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Abstract

Vanilla spiking neurons are simplified from001
complex biological neurons with dendrites,002
soma, and synapses, into single somatic com-003
partments. Due to limitations in performance004
and training efficiency, they face significant005
challenges in modeling long sequences. In006
terms of performance, the oversimplified dy-007
namics of spiking neurons omit long-term tem-008
poral dependencies, and the long-tail mem-009
brane potential distribution along with binary010
activation discretization errors also limit their011
capacity to model long sequences. In terms012
of efficiency, the serial mechanism of spik-013
ing neurons lead to excessively long train-014
ing times for long sequence. Though par-015
allel spiking neurons are an efficient solu-016
tion, the number of parameters of them is of-017
ten tied to the hidden dimension or sequence018
length, which makes current parallel neurons019
unsuitable for large architectures. To address020
these issues, we propose MMDEND1: a Multi-021
Branch Multi-Compartment Parallel Spiking022
Dendritic Neuron. Its proportion-adjustable023
multi-branch, multi-compartment structure en-024
ables long-term dependent temporal dynamics.025
Additionally, we introduce a Scaling-Shifting026
Integer Firing (SSF) mechanism which fits the027
long-tail membrane potential distribution and028
retains efficiency while mitigating discretiza-029
tion errors. Compared with parallel neurons,030
MMDEND achieves better long sequence mod-031
eling capability with fewer parameters and032
lower energy consumption. Visualization also033
confirms that the SSF mechanism effectively034
fits long-tail distributions.035

1 Introduction036

Vanilla spiking neurons are simplified abstractions037

of biological neurons, simulating the integrate-fire-038

reset dynamics. Advancements in training algo-039

rithms (Wu et al., 2018; Duan et al., 2022) have040

enabled spiking neurons to achieve success in many041

1We will open-source the code.

tasks while maintaining energy efficiency (Lv et al., 042

2023; Li et al., 2023; Zhu et al., 2023; Zhao et al., 043

2021; Rajagopal et al., 2023; Yao et al., 2024; Zhou 044

et al., 2022). However, spiking neurons face signif- 045

icant challenges in modeling long sequences (Fang 046

et al., 2024; Stan and Rhodes, 2024) due to limita- 047

tions in both performance and efficiency. 048

… … … …

soma of dendrite

compartment of 
dendrite

…
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Figure 1: Types of Dendritic Neuron Modeling

In terms of performance, the overly simpli- 049

fied temporal dynamics are a key factor limiting 050

the ability of spiking neurons to model long se- 051

quences (Fang et al., 2024; Stan and Rhodes, 2024). 052

A typical biological neuron structure includes com- 053

ponents such as dendrites, synapses, soma, and 054

axon (Spruston, 2008). According to the model- 055

ing of this typical structure, current neuron mod- 056

els can be categorized into point neurons and fine- 057

grained neurons. Vanilla spiking neurons, such as 058

LIF (Maass, 1997), are a classic example of point 059

neurons, where the neuron is simplified to a single 060

soma. Due to this simplification, point neurons 061

have limited temporal dynamics, making it diffi- 062

cult to capture long-term dependencies (Legenstein 063

and Maass, 2011). On the other hand, the fine- 064

grained neurons incorporate a more comprehen- 065

sive biological neuron structure and exhibit long- 066

term dependent temporal dynamics (Chen et al.; 067

Zheng et al., 2024). Specifically, the multi-branch, 068

multi-compartment structure of dendrites in bio- 069

logical neurons has demonstrated exceptional ca- 070

pabilities in processing temporal signals (London 071
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and Häusser, 2005). Although recent research has072

explored applying dendritic dynamics to sequen-073

tial tasks (Zheng et al., 2024; Chen et al.; Egrioglu074

et al., 2022; Egrioglu and Bas, 2024), the com-075

plexity of dendritic structures makes it challenging076

to balance detailed modeling with computational077

efficiency. Therefore, most of these works focus078

on either the multi-compartment or multi-branch079

structures as shown in Figure.1(b) and (a), without080

fully leveraging the dendritic dynamics.081

Figure 2: Long-tail Membrane Potential Probability
Distribution.

Another issue that impacts the performance of082

spiking neurons is that binary activation leads to083

discretization errors and is difficult to fit long-tail084

distributions. Spiking neurons typically transmit085

binary spikes, which often require multiple time086

steps to mitigate the binary discretization errors.087

However, the multiple extended time steps results088

in exponentially higher training costs (Guo et al.,089

2024). To mitigate the discretization errors, while090

also taking the training efficiency into account, ex-091

isting works for sequence tasks opt not to extend092

time steps. Instead, they employ dedicated firing093

mechanisms (Guo et al., 2024; Luo et al., 2024),094

such as negative spike activation, learnable spike095

activation and integer activation, to replace binary096

encoding. However, these methods firing within a097

fixed and symmetric range, which limits their abil-098

ity to adapt to the asymmetric long-tail distribution099

of membrane potentials, as shown in Figure 2.100

In terms of efficiency, the challenge is that the se-101

rial mechanism inherent in spiking neurons results102

in excessively long training time for long sequence103

tasks (Fang et al., 2024). Therefore, recent research104

has focused on either eliminating or improving the105

nonlinear reset mechanism and transitioning to par-106

allel mechanisms (Chen et al.; Fang et al., 2024).107

However, the number of parameters in current par-108

allel neurons is often tied to the hidden dimension109

or sequence length, which makes these works more110

like modeling of layers rather than neurons and are 111

unsuitable for large models. 112

Based on the above analysis, in this work, for se- 113

quence modeling tasks, we propose a Multi-Branch 114

Multi-Compartment Parallel Spiking Dendritic 115

Neuron (MMDEND). As for performance, the 116

multi-branch, multi-compartment structure of MM- 117

DEND provides long-term dependent dynamics. 118

Expanding from a single branch to multiple 119

branches may introduce exponential computational 120

complexity. MMDEND achieves adjustable multi- 121

branch proportions by grouping inputs, which al- 122

lows it to enhance performance while reducing 123

computational complexity. To overcome the lim- 124

itations of binary firing, we introduce a Scaling- 125

Shifting Integer Firing (SSF) mechanism that ef- 126

fectively fits the long-tail membrane potential dis- 127

tribution. SSF uses single-step integer training and 128

multi-step spike inference, ensuring efficiency in 129

both training and inference (Luo et al., 2024). To 130

ensure efficient parallelism, dendritic dynamics are 131

modeled using State-Space Modeling (SSM) and 132

nonlinear firing is removed in the soma (Fang et al., 133

2024). Unlike traditional parallel neurons, the num- 134

ber of parameters in MMDEND is independent of 135

both the channel and sequence length. Our main 136

contributions can be summarized as follows: 137

• We propose MMDEND, a multi-branch, 138

multi-compartment parallel spiking dendritic 139

neuron with long-term dependency dynamics. 140

The multi-branch proportion is adjustable for 141

computing saving and task performance. 142

• We propose SSF mechanism that dynamically 143

adapts to long-tail membrane potential distri- 144

butions through translation and scaling. SSF 145

adopts single-step integer firing during train- 146

ing and multi-step spiking firing during infer- 147

ence for efficiency. 148

• MMDEND achieves better long sequence 149

modeling capability than parallel neurons with 150

fewer parameters and lower energy consump- 151

tion. Visualization confirms that SSF mecha- 152

nism effectively fits long-tail distributions. 153

2 Related work 154

Spiking Neuron For Sequence Modeling. Due to 155

the serial temporal mechanisms, lengthy training 156

times pose a bottleneck for spiking neurons per- 157

formance in long sequence modeling. To tackle 158
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this challenge, (Fang et al., 2024) introduced PSN,159

which eliminates the nonlinear reset mechanism to160

enable parallelism in spiking neurons and incorpo-161

rates learnable time decay constants to compensate162

for neural dynamics. (Chen et al.), inspired by pyra-163

midal cells, proposed PMSN, which revisits the re-164

set mechanism in spiking neurons while achieving165

multi-compartment parallelism. Considering the166

superior performance of SSM in processing tempo-167

ral signals, (Stan and Rhodes, 2024) replaced the168

LIF dynamics with SSM. This approach is similar169

to the multi-compartment modeling used in PMSN,170

but lacks the soma component. Notably, the neu-171

ron size of these works depends on the sequence172

length or the hidden dimensions, which makes173

these works more like layers modeling rather than174

neurons.175

Dendrite Modeling. Dendritic neurons are a176

type of biological neuron in the brain, character-177

ized by their excellent temporal computation abili-178

ties and nonlinear expression properties (Chen and179

Liu, 2022; Wu et al., 2023). (Zheng et al., 2024)180

combines dendrites with spiking neural networks to181

propose DH-LIF, which effectively learns temporal182

features at different scales through heterogeneous183

timing factors on various dendritic branches. (Ji184

et al., 2022) modeled the dendritic neuron from185

four levels: synaptic, dendrite, membrane, and186

soma, with the dendritic component employing187

a multi-branch architecture. (Chen et al.) pro-188

posed a single-branch multi-compartment model.189

These studies consider either multi-branch or multi-190

compartment characteristics alone, lacking compre-191

hensive modeling of the full dendritic architecture.192

Spiking Firing Mechanism. Multiple time193

steps are typically used to compensate for the in-194

formation loss caused by binary firing, but this ap-195

proach significantly increases computational costs.196

Recent work attempts to compensate for the loss197

from the firing mechanism. (Sun et al., 2022) intro-198

duced dual-thresholds and used integer firing. (Guo199

et al., 2024) proposed ternary spikes with negative200

activation and designed learnable peak amplitudes201

to adapt to different membrane potential distribu-202

tions across layers. (Luo et al., 2024) proposed203

ILIF with positive integer firing during traing and204

spiking firing during inference.205

3 Preliminaries206

Spiking Neurons. LIF is a classic spiking neuron207

with charge-fire-reset dynamic, and we take LIF as208

an example to introduce the spiking neurons. The 209

dynamic process of LIF can be calculated as: 210

Ht = (1− 1

τ
)Vt−1 +

1

τ
Xt (1) 211

St = Θ(Ht − V th) (2) 212

Vt = V reSt +Ht(1− St) (3) 213

The sequence from Eq.(1) to (3) describes the 214

key processes in the LIF neuron model: charging, 215

firing, and resetting. In these equations, Xt indi- 216

cates the input current at each time step t, while Ht 217

refers to the post-charge membrane potential. τ is 218

the time dynamic factor. The spike tensor at time t 219

is denoted by St. Θ is the step function, and V th is 220

the threshold voltage beyond which firing occurs. 221

After firing, the membrane potential resets to V re. 222

In this work, we replace the charging dynamics 223

with dendritic and soma dynamics. Additionally, 224

we substitute the firing and resetting mechanisms 225

with the SSF mechanism. 226

State Space Model. The SSM is a method for 227

describing and analyzing dynamic systems, appli- 228

cable to systems described by first-order or higher- 229

order differential equations (Kalman, 1960). Its 230

classical formulation can be expressed as: 231

ḣt = Aht +Bxt (4) 232

yt = Cht +Dxt (5) 233

where A,B,C,D represent control matrices. Typ- 234

ically, before performing computer simulations, 235

discretization methods are employed, such as the 236

zero-order hold method (ZOH) (DeCarlo, 1989) for 237

discretization. The discretized form of Eq. (4) can 238

be expressed as: 239

ht = Āht−1 + B̄xt (6) 240

where Ā = exp(∆A), B̄ = (∆A)−1(exp(∆A)− 241

I) ·∆B, ∆ represents the sampling interval from 242

continuous to discrete. Since our modeling of the 243

dendrites starts with Kirchhoff’s current law with 244

first-order differential equations, the SSM is well- 245

suited for the dendrites modeling, and facilitates 246

the parallelization of dendrites. 247

4 Method: MMDEND 248

In this work, we propose MMDEND, a adjustable 249

multi-branch, multi-compartment parallel spiking 250

neuron inspired by dendritic neurons. Starting from 251

the dendritic model constructed via cable theory 252

in Figure 1(c), we introduce the dendritic branch 253

modeling and the soma modeling. Finally, we will 254

present the SSF mechanism in detail. 255
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4.1 Single-branch Multi-compartment256

Dendrite SSM Modeling257

According to cable theory, each branch of a258

dendrite can be modeled as a series of single-259

compartment circuits. As shown in the left part260

of Figure 3, each compartment includes a leakage261

resistor RL, a cell membrane capacitor Cm, and262

a current source representing external input. Rk263

denotes the axial resistance between the k-th and264

(k − 1)-th compartments. Vk represents the volt-265

age value of the k-th compartment. The current266

continuity equation for compartment k is:267

dvjk
dt

=
vj(k−1)

τ fjk
−

vjk
τjk

+
vj(k+1)

τpjk
+ γkIj (7)268

where vjk represents the voltage of the k-th com-269

partment in the j-th branch (j ∈ {1, . . . , J},270

k ∈ {1, . . . ,K}), J and K denote the total num-271

ber of branches and compartments, respectively.272

τ fjk = Rj(k−1)Cm and τpjk = RjkCm represent273

the influence of adjacent compartments on the274

current compartment’s membrane potential, and275
1
τjk

=
Rjk+Rljk

CmRjk+CmRljk
denotes the time constant276

of the current compartment’s temporal dynamics.277

γk = rk
Cm

, where rk represents the decay coef-278

ficient that varies with the distance between the279

input current and the compartment. It is important280

to note that we decouple the last compartment of281

the dendrite from the soma, so each branch for the282

input Ij ∈ RD′
can be described as:283

V̇c
j =


− 1

τj1
1
τpj1

0 · · ·
1

τfj2
− 1

τj2
1
τpj2

· · ·
...

. . .
0 · · · 1

τfjK
− 1

τjK

Vc
j+


γ1
γ2
...

γK

 Ij

(8)

284

Vdend
j = [0 0 . . . 1]Vc

j+γoj Ij (9)285

where V dend
j is the terminal voltage of branch j,286

determined by the voltage of the last compartment287

and the decoupling compensation term γoj Ij .288

Each dendritic branch described above is a Sin-289

gle Input Single Output (SISO) continuous SSM290

system. We employ the ZOH method for discretiza-291

tion. It is important to note that the state tran-292

sition matrix has very high computational com-293

plexity when performing exponential operations294

as a density matrix, making it difficult for long se-295

quence operations. Therefore, we perform an eigen-296

value decomposition of the state transition matrix297

Branch2

Soma

Branch1

Branch3

Rw1 Rw2 Rwn

RL

Cm

Vk

Vk-1

Vk+1

Rk-1

Rk

RL

Cm

Figure 3: Dendritic Neuron Modeling.

A = PΛP−1. To ensure the transition matrix can 298

be diagonalized and to enhance the expressiveness 299

of the diagonalized matrix, we perform calcula- 300

tions in the complex domain. The terminal voltage 301

V dend
j of the dendritic branch can be calculated as: 302

Vj [t] = ÂVj [t− 1] + Γ̂Ij [t] (10) 303

Vdend
j [t] = ĈVj [t] + γoj Ij [t] (11) 304

where Vj = P−1Vc
j ,Vj ∈ RK×D′

, the state tran- 305

sition matrix Â = exp (Λdt) , Â ∈ RK×K , the 306

distance coefficient matrix Γ̂ = Λ−1(Â− I)P−1Γ, 307

Γ = [γ1, . . . , γK ]T , Γ̂ ∈ RK×1, the output ma- 308

trix Ĉ = [0 0 . . . 1]P . Λ, dt, Ĉ, Γ, and γoj 309

are all learnable parameters. In the hidden state 310

expressions of each compartment, there is no non- 311

linear representation. Therefore, Eq.(10) can be 312

expressed in a parallel form as: 313

Vj [t] =
t∑

q=0

Ât−qΓ̂Ij [q] (12) 314

The parallel form of each branch, Eq.(12) can be 315

efficiently implemented through FFT convolution. 316

4.2 Multi-branch Multi-compartment 317

Dendrite Modeling 318

Extending to multi-branch can lead to an exponen- 319

tial increase in computational cost. To address this, 320

we group the inputs along the hidden dimension, 321

enabling the proportion of multi-branch adjustable. 322

First, we divide the input I ∈ RD into J groups, 323

with each group having a window length of D′, 324

where D ≥ D′ ≥ D
J , and a stride of S. This results 325

in the input current for each branch I1,...,J ∈ RD′
. 326

Grouping the input allows the number of dendritic 327

branches per channel to dynamically vary between 328

{1, . . . , J}, adapting to tasks of different difficulty 329

levels. To simulate the high nonlinear expressive- 330

ness of dendritic neurons, nonlinear activation is 331
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applied to the output current of each branch:332

Vdend
j [t] = f

(
gj

(
I
[
j ∗ S : j ∗ S +D

′
]))

(13)

333

where f is the nonlinear function, and gj denotes334

the dynamic process of dendritic branch j.335

4.3 Soma Modeling336

As shown in the right part of Figure 3, the soma in-337

cludes axial resistances Rwj for each branch, soma338

leakage resistance RL, soma capacitance Cm, and339

a current source determined by the input. The cur-340

rent continuity equation for the soma is:341

dvs

dt
= −vs

τ s
+

M∑
j=1

vdendj

τ sj
+ γsI (14)342

where vs is the membrane potential of the soma,343

τ s and τ sj are the time constants determined by the344

axial resistances Rwj and structural parameters of345

soma, and γs = rs
Cm

. For the soma, we also use346

ZOH for discretization,347

Vs[t] = βVs[t− 1] + α(
M∑
j=1

Vdend
j

τ sj
+ γsI)

(15)

348

S[t] =SSF (Vs[t]) (16)349

where β = exp
(
− dt

τs

)
, and α = τ s(1− β). SSF350

is a firing mechanism capable of dynamically adapt-351

ing to long-tail membrane potential distributions.352

4.4 Scaling-Shifting Integer Firing353

We propose SSF to dynamically adapt to asymmet-354

ric long-tail membrane potential distributions and355

negative membrane potentials. The SSF mecha-356

nism consists of two main components: membrane357

potential fitting and efficient integer firing.358

Membrane Potential Fitting. SSF uses thresh-359

old as a measure of membrane potential to deter-360

mine the integer value or number of spikes that361

can be triggered. To tackle with the long-tail dis-362

tribution and negative membrane potentials, we363

introduce an offset ϕp and a scaling factor ϕs in364

the firing mechanism. These parameters translate365

and scale the membrane potential to the effective366

encoding range [−U,U ], U ∈ Z+, ensuring in-367

formation completeness. The membrane potential368

fitting process of SSF can be written as:369

S[t] = ⌊clip(V
s − ϕp

ϕs
,−U,U)/V th⌋ (17)370

where ⌊·⌋ is the floor function, clip(∗,−U,U) rep- 371

resents clipping within the range [−U,U ], and V th 372

is the threshold.

Figure 4: Scaling-Shifting Integer Firing Mechanism.

373

Efficient Integer Firing. SSF adopts single-step 374

integer activation during training, and multi-time- 375

step binary activation during inference as shown in 376

Figure 4. During training, the S[t] in Eq.(17) are in- 377

tegers ∈ [−Ū , Ū ], Ū = ⌊ U
V th ⌋. During inference, 378

to retain the advantage of low energy consump- 379

tion, SSF employs a Ū time steps binary firing 380

S[t, 1 : Ū ] ∈ {−1, 0} or {0, 1}. SSF satisfied: 381

S[t] =
Ū∑

u=1

S[t, u] (18) 382

Therefore, taking layer l as an example, it is easy 383

to prove the equivalence of training and inference: 384

W lS[t] = W l
Ū∑

u=1

S[t, u] =
Ū∑

u=1

W lS[t, u] (19) 385

where W l is the model weight of layer l. 386

5 Experiments 387

In this section, we demonstrate the modeling ca- 388

pability of MMDEND on general sequences in 389

5.1, its high expressiveness on language modeling 390

sequence tasks in 5.2, and its outstanding perfor- 391

mance in long sequence modeling in 5.3. Addi- 392

tionally, we validate the effectiveness of each com- 393

ponent of MMDEND in 5.4. In 5.5, we visualize 394

the dynamic behavior of neurons. Finally, in 5.6, 395

we analyze the trade-off between energy consump- 396

tion and performance. The experimental setup is 397

detailed in the Appendix A, B, C. 398

5.1 General Sequence Modeling 399

To demonstrate the versatility of MMDEND, as 400

shown in Table 1, we compare it with expressive 401

spiking neurons on spatial-temporal and speech 402

tasks. For the spatial-temporal tasks, we use the 403
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Table 1: Comparison of Performance on General Sequential Tasks.

Dataset Timesteps Approach Parallel
Training Parameters Accuracy

S-Cifar10
&

S-Cifar100
32

LIF N 0.51M 81.50% / 55.45%
LIF wo reset N 0.51M 79.50% / 53.33%
GLIF (Yao et al., 2022) N 0.51M 83.66% / 58.92%
KLIF (Jiang and Zhang, 2023) N 0.51M 83.26% / 57.37%
SPSN (Fang et al., 2024) Y 0.51M 86.70% / 62.11%
masked PSN (Fang et al., 2024) Y 0.52M 85.81% / 60.69%
PSN (Fang et al., 2024) Y 0.52M 88.45% / 62.21%
PMSN (Chen et al.) Y 0.54M 90.97% / 66.08%
MMDEND (Ours) Y 0.51M 92.71% / 67.65%

SSC 250

SRNN (Cramer et al., 2020a) N 0.11M 50.90%
TC-LIF-FF (Zhang et al., 2024) N 0.11M 63.46%
TC-LIF-RNN (Zhang et al., 2024) N 0.11M 61.09%
ALIF (Yin et al., 2021) N 0.73M 74.20%
PSN (Fang et al., 2024)* Y 0.32M 43.71%
masked PSN (Fang et al., 2024)* Y 0.32M 68.04%
SPSN (Fang et al., 2024)* Y 0.13M 71.50%
MMDEND (Ours) Y 0.13M 75.63%

* Our reproduced results based on publicly available codebases

column-by-column mode of the S-CIFAR10 and404

S-CIFAR100 as (Fang et al., 2024). For the speech405

tasks, we experiment on the spike speech bench-406

mark SSC (Cramer et al., 2020b). Compared to407

serial neurons, parallel neurons exhibit significant408

performance advantages. Moreover, MMDEND409

outperforms the SOTA PMSN by 1.74% and 1.57%410

in the spatial-temporal tasks with fewer parameters,411

indicating that MMDEND has better general se-412

quence modeling capabilities.413

Table 2: Language Modeling on Wikitext.

Architecture Step Params PPL
Transformer+MPSN

512
74.0M 23.46

Transformer+SPSN 69.8M 22.16
Transformer+MMDEND 69.8M 21.36

5.2 Highly Expressive Language Modeling414

In this subsection, we combine the transformer with415

parallel neurons and report the perplexity (PPL)416

metric on WikiText (Merity et al., 2016) for lan-417

guage modeling. We compare MMDEND with418

the open-source parallel neurons Sliding PSN and419

Masked PSN. In the language modeling task, MM-420

DEND achieves lower PPL with fewer parameters,421

indicating that MMDEND has expressive sequence422

modeling capabilities. 423

5.3 Long Sequence Language Modeling 424

To validate the effectiveness of MMDEND in long 425

sequence modeling, we combine parallel neurons 426

with the S4 model and compare it on the clas- 427

sic long sequence benchmark Long Range Arena 428

(LRA). The subtask lengths in LRA range from 1k 429

to 4k. As shown in Table 3, MMDEND outper- 430

forms the baselines on all the long sequence tasks, 431

with an average improvement of 2.7% over SPSN 432

and at least 14.7% over MPSN and PSN. Notably, 433

serial spiking neurons are hard to train on LRA, 434

therefore this experiment demonstrate both the effi- 435

ciency and long-term dynamics of MMDEND. 436

5.4 Ablation 437

To verify the effectiveness of each component of 438

MMDEND, we conducted ablation experiments on 439

the S-CIFAR10 dataset in this subsection. 440

Branch and Compartment. As shown on the 441

right part of Figure 5, we exhibit the performance 442

variation from a single branch to 8 branches. It is 443

evident that as the number of branches increases, 444

the performance improves. Notably, there is a sig- 445

nificant performance improvement when increasing 446

from a single branch to two branches. Similarly, 447
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Table 3: Long Sequence Moding Experiments on Long Range Arena Benchmark.

Architecture AAN CIFAR IMDB PATHFINDER LISTOPS AVG
S4-PSN 0.834 0.787 0.633 0.658 0.399 0.662

S4-MPSN 0.809 0.787 0.672 0.812 0.390 0.694
S4-SPSN 0.864 0.856 0.857 0.926 0.568 0.814

S4-MMDEND 0.900 0.878 0.886 0.943 0.599 0.841

Figure 5: Ablation Study on Compartments and
Branches.

in the compartments ablation experiments, perfor-448

mance improves with more compartments, though449

overly large compartments can hinder MMDEND’s450

expression. Therefore, it is essential to choose the451

number of branches and compartments according452

to the task complexity.453

Figure 6: Ablation Study on Branch Group.

Group Dendrite Branch. As shown in Figure454

6, the percentages represent the proportion of each455

channel sharing branches. An interesting obser-456

vation is that sharing branches from 0% to 25%457

improves performance, but further increasing the458

shared proportion gradually decreases performance,459

indicating that the mutli-branch proportion can be460

adjusted based on the task difficulty, and reducing461

information redundancy.462

Scaling-Shifting Integer Firing. To investigate463

the impact of the translation-scaling mechanism,464

MMDEND-SSF Variants Accuracy
baseline (ranging from [−4, 4]) 92.21
w/o scaling and translation 91.34
w/o scaling and translation & integer 90.67
Ranging from [−1, 1]
(i.e., ternary spiking)

91.04

Ranging from [−2, 2] 91.88
Ranging from [−3, 3] 92.68

Table 4: Ablation on Scaling-Shifting Integer Firing
Mechanism.

integer firing, and the firing range on performance 465

within the SSF mechanism, we present the ablation 466

results in Table 4. Removing the translation-scaling 467

coefficients from the SSF mechanism resulted in 468

a 0.87% decrease in accuracy. Furthermore, re- 469

placing integer firing with binary firing (i.e. 0-1 470

firing without reset), led to an additional 0.67% 471

drop in performance. We also observed that as 472

the firing range expanded from [−1, 1] to [−3, 3], 473

performance gradually improved, but it slightly de- 474

clined when the range was extended to [−4, 4]. 475

5.5 Visualization Analysis of Temporal 476

Dynamic 477

In this subsection, we visualize the membrane po- 478

tentials across multiple branches to demonstrate 479

their functions. Additionally, we exhibit the consis- 480

tency between the soma membrane potential and 481

the spike distribution under the SSF mechanism. 482

Information Patterns of Dendritic Branches. 483

As shown in Figure 7, we present the membrane 484

potential distribution of MMDEND across four 485

branches on the SSC dataset. We observed that 486

different branches exhibit channel-specific charac- 487

teristics. Specifically, Figures 7(a), 7(b), and 7(d) 488

demonstrate concentrated responses to the ante- 489

rior, posterior, and central segments of the chan- 490

nel, respectively, while Figure 7(c) shows a uni- 491

form response across the entire channel. Addition- 492

ally, we also found that different compartments ex- 493
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hibit sequence-specific characteristics, which can494

be found in the Appendix E.

(a) Branch 1 (b) Branch 2

(c) Branch 3 (d) Branch 4

Figure 7: Visualization of dendritic branch membrane
potential information patterns on the SSC dataset.

495

Figure 8: Visualization of long-tail soma membrane
potential and spike activations.

Membrane Potential Distribution and firing496

activation. To demonstrate that the SSF mecha-497

nism effectively addresses the issue of binary spike498

activation failing to fit asymmetrical long-tail dis-499

tributions, we present the membrane potential dis-500

tribution and SSF spike firing distribution in the501

soma, as shown in Figure 8. The SSF spike firing502

effectively covers the long-tail and negative mem-503

brane potential distributions, thereby preserving504

the completeness of the information.505

5.6 Analysis of Consumption and High506

Expressiveness.507

Introducing more complex temporal dynamics in508

neurons may raise concerns about increased energy509

consumption. To address this, we compared our510

approach with the PSN family, as shown in Fig- 511

ure 9. Compared to the PSN family, MMDEND 512

with 2 branches and 4 compartments demonstrates 513

a significant advantage in accuracy and energy. Ad- 514

ditionally, we compared the energy consumption 515

of MMDEND with binary firing to MMDEND fir- 516

ing within the range of [−2, 2]. As the firing range 517

increases, the energy consumption of MMDEND 518

shows only a slight increase. Compared to the ver- 519

sion without multi-branch proportion adjustable, 520

MMDEND saves about 30% in energy, with sav- 521

ings increasing as the number of branches grows. 522

Figure 9: Energy Efficiency and Performance on SSC

523

The detailed calculation of energy consumption 524

can be found in the Appendix F. 525

6 Conclusion 526

In this work, we propose MMDEND to overcome 527

the challenges that traditional spiking neurons face 528

in long-sequence tasks. MMDEND is designed 529

based on the circuitry of dendritic neurons derived 530

from cable theory achieving long-term dependent 531

temporal dynamics. We introduce the SSF mecha- 532

nism, which dynamically adapts to long-tail mem- 533

brane potential distributions by adjusting scale and 534

shift parameters. SSF balances efficiency and low 535

energy consumption by using integer activation 536

during training and event-driven operations during 537

inference. To achieve efficient parallelization, we 538

model the dendrites using SSM and eliminate the 539

nonlinear firing in the soma. Results show that 540

MMDEND outperforms all the serial and paral- 541

lel spiking neuron baselines on general sequence, 542

language modeling, and long-sequence tasks, prov- 543

ing the effectiveness and efficiency of dendritic 544

dynamics. Visualization also shows that the SSF 545

mechanism fits long-tail distributions well. 546
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7 Limitation547

Since the modeling process of MMDEND starts548

from a single branch and extends to multiple549

branches, although we use grouping to prevent550

an exponential increase in computation, the multi-551

branch structure still inevitably leads to some in-552

crease in computational cost and energy consump-553

tion. We look forward to future work that will di-554

rectly model the multi-branch, multi-compartment555

structure to eliminate this limitation.556
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A Computing Setting 713

For the Highly Expressive Language Modeling ex- 714

periment, we used 8 A100 GPUs. For all other 715

experiments, we completed them on a single A100 716

GPU. 717

B Dataset 718

The datasets in this work are as follows: 719

Wikitext-103 is a widely used NLP dataset that 720

includes over 100000 Wikipedia articles, totaling 721

approximately 103 million words. In our experi- 722

ments, we follow the setup described in (Merity 723

et al., 2016), where the training set, validation set, 724

and test set consist of 28475, 60, and 60 articles, 725

respectively. 726

Long Range Arena (LRA) is a dataset and 727

benchmark designed to evaluate the ability of mod- 728

els to handle long sequences (Tay et al., 2021). 729

LRA aims to test model performance in managing 730

long-range dependencies and includes tasks such 731

as text classification, image classification, retrieval, 732

list operations, and pathfinding. In our experiments, 733

the sequence length distribution ranges from 1K to 734

4K. 735

S-Cifar10 and S-Cifar100 are image sequence 736

classification tasks derived from CIFAR-10 and 737

CIFAR-100. In this task, each image with size 738

32 × 32 is segmented into a column-by-column 739

sequence from left to right. 740

Spiking Speech Command (SSC) is a speech 741

recognition dataset specifically designed for the 742

neuromorphic computing field. Unlike traditional 743

speech datasets, the SSC dataset uses spike encod- 744

ing to convert audio signals into spike sequences. 745

Each spike input consists of 700 channels, encom- 746

passing 35 different word categories. 747

C Experiment Setting 748

In this subsection, we will introduce the model 749

architecture and hyperparameter settings in each 750

experiment. 751

Model Architectures are shown as follows: 752
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Table 5: Long Sequence Moding Experiments on Long Range Arena Benchmark.

Dataset Learning Rate Weight Decay Batchsize Epoch Compartment Branch
AAN 0.01 0.05 64 20 4 2

CIFAR 0.01 0.05 50 200 4 2
IMDB 0.01 0.05 16 32 4 2

PATHFINDER 0.004 0.05 64 200 4 2
LISTOPS 0.01 0.05 32 40 4 2

Wikitext-103 5e-4 0.0 32 40 4 2
S-Cifar10 0.1 0.0 128 256 8 6
S-Cifar100 0.1 0.0 128 256 8 4

SSC 0.01 0.0 32 200 8 4

• For the Wikitext task, we followed the model753

architecture in (Gu et al., 2021), which con-754

sists of 16 transformer layers with a hidden755

size of 512. We replaced the activation layer756

in each transformer block with a 2-branch,757

4-compartment PMDEND.758

• For the LRA task, we followed the model759

architecture described in (Gu et al., 2021),760

which consists of 6 S4 blocks. We replaced761

the activation layer in each block with a 2-762

branch, 4-compartment PMDEND.763

• For S-CIFAR10 and S-CIFAR100, we used764

the same model architecture setup as (Fang765

et al., 2024), which includes one convolu-766

tional layer and two linear layers. Sequence767

modeling between layers is performed using768

PMDEND. S-CIFAR10 utilizes a PMDEND769

with 8 compartments and 6 branches, while S-770

CIFAR100 employs a PMDEND with 8 com-771

partments and 4 branches.772

• For the SSC task, we used a four-layer linear773

network with a hidden size of 128. Sequence774

modeling between layers was performed us-775

ing a PMDEND with 8 compartments and 4776

branches.777

(a) serial (b) parallel

Figure 10: serial and parallel spiking neuron.

(a) Compartment 1 (b) Compartment 2

(c) Compartment 3 (d) Compartment 4

Figure 11: Visualization of dendritic compartment mem-
brane potential information patterns on the SSC dataset.

Hyperparameters Our hyperparameter Settings 778

in each experiment are shown in the Table 5. 779

D Supplementary Preliminaries 780

Parallel spiking neuron When the nonlinearity 781

is removed from Eq. (3), such that Vt = Ht, 782

the membrane potentials at each time step H = 783

{H0, H1, . . . ,HT−1} as shown in Figure 10(b) can 784

be calculated in parallel as (Fang et al., 2024): 785

Ht =
1

τ

t∑
i=0

(1− 1

τ
)t−i ·Xt =

t∑
i=0

Wt,iXt (20) 786

where Wt,i =
1
τ (1−

1
τ )

t−i, which determines the 787

temporal dynamics of the parallel neurons. Eq. 788

(20) can be efficiently implemented using the FFT 789

convolution. 790
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E Information Patterns of Dendritic791

Compartments792

Unlike the information distribution observed in den-793

dritic branches, the membrane potential distribu-794

tion across dendritic compartments, as shown in795

Figure 11, exhibits different response patterns to796

various positions within the input sequence. For797

instance, Figures 11(a) and 11(b) show responses798

concentrated in the latter and middle-latter parts799

of the sequence, while Figures 11(c) and 11(d)800

demonstrate concentrated responses in the middle801

and early-middle parts of the sequence.802

F Calculation of Energy Consumption803

We calculated the energy consumption of MM-
DEND on the SSC task and compared it with PSN,
MPSN, and SPSN. The energy consumption calcu-
lation formula of each layer is as follows:

EMAC ∗ Flopsneu + T ∗R ∗ EAC ∗ Flopslayer

where Flopsneu is the Flops of spiking neuron,804

Flopslayer is the Flops of a fully connected layer,805

T is the length of sequence, R is the firing rate. The806

detailed calculation of FLOPs is shown in Table 6.807

Eadd = 0.9pJ and Emac = 4.6pJ are the energy808

consumption of add and MAC operations at 45nm809

process nodes for full precision (FP32) SynOps.810

MODEL Flops
PSN DT 2

SPSN DWT

MPSN DWT

MMDEND
dend:

∑n
i=1 fiiD(3K + 1)T

soma: 2
∑n

i fiiDT + 3DT

Fully Connected D2T

Table 6: Flops of spiking neurons and layers. D is the
hidden dimension, T is the sequence length, W is the
window length, K is the number of compartments, n is
the total number of branches, fi means the portion of i
branches.
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