0.260 0.129 0.510 0.415 2.187 0.079 0.285 0.153 0.570 0.491 2.310
HOPE 0.070 0.176 0.456 0.957 2.475 5.409 0.076 0.221 0.515 1.317 2.310 5.996
PGODE (Ours) 0.035 0.124 0.070 0.262 0.296 1.326 0.047 0.138 0.088 0.291 0.309 1.337
Charged

LSTM 0.795 3.029 2.925 3.734 6.569 4.331 1.127 3.027 3.988 3.640 8.185 4.221
GRU 0.781 2.997 2.805 3.640 5.969 4.147 1.042 3.028 3.747 3.636 7.515 4.101
NODE 0.776 2.770 3.014 3.441 6.668 4.043 1.124 2.844 3.931 3.563 8.497 4.737
LG-ODE 0.759 2.368 2.526 3.314 5.985 5.618 0.932 2.551 3.018 3.589 6.795 6.365
MPNODE 0.740 2.455 2.458 3.664 5.625 6.259 0.994 2.555 2.898 3.835 6.084 6.797
SocialODE 0.662 2.335 2.441 3.252 6.410 4.912 0.894 2.420 2.894 3.402 6.292 6.340
HOPE 0.614 2.316 3.076 3.381 8.567 8.458 0.878 2.475 3.685 3.430 10.953 9.120
PGODE (Ours) 0.578 2.196 2.037 2.648 4.804 3.551 0.802 2.135 2.584 2.663 5.703 3.703

Ground TruthGOATHOPESocialODE

Figure 2: Visualization of different methods on Springs. Semi-transparent paths denote observed
trajectories, from which the latent initial states are estimated. Solid paths denote model predictions.

4.1 PERFORMANCE ON PHYSICAL DYNAMICS SIMULATIONS

Datasets. We employ two physics simulation datasets to evaluate our proposed GOAT, i.e., Springs
and Charged (Kipf et al., 2018). Each sample in these two simulated datasets contains 10 interacting
particles in a 2D box that has no external forces but possible collisions. We aim to predict the future
position information and the future velocity values of these interacting particles, i.e., q and v. More
details of the two datasets can be found in Appendix F.

Performance Comparison. The compared results with respect to different prediction lengths are
collected in Table 1. From the results, we have two observations. Firstly, ODE-based methods gen-
erally outperform discrete methods, which validates that continuous methods can naturally capture
system dynamics and relieve the influence of potential error accumulation. Secondly, our proposed
PGODE achieves the best performance among all the methods. In particular, the average MSE re-
duction of our PGODE over HOPE is 47.40% for ID and 48.57% for OOD settings on these two
datasets. The remarkable performance can be attributed to two reasons: (1) Introduction of context
discovery. PGODE generates disentangled object-level and system-level embeddings, which would
increase the generalization capability of the model to handle system changes, especially in OOD
settings. (2) Introduction of prototype decomposition. PGODE combines a set of GNN prototypes
to characterize the interacting patterns, which increases the expressivity of the model for complex
dynamics. More compared results can be found in Sec. H.1.

Visualization. Figure 2 shows the visualization of three compared methods and the ground truth on
Springs. Here, semi-transparent paths denote the observed trajectories while solid paths denote the
predicted ones. From the results, we can observe that our proposed PGODE can generate reliable
trajectories close to the ground truth for all the timestamps while both baselines SocialODE and
HOPE fail, which validates the superiority of the proposed PGODE.

7



Under review as a conference paper at ICLR 2024

Table 2: Mean Squared Error (MSE) ×10−3 on molecular dynamics simulations.
Prediction Length 12 (ID) 24 (ID) 12 (OOD) 24 (OOD)

Variable qx qy qz qx qy qz qx qy qz qx qy qz

5AWL

LSTM 4.178 3.396 3.954 4.358 4.442 3.980 4.785 4.178 4.467 5.152 5.216 4.548
GRU 4.365 2.865 2.833 5.295 3.842 3.996 5.139 3.662 3.789 6.002 4.723 5.358
NODE 3.992 3.291 2.482 4.674 4.333 3.254 4.390 4.135 2.808 5.734 5.388 4.036
LG-ODE 2.825 2.807 2.565 3.725 3.940 3.412 3.358 3.549 3.501 4.611 4.763 4.543
MPNODE 2.631 3.029 2.734 3.587 4.151 3.488 3.061 3.899 3.355 4.271 5.085 4.427
SocialODE 2.481 2.729 2.473 3.320 3.951 3.399 2.987 3.514 3.166 4.248 4.794 4.155
HOPE 2.326 2.572 2.442 3.495 3.816 3.413 2.581 3.528 2.955 4.548 5.047 4.007
PGODE (Ours) 2.098 2.344 2.099 2.910 3.384 2.904 2.217 3.109 2.593 3.374 4.334 3.615
2N5C

LSTM 2.608 2.265 3.975 3.385 2.959 4.295 3.285 2.210 5.247 3.834 2.878 5.076
GRU 2.847 2.968 3.493 3.340 3.394 3.636 3.515 3.685 3.796 4.031 3.938 3.749
NODE 2.211 2.103 2.601 3.074 2.849 3.284 2.912 2.648 2.799 3.669 3.478 3.874
LG-ODE 2.176 1.884 1.928 2.824 2.413 2.689 2.647 2.284 2.326 3.659 3.120 3.403
MPNODE 1.855 1.923 2.235 2.836 2.805 3.416 2.305 2.552 2.373 3.244 3.537 3.220
SocialODE 1.965 1.717 1.817 2.575 2.286 2.412 2.348 2.138 2.169 3.380 2.990 3.057
HOPE 1.842 1.915 2.223 2.656 2.788 3.474 2.562 2.514 2.731 3.343 3.301 3.502
PGODE (Ours) 1.484 1.424 1.575 1.960 2.029 2.119 1.684 1.809 1.912 2.464 2.734 2.727

Ground TruthGOATHOPESocialODE

12-step ahead

24-step ahead

Figure 3: Visualization of prediction results of different methods on the 5AWL dataset. We can
observe that our PGODE can reconstruct the ground truth accurately.

4.2 PERFORMANCE ON MOLECULAR DYNAMICS SIMULATIONS

Datasets. We construct two molecular dynamics datasets using two proteins, i.e., 5AWL, 2N5C, and
our approach is evaluated on the two datasets. Each sample in both datasets comprises a trajectory
of molecular dynamics simulation, where the motions of each atom are governed by the Langevin
dynamics equation in a specific solvent environment. The graph is constructed by comparing pair-
wise distance with a threshold, which would be updated at set intervals. The system parameters of
the solvent are varied among different simulation samples. We target at predicting the position of
every atom in three coordinates, i.e., qx, qy and qz . More details can be found in Appendix F.

Performance Comparison. We demonstrate the performance with respect to different prediction
lengths in Table 2. From the results, we can conclude that our PGODE can achieve the best per-
formance on two datasets in both ID and OOD settings. Note that molecular dynamics involves
hundreds of atoms with complicated interacting rules. Therefore, the performance further demon-
strates the strong expressivity of our PGODE for modeling challenging underlying rules.

Visualization. In addition, we provide the visualization of the two baselines and our PGODE in
comparison to the ground truth with different prediction lengths in Figure 3. We can observe that
our PGODE is capable of exploring more accurate dynamical patterns compared with the ground
truth. More importantly, our PGODE can almost recover the position patterns when the prediction
length is 24, which validates the capability of PGODE to handle complicated scenarios.
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Table 3: Ablation study on Springs (MSE ×10−2) and 5AWL (MSE ×10−3) with a prediction length
of 24.

Dataset Springs (ID) Springs (OOD) 5AWL (ID) 5AWL (OOD)

Variable q v q v qx qy qz qx qy qz

PGODE w/o O 0.106 0.326 0.127 0.339 2.995 3.532 2.932 3.649 4.469 3.639
PGODE w/o S 0.089 0.397 0.124 0.417 2.935 3.612 3.034 3.538 4.541 3.741
PGODE w/o F 0.164 0.517 0.202 0.577 3.157 3.629 3.326 3.634 4.604 3.917
PGODE w/o D 0.073 0.296 0.091 0.348 3.077 3.453 2.961 3.684 4.399 3.623
PGODE (Full Model) 0.070 0.262 0.088 0.291 2.910 3.384 2.904 3.374 4.334 3.615

	 
 � � 

�"�����������!�!#�� 

�

�

	




�

�
��

���
��

�
� �

������	��
�������	�
������ ��	��
������ ���	�

� 	 
 � �
�$���!�����!�#�#% �"

��

��

	�


�

��

��
�
��
�"
�

����
�
��
� !���"
���!���

� � � 	
 	

�! ��"�! ��� �"�


��


�


���

��


���
�
��

���
��

�
� �

������
��
������	
�
������
��
������	
�


 
 � �	 ��
� ���!� ������!�

�

	

�

��

�
��

���
��

�
� �

������	��
�������	�
������	��
�������	�

(a) (b) (c) (d)

Figure 4: (a), (b) Performance with respect to different condition lengths on Springs and 5AWL. (c)
(d) Performance and running time with respect to different numbers of prototypes.

4.3 FURTHER ANALYSIS

Ablation Study. We introduce three model variants as follows: (1) PGODE w/o O, which removes
the object-level contexts and only utilizes system-level contexts for wi; (2) PGODE w/o S, which
removes the system-level contexts and only utilizes object-level contexts for wi; (3) PGODE w/o F,
which merely adopts one prototype for graph ODE. (4) PGODE w/o F, which remove the disentan-
glement loss. From the results in Table 3, we can have several observations. Firstly, removing either
object-level or system-level contexts would obtain worse performance, which validates that both
contexts are crucial to determining the interacting patterns. Secondly, our full model achieves better
performance compared with PGODE w/o F, which validates that different prototypes can increase
the representation capacity for modeling complicated dynamics. Thirdly, in comparison to PGODE
w/o F and the full model, we can infer that representation disentanglement greatly enhances the
performance under system changes. More model variants can be found in Sec. H.2.

Parameter Sensitivity. We first analyze the influence of different conditional lengths and prediction
lengths by varying them in {3, 6, 9, 12, 15} and {12, 24}, respectively. As shown in Figure 4 (a) and
(b), we can observe that the error would decrease till saturation as the condition length rises since
more historical information is provided. In addition, PGODE can always perform better than HOPE
in every setting. Then, we vary the number of prototypes in {2, 3, 4, 5, 6} in Figure 4 (c) and observe
that more prototypes would bring in better results before saturation.

Efficiency. Although more prototypes tend to benefit the performance, they can also bring in high
computational cost. We show the computational time with respect to different numbers of prototypes
in Figure 4 (d) and observe that the computational complexity would increase with more prototypes.
Due to the trade-off between effectiveness and efficiency, we would set the number as 5.

5 CONCLUSION

In this work, we investigate a long-standing problem of modeling interacting dynamical systems and
develop a novel approach named PGODE, which infers prototype decomposition from contextual
discovery for a graph ODE framework. In particular, PGODE extracts disentangled object-level and
system-level contexts from historical trajectories, which can enhance the capability of generalization
under system changes. In addition, we present a graph ODE framework that determines a combi-
nation of multiple interacting prototypes for increased model expressivity. Extensive experiments
demonstrate the superiority of the proposed PGODE in different settings in comparison with various
competing approaches. In future work, we plan to extend our proposed PGODE with more advanced
graph inference for more complicated scenarios.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Philip B Weerakody, Kok Wai Wong, Guanjin Wang, and Wendell Ela. A review of irregular time
series data handling with gated recurrent neural networks. Neurocomputing, 441:161–178, 2021.

Song Wen, Hao Wang, and Dimitris Metaxas. Social ode: Multi-agent trajectory forecasting with
neural ordinary differential equations. In ECCV, pp. 217–233. Springer, 2022.

Tailin Wu, Takashi Maruyama, Qingqing Zhao, Gordon Wetzstein, and Jure Leskovec. Learning
controllable adaptive simulation for multi-resolution physics. In ICLR, 2023.

Louis-Pascal Xhonneux, Meng Qu, and Jian Tang. Continuous graph neural networks. In ICML, pp.
10432–10441, 2020.

Hedi Xia, Vai Suliafu, Hangjie Ji, Tan Nguyen, Andrea Bertozzi, Stanley Osher, and Bao Wang.
Heavy ball neural ordinary differential equations. In NeurIPS, pp. 18646–18659, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019a.

Taufik Xu, Chongxuan Li, Jun Zhu, and Bo Zhang. Multi-objects generation with amortized struc-
tural regularization. Advances in Neural Information Processing Systems, 32, 2019b.

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the
same coin: Heterophily and oversmoothing in graph convolutional neural networks. In ICDM,
pp. 1287–1292, 2022.

Fan Yang, Ling Chen, Fan Zhou, Yusong Gao, and Wei Cao. Relational state-space model for
stochastic multi-object systems. arXiv preprint arXiv:2001.04050, 2020.

Tianchi Yang, Linmei Hu, Chuan Shi, Houye Ji, Xiaoli Li, and Liqiang Nie. Hgat: Heterogeneous
graph attention networks for semi-supervised short text classification. ACM Transactions on In-
formation Systems (TOIS), 39(3):1–29, 2021.
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A PROOF OF LEMMA 3.1

Lemma 4.1. We first assume that the learnt functions ψkr : R2d → Rd, ψka : Rd → Rd have
bounded gradients. In other words, there exists A,R > 0, such that the following Jacobian matrices
have bounded matrix norm:

Jψk
r
(x,y) =




∂ψk
r,1

∂x1
· · · ∂ψk

r,1

∂xd

∂ψk
r,1

∂y1
· · · ∂ψk

r,1

∂yd
...

. . .
...

...
. . .

...
∂ψk

r,d

∂x1
· · · ∂ψk

r,d

∂xd

∂ψk
r,d

∂y1
· · · ∂ψk

r,d

∂yd


 , ∥Jψk

r
(x,y)∥ ≤ R, (17)

Jψk
a
(x) =




∂ψk
a,1

∂x1
· · · ∂ψk

a,1

∂xd
,

...
. . .

...
∂ψk

a,d

∂x1
· · · ∂ψk

a,d

∂xd


 , ∥Jψk

a
(x)∥ ≤ A. (18)

Then, given the initial state (t0, z
t0
1 , · · · , zt0N ,w1, · · · ,wN ), we claim that there exists ε > 0, such

that the ODE system Eqn. 10 has a unique solution in the interval [t0 − ε, t0 + ε].

We first introduce the Picard–Lindelöf Theorem as below.

Theorem A.1. (Picard–Lindelöf Theorem) LetD ⊆ R×Rn be a closed rectangle with (t0, y0) ∈ D.
Let f : D → Rn be a function that is continuous in t and Lipschitz continuous in y. Then, there
exists some ε > 0 such that the initial value problem:

y′(t) = f(t, y(t)), y (t0) = y0. (19)

has a unique solution y(t) on the interval [t0 − ε, t0 + ε] .

Then, we prove the following lemma.

Lemma A.1. Suppose we have a series of L-Lipschitz continuous functions {fi : Rm → Rn}Ni=1,
and then their linear combination is also L-Lipschitz continuous, i.e., ∀{a1, · · · aN} ∈ [0, 1]N ,
satisfying

∑N
i=1 ai = 1, we have

∑N
i=1 aifi is also L-Lipschitz continuous.

Proof. ∀x,y ∈ Rm, we have:

∥
N∑

i=1

aifi(x)−
N∑

i=1

aifi(y)∥ ≤
N∑

i=1

ai∥fi(x)− fi(y)∥ (20)

≤
N∑

i=1

aiL∥x− y∥ (21)

= L∥x− y∥. (22)

Next, we show the proof of Lemma 3.1.

Proof. First, we can rewrite the ODE system Eqn. 10 as:

dZt

dt
=

K∑

k=1

W kfk(Zt)−Zt, (23)

where W k ∈ RNd×Nd is a diagonal matrix. It is evident that the right hand side is continuous with
respect to t since it does not depend on t directly.

Then, for any continuous function f : Rn → Rm, with the Mean Value Theorem, we have ∀x,y ∈
Rn, ∥f(x)− f(y)∥ = ∥Jf (p)∥ ∗ ∥x− y∥, where p is a point in the segment connecting x and y.
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Now, denote A(i, j) ∈ R2×dN with the first row has elements with index from idN+1 to (i+1)dN be
1, the others 0; the second row has elements with index from jdN+1 to (j+1)dN be 1, the others 0.

By introducing A(i, j), for all X =




x1

...
xN


 ,Y =




y1

...
yN


 ∈ RdN , we have:

∥ψkr (A(i, j)X)− ψkr (A(i, j)Y )∥ ≤ ∥ψkr (xi,xj)− ψkr (yi,xj)∥+ ∥ψkr (yi,xj)− ψkr (yi,yj)∥
(24)

= ∥Jψk
r
(pi)∥ ∗ ∥xi − yi∥+ ∥Jψk

r
(pj)∥ ∗ ∥xj − yj∥ (25)

≤ R∥xi − yi∥+R∥xj − yj∥ (26)
≤ R∥X − Y ∥, (27)

where pi is a point in the segment connecting xi and yi, and a similar definition is for pj . Note that
we have ψkr is R-Lipschitz continuous. Therefore, by Lemma A.1, the following linear combination
is also R-Lipschitz continuous:

lk(Zt) =
∑

jt∈S(it)

ψkr ([A(i
t, jt)Zt]). (28)

Thus, for all X,Y ∈ RdN , we have:

∥fk(X)− fk(Y )∥ = ∥ψka(lk(X))− ψka(l
k(Y ))∥ (29)

≤ A∥lk(X)− lk(Y )∥ (30)
≤ AR∥X − Y ∥. (31)

Again, we have each fk is AR-Lipschitz continuous, so their linear combination
∑K
k=1 W

kfk will
also be AR-Lipschitz continuous. Finally, we have

∥[
K∑

k=1

W kfk(X)−X]− [

K∑

k=1

W kfk(Y )− Y ]∥ ≤ ∥
K∑

k=1

W kfk(X)−
K∑

k=1

W kfk(Y )∥ (32)

+ ∥X − Y ∥ (33)
≤ (AR+ 1)∥X − Y ∥. (34)

Thus, the right hand side will be (AR+1)-Lipschitz continuous. According to the Theorem A.1, we
prove the uniqueness of the solution to Eqn. 10.

B RELATED WORK

B.1 INTERACTING DYNAMICS MODELING

Recent years have witnessed a surge of interest in modeling interacting dynamical systems across
a variety of fields including molecular biology and computational physics (Shao et al., 2022; Lan
et al., 2022; Li et al., 2022b; Bishnoi et al., 2022). While convolutional neural networks (CNNs)
have been successfully employed to learn from regular data such as grids and frames (Peng et al.,
2020), emerging research is increasingly utilizing geometric graphs to represent more complex sys-
tems (Wu et al., 2023; Deng et al., 2023). Graph neural networks (GNNs) have thus become increas-
ingly prevailing for modeling these intricate dynamics (Pfaff et al., 2021; Shao et al., 2022; Sanchez-
Gonzalez et al., 2020; Allen et al., 2022; Look et al., 2023; Yıldız et al., 2022). AgentFormer (Yuan
et al., 2021) jointly models both time and social dimensions with semantic information preserved.
NRI (Kipf et al., 2018) models interactions along with node states from observations using GNNs.
R-SSM (Yang et al., 2020) models the dynamics of interacting objects using GNNs and includes
auxiliary contrastive prediction tasks to enhance discriminative learning. Despite their popularity,
current methods often fall short in modeling challenging scenarios such as out-of-distribution shift
and long-term dynamics (Yu et al., 2021). To address these limitations, our work leverages contex-
tual knowledge to incorporate prototype decomposition into a graph ODE framework.
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B.2 NEURAL ORDINARY DIFFERENTIAL EQUATIONS

Motivated by the approximation of residual networks (Chen et al., 2018), neural ordinary differential
equations (ODEs) have been introduced to model continuous-time dynamics using parameterized
derivatives in hidden spaces. These neural ODEs have found widespread use in time-series forecast-
ing due to their effectiveness (Dupont et al., 2019; Xia et al., 2021; Jin et al., 2022; Schirmer et al.,
2022). Incorporated with the message passing mechanism, they have been integrated with GNNs,
which can mitigate the issue of oversmoothing and enhance model interpretability (Xhonneux et al.,
2020; Zhang et al., 2022; Poli et al., 2019). I-GPODE (Yıldız et al., 2022) estimates the uncertainty
of trajectory predictions using the Gaussian process, which facilitates effective long-term predic-
tions. HOPE (Luo et al., 2023) focuses on incorporating second-order graph ODE in evolution
modeling. In contrast, our method introduces hierarchical context discovery with disentanglement
to guide the prototype decomposition of individual nodes in modeling interacting dynamics.

B.3 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) (Kipf & Welling, 2017; Xu et al., 2019a; Veličković et al., 2018)
have shown remarkable efficacy in handling a range of graph-based machine learning tasks such as
node classification (Yang et al., 2021) and graph classification (Liu et al., 2022). Typically, they
adopt the message passing mechanism, where each node aggregates messages from its adjacent
nodes for updated node representations. Recently, researchers have started to focus more on real-
istic graphs that do not obey the homophily assumption and developed several GNN approaches to
tackle heterophily (Zhu et al., 2021; Li et al., 2022a; Zhu et al., 2020). These approaches typically
leverage new graph structures (Zhu et al., 2020; Suresh et al., 2021) and modify the message passing
procedures (Chien et al., 2021; Yan et al., 2022) to mitigate the influence of potential heterophily.
In our PGODE, we focus on interacting dynamics systems instead. In particular, due to the lo-
cal heterophily, different objects should have different interacting patterns, and therefore we infer
object-level contexts from historical data.

C MORE DISCUSSION ABOUT EXPRESSIVITY

We provide more discussion about the expressivity of the proposed PGODE. Piecewise continuous
neural networks have been proven asymptotically more expressive than classical feed forward net-
works (Kratsios & Zamanlooy, 2022). Our prototype decomposition adopts a soft form of piecewise
functions to enhance the expressivity, which can also help capture the influence of seasonality and
events in real-world dynamics systems. Our empirical results in ID settings also validate the strong
expressivity when handling complicated dynamics.

D ALGORITHM

We summarize the learning algorithm of our PGODE in Algorithm 1.

E DETAIL OF BASELINES

Our approach is compared with various baselines for dynamics systems modeling, i.e.,
LSTM (Hochreiter & Schmidhuber, 1997), GRU (Weerakody et al., 2021), NODE (Chen et al.,
2018), LG-ODE (Huang et al., 2020), MPNODE (Chen et al., 2022), SocialODE (Wen et al., 2022)
and HOPE (Luo et al., 2023).

The proposed method is compared with seven competing baselines as follows:

• LSTM (Hochreiter & Schmidhuber, 1997) has been broadly utilized for sequence prediction tasks.
Compared with classic RNNs, LSTM incorporates three critical gates, i.e., the forget gate, the
input gate, and the output gate, which can effectively understand and retain important long-term
dependencies within the data sequences.
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Algorithm 1 Training Algorithm of PGODE
Input: The observations G1:T = {G1, · · · , GT }.
Output: The parameters in our model.

1: Initialize model parameters;
2: while not convergence do
3: for each training sequence do
4: Partition the sequence into two segments;
5: Construct the temporal graph using Eqn. 2;
6: Generate object-level contexts using Eqn. 5;
7: Generate system-level contexts with summarization;
8: Solve our prototypical graph ODE in Eqn. 10;
9: Output the trajectories using the decoder;

10: Calculate the final loss in Eqn. 16;
11: Update τ ′ in our PGODE using gradient ascent;
12: Update other parameters in our PGODE using gradient descent;
13: end for
14: end while

• GRU (Cho et al., 2014) is another popular RNN architecture, which employs the gating mecha-
nism to control the information flow during propagation. GRU has an improved computational
efficiency compared LSTM.

• NODE (Chen et al., 2018) is the first method to introduce a continuous neural network based on
the residual connection. It has been shown effective in time-series forecasting.

• LG-ODE (Huang et al., 2020) incorporates graph neural networks with neural ODE, which can
capture continuous interacting dynamics in irregularly-sampled partial observations.

• MP-NODE (Gupta et al., 2022) combines the message passing mechanism and neural ODEs,
which can capture sub-system relationships during the evolution of homogeneous systems.

• SocialODE (Wen et al., 2022) simulates the evolution of agent states and their interactions us-
ing a neural ODE architecture, which shows remarkable performance in multi-agent trajectory
forecasting.

• HOPE (Luo et al., 2023) is a recently proposed graph ODE method, which adopts a twin encoder
to learn latent state representations. These representations are fed into a high-order graph ODE to
learn long-term correlations from complicated dynamical systems.

F DATASET DETAILS

We use four simulation datasets to evaluate our proposed GOAT, including physical and molecular
dynamic systems. We will introduce the details of these four datasets in this part.

• Springs & Charged. The two physical dynamic simulation datasets Springs and Charged are com-
monly used in the field of machine learning for simulating physical systems. The Springs dataset
simulates a system of interconnected springs governed by Hooke’s law. Each spring has inherent
properties such as elasticity coefficients and initial positions, representing a dynamic mechanical
system. Each sample in the Springs dataset contains 10 interacting springs with information about
the current state, i.e., velocity and acceleration, and additional properties, i.e., mass and damping
coefficients. Similar to the Springs dataset, Charged is another popular physical dynamic sim-
ulation dataset that simulates electromagnetic phenomena. The objects in Charged are replaced
by the electronics. We use the box size α, the initial velocity β, the interaction strength γ, and
springcharged probability δ as the system parameters in the experiments. It is noteworthy that the
objects attract or repel with equal probability in the Charged system but unequal probability in the
spring system. Both systems have a given graph indicating fixed interactions from real springs or
electric charge effects.
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• 5AWL & 2N5C. To evaluate our approach on modeling molecular dynamic systems, we construct
two datasets from two proteins, 5AWL and 2N5C, which can be accessed from the RCSB1. First,
we repair missing residues, non-standard residues, missing atoms, and hydrogen atoms in the se-
lected protein. Additionally, we adjust the size of the periodic boundary box to ensure that it is
sufficiently large, thus avoiding truncation effects and abnormal behavior of the simulation sys-
tem during the data simulation process. Then, we perform simulations on the irregular molecular
motions within the protein using Langevin Dynamics (Garcı́a-Palacios & Lázaro, 1998) under
the NPT (isothermal-isobaric ensemble) conditions, with parameters sampled from the specified
range, and we extract a frame every 0.2 ps to record the protein structure, which constitutes the
dataset used for supervised learning. In the two constructed datasets, we use the temperature t,
pressure value p, and frictional coefficient µ as the dynamic system parameters. Langevin Dy-
namics is a mathematical model used to simulate the flow dynamics of molecular systems (Bussi
& Parrinello, 2007). It can simplify complex systems by replacing some degrees of freedom of
the molecules with stochastic differential equations. For a dynamic system containing N particles
of mass m, with coordinates given by X = X(t), the Langevin equation of it can be formulated
as follows:

m
d2X

dt2
= −∆U(X)− µ

dX

dt
+

√
2µkbTR(t), (35)

where µ represents the frictional coefficient, ∆U(X) is the interaction potential between particles,
∆ is the gradient operator, T is the temperature, kb is Boltzmann constant and R(t) is delta-
correlated stationary Gaussian process.

G IMPLEMENTATION DETAILS

Table 4: Datasets and distributions of system parameters. For the OOD test set, there is at least
one of the system parameters outside the range utilized for training. α: box size, β: initial velocity
norm,γ: interaction strength, δ: spring/charged probability. t: temperature, p: pressure, µ: frictional
coefficient.

Springs Charged 5AWL/2N5C

Parameters α, β, γ, δ α, β, γ, δ t, p, µ

Train/Val/Test

A = {α ∈ [4.9, 5.1]}
B = {β ∈ [0.49, 0.51]}
C = {γ ∈ [0.09, 0.11]}
D = {δ ∈ [0.49, 0.51]}

Ωtrain = (A×B × C ×D)

A = {α ∈ [4.9, 5.1]}
B = {β ∈ [0.49, 0.51]}
C = {γ ∈ [0.9, 1.1]}
D = {δ ∈ [0.49, 0.51]}

Ωtrain = (A×B × C ×D)

T = {t ∈ [290, 310]}
P = {p ∈ [0.9, 1.1]}
M = {µ ∈ [0.9, 1.1]}
Ωtrain = (T × P ×M)

OOD Test Set

A = {α ∈ [4.8, 5.2]}
B = {β ∈ [0.48, 0.52]}
C = {γ ∈ [0.08, 0.12]}
D = {δ ∈ [0.48, 0.52]}

ΩOOD =
(A×B × C ×D) \ Ωtrain

.

A = {α ∈ [4.8, 5.2]}
B = {β ∈ [0.48, 0.52]}
C = {γ ∈ [0.8, 1.2]}
D = {δ ∈ [0.48, 0.52]}

ΩOOD =
(A×B × C ×D) \ Ωtrain

.

T = {t ∈ [280, 320]}
P = {p ∈ [0.8, 1.2]}
M = {µ ∈ [0.8, 1.2]}

ΩOOD =
(T × P ×M) \ Ωtrain

.

Number of samples
Train/Val/Test 1000/200/200 200/50/50
OOD Test Set 200 50

In our experiments, we employ a rigorous data split strategy to ensure the accuracy of our results.
Specifically, we split the whole datasets into four different parts, including the normal three sets, i.e.,
training, validating and in-distribution (ID) test sets and an out-of-distribution (OOD) test set. For
the physical dynamic datasets, we generate 1200 samples for training and validating, 200 samples
for ID testing and 200 samples for OOD testing. For the molecular dynamic datasets, we construct
200 samples for training, 50 samples for validating, 50 samples for ID testing and 50 samples for
testing in OOD settings.

Each sample in the datasets has a group of distinct system parameters as shown in Table 4. For
training, validation and ID test samples, we randomly sample system parameters in the space of

1https://www.rcsb.org
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Ωtrain. For OOD samples, the system parameters come from ΩOOD randomly, which indicates
distribution shift compared with the training domain. During the training process, each trajectory
sample is further split into two parts, i.e., a conditional part for initializing object-level contexts
representation and global-level contexts representation, and a prediction part for supervising the
model. The size of the two parts is denoted as conditional length and prediction length, respectively.
In our experiments, we set the conditional length to 12, and we used three different prediction
lengths, i.e., 12, 24, and 36.

We adopt PyTorch (Paszke et al., 2017) and torchdiffeq package (Kidger et al., 2021) to implement
all the compared approaches and our PGODE. All these experiments in this work are performed on
a single NVIDIA A40 GPU. The fourth-order Runge-Kutta method from torchdiffeq is adopted as
the ODE solver. We employ a set of one-layer GNN prototypes with a hidden dimension of 128 for
graph ODE. The number of prototypes is set to 5 as default. For optimization, we utilize an Adam
optimizer (Kingma & Ba, 2015) with an initial learning rate of 0.0005. The batch size is set to 256
for the physical dynamic simulation datasets and 64 for the molecular dynamic simulation datasets.

H MORE EXPERIMENT RESULTS

H.1 PERFORMANCE COMPARISON

To begin, we compare with our PGODE with more baselines, i.e., AgentFormer (Yuan et al., 2021),
NRI (Kipf et al., 2018) and I-GPODE (Yıldız et al., 2022) in our performance comparison. The
results of these comparisons are presented in Table 5 and our method outperforms the compared
methods. In addition, we show the performance of the compared methods in two different coor-
dinates of positions and velocities, i.e., qx, qy , vx and vy . The compared results on Springs and
Charged are shown in Table 6 and Table 7, respectively. From the results, we can observe the su-
periority of the proposed PGODE in capturing complicated interacting patterns under both ID and
OOD settings.

Table 5: Performance comparison with NRI, AgentFormer, and I-GPODE on physical dynamics
simulations (MSE ×10−2). NRI, AgentFormer, and I-GPODE are out of memory on molecular
dynamics simulations.

Prediction Length 12 (ID) 24 (ID) 36 (ID) 12 (OOD) 24 (OOD) 36 (OOD)

Variable q v q v q v q v q v q v

Springs

NRI 0.103 0.425 0.210 0.681 0.693 2.263 0.119 0.472 0.246 0.770 0.807 2.406
AgentFormer 0.115 0.163 0.202 0.517 1.656 1.691 0.157 0.195 0.243 0.505 1.875 1.913
I-GPODE 0.159 0.479 0.746 3.002 1.701 7.433 0.173 0.498 0.796 3.193 1.818 7.322
PGODE (Ours) 0.035 0.124 0.070 0.262 0.296 1.326 0.047 0.138 0.088 0.291 0.309 1.337
Charged

NRI 0.901 2.702 3.225 3.346 7.770 4.543 1.303 2.726 3.678 3.548 8.055 4.752
AgentFormer 1.076 2.476 3.631 3.044 7.513 3.944 1.384 2.514 4.224 3.199 8.985 4.002
I-GPODE 1.044 2.818 3.407 3.751 7.292 4.570 1.322 2.715 3.805 3.521 8.011 4.056
PGODE (Ours) 0.578 2.196 2.037 2.648 4.804 3.551 0.802 2.135 2.584 2.663 5.703 3.703

H.2 ABLATION STUDY

We show more ablation studies on Charged and 2N5C to make our analysis complete. In particular,
the compared performance of different model variants are shown in Table 8. From the results, we can
observe that our full model can outperform all the model variance in all cases, which validates the
effectiveness of each component in our PGODE again. In addition, we introduce two model variants:
(1) PGODE w. MLP, which combines a GNN with an MLP to learn the individualized dynamics; (2)
PGODE w. Single, which takes the node representation and the global representation as input with a
single message passing function. The compared performance of different model variants is shown in
Table 9. From the results, we can observe that our full model can outperform all the model variance
in all cases. Compared with these variants, our prototype decomposition can involve different GNN
bases, which model diverse evolving patterns to jointly determine the individualized dynamics. This
strategy can enhance the model expressivity, allowing for more accurate representation learning of
hierarchical structures from a mixture-of-experts perspective.
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Table 6: Mean Squared Error (MSE) ×10−2 on Springs.
Prediction Length 12 24 36

Variable qx qy vx vy qx qy vx vy qx qy vx vy

ID

LSTM 0.324 0.250 0.909 0.931 0.679 0.638 2.695 2.623 1.253 1.304 5.023 6.434
GRU 0.496 0.291 0.565 0.628 0.873 0.623 1.711 2.001 1.368 1.128 2.980 3.912
NODE 0.165 0.148 0.649 0.479 0.722 0.621 2.534 2.293 1.683 1.534 6.323 6.142
LG-ODE 0.077 0.077 0.264 0.272 0.174 0.135 0.449 0.576 0.613 0.441 1.757 2.528
MPNODE 0.080 0.072 0.222 0.263 0.237 0.105 0.407 0.506 0.866 0.335 1.469 2.006
SocialODE 0.069 0.068 0.205 0.315 0.138 0.120 0.391 0.630 0.429 0.400 1.751 2.624
HOPE 0.087 0.053 0.152 0.200 0.571 0.342 0.707 1.206 2.775 2.175 4.412 6.405
PGODE (Ours) 0.033 0.037 0.122 0.127 0.074 0.066 0.239 0.286 0.318 0.273 1.186 1.466
OOD

LSTM 0.499 0.449 1.086 1.227 1.019 0.857 2.847 2.466 1.768 1.415 5.154 5.293
GRU 0.714 0.469 0.713 0.703 1.280 0.905 1.795 2.096 1.844 1.497 2.852 3.994
NODE 0.246 0.209 0.997 0.585 0.876 0.687 2.790 2.269 2.002 1.663 6.349 5.670
LG-ODE 0.093 0.083 0.272 0.327 0.185 0.172 0.463 0.661 0.684 0.545 1.767 2.645
MPNODE 0.107 0.081 0.230 0.268 0.299 0.126 0.420 0.528 0.967 0.386 1.464 1.969
SocialODE 0.082 0.076 0.221 0.350 0.151 0.156 0.414 0.726 0.488 0.495 1.793 2.826
HOPE 0.094 0.058 0.178 0.264 0.506 0.523 1.031 1.603 2.369 2.251 3.701 8.291
PGODE (Ours) 0.046 0.048 0.133 0.144 0.094 0.081 0.286 0.297 0.336 0.281 1.360 1.313

Table 7: Mean Squared Error (MSE) ×10−2 on Charged.
Prediction Length 12 24 36

Variable qx qy vx vy qx qy vx vy qx qy vx vy

ID

LSTM 0.743 0.846 2.913 3.145 2.797 3.052 3.605 3.863 6.477 6.660 4.240 4.423
GRU 0.764 0.799 2.931 3.063 2.709 2.901 3.572 3.709 5.657 6.281 4.068 4.227
NODE 0.743 0.808 2.764 2.777 2.913 3.114 3.432 3.451 6.468 6.868 3.997 4.089
LG-ODE 0.736 0.783 2.322 2.414 2.320 2.731 3.361 3.268 5.188 6.782 6.194 5.043
MPNODE 0.720 0.759 2.414 2.496 2.379 2.536 3.589 3.738 5.636 5.614 5.472 7.046
SocialODE 0.630 0.695 2.311 2.358 2.252 2.631 3.509 2.995 5.743 7.076 5.701 4.122
HOPE 0.593 0.635 2.295 2.337 3.214 2.938 3.279 3.482 9.289 7.845 8.406 8.511
PGODE (Ours) 0.555 0.600 2.164 2.228 1.940 2.134 2.624 2.673 4.449 5.159 3.778 3.324
OOD

LSTM 1.130 1.123 3.062 2.992 4.026 3.950 3.768 3.512 7.934 8.435 4.517 3.925
GRU 1.072 1.012 3.108 2.948 3.893 3.602 3.844 3.428 6.970 8.061 4.485 3.718
NODE 1.185 1.062 2.956 2.732 4.057 3.804 3.645 3.480 8.622 8.372 5.097 4.376
LG-ODE 0.999 0.866 2.581 2.521 2.797 3.239 4.200 2.978 5.996 7.593 8.422 4.309
MPNODE 1.092 0.897 2.487 2.623 2.967 2.828 3.670 4.001 6.051 6.118 6.029 7.566
SocialODE 0.865 0.924 2.481 2.359 2.610 3.177 3.968 2.836 5.482 7.102 8.530 4.150
HOPE 0.839 0.918 2.466 2.484 3.586 3.783 3.417 3.442 11.254 10.652 10.133 8.107
PGODE (Ours) 0.739 0.865 2.159 2.110 2.524 2.643 2.704 2.623 5.748 5.659 4.017 3.389

Table 8: Ablation study on Charged (MSE ×10−2) and 2N5C (MSE ×10−3) with a prediction
length of 24.

Dataset Charged (ID) Charged (OOD) 2N5C (ID) 2N5C (OOD)

Variable q v q v qx qy qz qx qy qz

PGODE w/o O 2.282 3.013 2.590 2.943 2.076 2.130 2.215 2.582 2.800 2.833
PGODE w/o S 2.308 2.994 2.990 2.911 2.040 2.046 2.227 2.559 2.791 2.854
PGODE w/o F 2.497 3.298 2.882 3.197 2.424 2.208 2.465 2.970 2.868 3.118
PGODE w/o D 2.179 2.842 2.616 3.076 2.119 2.083 2.171 2.785 2.759 2.829
PGODE (Full Model) 2.037 2.648 2.584 2.663 1.960 2.029 2.119 2.464 2.734 2.727
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Table 9: Further ablation study on Springs (MSE ×10−2) and 5AWL (MSE ×10−3) with a prediction
length of 24.

Dataset Springs (ID) Springs (OOD) 5AWL (ID) 5AWL (OOD)

Variable q v q v qx qy qz qx qy qz

PGODE w. Single 0.208 0.434 0.248 0.481 3.010 3.741 3.143 3.523 4.691 3.839
PGODE w. MLP 0.152 0.454 0.179 0.514 2.997 3.638 3.240 3.605 4.492 3.908
PGODE (Full Model) 0.070 0.262 0.088 0.291 2.910 3.384 2.904 3.374 4.334 3.615

H.3 PERFORMANCE WITH DIFFERENT NUMBER OF PROTOTYPES

Figure 5 (a) (b) (c) and (d) record the performance with respect to different numbers of prototypes
on different datasets. From the results, we can find that more prototypes would bring in better results
before saturation.
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Figure 5: (a),(b),(c),(d) Performance on the OOD test set of Springs, Charged, 5AWL, and 2N5C
with respect to four different numbers of prototypes. (e),(f) Performance with respect to different
condition lengths on the ID test set of Springs and 5AWL.

H.4 PERFORMANCE WITH DIFFERENT CONDITION LENGTHS

We analyze the influence of different conditional lengths by varying them in {3, 6, 9, 12, 15}, respec-
tively. As shown in Figure 5 (e) and (f), we can observe that our PGODE can always outperform the
latest baseline HOPE, which validates the superiority of the proposed PGODE.

H.5 EFFICIENCY COMPARISON

We have conducted a comparison of computation cost. The results are shown in Table 10 and we
can observe that our method has a competitive computation cost. In particular, the performance of
HOPE is much worse than ours (the increasement of ours is over 47% compared with HOPE), while
our computational burden only increases a little. Moreover, both the performance and efficiency of
I-GPODE are worse than ours.
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Table 10: Comparison of training cost per epoch (s).
Method LSTM GRU NODE LG-ODE MPNODE SocialODE I-GPODE HOPE PGODE (Ours)

Springs 1.53 1.04 2.21 17.39 23.33 21.02 267.08 23.86 37.03
Charged 1.33 1.02 2.06 16.59 22.26 19.93 250.23 20.43 33.88

H.6 VISUALIZATION

In addition, we present more visualization of the proposed PGODE and two baselines, i.e., So-
cialODE and HOPE. We have offered visualization of the predicted trajectory of a sample in Figure
2 and now we visualize four extra test instances (two ID samples and two OOD samples) in Figure
6. From the results, we can observe that the proposed PGODE is capable of generating more reli-
able trajectories in comparison to the baselines. For instance, our PGODE can discover the correct
direction of the orange particle while the others fail in the second OOD instance.

Ground TruthGOATHOPESocialODE

ID Sample 1

ID Sample 2

OOD Sample 1

OOD Sample 2

Figure 6: Visualization of different methods on Springs. Semi-transparent paths denote observed
trajectories, from which the latent initial states are estimated. Solid paths denote model predictions.
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