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Abstract

We exploit the pre-trained seq2seq model001
mBART for multilingual text style transfer.002
Using machine translated data as well as gold003
aligned English sentences yields state-of-the-004
art results in the three target languages we005
consider. Besides, in view of the general006
scarcity of parallel data, we propose a modu-007
lar approach for multilingual formality trans-008
fer, which consists of two training strategies009
that target adaptation to both language and010
task. Our approach achieves competitive per-011
formance without monolingual task-specific012
parallel data and can be applied to other style013
transfer tasks as well as to other languages.014

1 Introduction015

Text style transfer (TST) is a text generation task016

where a given sentence must get rewritten chang-017

ing its style while preserving its meaning. Tradi-018

tionally, tasks such as swapping the polarity of a019

sentence (e.g. “This restaurant is getting worse020

and worse.”↔“This restaurant is getting better and021

better.”) as well as changing the formality of a text022

(e.g. “it all depends on when ur ready.”↔“It all023

depends on when you are ready.”), are considered024

as instances of TST. We focus here on the latter025

case only, i.e. formality transfer, because (i) re-026

cent work has shown that polarity swap is less of a027

style transfer task, since meaning is altered in the028

transformation (Lai et al., 2021a), and (ii) data in029

multiple languages has recently become available030

for formality transfer (Briakou et al., 2021b).031

Indeed, mostly due to the availability of parallel032

training and evaluation data1, almost all prior TST033

work focuses on monolingual (English) text (Rao034

and Tetreault, 2018; Li et al., 2018; Prabhumoye035

et al., 2018; Cao et al., 2020). As a first step036

towards multilingual style transfer, Briakou et al.037

(2021b) have released XFORMAL, a benchmark038

1“Parallel data" in this paper refers to sentence pairs in the
same language, with the same content but different formality.

of multiple formal reformulations of informal text 039

in Brazilian Portuguese (BR-PT), French (FR), and 040

Italian (IT). For these languages the authors have 041

manually created evaluation datasets. On these, 042

they test several monolingual TST baseline models 043

developed without any gold parallel training data, 044

and several neural models trained from scratch on 045

language-specific pairs obtained by machine trans- 046

lating GYAFC, the reference corpus for formality 047

transfer in English (Rao and Tetreault, 2018). Bri- 048

akou et al. (2021b) find that the models trained on 049

translated parallel data do not outperform a simple 050

rule-based system based on handcrafted transfor- 051

mations, especially on content preservation, and 052

conclude that formality transfer on languages other 053

than English is particularly challenging. 054

One reason for the poor performance could be 055

the low quality (observed upon our own manual 056

inspection) of the pseudo-parallel data, especially 057

the informal side. Since machine translation sys- 058

tems are usually trained with formal texts like 059

news (Zhang et al., 2020), informal texts are harder 060

to translate, or might end up more formal when 061

translated. But most importantly, the neural models 062

developed by Briakou et al. (2021b) do not take ad- 063

vantage of two recent findings: (i) pre-trained mod- 064

els, especially the sequence-to-sequence model 065

BART (Lewis et al., 2020), have proved to help sub- 066

stantially with content preservation in style trans- 067

fer (Lai et al., 2021b); (ii) Multilingual Neural Ma- 068

chine Translation (Johnson et al., 2017; Aharoni 069

et al., 2019; Liu et al., 2020) and Multilingual Text 070

Summarization (Hasan et al., 2021) have achieved 071

impressive results leveraging multilingual models 072

which allow for cross-lingual knowledge transfer. 073

In this work we use the multilingual large model 074

mBART (Liu et al., 2020) to model style trans- 075

fer in a multilingual fashion exploiting available 076

parallel data of one language (English) to transfer 077

the task and domain knowledge to other target lan- 078

guages. To address real-occurring situations, in 079
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our experiments we also simulate complete lack080

of parallel data for a target language (even ma-081

chine translated), and lack of style-related data at082

all (though availability of out-of-domain data). Lan-083

guage specificities are addressed through adapter-084

based strategies (Pfeiffer et al., 2020; Üstün et al.,085

2020, 2021). We obtain state-of-the-art results in086

all three target languages we consider, and propose087

a modular methodology that can be applied to other088

style transfer tasks as well as to other languages.089

2 Approach and Data090

As a base experiment aimed at exploring the con-091

tribution of mBART (Liu et al., 2020; Tang et al.,092

2020) for multilingual style transfer, we fine-tune093

this model with parallel data specifically developed094

for style transfer in English (original) and three095

other languages (machine translated).096

Next, in view of the common situation where097

parallel data for a target language is not avail-098

able, we propose a two-step adaptation training099

approach on mBART that enables modular mul-100

tilingual TST. We avoid iterative back-translation101

(IBT) (Hoang et al., 2018), often used in previous102

TST work (Lample et al., 2019; Prabhumoye et al.,103

2018; Luo et al., 2019; Yi et al., 2020; Lai et al.,104

2021a), since it has been shown to be computa-105

tionally costly (Üstün et al., 2021; Stickland et al.,106

2021). We still run comparison models that use it.107

In the first adaptation step, we address the prob-108

lem of some languages being not well represented109

in mBART2, which preliminary experiments have110

shown to hurt our downstream task. We conduct111

a language adaptation denoising training using un-112

labelled data for the target language. In the sec-113

ond step, we address the task at hand through fine-114

tuning cross-attention with auxiliary gold parallel115

English data adapting the model to the TST task.116

For TST fine-tuning, we use parallel training117

data, namely formal/informal aligned sentences118

(both manually produced for English and machine119

translated for three other languages). For the adap-120

tation strategies, we also collect formality and121

generic non-parallel data. Details follow.122

English formality data GYAFC (Rao and123

Tetreault, 2018) is an English dataset of aligned124

formal and informal sentences. Gold parallel pairs125

are provided for training, validation, and test.126

2The number of monolingual sentences used in mBART-
50’s pre-training is only 49,446 for Portuguese, for example,
versus 36,797,950 for French and 226,457 for Italian.

Multilingual formality data XFORMAL (Bri- 127

akou et al., 2021b) is a benchmark for multilingual 128

formality style transfer, which provides an evalu- 129

ation set that consists of four formal rewrites of 130

informal sentences in BR-PT, FR, and IT. This 131

dataset contains pseudo-parallel corpora in each 132

language, obtained via machine translating the En- 133

glish GYAFC pairs. 134

Language-specific formality non-parallel data 135

Following Rao and Tetreault (2018) and Briakou 136

et al. (2021b), we crawl the domain data in tar- 137

get language from Yahoo Answers3. We then use 138

the style regressor from Briakou et al. (2021a) to 139

predict formality score σ4 of the sentence to auto- 140

matically select sentences in each style direction. 141

Language-specific generic non-parallel data 142

5 M sentences containing 5 to 30 words for each 143

language randomly selected from News Crawl5. 144

3 Adaptation Training 145

To adapt mBART to multilingual TST, we employ 146

two adaptation training strategies that target lan- 147

guage and task respectively. 148

3.1 Language Adaptation 149

As shown in Figure 1(a), we introduce a mod- 150

ule for language adaptation. Inspired by previous 151

work (Houlsby et al., 2019; Bapna and Firat, 2019), 152

we use an adapter (ADAPT; ~50M parameters), 153

which is inserted into each layer of the Transformer 154

encoder and decoder, after the feed-forward block. 155

Following Bapna and Firat (2019) and Üstün 156

et al. (2021), the ADAPT module Ai at layer i 157

consists of a layer-normalization LN of the input 158

xi ∈ Rh followed by a down-projection Wdown ∈ 159

Rh×h, a non-linearity and a up projection Wup ∈ 160

Rh×h combined with a residual connection with 161

the input xi: 162

A(xi) = WupRELU(WdownLN(xi)) + xi (1) 163

Language adaptation training Following 164

mBART’s pretraining, we conduct the language 165

adaptation training on a denoising task, which 166

aims to reconstruct text from a version corrupted 167

with a noise function: 168

LφA = −Σlog(T |g(T );φA) (2) 169

3https://webscope.sandbox.yahoo.com/
catalog.php?datatype=l&did=11

4Sentences with σ < -0.5 are considered informal while >
1.0 are formal in our experiments.

5http://data.statmt.org/news-crawl/
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(a) Language adaptation training with monolingual data
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(b) Task adaptation training with English parallel data

Figure 1: Overview of adaptation training. In 1(a), the feed-forward network of each transformer layer or the
inserted adapter layer is trained with monolingual data to adapt to the target language. In 1(b), the cross-attention
of mBART is trained with auxiliary English parallel data to adapt to the TST task.

where φD are the parameters of adaptation module170

A, T is a sentence in target language and g is the171

noise function that masks 30% of the words in172

the sentence. Each language has its own separate173

adaptation module. During language adaptation174

training, the parameters of the adaptation module175

are updated while the other parameters stay frozen.176

3.2 Task Adaptation177

As shown in Figure 1(b), after training the lan-178

guage adaptation module we fine-tune the model179

on the auxiliary English parallel data with the180

aim of making the model adapt to the specific do-181

main of formality and style transfer task. Follow-182

ing Cooper Stickland et al. (2021), we only update183

the parameters of the decoder’s cross-attention (i.e.184

task adaptation module) while the other parame-185

ters are fixed, thus limiting computational cost and186

catastrophic forgetting.187

Multilingual TST process For the language188

adaptation modules we have two settings: (i) adap-189

tation modules AE
s on the encoder come from the190

model trained with source style texts, and modules191

AD
t on the decoder come from the model trained192

with target style texts (M2.X, Table 1); (ii) both AE193

and AD are from a model trained with generic texts194

(M3.X), so there are no source and target styles for195

the adaptation modules. For the task adaptation196

modules, we also have two settings: (i) the mod-197

ule is from the English model (X + EN model’s198

cross-attn); (ii) fine-tuning the model of the target199

language with English parallel data (X + EN data).200

4 Experiments 201

All experiments are implemented atop Trans- 202

formers (Wolf et al., 2020) using mBART-large- 203

50 (Tang et al., 2020). We train the model using 204

the Adam optimiser (Kingma and Ba, 2015) with 205

learning rate 1e−5 for all experiments. We train 206

the language adaptation modules with generic texts 207

separately for each language for 200k training steps 208

with batch size 32, accumulating gradients over 8 209

update steps, and set it to 1 for other training.6 210

Evaluation Following previous work (Luo et al., 211

2019; Sancheti et al., 2020; Lai et al., 2021a), we 212

assess style strength and content preservation. We 213

fine-tune mBERT (Devlin et al., 2019) with Bri- 214

akou et al. (2021b)’s pseudo-parallel corpora to 215

evaluate the style accuracy of the outputs. We also 216

use a style regressor from Briakou et al. (2021a), 217

which is based on XLM-R (Conneau et al., 2020) 218

and is shown to correlate well with human judg- 219

ments7. We calculate BLEU8 and COMET (Rei 220

et al., 2020) to assess content preservation. As over- 221

all score, following previous work, we compute the 222

harmonic mean (HM) of style accuracy and BLEU. 223

Systems Based on our data (see Section 2), we 224

have four settings for our systems. D1: pseudo- 225

parallel data in the target language via machine 226

translating the English resource; D2: non-parallel 227

style data in the target language; D3: no style data 228

in the target language; D4: no parallel data at all. 229

6Parameter values are based on previous work as well as
preliminary experimental evidence.

7Detailed results for different classifiers/regressor on the
test set are in Appendix A.2.

8We use multi-bleu.perl with default settings.
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INFORMAL→FORMAL FORMAL→INFORMAL

DATA MODEL ITALIAN FRENCH PORTUGUESE ITALIAN FRENCH PORTUGUESE

BLEU ACC HM BLEU ACC HM BLEU ACC HM BLEU ACC HM BLEU ACC HM BLEU ACC HM

D1

Multi-Task Tag-Style (Briakou et al., 2021b) 0.426 0.727 0.537 0.480 0.742 0.583 0.550 0.782 0.645 - - - - - - - - -
M1.1: pseudo-parallel data 0.459 0.856 0.598 0.530 0.829 0.647 0.524 0.852 0.649 0.177 0.311 0.226 0.195 0.377 0.257 0.225 0.306 0.259
M1.2: M1.1 + EN parallel data 0.461 0.841 0.596 0.525 0.863 0.653 0.553 0.809 0.657 0.178 0.315 0.227 0.194 0.458 0.273 0.219 0.313 0.258
M1.3: all data (one model) 0.461 0.850 0.598 0.515 0.851 0.642 0.537 0.803 0.644 0.175 0.368 0.237 0.191 0.439 0.266 0.229 0.292 0.257

D2

DLSM (Briakou et al., 2021b) 0.124 -0.223 0.159 0.180 0.152 0.165 0.185 0.191 0.188 - - - - - - - - -
M2.1: IBT training + EN data 0.460 0.510 0.484 0.500 0.487 0.492 0.491 0.428 0.457 0.168 0.420 0.240 0.196 0.235 0.214 0.237 0.083 0.123
M2.2: ADAPT + EN model’s cross-attn 0.467 0.637 0.539 0.516 0.627 0.566 0.499 -0.365 0.422 0.175 0.672 0.278 0.212 0.627 0.317 0.237 0.471 0.315
M2.3: ADAPT + EN data 0.476 0.731 0.577 0.519 0.702 0.597 0.526 0.509 0.517 0.180 0.719 0.288 0.209 0.567 0.305 0.169 0.534 0.257

D3
M3.1: EN data 0.485 0.670 0.563 0.553 0.727 0.628 0.039 0.890 0.074 0.186 0.767 0.299 0.216 0.692 0.329 0.020 0.403 0.038
M3.2: ADAPT + EN model’s cross-attn 0.480 0.672 0.560 0.545 0.749 0.631 0.547 0.559 0.553 0.179 0.421 0.251 0.209 0.685 0.320 0.175 0.560 0.267
M3.3: ADAPT + EN data 0.423 0.735 0.537 0.547 0.722 0.622 0.423 0.508 0.462 0.169 0.733 0.275 0.205 0.584 0.303 0.189 0.505 0.275

D4
Rule-based (Briakou et al., 2021b) 0.438 0.268 0.333 0.472 0.208 0.289 0.535 0.448 0.488 - - - - - - - - -
M4.1: original mBART 0.380 0.103 0.162 0.425 0.080 0.135 0.128 0.200 0.156 0.160 0.146 0.153 0.189 0.189 0.189 0.080 0.657 0.143
M4.2: ADAPT (generic data) 0.401 0.092 0.150 0.444 0.075 0.128 0.463 0.223 0.301 0.164 0.130 0.145 0.194 0.170 0.181 0.237 0.082 0.122

Table 1: Results for multilingual formality transfer. Notes: (i) for formal-to-informal there are four different
source sentences and a human reference only, so for each instance scores are averaged; (iii) bold numbers denote
best systems for each block, and underlined denote the best score for each transfer direction for each language.

The first three settings all contain gold English230

parallel data.231

Results Table 19 shows the results for both trans-232

fer directions for our models. We also include the233

models from Briakou et al. (2021b) for comparison234

(they only model the informal-to-formal direction).235

Results in block D1 show that fine-tuning236

mBART with pseudo-parallel data (M1.1) yields237

the best performance in the informal-to-formal di-238

rection. The formal-to-informal results, instead,239

are rather poor and on Italian even worse than IBT-240

based models (M2.2). This could be due to this241

direction being harder in general, since there is242

more variation in informal texts10, but it could also243

be made worse by the bad quality of the informal244

counterpart in the translated pairs. Indeed, work245

in machine translation has shown that low-quality246

synthetic data is more problematic in the target247

side (the case of our formal-to-informal direction)248

than in the source side (informal-to-formal direc-249

tion) (Bogoychev and Sennrich, 2019).250

In D2, we see that our proposed adaptation ap-251

proaches outperform IBT-based models on both252

transfer directions. The results of fine-tuning the253

target language’s model with English parallel data254

are generally better than inserting the EN model’s255

cross-attention module into the target language’s256

model. This suggests that the former can better257

transfer task and domain knowledge.258

In D3, the large amounts of generic texts yield259

more improvement in informal-to-formal rather260

than formal-to-informal. This could be due to261

generic texts being more formal than informal. The262

performance improvement on Portuguese is partic-263

9Complete results are in Appendix A.3.
10We have observed the same pattern even in optimal condi-

tions for this task, i.e., gold aligned data (English) and a mono-
lingual model (BART). Results are shown in Appendix A.1.

ularly noticeable (compare M3.1 trained with EN 264

data only with other M3.X models), and mostly 265

due to this language being less represented than the 266

others in mBART. Interestingly, the performance 267

of task adaptation strategies is reversed compared 268

to D2: it is here better to adapt cross attention in 269

the English model rather than fine-tune the target 270

language model directly. Future work will need to 271

investigate how using different data sources for lan- 272

guage adaptation (D2, style-specific vs D3, generic) 273

interacts with task adaptation strategies. 274

Results for D4 show that language adaptation 275

training helps with content preservation, especially 276

for Portuguese, confirming this curbs the problem 277

of language underrepresentation in pre-training. 278

However, low performance on style accuracy shows 279

that task-specific data is necessary, even if it comes 280

from a different language. 281

5 Conclusions 282

Fine-tuning a pre-trained multilingual model with 283

machine translated training data yields state-of-the- 284

art results for transferring informal to formal text. 285

The results for the formal-to-informal direction are 286

considerably worse—the task is more difficult, and 287

the quality of translated informal text is lower. 288

We have also proposed two adaptation training 289

strategies that can be applied in a cross-lingual 290

transfer strategy or in complete absence of task- 291

specific data, though in the latter case results are 292

poor. These strategies target language and task 293

adaptation, and can be combined to adapt mBART 294

for multilingual formality transfer. The adaptation 295

strategies with auxiliary parallel data from a differ- 296

ent language are effective, yielding state-of-the-art 297

results for informal-to-formal and outperforming 298

more classic IBT-based approaches without task- 299

specific parallel data in the target language. 300
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Ethics Statement301

All work that automatically generates and/or al-302

ters natural text could unfortunately be used mali-303

ciously. While we cannot fully prevent such uses304

once our models are made public, we do hope that305

writing about risks explicitly and also raising aware-306

ness of this possibility in the general public are307

ways to contain the effects of potential harmful308

uses. We are open to any discussion and sugges-309

tions to minimise such risks.310
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A Appendices for ACL Rolling Review:549

550

This appendices include: 1) Results for BART and mBART on English data (A.1); 2) Results for style551

classifiers/regressor (A.2); 3) Detailed results for multilingual formality transfer (A.3).552

.553

A.1 Results for BART and mBART on English data554

We fine-tune BART (Lewis et al., 2020) and mBART-50 (Tang et al., 2020) with English parallel data555

specifically developed for formality transfer in English (GYAFC). The performance of BART and English556

data can be seen as a sort of upperbound, as these are best conditions (monolingual model, and gold557

parallel data). The drop we see using mBART is rather small, suggesting mBART is a viable option. We558

also see that formal to informal is much harder than viceversa, probably due to high variability in informal559

formulations. Table A.1 shows the results for both models.560

MODEL DIRECTION COMET BLEU REG. ACC HM

BART Inf.→For. 0.544 0.795 -0.527 0.928 0.856
For.→Inf. 0.170 0.436 -1.143 0.683 0.532

mBART Inf.→For. 0.512 0.779 -0.531 0.916 0.842
For.→Inf. 0.151 0.422 -1.031 0.591 0.492

Table A.1: Results of BART and mBART on English data. Note that REG. indicates the score of the style regressor
(the higher is better in Inf.→For.(informal-to-formal), lower is better in For.→Inf. (formal-to-informal);.

A.2 Results for style classifiers/regressor561

We compare three different style classifiers and one regressor: (i) TextCNN (Kim, 2014) trained with562

pseudo-parallel data; (ii) mBERT (Devlin et al., 2019) trained with pseudo-parallel data and English data563

respectively; and (iii) a XLM-R (Conneau et al., 2020) based style regressor from Briakou et al. (2021a),564

which is trained with formality rating data in English.565

MODEL TRAINING DATA
ITALIAN FRENCH PORTUGUESE

ACC Precision Recall F1 ACC Precision Recall F1 ACC Precision Recall F1
TextCNN Pseudo data 0.865 0.885 0.839 0.861 0.838 0.876 0.787 .829 0.799 0.793 0.809 0.801
mBERT Pseudo data 0.898 0.905 0.890 0.897 0.879 0.918 0.831 0.872 0.851 0.806 0.924 0.861
mBERT English data 0.889 0.856 0.934 0.893 0.896 0.856 0.951 0.901 0.839 0.771 0.964 0.857
mBERT All data 0.891 0.906 0.872 0.888 0.882 0.911 0.846 0.877 0.851 0.815 0.909 0.859
XLM-R Formality ratings Informal: -1.672 Formal: 0.108 Informal: -1.701 Formal:0.050 Informal:-1.438 Formal: 0.065

Table A.2: Results for style classifiers/regressor on test set. The data used for evaluation are 1000 sentences from
the test set and the corresponding 1000 human references. For informal sentences, the smaller the XLM-R score
is better, higher is better for formal sentences.
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A.3 Detailed results for multilingual formality transfer 566

DATA MODEL
ITALIAN FRENCH PORTUGUESE

COMET BLEU REG. ACC HM COMET BLEU REG. ACC HM COMET BLEU REG. ACC HM
TRANSFER DIRECTION: INFORMAL→FORMAL

D1

Translate Train Tag (Briakou et al., 2021b) -0.059 0.426 -0.705 0.735 0.539 -0.164 0.451 -0.586 0.696 0.547 0.194 0.524 -0.636 0.755 0.619
+ Back-Tranlated Data (Briakou et al., 2021b) 0.026 0.430 -0.933 0.556 0.485 0.004 0.491 -0.898 0.485 0.488 0.301 0.546 -0.875 0.627 0.584
Multi-Task Tag-Style (Briakou et al., 2021b) -0.021 0.426 -0.698 0.727 0.537 -0.062 0.480 -0.501 0.742 0.583 0.266 0.550 -0.578 0.782 0.645
M1.1: pseudo-parallel data 0.143 0.459 -0.426 0.856 0.598 0.124 0.530 -0.305 0.829 0.647 0.297 0.524 -0.334 0.852 0.649
M1.2: M1.1 + EN parallel data 0.147 0.461 -0.442 0.841 0.596 0.130 0.525 -0.275 0.863 0.653 0.331 0.553 -0.395 0.809 0.657
M1.3: all data (one model) 0.137 0.461 -0.409 0.850 0.598 0.127 0.515 -0.267 0.851 0.642 0.309 0.537 -0.367 0.803 0.644

D2

DLSM (Briakou et al., 2021b) -1.332 0.124 -2.141 0.223 0.159 -1.267 0.180 -2.021 0.152 0.165 -1.131 0.185 -2.078 0.191 0.188
M2.1: IBT training 0.057 0.420 -1.351 0.240 0.305 -0.019 0.465 -1.303 0.219 0.298 0.233 0.487 -1.074 0.411 0.446
M2.2: M2.1 + EN data 0.105 0.460 -0.867 0.510 0.484 0.036 0.500 -0.814 0.487 0.492 0.236 0.491 -1.040 0.428 0.457
M2.3: ADAPT + EN model’s cross-attn 0.139 0.467 -0.684 0.637 0.539 0.066 0.516 -0.613 0.627 0.566 0.288 0.499 -1.143 0.365 0.422
M2.4: ADAPT + EN data 0.131 0.476 -0.537 0.731 0.577 0.074 0.519 -0.572 0.702 0.597 0.291 0.526 -0.922 0.509 0.517

D3
M3.1: EN data 0.134 0.485 -0.590 0.670 0.563 0.102 0.553 -0.591 0.727 0.628 -1.673 0.039 -0.550 0.890 0.074
M3.2: ADAPT + EN model’s cross-attn 0.130 0.480 -0.588 0.672 0.560 0.091 0.545 -0.446 0.749 0.631 0.302 0.547 -0.859 0.559 0.553
M3.3: ADAPT + EN data -0.107 0.423 -0.579 0.735 0.537 0.101 0.547 -0.488 0.722 0.622 -0.260 0.423 -1.112 0.508 0.462

D4

Round-trip MT (Briakou et al., 2021b) -0.053 0.346 -1.026 0.354 0.350 -0.065 0.416 -0.748 0.406 0.411 0.213 0.430 -0.661 0.601 0.501
Rule-based (Briakou et al., 2021b) 0.071 0.438 -1.167 0.268 0.333 -0.013 0.472 -1.236 0.208 0.289 0.291 0.535 -1.081 0.448 0.488
M4.1: original mBART -0.067 0.380 -1.672 0.103 0.162 -0.106 0.425 -1.709 0.080 0.135 -1.444 0.128 -1.870 0.200 0.156
M4.3: ADAPT (generic data) 0.033 0.401 -1.675 0.092 0.150 -0.033 0.444 -1.700 0.075 0.128 0.230 0.463 -1.438 0.223 0.301

TRANSFER DIRECTION: FORMAL→INFORMAL

D1
M1.1: pseudo-parallel data 0.298 0.177 -0.225 0.311 0.226 0.239 0.195 -0.188 0.377 0.257 0.388 0.225 -0.273 0.306 0.259
M1.2: M1.1 + EN parallel data 0.278 0.178 -0.228 0.315 0.227 0.215 0.194 -0.304 0.458 0.273 0.373 0.219 -0.282 0.313 0.258
M1.3: all data (one model) 0.283 0.175 -0.287 0.368 0.237 0.207 0.191 -0.301 0.439 0.266 0.407 0.229 -0.241 0.292 0.257

D2

M2.1: IBT training 0.335 0.166 -0.082 0.338 0.223 0.272 0.195 0.037 0.194 0.194 0.467 0.237 0.042 0.084 0.124
M2.2: M2.1 + EN data 0.337 0.168 -0.174 0.420 0.240 0.274 0.196 -0.016 0.235 0.214 0.471 0.237 0.045 0.083 0.123
M2.3: ADAPT + EN model’s cross-attn 0.176 0.175 -0.631 0.672 0.278 0.226 0.212 -0.464 0.627 0.317 0.441 0.237 -0.343 0.471 0.315
M2.4: ADAPT + EN data 0.279 0.180 -0.582 0.719 0.288 0.232 0.209 -0.444 0.567 0.305 -0.022 0.169 -0.520 0.534 0.257

D3
M3.1: EN data 0.289 0.186 -0.646 0.767 0.299 0.244 0.216 -0.566 0.692 0.329 -1.695 0.020 -1.225 0.403 0.038
M3.2: ADAPT + EN model’s cross-attn 0.300 0.179 -0.285 0.421 0.251 0.221 0.209 -0.594 0.685 0.320 0.367 0.175 -0.449 0.560 0.267
M3.3: ADAPT + EN data 0.100 0.169 -0.744 0.733 0.275 0.220 0.205 -0.447 0.584 0.303 0.130 0.189 -0.586 0.505 0.275

D4
M4.1: original mBART 0.260 0.160 0.076 0.146 0.153 0.204 0.189 0.031 0.189 0.189 -1.363 0.080 -1.406 0.657 0.143
M4.2: ADAPT (generic data) 0.317 0.164 0.084 0.130 0.145 0.268 0.194 0.052 0.170 0.181 0.475 0.237 0.047 0.082 0.122

Table A.3: Results for multilingual formality transfer. Notes: (i) REG. indicates the score of the style regressor
(the higher is better in informal-to-formal, lower is better in formal-to-informal; (ii) for formal-to-informal there
are four different source sentences and a human reference only, so for each instance scores are averaged; (iii) bold
numbers denote best systems for each block, and underlined indicate the best score for each transfer direction.
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