FAST: Feed-Forward Assisted Transformers for Time Efficient Fine Tuning

Anonymous ACL submission

Abstract

Fine-tuning is the standard approach when
adapting pre-trained large language models for
specific downstream tasks. However, the en-
ergy and time required to fully fine-tune all
parameters can become prohibitively large for
many applications as the size of the model
increases. While recent advancements in
parameter-efficient transfer learning have re-
duced the number of parameters that need to be
updated, the training time and energy consump-
tion of these methods remain similar to full
fine-tuning. In this paper, we propose a time-
efficient fine-tuning method based on feature-
extraction in which we treat off-the-shelf lan-
guage models as fixed sources of embeddings
and train small feed-forward networks on top
for each downstream task. Averaging across the
GLUE NLI benchmark, our method trains 124
times faster than full fine-tuning and 101 times
faster than parameter-efficient fine-tuning meth-
ods using distilRoBERTa', while achieving
81.9% and 85.0% performance respectively.

1 Introduction

Enhancing computational efficiency stands as a sig-
nificant challenge within deep learning (Rolnick
et al., 2019; Strubell et al., 2019; Min et al., 2021).
The issue of efficiency is particularly prevalent in
the subfield of natural language processing (NLP),
where it is common practice to fully fine-tune pre-
trained large language models (LLMs) for specific
downstream tasks (Hendrycks et al., 2019; An-
dreassen et al., 2021; Miller et al., 2021), where full
fine-tuning refers to fine-tuning all model parame-
ters. However, full fine-tuning of LLMs becomes
prohibitively costly as models become increasingly
complex (Ding et al., 2023).

Parameter-efficient fine-tuning (PEFT) methods
aim to address this by fine-tuning only a small sub-
set of model parameters and freezing the rest (Ding

"https://huggingface.co/distilbert/distilroberta-base

Full Fine-Tuning

Classification Backprop
Head
Pre-Trained
Model
FAST (our method)
Backprop

FFN l
Frozen
Weights

Figure 1: Visualization of FAST and comparison to
standard fine-tuning.

et al., 2023; Mudrakarta et al., 2018). Common
PEFT methods include adapters (Houlsby et al.,
2019), prefix tuning (Li and Liang, 2021) and soft
prompt tuning (Lester et al., 2021). Efficiency for
PEFT methods is generally quantified by a reduc-
tion in the number of parameters used (Howard
et al., 2017; Sandler et al., 2018; Henderson et al.,
2020). In practice, however, training times are also
an important metric to consider for efficiency (Cao
et al., 2020) — lengthy training times and substantial
energy consumption commonly hinder progress in
the field, and the growing computational burden of
deep learning is projected to become prohibitive in
many academic and industry applications (Thomp-
son et al., 2020). Fu et al. (2022) demonstrated
that commonly used PEFT methods incur longer

’Discussed in more detail in §2

training times than full fine-tuning, despite using
fewer parameters.

A simple approach to avoid the prohibitive time
cost of PEFT is to "freeze" the weights of the pre-
trained model and train a separate network on top
of the model’s embeddings (Min et al., 2021). This
is reminiscent of classic NLP feature-based tech-
niques (Koehn et al., 2003). In particular, the ap-
proach involves choosing the architecture of the
additional network and the specific model embed-
dings. The simplest approach fine-tunes a single
layer classification head on the last layer embed-
ding of the transformer, commonly referred to as
linear probing (Kumar et al., 2022).

In this work, we introduce FAST (Feed-Forward
ASsisted Transformer), which maintains the effi-
ciency of feature-based fine-tuning, but enhances
performance by utilizing more recent embedding
methods and stacking layers of MLP on the outputs
of a pre-trained language model. We present the
following core contributions:

* An efficiency focused analysis of FAST,
which represents a 80-170x speedup com-
pared to full and common parameter-efficient
tuning methods

* A comprehensive view of embedding extrac-
tion from pre-trained transformers, including
sentence transformers

» Comparison of different concatenation meth-
ods for transformer-based embeddings on
multi-sentence tasks

* Analysis of intrinsic dimensionality of vari-
ous embedding methods and their relation to
classification ability

2 Related Work

Adapters In adapter fine-tuning, small feed-
forward network modules called adapters are in-
serted between transformer layers (Houlsby et al.,
2019). The network modules include fully-
connected down and up projections in each layer,
where an input feature » € R? is mapped to a
lower r-dimensional space using a transformation
matrix W, € R?¥", Subsequently, a nonlinear ac-
tivation function f(-) is applied, and the feature is
mapped back to the original d-dimensional space
using W, € R™*?. A residual connection then adds
the original input feature to obtain the final output:

W = f(h* W)« Wy +h (1)

Prompt Tuning Prompt tuning is a method that
incorporates task-specific prompts into frozen input
embeddings during fine-tuning . There are two
prominent categories within prompt tuning: prefix
fine-tuning and soft prompt tuning. In prefix fine-
tuning, a set of trainable tokens is prepended to the
inputs and hidden states of each transformer layer
(Li and Liang, 2021). Soft prompt tuning simply
appends a trainable prompt to the original input of
the language model (Lester et al., 2021).

Feature Extraction Peters et al. (2019) com-
pares full fine-tuning and feature extraction meth-
ods. They propose the use of more complex ar-
chitectures on top of frozen pre-trained models,
varying for different types of NLP tasks. These in-
clude bi-attentive classification networks and Bil-
STMs on a linear combination of multiple different
hidden states from the pre-trained model. Wang
et al. (2019) propose the use of both fine-tuning and
feature extraction, training the weights of the net-
work and an additional LSTM to further increase
benchmark scores. However, both primarily fo-
cus on analyzing accuracy without comparing the
efficiency of their proposed methods.

3 Method

This section focuses on the two main aspects of our
model: the feed-forward network and the method
of generating embeddings from the base pre-trained
language model.

3.1 Feed-Forward Network

We perform feature extraction on pre-trained large
language model with frozen weights by extracting
the embeddings from the last layer. We discuss
methods for generating the embeddings in §3.2
and §3.3. These embeddings are passed through a
feed forward network, where the last layer of the
feed-forward network is the classification layer.

For n layers and input embeddings X € R4
with N tokens and dimension d, the hidden states
and output of the FFN are denoted as

H, = ReLU(X * W1 + Bl)
Hy = ReLU(H1 * Woy + Bg)

H; = ReLU(H;_1 * W; + B;)

Y = ReLU(Hn_l x* Wh_1+ Bn—l)

where W; € R4 ig a learnable matrix, and
B; € R% s the learnable bias. During implementa-
tion, the number of feed-forward layers is obtained
through a grid search of the set {1, 3,5}.

3.2 Embeddings

We explore three different techniques for extract-
ing a fixed-length embedding from the output of
the language model for a given input sequence:
CLS token embedding, mean pooling, and sentence
transformers.

CLS While RoBERTa is not pre-trained to have
a semantically meaningful representation for the
[CLS] token (Liu et al., 2019), we do use the [CLS]
token as an embedding option to act as a baseline.

Mean Pool To represent the average semantic
meaning of a given input sentence, We extract
the output embeddings, excluding padding, from
the language model and compute the element-wise
mean (Chen et al., 2018).

Sentence Transformer Sentence transformers
(Reimers and Gurevych, 2019) uses siamese net-
work structures to obtain sentence embeddings that
can be compared with cosine similarity. Sentence
transformers are useful for multi-sentence tasks
and are robust to zero-shot learning (Biesner et al.,
2022). We use a sentence transformer for multi-
sentence tasks and directly use the output embed-
ding as the input to the feed-forward network.

3.3 Concatenation

For tasks with multiple input sentences, we need
to generate a joint embedding to represent the en-
tire input to pass into the feed-forward network.
First, we generate embeddings for each sentence
individually, denoted U and V, using one of the
aforementioned methods. The way these individ-
ual embeddings are concatenated can significantly
affect the performance (Reimers and Gurevych,
2019). In our approach, we use either U — V|
or U — V as the input to the FFN, depending on
whether the order of input sentences for the partic-
ular task is meaningful.?

3.4 Benchmarking

We benchmarked performance with respect to time
and energy consumption for the feed-forward net-

3For example, the QQP task in the GLUE benchmark tests
if two questions are semantically identical, so the order the
sentences are given to the model should not change the pre-
diction.

work. We use real time power estimation for energy
consumption (Garcia-Martin et al., 2019).

For a given training, we recorded the time spent
on each epoch of the training loop and compute the
average across all epochs. We obtain our estimate
for the overall training time as the average training
time per epoch multiplied by the number of epochs
that passed during training. The energy consump-
tion in joules (J) from the estimated training times
is

E= /Pdt)
t

where P is the real-time power consumption output
of the device in watts (W) and t is the time in
seconds. The value of P is obtained directly from
the user’s hardware.

4 Experiments and Results

Section 4.1 introduces the specific model and
datasets used in our experiments. Section 4.2 re-
ports our experimental results for accuracy. Section
4.3 reports our experimental results for computa-
tional efficiency and energy efficiency comparisons
to other leading delta-tuning measures. Section
4.4 compares the performance of different concate-
nation methods on multi-sentence tasks. Section
4.5 compares how our method’s performance gen-
eralizes to other pre-trained models. Section 4.6
utilizes manifold learning techniques to analyze
different embedding techniques, and help explain
our results.

4.1 Experimental Setup

Dataset and Evaluation Metrics We evaluated
the performance of our method across 10 tasks
sourced from the General Language Understand-
ing Evaluation (GLUE) dataset*. This dataset
comprises a diverse set of linguistic tasks used to
assess the generalization and proficiency of natural
language understanding models (Wang et al.,
2018b). To evaluate computational efficiency, we
report the estimated time cost and hardware energy
consumption of our experiments.

Implementation We chose distiIRoBERTa, a dis-
tilled version of the ROBERTa model, as our base
model to generate embeddings. It follows the same
training procedure as distilBERT, as outlined in the
associated paper (Sanh et al., 2019). The model’s
architecture consists of 6 transformer layers, each

4See Appendix B

GLUE Score CoLA SST-2 MRPC STS-B QQP MNLI, OQNLI RTE WNLI
CLS 60.9 353 87.1 78.6 31.3 529 66.3 71.2 50.3 65.1
Mean Pool 64.7 38.9 86.9 70.6 66.1 59.3 67.3 74.1 50.3 65.1
ST 63.4 15.9 84.8 76.0 80.6 54.7 66.8 71.9 55.9 58.2
DistilRoBERTa 83.2 59.3 92.5 86.6 88.3 89.4 84.0 90.8 67.9 -
BERT Adapter 80.2 59.2 94.3 84.3 86.1 89.4 85.4 924 71.6 65.1
CBoW 58.6 0.0 80.0 73.4 61.2 51.4 56.0 72.1 54.1 65.1

Table 1: GLUE Benchmark scores (MCC, F1, accuracy) of the CLS, Mean Pool, and Sentence Transformer methods,
and comparisons with other methods. CoLA is evaluated using MCC. MRPC and QQP are evaluated using F1 score.

STS-B uses Spearman’s correlation coefficient. The other tasks use accuracy.

with 12 heads and an embedding dimension of
768. We selected this base model for its acces-
sibility, strong performance on NLP tasks, cost-
effectiveness in terms of computational resources,
and the availability of a publicly accessible pre-
trained sentence transformer.

The weights of distilRoBERTa remain frozen
during tuning, allowing us to precompute and store
the model’s output embeddings for all sentences
in the dataset. This initial computation serves as
a one-time cost before training our additional pa-
rameters directly. The saved embeddings are used
during training of the feed-forward network, elim-
inating the need to run inference on the language
model in each epoch. To optimize the FFN’s perfor-
mance, we perform a hyperparameter grid search
to determine the best values for number of layers
(1, 3, or 5), batch size, learning rate, and weight
decay’. All computation was performed on one
V100 GPU.

4.2 GLUE Benchmark Results

We assessed our method’s performance against
both state-of-the-art models and baseline tech-
niques that undergo training within a similar com-
putational time frame. Specifically, we compare
against a full fine-tune of DistilRoBERTa, adapters,
and CBoW. The performance outcomes across
GLUE tasks are reported in Table 1.

Overall, we observed that mean pooling tends to
yield the best performance among the three types of
embeddings. This is likely because the pre-trained
model is optimized to generate meaningful embed-
dings for predicting the next token. Since mean
pooling incorporates information from all tokens in
the sequence, it may also provide a more consistent
representation of the entire text regardless of the
downstream task. On the other hand, ROBERTa’s

See Appendix A

start [CLS] token is not pretrained on any task, so
distilRoBERTa likely lacks a meaniningful [CLS]
token.

4.3 Energy Efficiency

In Table 2, we evaluated time cost and energy con-
sumption across GLUE tasks for our method, as
well as for DistilRoBERTa and CBoW, according
to the method described in Section 3.4. Note that
generating the embeddings of the language model
is not included in the training time, though this is a
one-time cost that is amortized across training runs.
We reported these efficiency metrics for 1, 3 and
5 layers of our FFN. FAST demonstrates a 124x
training speedup over fully fine-tuning all model
weights of a distilRoBERTa transformer model.
FAST also demonstrated a 101x speedup over com-
mon PEFT methods. Due to this reduced training
time, the energy consumption of FAST is also 124x
less than full fine-tuning and 101x less than PEFT
methods.

Figure 2 illustrates that although FAST and
common PEFT methods utilize similar parameter
counts, training for FAST is two orders of magni-
tude faster than that of PEFT methods. Further-
more, both FAST and PEFT outperform full fine-
tuning in terms of parameter count and training
time. This demonstrates that FAST provides greater
time efficiency at comparable parameter counts to
common PEFT methods.

4.4 Concatenation Method

For multi-sentence tasks, we experimented with
various methods of concatenating sentence embed-
dings. Previous work has shown significant im-
pact from different aggregations of sentence em-
beddings on performance (Reimers and Gurevych,
2019). Table 3 presents a comparative analysis of
different concatenation methods (as before, U and

Time (s) Energy (J)

CoLA MRPC QNLI CoLA MRPC QNLI
1-layer FAST 0.72 0.31 7.96 181 76 1990
3-layer FAST 0.98 0.45 12.09 246 111 3023
S-layer FAST 1.29 0.57 15.93 323 143 3983
Prompt Tuning 92.08 39.72 1125.00 | 23020 9930 281250
Prefix Tuning 92.72 40.10 1136.00 | 23180 10025 284000
Adapter 101.53 43.67 1221.80 | 25383 10918 305450
Full Fine-Tuning ‘ 116.45 50.13 1408.00 | 29113 12534 352000

Table 2: Training times (s) and energy consumption (J) across GLUE tasks for the CLS, Mean Pool, and Sentence
Transformer methods on a V100 GPU, and comparison with full fine-tuning.

MRPC STS-B QQP QNLI RTE WNLI

Uv 7255 3357 7498 68.00 56.68 56.34

Mean Pooling |U — V| 80.15 78.89 7587 73.16 59.57 56.34
UV,IU-V| 7255 6735 7691 7090 57.04 5634

U,v 71.08 2680 73.15 6275 56.68 5634

CLS U - V| 7941 7457 7638 7095 58.12 56.34
UV,IU-V| 7132 7135 7692 67.16 5634 5634

Table 3: Comparison of different concatenation methods using distilRoBERTa across multi-sentence GLUE tasks,

using both CLS and Mean Pooled embeddings.

V' denote the two individual sentence embeddings)
for different multi-sentence GLUE tasks. Employ-
ing U — V notably enhanced performance, and so
was used in our overall performance benchmark
comparing to full fine-tuning.

4.5 Generalization to other Pre-Trained
Models

To ensure that our method generalizes to models
beyond just distilRoOBERTa, we ran experiments
using our same method on a different public trans-
former: MPNet (Song et al., 2020). Table 4 shows
the results across 8 GLUE benchmark tasks, where
we observe similar patterns to our method’s perfor-
mance with distilIRoBERTa. Mean pooling and sen-
tence transformers consistently outperform CLS,
with sentence transformers being particularly ef-
fective at regression tasks like STS-B, but poor at
grammar tasks like CoLA.

4.6 Dimensionality Analysis

We use dimensional analysis and manifold learn-
ing techniques to establish a quantifiable basis
for comparing different embedding models (distil-
RoBERTaST, distiIRoBERTaBase (mean pooled),
and CBoW), as well as a way to conceptually ex-
plain the efficacy of the FFN.

Previous work from Tulchinskii et al. (2023) and
Mamou et al. (2020) also suggests that of human
language is intrinsically represented by a small
number of dimensions. We posit that a lower intrin-
sic dimensionality may indicate a more straightfor-
ward task for the FFN insofar as the embeddings
efficiently encapsulate the essential information
required for the model to generalize effectively
(Aghajanyan et al., 2020).

Note that we do not necessarily directly correlate
lower dimensionality with enhanced performance,
as the actual performance of FAST varies based on
several other task-dependent and FFN-dependent
parameters.

PCA Analysis: The embeddings are processed
through Randomized PCA and the cumulative vari-
ance ratio is calculated to determine the RandPCA
intrinsic dimensionality of the embedding, i.e. the
minimum percentage of components required to
surpass the 90% cumulative variance threshold.

Our results (Table 5) indicate that mean pooling
and sentence transformers consistently generate
embeddings that have lower intrinsic dimensional-
ity than cBOW, suggesting that such embeddings
are more effective at encoding critical information.

t-SNE Analysis: The t-SNE visualization pro-
vides an intuitive understanding of the data’s seg-

Training Time (s)
=

@® FAST
PEFT
B Full Fine-tune

10 10

8

Trainable Parameter Count

Figure 2: Log scale plot of training time (seconds) vs. trainable parameter count on the QNLI task for FAST (using
MPNetBase and MPNetST), three common PEFT methods (adapters, prefix tuning, and soft prompt tuning), and

full fine-tuning.

CoLA SST-2 MRPC STS-B QQP OQNLI RTE WNLI
MPNetBase (CLS) 41.16 8544 71.08 65.73 7531 65.84 5632 56.34
MPNetBase (Meanpool) 45.21 89.45 79.90 7596 77.05 7148 6246 56.34
MPNetSentence 27.70 90.02 77.21 83.53 8792 73.73 68.23 60.56

Table 4: GLUE benchmark scores using FAST with embeddings from MPNet Base Transformer and MPNet

Sentence Transformer.

mentation and separation (van der Maaten and
Hinton, 2008). We observe the reduction in the
intrinsic dimensionality of the embeddings (or lack
thereof) as they move forward through the FFN.
Our analyses (specific examples using the SST2
task embeddings are in Fig. 3) indicate that our
simple FFN is sufficiently parameterized to dra-
matically reduce the intrinsic dimensionality of
the embeddings generated from both mean pool-
ing and sentence transformers, but that it struggles
to unravel the underlying structure of the CBoW-
generated embeddings. Our results further sup-
port the hypothesis that the intrinsic dimensionality
from the last hidden layer of the FFN is a strong
indicator of the classification and generalization
ability of the model (Ansuini et al., 2019). This is
consistent with the superior performance of mean-
pooled embeddings and sentence transformer em-
beddings in testing.

5 Discussion

Our results suggest that our proposed method has
promising implications for improving the accessi-

bility of fine-tuning LL.Ms, particularly for those
with limited computational resources. Most no-
tably, our method offers substantially improved
training efficiency, while maintaining relatively
high levels of performance. Our method is no-
tably compatible with inexpensive or resource-
constrained hardware, which could empower indi-
viduals without access to high-end computational
resources to engage in meaningful natural language
processing tasks.

In this paper, we propose FAST (Feed-Forward
Assisted Transformer), a novel addition-based delta
tuning method that trains small feed forward neu-
ral networks for specific downstream tasks on
top of embeddings generated from pre-trained off-
the-shelf large language models. Our approach
achieves up to 93.9% accuracy of full fine-tuning
and accomplishes downstream tasks up to 170
times faster. Our method significantly reduces
training time compared to alternative methods in
parameter-efficient fine tuning, enabling more ac-
cessible natural language processing for users with
limited hardware capabilities.

Raw Embeddings Layer 1

Layer 2

Layer 3

cBOW

ST

Mean
Pool

Figure 3: t-SNE plots of validation set SST2 embeddings at incremental layers of the trained FFN with 3 hidden

layers.
CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE
Mean Pool 21.22 16.67 54.30 55.34 52.60 50.52 2826 23.44
ST 2891 34.11 66.67 69.79 64.58 7357 37.37 3451
CBoW 56.00 62.00 80.00 81.00 78.00 79.00 66.00 65.00

Table 5: RandPCA intrinsic dimensionality of the Mean Pool, Sentence Transformer, and Continuous Bag of Words

embeddings.

Limitations

When interpreting our findings, there are a num-
ber of experimental limitations that should be con-
sidered. Firstly, our experiments were conducted
on a V100 GPU. To gain a more comprehensive
understanding of the performance and efficiency
of our method, it would be beneficial to conduct
tests on various machines and assess potential vari-
ations across different hardware configurations. Al-
though the GLUE benchmark is a widely used stan-
dard in NLP research, it is ultimately limited to
short, English language text inference tasks. Ex-
ploring tasks that involve larger levels of text gran-
ularity (e.g. paragraphs), as well as incorporating
non-English language data, could provide valuable
insights and enhance the generalizability of our
method to a broader spectrum of linguistic chal-
lenges. We could also test our model against the
SuperGLUE benchmark to assess performance on
more challenging language tasks compared to the
GLUE benchmark (Sarlin et al., 2019), which may
yield more robust and comprehensive results. In

addition, future research could explore additional
types of embeddings and embedding concatenation
strategies to assess their impact on model perfor-
mance, as different kinds of inputs to the FFN may
capture distinct linguistic features. Finally, we uti-
lized time and energy consumption during training
as our measure of efficiency. However, investigat-
ing other efficiency metrics, such as FLOP counts
or memory consumption (Schwartz et al., 2019;
Henderson et al., 2020), could yield further insights
into the trade-offs between model performance and
computational cost.

We do not foresee any unique risks that are not
present in any research on large language models.

References

Armen Aghajanyan, Luke Zettlemoyer, and Sonal
Gupta. 2020. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. CoRR,
abs/2012.13255.

Anders Andreassen, Yasaman Bahri, Behnam
Neyshabur, and Rebecca Roelofs. 2021. The evo-

http://arxiv.org/abs/2012.13255
http://arxiv.org/abs/2012.13255
http://arxiv.org/abs/2012.13255
http://arxiv.org/abs/2106.15831
http://arxiv.org/abs/2106.15831

lution of out-of-distribution robustness throughout
fine-tuning. CoRR, abs/2106.15831.

Alessio Ansuini, Alessandro Laio, Jakob H. Macke,
and Davide Zoccolan. 2019. Intrinsic dimension of
data representations in deep neural networks. CoRR,
abs/1905.12784.

David Biesner, Maren Pielka, Rajkumar Ramamurthy,
Tim Dilmaghani, Bernd Kliem, Riidiger Loitz, and
Rafet Sifa. 2022. Zero-shot text matching for auto-
mated auditing using sentence transformers. Compu-
tation and Language.

Qingqing Cao, Aruna Balasubramanian, and Niranjan
Balasubramanian. 2020. Towards accurate and re-
liable energy measurement of NLP models. CoRR,
abs/2010.05248.

Qian Chen, Zhen-Hua Ling, and Xiaodan Zhu. 2018.
Enhancing sentence embedding with generalized
pooling. Computation and Language.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao,
Xiaozhi Wang, Zhiyuan Liu, Hai-Tao Zheng, Jianfei
Chen, Yang Liu, Jie Tang, Juanzi Li, and Maosong
Sun. 2023. Parameter-efficient fine-tuning of large-
scale pre-trained language models. Nature Machine
Intelligence, 5(3):220-235.

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai
Lam, Lidong Bing, and Nigel Collier. 2022. On the
effectiveness of parameter-efficient fine-tuning.

Eva Garcia-Martin, Crefeda Faviola Rodrigues, Graham
Riley, and Hakan Grahn. 2019. Estimation of en-
ergy consumption in machine learning. Journal of
Parallel and Distributed Computing.

Peter Henderson, Jieru Hu, Joshua Romoff, Emma
Brunskill, Dan Jurafsky, and Joelle Pineau. 2020.
Towards the systematic reporting of the energy
and carbon footprints of machine learning. CoRR,
abs/2002.05651.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. 2019.
Using pre-training can improve model robustness and
uncertainty. CoRR, abs/1901.09960.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. CoRR,
abs/1902.00751.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile
vision applications. CoRR, abs/1704.04861.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. In Proceedings
of the 2003 Human Language Technology Conference

of the North American Chapter of the Association for
Computational Linguistics, pages 127-133.

Ananya Kumar, Aditi Raghunathan, Robbie Jones,
Tengyu Ma, and Percy Liang. 2022. Fine-tuning
can distort pretrained features and underperform out-
of-distribution. arXiv:2202.10054.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. CoRR, abs/2104.08691.

Xiang Lisa Li and Percy Liang. 2021. Prefix-
tuning: Optimizing continuous prompts for gener-
ation. CoRR, abs/2101.00190.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Jonathan Mamou, Hang Le, Miguel Del Rio, Cory
Stephenson, Hanlin Tang, Yoon Kim, and SueYeon
Chung. 2020. Emergence of separable manifolds in
deep language representations.

John Miller, Rohan Taori, Aditi Raghunathan, Shiori
Sagawa, Pang Wei Koh, Vaishaal Shankar, Percy
Liang, Yair Carmon, and Ludwig Schmidt. 2021. Ac-
curacy on the line: On the strong correlation between

out-of-distribution and in-distribution generalization.
CoRR, abs/2107.04649.

Bonan Min, Hayley Ross, Elior Sulem, Amir
Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,
Eneko Agirre, Ilana Heintz, and Dan Roth. 2021.
Recent advances in natural language processing via
large pre-trained language models: A survey. CoRR,
abs/2111.01243.

Pramod Kaushik Mudrakarta, Mark Sandler, Andrey
Zhmoginov, and Andrew G. Howard. 2018. K for the
price of 1: Parameter efficient multi-task and transfer
learning. CoRR, abs/1810.10703.

Matthew E. Peters, Sebastian Ruder, and Noah A. Smith.
2019. To tune or not to tune? adapting pretrained
representations to diverse tasks. arXiv:1903.05987.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
CoRR, abs/1908.10084.

David Rolnick, Priya L. Donti, Lynn H. Kaack, Kelly
Kochanski, Alexandre Lacoste, Kris Sankaran, An-
drew Slavin Ross, Nikola Milojevic-Dupont, Natasha
Jaques, Anna Waldman-Brown, Alexandra Luc-
cioni, Tegan Maharaj, Evan D. Sherwin, S. Karthik
Mukkavilli, Konrad P. Kording, Carla P. Gomes, An-
drew Y. Ng, Demis Hassabis, John C. Platt, Felix
Creutzig, Jennifer T. Chayes, and Yoshua Bengio.
2019. Tackling climate change with machine learn-
ing. CoRR, abs/1906.05433.

http://arxiv.org/abs/2106.15831
http://arxiv.org/abs/2106.15831
http://arxiv.org/abs/2106.15831
http://arxiv.org/abs/1905.12784
http://arxiv.org/abs/1905.12784
http://arxiv.org/abs/1905.12784
http://arxiv.org/abs/2010.05248
http://arxiv.org/abs/2010.05248
http://arxiv.org/abs/2010.05248
https://doi.org/10.1038/s42256-023-00626-4
https://doi.org/10.1038/s42256-023-00626-4
https://doi.org/10.1038/s42256-023-00626-4
http://arxiv.org/abs/2211.15583
http://arxiv.org/abs/2211.15583
http://arxiv.org/abs/2211.15583
http://arxiv.org/abs/2002.05651
http://arxiv.org/abs/2002.05651
http://arxiv.org/abs/2002.05651
http://arxiv.org/abs/1901.09960
http://arxiv.org/abs/1901.09960
http://arxiv.org/abs/1901.09960
http://arxiv.org/abs/1902.00751
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://aclanthology.org/N03-1017
http://arxiv.org/abs/2104.08691
http://arxiv.org/abs/2104.08691
http://arxiv.org/abs/2104.08691
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2006.01095
http://arxiv.org/abs/2006.01095
http://arxiv.org/abs/2006.01095
http://arxiv.org/abs/2107.04649
http://arxiv.org/abs/2107.04649
http://arxiv.org/abs/2107.04649
http://arxiv.org/abs/2107.04649
http://arxiv.org/abs/2107.04649
http://arxiv.org/abs/2111.01243
http://arxiv.org/abs/2111.01243
http://arxiv.org/abs/2111.01243
http://arxiv.org/abs/1810.10703
http://arxiv.org/abs/1810.10703
http://arxiv.org/abs/1810.10703
http://arxiv.org/abs/1810.10703
http://arxiv.org/abs/1810.10703
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1906.05433
http://arxiv.org/abs/1906.05433
http://arxiv.org/abs/1906.05433

Mark Sandler, Andrew G. Howard, Menglong Zhu, An-
drey Zhmoginov, and Liang-Chieh Chen. 2018. In-
verted residuals and linear bottlenecks: Mobile net-

works for classification, detection and segmentation.
CoRR, abs/1801.04381.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Paul-Edouard Sarlin, Daniel DeTone, Tomasz Mal-
isiewicz, and Andrew Rabinovich. 2019. Superglue:
Learning feature matching with graph neural net-
works. CoRR, abs/1911.11763.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren
Etzioni. 2019. Green AIL. CoRR, abs/1907.10597.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2020. Mpnet: Masked and permuted pre-
training for language understanding.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. CoRR, abs/1906.02243.

Neil C. Thompson, Kristjan H. Greenewald, Keeheon
Lee, and Gabriel F. Manso. 2020. The computational
limits of deep learning. CoRR, abs/2007.05558.

Eduard Tulchinskii, Kristian Kuznetsov, Laida
Kushnareva, Daniil Cherniavskii, Serguei Baran-
nikov, Irina Piontkovskaya, Sergey Nikolenko,
and Evgeny Burnaev. 2023. Intrinsic dimension
estimation for robust detection of ai-generated texts.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579-2605.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018a.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 353-355, Brussels, Belgium. Association for
Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. CoRR,
abs/1804.07461.

Ran Wang, Haibo Su, Chunye Wang, Kailin Ji, and
Jupeng Ding. 2019. To tune or not to tune? how
about the best of both worlds? arXiv:1907.05338.

http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1911.11763
http://arxiv.org/abs/1911.11763
http://arxiv.org/abs/1911.11763
http://arxiv.org/abs/1911.11763
http://arxiv.org/abs/1911.11763
http://arxiv.org/abs/1907.10597
http://arxiv.org/abs/2004.09297
http://arxiv.org/abs/2004.09297
http://arxiv.org/abs/2004.09297
http://arxiv.org/abs/1906.02243
http://arxiv.org/abs/1906.02243
http://arxiv.org/abs/1906.02243
http://arxiv.org/abs/2007.05558
http://arxiv.org/abs/2007.05558
http://arxiv.org/abs/2007.05558
http://arxiv.org/abs/2306.04723
http://arxiv.org/abs/2306.04723
http://arxiv.org/abs/2306.04723
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461

Appendix A Hyperparameter Search

We do a hyperparameter grid search on the follow-
ing parameters. In selecting the number of epochs,
we do early stopping based on dev set validation
loss for a maximum of 50 epochs. Additionally,
we utilize the default train/dev/test splits each task
within the GLUE benchmark.

Hyperparameter | Values
Number of epochs | 50
Batch size 32,512

1x1072,1x 1073
X/4,X/2,X,2X,4X

Initial learning rate
Hidden layer size
Number of layers 1,3,5

Weight decay 1x1072,1x 1074
Patience 3

Table 6: Hyperparameter grid search values. X repre-
sents the hidden layer size, equal to 768 for all of our
methods

Appendix B Description of GLUE tasks

The tasks included are

* CoLA (Corpus of Linguistic Acceptability):
Evaluates a model’s ability to determine the
grammatical acceptability of sentences.

¢ SST-2 (Stanford Sentiment Treebank - Bi-
nary): Involves predicting sentiment labels
(positive or negative) for movie reviews.

* MRPC (Microsoft Research Paraphrase Cor-
pus): Requires identifying whether pairs of
sentences are semantically equivalent or not.

* QQP (Quora Question Pairs): Focuses on de-
termining duplicate or semantically similar
questions.

¢ STS-B (Semantic Textual Similarity Bench-
mark): Involves predicting the similarity score
between pairs of sentences.

e MNLI (Multi-Genre Natural Language Infer-
ence): Requires determining the logical rela-
tionship between a premise and a hypothesis
in three categories: entailment, contradiction,
or neutral.

* QNLI (Question Natural Language Inference):
Transforms questions from SQuAD into bi-
nary sentence pair classification tasks that re-
quire determining whether a certain sentence
contains the answer to a given question.

* RTE (Recognizing Textual Entailment): Re-
quires determining if a hypothesis can be in-
ferred from a given premise.

* WNLI (Winograd NLI): Tests a model’s abil-
ity to resolve pronouns in a sentence.

Appendix C Use of Scientific Artifacts

Our work utilizes the GLUE benchmark dataset, as
introduced by Wang et al. (2018a). The dataset is
entirely in English and consists of a collection of
publicly available text datasets for evaluating nat-
ural language understanding systems. It includes
tasks such as textual entailment, sentiment analysis,
and question answering. The GLUE benchmark en-
sures that any personally identifiable information
is removed from the dataset, making it publicly
available for research purposes.

Furthermore, FAST employs Hugging Face
implementations for distilroberta-base, all-
distilroberta-vl, MPNet, all-mpnet-base-v2, all
of which are made publicly available for research
purposes under the Apache-2.0 license.

Appendix D t-SNE plots
t-SNE plots of raw STSB embeddings:

Figure 4: t-SNE plot of STSB embeddings from Mean
Pooling

Figure 5: t-SNE plot of STSB embeddings from ST

Figure 6: t-SNE plot of STSB embeddings from CBoW

Appendix E GLUE Validation Dev Set

CoLA SST-2 MRPC STS-B QQp MNLI QNLI RTE WNLI
CLS + FFN 43.7 872 7771777 74.3/74.2 79.7 67.5/67.5 69.9 574 56.3
Mean Pool + FEFN 52.0 89.0 79.2/79.2 80.2/80.1 82.8/82.8 68.3/68.3 753 57.0 56.3
ST + FFN 21.7 87.0 75.5/75.5 88.6/88.2 80.1/85.2 66.7/66.7 752 55.2 56.3
DistilRoBERTa 59.3 92.5 86.6 88.3 89.4 84.0 90.8 67.9 -
Adapters - - - - - - - - -
CBoW 0.0 80.0 73.4/81.5 61.2/58.7 79.1/51.4 56.0/56.4 72.1 54.1 65.1

Table 7: GLUE Benchmark scores (MCC, F1, accu-
racy) of the CLS, Mean Pool, and Sentence Transformer
methods, and comparisons with other methods. CoLA
is evaluated using MCC. MRPC and QQP are evalu-
ated using F1 score/accuracy. STS-B uses Spearman’s
correlation coefficient/accuracy. The other tasks use
accuracy.

11

	Introduction
	Related Work
	Method
	Feed-Forward Network
	Embeddings
	Concatenation
	Benchmarking

	Experiments and Results
	Experimental Setup
	GLUE Benchmark Results
	Energy Efficiency
	Concatenation Method
	Generalization to other Pre-Trained Models
	Dimensionality Analysis

	Discussion
	Hyperparameter Search
	Description of GLUE tasks
	Use of Scientific Artifacts
	t-SNE plots
	GLUE Validation Dev Set

