
FAST: Feed-Forward Assisted Transformers for Time Efficient Fine Tuning

Anonymous ACL submission

Abstract

Fine-tuning is the standard approach when001
adapting pre-trained large language models for002
specific downstream tasks. However, the en-003
ergy and time required to fully fine-tune all004
parameters can become prohibitively large for005
many applications as the size of the model006
increases. While recent advancements in007
parameter-efficient transfer learning have re-008
duced the number of parameters that need to be009
updated, the training time and energy consump-010
tion of these methods remain similar to full011
fine-tuning. In this paper, we propose a time-012
efficient fine-tuning method based on feature-013
extraction in which we treat off-the-shelf lan-014
guage models as fixed sources of embeddings015
and train small feed-forward networks on top016
for each downstream task. Averaging across the017
GLUE NLI benchmark, our method trains 124018
times faster than full fine-tuning and 101 times019
faster than parameter-efficient fine-tuning meth-020
ods using distilRoBERTa1, while achieving021
81.9% and 85.0% performance respectively.022

1 Introduction023

Enhancing computational efficiency stands as a sig-024

nificant challenge within deep learning (Rolnick025

et al., 2019; Strubell et al., 2019; Min et al., 2021).026

The issue of efficiency is particularly prevalent in027

the subfield of natural language processing (NLP),028

where it is common practice to fully fine-tune pre-029

trained large language models (LLMs) for specific030

downstream tasks (Hendrycks et al., 2019; An-031

dreassen et al., 2021; Miller et al., 2021), where full032

fine-tuning refers to fine-tuning all model parame-033

ters. However, full fine-tuning of LLMs becomes034

prohibitively costly as models become increasingly035

complex (Ding et al., 2023).036

Parameter-efficient fine-tuning (PEFT) methods037

aim to address this by fine-tuning only a small sub-038

set of model parameters and freezing the rest (Ding039

1https://huggingface.co/distilbert/distilroberta-base

Figure 1: Visualization of FAST and comparison to
standard fine-tuning.

et al., 2023; Mudrakarta et al., 2018). Common 040

PEFT methods include adapters (Houlsby et al., 041

2019), prefix tuning (Li and Liang, 2021) and soft 042

prompt tuning (Lester et al., 2021).2 Efficiency for 043

PEFT methods is generally quantified by a reduc- 044

tion in the number of parameters used (Howard 045

et al., 2017; Sandler et al., 2018; Henderson et al., 046

2020). In practice, however, training times are also 047

an important metric to consider for efficiency (Cao 048

et al., 2020) – lengthy training times and substantial 049

energy consumption commonly hinder progress in 050

the field, and the growing computational burden of 051

deep learning is projected to become prohibitive in 052

many academic and industry applications (Thomp- 053

son et al., 2020). Fu et al. (2022) demonstrated 054

that commonly used PEFT methods incur longer 055

2Discussed in more detail in §2

1

training times than full fine-tuning, despite using056

fewer parameters.057

A simple approach to avoid the prohibitive time058

cost of PEFT is to "freeze" the weights of the pre-059

trained model and train a separate network on top060

of the model’s embeddings (Min et al., 2021). This061

is reminiscent of classic NLP feature-based tech-062

niques (Koehn et al., 2003). In particular, the ap-063

proach involves choosing the architecture of the064

additional network and the specific model embed-065

dings. The simplest approach fine-tunes a single066

layer classification head on the last layer embed-067

ding of the transformer, commonly referred to as068

linear probing (Kumar et al., 2022).069

In this work, we introduce FAST (Feed-Forward070

ASsisted Transformer), which maintains the effi-071

ciency of feature-based fine-tuning, but enhances072

performance by utilizing more recent embedding073

methods and stacking layers of MLP on the outputs074

of a pre-trained language model. We present the075

following core contributions:076

• An efficiency focused analysis of FAST,077

which represents a 80-170x speedup com-078

pared to full and common parameter-efficient079

tuning methods080

• A comprehensive view of embedding extrac-081

tion from pre-trained transformers, including082

sentence transformers083

• Comparison of different concatenation meth-084

ods for transformer-based embeddings on085

multi-sentence tasks086

• Analysis of intrinsic dimensionality of vari-087

ous embedding methods and their relation to088

classification ability089

2 Related Work090

Adapters In adapter fine-tuning, small feed-091

forward network modules called adapters are in-092

serted between transformer layers (Houlsby et al.,093

2019). The network modules include fully-094

connected down and up projections in each layer,095

where an input feature h ∈ Rd is mapped to a096

lower r-dimensional space using a transformation097

matrix Wd ∈ Rd×r. Subsequently, a nonlinear ac-098

tivation function f(·) is applied, and the feature is099

mapped back to the original d-dimensional space100

using Wr ∈ Rr×d. A residual connection then adds101

the original input feature to obtain the final output:102

h′ = f(h ∗Wd) ∗Wr + h (1)103

Prompt Tuning Prompt tuning is a method that 104

incorporates task-specific prompts into frozen input 105

embeddings during fine-tuning . There are two 106

prominent categories within prompt tuning: prefix 107

fine-tuning and soft prompt tuning. In prefix fine- 108

tuning, a set of trainable tokens is prepended to the 109

inputs and hidden states of each transformer layer 110

(Li and Liang, 2021). Soft prompt tuning simply 111

appends a trainable prompt to the original input of 112

the language model (Lester et al., 2021). 113

Feature Extraction Peters et al. (2019) com- 114

pares full fine-tuning and feature extraction meth- 115

ods. They propose the use of more complex ar- 116

chitectures on top of frozen pre-trained models, 117

varying for different types of NLP tasks. These in- 118

clude bi-attentive classification networks and BiL- 119

STMs on a linear combination of multiple different 120

hidden states from the pre-trained model. Wang 121

et al. (2019) propose the use of both fine-tuning and 122

feature extraction, training the weights of the net- 123

work and an additional LSTM to further increase 124

benchmark scores. However, both primarily fo- 125

cus on analyzing accuracy without comparing the 126

efficiency of their proposed methods. 127

3 Method 128

This section focuses on the two main aspects of our 129

model: the feed-forward network and the method 130

of generating embeddings from the base pre-trained 131

language model. 132

3.1 Feed-Forward Network 133

We perform feature extraction on pre-trained large 134

language model with frozen weights by extracting 135

the embeddings from the last layer. We discuss 136

methods for generating the embeddings in §3.2 137

and §3.3. These embeddings are passed through a 138

feed forward network, where the last layer of the 139

feed-forward network is the classification layer. 140

For n layers and input embeddings X ∈ RN×d 141

with N tokens and dimension d, the hidden states 142

and output of the FFN are denoted as 143

H1 = ReLU(X ∗W1 +B1) 144

H2 = ReLU(H1 ∗W2 +B2) 145

... 146

Hi = ReLU(Hi−1 ∗Wi +Bi) 147

... 148

Y = ReLU(Hn−1 ∗Wn−1 +Bn−1) 149

2

where Wi ∈ Rd×d is a learnable matrix, and150

Bi ∈ Rd is the learnable bias. During implementa-151

tion, the number of feed-forward layers is obtained152

through a grid search of the set {1, 3, 5}.153

3.2 Embeddings154

We explore three different techniques for extract-155

ing a fixed-length embedding from the output of156

the language model for a given input sequence:157

CLS token embedding, mean pooling, and sentence158

transformers.159

CLS While RoBERTa is not pre-trained to have160

a semantically meaningful representation for the161

[CLS] token (Liu et al., 2019), we do use the [CLS]162

token as an embedding option to act as a baseline.163

Mean Pool To represent the average semantic164

meaning of a given input sentence, We extract165

the output embeddings, excluding padding, from166

the language model and compute the element-wise167

mean (Chen et al., 2018).168

Sentence Transformer Sentence transformers169

(Reimers and Gurevych, 2019) uses siamese net-170

work structures to obtain sentence embeddings that171

can be compared with cosine similarity. Sentence172

transformers are useful for multi-sentence tasks173

and are robust to zero-shot learning (Biesner et al.,174

2022). We use a sentence transformer for multi-175

sentence tasks and directly use the output embed-176

ding as the input to the feed-forward network.177

3.3 Concatenation178

For tasks with multiple input sentences, we need179

to generate a joint embedding to represent the en-180

tire input to pass into the feed-forward network.181

First, we generate embeddings for each sentence182

individually, denoted U and V , using one of the183

aforementioned methods. The way these individ-184

ual embeddings are concatenated can significantly185

affect the performance (Reimers and Gurevych,186

2019). In our approach, we use either |U − V |187

or U − V as the input to the FFN, depending on188

whether the order of input sentences for the partic-189

ular task is meaningful.3190

3.4 Benchmarking191

We benchmarked performance with respect to time192

and energy consumption for the feed-forward net-193

3For example, the QQP task in the GLUE benchmark tests
if two questions are semantically identical, so the order the
sentences are given to the model should not change the pre-
diction.

work. We use real time power estimation for energy 194

consumption (García-Martín et al., 2019). 195

For a given training, we recorded the time spent 196

on each epoch of the training loop and compute the 197

average across all epochs. We obtain our estimate 198

for the overall training time as the average training 199

time per epoch multiplied by the number of epochs 200

that passed during training. The energy consump- 201

tion in joules (J) from the estimated training times 202

is 203

E =

∫
t
Pdt (2) 204

where P is the real-time power consumption output 205

of the device in watts (W) and t is the time in 206

seconds. The value of P is obtained directly from 207

the user’s hardware. 208

4 Experiments and Results 209

Section 4.1 introduces the specific model and 210

datasets used in our experiments. Section 4.2 re- 211

ports our experimental results for accuracy. Section 212

4.3 reports our experimental results for computa- 213

tional efficiency and energy efficiency comparisons 214

to other leading delta-tuning measures. Section 215

4.4 compares the performance of different concate- 216

nation methods on multi-sentence tasks. Section 217

4.5 compares how our method’s performance gen- 218

eralizes to other pre-trained models. Section 4.6 219

utilizes manifold learning techniques to analyze 220

different embedding techniques, and help explain 221

our results. 222

4.1 Experimental Setup 223

Dataset and Evaluation Metrics We evaluated 224

the performance of our method across 10 tasks 225

sourced from the General Language Understand- 226

ing Evaluation (GLUE) dataset4. This dataset 227

comprises a diverse set of linguistic tasks used to 228

assess the generalization and proficiency of natural 229

language understanding models (Wang et al., 230

2018b). To evaluate computational efficiency, we 231

report the estimated time cost and hardware energy 232

consumption of our experiments. 233

234

Implementation We chose distilRoBERTa, a dis- 235

tilled version of the RoBERTa model, as our base 236

model to generate embeddings. It follows the same 237

training procedure as distilBERT, as outlined in the 238

associated paper (Sanh et al., 2019). The model’s 239

architecture consists of 6 transformer layers, each 240

4See Appendix B

3

GLUE Score CoLA SST-2 MRPC STS-B QQP MNLIm QNLI RTE WNLI

CLS 60.9 35.3 87.1 78.6 31.3 52.9 66.3 71.2 50.3 65.1
Mean Pool 64.7 38.9 86.9 70.6 66.1 59.3 67.3 74.1 50.3 65.1
ST 63.4 15.9 84.8 76.0 80.6 54.7 66.8 71.9 55.9 58.2

DistilRoBERTa 83.2 59.3 92.5 86.6 88.3 89.4 84.0 90.8 67.9 -
BERT Adapter 80.2 59.2 94.3 84.3 86.1 89.4 85.4 92.4 71.6 65.1
CBoW 58.6 0.0 80.0 73.4 61.2 51.4 56.0 72.1 54.1 65.1

Table 1: GLUE Benchmark scores (MCC, F1, accuracy) of the CLS, Mean Pool, and Sentence Transformer methods,
and comparisons with other methods. CoLA is evaluated using MCC. MRPC and QQP are evaluated using F1 score.
STS-B uses Spearman’s correlation coefficient. The other tasks use accuracy.

with 12 heads and an embedding dimension of241

768. We selected this base model for its acces-242

sibility, strong performance on NLP tasks, cost-243

effectiveness in terms of computational resources,244

and the availability of a publicly accessible pre-245

trained sentence transformer.246

The weights of distilRoBERTa remain frozen247

during tuning, allowing us to precompute and store248

the model’s output embeddings for all sentences249

in the dataset. This initial computation serves as250

a one-time cost before training our additional pa-251

rameters directly. The saved embeddings are used252

during training of the feed-forward network, elim-253

inating the need to run inference on the language254

model in each epoch. To optimize the FFN’s perfor-255

mance, we perform a hyperparameter grid search256

to determine the best values for number of layers257

(1, 3, or 5), batch size, learning rate, and weight258

decay5. All computation was performed on one259

V100 GPU.260

4.2 GLUE Benchmark Results261

We assessed our method’s performance against262

both state-of-the-art models and baseline tech-263

niques that undergo training within a similar com-264

putational time frame. Specifically, we compare265

against a full fine-tune of DistilRoBERTa, adapters,266

and CBoW. The performance outcomes across267

GLUE tasks are reported in Table 1.268

Overall, we observed that mean pooling tends to269

yield the best performance among the three types of270

embeddings. This is likely because the pre-trained271

model is optimized to generate meaningful embed-272

dings for predicting the next token. Since mean273

pooling incorporates information from all tokens in274

the sequence, it may also provide a more consistent275

representation of the entire text regardless of the276

downstream task. On the other hand, RoBERTa’s277

5See Appendix A

start [CLS] token is not pretrained on any task, so 278

distilRoBERTa likely lacks a meaniningful [CLS] 279

token. 280

4.3 Energy Efficiency 281

In Table 2, we evaluated time cost and energy con- 282

sumption across GLUE tasks for our method, as 283

well as for DistilRoBERTa and CBoW, according 284

to the method described in Section 3.4. Note that 285

generating the embeddings of the language model 286

is not included in the training time, though this is a 287

one-time cost that is amortized across training runs. 288

We reported these efficiency metrics for 1, 3 and 289

5 layers of our FFN. FAST demonstrates a 124x 290

training speedup over fully fine-tuning all model 291

weights of a distilRoBERTa transformer model. 292

FAST also demonstrated a 101x speedup over com- 293

mon PEFT methods. Due to this reduced training 294

time, the energy consumption of FAST is also 124x 295

less than full fine-tuning and 101x less than PEFT 296

methods. 297

Figure 2 illustrates that although FAST and 298

common PEFT methods utilize similar parameter 299

counts, training for FAST is two orders of magni- 300

tude faster than that of PEFT methods. Further- 301

more, both FAST and PEFT outperform full fine- 302

tuning in terms of parameter count and training 303

time. This demonstrates that FAST provides greater 304

time efficiency at comparable parameter counts to 305

common PEFT methods. 306

4.4 Concatenation Method 307

For multi-sentence tasks, we experimented with 308

various methods of concatenating sentence embed- 309

dings. Previous work has shown significant im- 310

pact from different aggregations of sentence em- 311

beddings on performance (Reimers and Gurevych, 312

2019). Table 3 presents a comparative analysis of 313

different concatenation methods (as before, U and 314

4

Time (s) Energy (J)
CoLA MRPC QNLI CoLA MRPC QNLI

1-layer FAST 0.72 0.31 7.96 181 76 1990
3-layer FAST 0.98 0.45 12.09 246 111 3023
5-layer FAST 1.29 0.57 15.93 323 143 3983

Prompt Tuning 92.08 39.72 1125.00 23020 9930 281250
Prefix Tuning 92.72 40.10 1136.00 23180 10025 284000
Adapter 101.53 43.67 1221.80 25383 10918 305450

Full Fine-Tuning 116.45 50.13 1408.00 29113 12534 352000

Table 2: Training times (s) and energy consumption (J) across GLUE tasks for the CLS, Mean Pool, and Sentence
Transformer methods on a V100 GPU, and comparison with full fine-tuning.

MRPC STS-B QQP QNLI RTE WNLI

Mean Pooling
U, V 72.55 33.57 74.98 68.00 56.68 56.34
|U − V | 80.15 78.89 75.87 73.16 59.57 56.34
U, V, |U − V | 72.55 67.35 76.91 70.90 57.04 56.34

CLS
U, V 71.08 26.80 73.15 62.75 56.68 56.34
|U − V | 79.41 74.57 76.38 70.95 58.12 56.34
U, V, |U − V | 71.32 71.35 76.92 67.16 56.34 56.34

Table 3: Comparison of different concatenation methods using distilRoBERTa across multi-sentence GLUE tasks,
using both CLS and Mean Pooled embeddings.

V denote the two individual sentence embeddings)315

for different multi-sentence GLUE tasks. Employ-316

ing U − V notably enhanced performance, and so317

was used in our overall performance benchmark318

comparing to full fine-tuning.319

4.5 Generalization to other Pre-Trained320

Models321

To ensure that our method generalizes to models322

beyond just distilRoBERTa, we ran experiments323

using our same method on a different public trans-324

former: MPNet (Song et al., 2020). Table 4 shows325

the results across 8 GLUE benchmark tasks, where326

we observe similar patterns to our method’s perfor-327

mance with distilRoBERTa. Mean pooling and sen-328

tence transformers consistently outperform CLS,329

with sentence transformers being particularly ef-330

fective at regression tasks like STS-B, but poor at331

grammar tasks like CoLA.332

4.6 Dimensionality Analysis333

We use dimensional analysis and manifold learn-334

ing techniques to establish a quantifiable basis335

for comparing different embedding models (distil-336

RoBERTaST, distilRoBERTaBase (mean pooled),337

and CBoW), as well as a way to conceptually ex-338

plain the efficacy of the FFN.339

Previous work from Tulchinskii et al. (2023) and 340

Mamou et al. (2020) also suggests that of human 341

language is intrinsically represented by a small 342

number of dimensions. We posit that a lower intrin- 343

sic dimensionality may indicate a more straightfor- 344

ward task for the FFN insofar as the embeddings 345

efficiently encapsulate the essential information 346

required for the model to generalize effectively 347

(Aghajanyan et al., 2020). 348

Note that we do not necessarily directly correlate 349

lower dimensionality with enhanced performance, 350

as the actual performance of FAST varies based on 351

several other task-dependent and FFN-dependent 352

parameters. 353

PCA Analysis: The embeddings are processed 354

through Randomized PCA and the cumulative vari- 355

ance ratio is calculated to determine the RandPCA 356

intrinsic dimensionality of the embedding, i.e. the 357

minimum percentage of components required to 358

surpass the 90% cumulative variance threshold. 359

Our results (Table 5) indicate that mean pooling 360

and sentence transformers consistently generate 361

embeddings that have lower intrinsic dimensional- 362

ity than cBOW, suggesting that such embeddings 363

are more effective at encoding critical information. 364

t-SNE Analysis: The t-SNE visualization pro- 365

vides an intuitive understanding of the data’s seg- 366

5

Figure 2: Log scale plot of training time (seconds) vs. trainable parameter count on the QNLI task for FAST (using
MPNetBase and MPNetST), three common PEFT methods (adapters, prefix tuning, and soft prompt tuning), and
full fine-tuning.

CoLA SST-2 MRPC STS-B QQP QNLI RTE WNLI

MPNetBase (CLS) 41.16 85.44 71.08 65.73 75.31 65.84 56.32 56.34
MPNetBase (Meanpool) 45.21 89.45 79.90 75.96 77.05 71.48 62.46 56.34
MPNetSentence 27.70 90.02 77.21 83.53 87.92 73.73 68.23 60.56

Table 4: GLUE benchmark scores using FAST with embeddings from MPNet Base Transformer and MPNet
Sentence Transformer.

mentation and separation (van der Maaten and367

Hinton, 2008). We observe the reduction in the368

intrinsic dimensionality of the embeddings (or lack369

thereof) as they move forward through the FFN.370

Our analyses (specific examples using the SST2371

task embeddings are in Fig. 3) indicate that our372

simple FFN is sufficiently parameterized to dra-373

matically reduce the intrinsic dimensionality of374

the embeddings generated from both mean pool-375

ing and sentence transformers, but that it struggles376

to unravel the underlying structure of the CBoW-377

generated embeddings. Our results further sup-378

port the hypothesis that the intrinsic dimensionality379

from the last hidden layer of the FFN is a strong380

indicator of the classification and generalization381

ability of the model (Ansuini et al., 2019). This is382

consistent with the superior performance of mean-383

pooled embeddings and sentence transformer em-384

beddings in testing.385

5 Discussion386

Our results suggest that our proposed method has387

promising implications for improving the accessi-388

bility of fine-tuning LLMs, particularly for those 389

with limited computational resources. Most no- 390

tably, our method offers substantially improved 391

training efficiency, while maintaining relatively 392

high levels of performance. Our method is no- 393

tably compatible with inexpensive or resource- 394

constrained hardware, which could empower indi- 395

viduals without access to high-end computational 396

resources to engage in meaningful natural language 397

processing tasks. 398

In this paper, we propose FAST (Feed-Forward 399

Assisted Transformer), a novel addition-based delta 400

tuning method that trains small feed forward neu- 401

ral networks for specific downstream tasks on 402

top of embeddings generated from pre-trained off- 403

the-shelf large language models. Our approach 404

achieves up to 93.9% accuracy of full fine-tuning 405

and accomplishes downstream tasks up to 170 406

times faster. Our method significantly reduces 407

training time compared to alternative methods in 408

parameter-efficient fine tuning, enabling more ac- 409

cessible natural language processing for users with 410

limited hardware capabilities. 411

6

Figure 3: t-SNE plots of validation set SST2 embeddings at incremental layers of the trained FFN with 3 hidden
layers.

CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE

Mean Pool 21.22 16.67 54.30 55.34 52.60 50.52 28.26 23.44
ST 28.91 34.11 66.67 69.79 64.58 73.57 37.37 34.51
CBoW 56.00 62.00 80.00 81.00 78.00 79.00 66.00 65.00

Table 5: RandPCA intrinsic dimensionality of the Mean Pool, Sentence Transformer, and Continuous Bag of Words
embeddings.

Limitations412

When interpreting our findings, there are a num-413

ber of experimental limitations that should be con-414

sidered. Firstly, our experiments were conducted415

on a V100 GPU. To gain a more comprehensive416

understanding of the performance and efficiency417

of our method, it would be beneficial to conduct418

tests on various machines and assess potential vari-419

ations across different hardware configurations. Al-420

though the GLUE benchmark is a widely used stan-421

dard in NLP research, it is ultimately limited to422

short, English language text inference tasks. Ex-423

ploring tasks that involve larger levels of text gran-424

ularity (e.g. paragraphs), as well as incorporating425

non-English language data, could provide valuable426

insights and enhance the generalizability of our427

method to a broader spectrum of linguistic chal-428

lenges. We could also test our model against the429

SuperGLUE benchmark to assess performance on430

more challenging language tasks compared to the431

GLUE benchmark (Sarlin et al., 2019), which may432

yield more robust and comprehensive results. In433

addition, future research could explore additional 434

types of embeddings and embedding concatenation 435

strategies to assess their impact on model perfor- 436

mance, as different kinds of inputs to the FFN may 437

capture distinct linguistic features. Finally, we uti- 438

lized time and energy consumption during training 439

as our measure of efficiency. However, investigat- 440

ing other efficiency metrics, such as FLOP counts 441

or memory consumption (Schwartz et al., 2019; 442

Henderson et al., 2020), could yield further insights 443

into the trade-offs between model performance and 444

computational cost. 445

We do not foresee any unique risks that are not 446

present in any research on large language models. 447

References 448

Armen Aghajanyan, Luke Zettlemoyer, and Sonal 449
Gupta. 2020. Intrinsic dimensionality explains the 450
effectiveness of language model fine-tuning. CoRR, 451
abs/2012.13255. 452

Anders Andreassen, Yasaman Bahri, Behnam 453
Neyshabur, and Rebecca Roelofs. 2021. The evo- 454

7

http://arxiv.org/abs/2012.13255
http://arxiv.org/abs/2012.13255
http://arxiv.org/abs/2012.13255
http://arxiv.org/abs/2106.15831
http://arxiv.org/abs/2106.15831

lution of out-of-distribution robustness throughout455
fine-tuning. CoRR, abs/2106.15831.456

Alessio Ansuini, Alessandro Laio, Jakob H. Macke,457
and Davide Zoccolan. 2019. Intrinsic dimension of458
data representations in deep neural networks. CoRR,459
abs/1905.12784.460

David Biesner, Maren Pielka, Rajkumar Ramamurthy,461
Tim Dilmaghani, Bernd Kliem, Rüdiger Loitz, and462
Rafet Sifa. 2022. Zero-shot text matching for auto-463
mated auditing using sentence transformers. Compu-464
tation and Language.465

Qingqing Cao, Aruna Balasubramanian, and Niranjan466
Balasubramanian. 2020. Towards accurate and re-467
liable energy measurement of NLP models. CoRR,468
abs/2010.05248.469

Qian Chen, Zhen-Hua Ling, and Xiaodan Zhu. 2018.470
Enhancing sentence embedding with generalized471
pooling. Computation and Language.472

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-473
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,474
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao,475
Xiaozhi Wang, Zhiyuan Liu, Hai-Tao Zheng, Jianfei476
Chen, Yang Liu, Jie Tang, Juanzi Li, and Maosong477
Sun. 2023. Parameter-efficient fine-tuning of large-478
scale pre-trained language models. Nature Machine479
Intelligence, 5(3):220–235.480

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai481
Lam, Lidong Bing, and Nigel Collier. 2022. On the482
effectiveness of parameter-efficient fine-tuning.483

Eva García-Martín, Crefeda Faviola Rodrigues, Graham484
Riley, and Håkan Grahn. 2019. Estimation of en-485
ergy consumption in machine learning. Journal of486
Parallel and Distributed Computing.487

Peter Henderson, Jieru Hu, Joshua Romoff, Emma488
Brunskill, Dan Jurafsky, and Joelle Pineau. 2020.489
Towards the systematic reporting of the energy490
and carbon footprints of machine learning. CoRR,491
abs/2002.05651.492

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. 2019.493
Using pre-training can improve model robustness and494
uncertainty. CoRR, abs/1901.09960.495

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,496
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-497
mundo, Mona Attariyan, and Sylvain Gelly. 2019.498
Parameter-efficient transfer learning for NLP. CoRR,499
abs/1902.00751.500

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry501
Kalenichenko, Weijun Wang, Tobias Weyand, Marco502
Andreetto, and Hartwig Adam. 2017. Mobilenets:503
Efficient convolutional neural networks for mobile504
vision applications. CoRR, abs/1704.04861.505

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.506
Statistical phrase-based translation. In Proceedings507
of the 2003 Human Language Technology Conference508

of the North American Chapter of the Association for 509
Computational Linguistics, pages 127–133. 510

Ananya Kumar, Aditi Raghunathan, Robbie Jones, 511
Tengyu Ma, and Percy Liang. 2022. Fine-tuning 512
can distort pretrained features and underperform out- 513
of-distribution. arXiv:2202.10054. 514

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. 515
The power of scale for parameter-efficient prompt 516
tuning. CoRR, abs/2104.08691. 517

Xiang Lisa Li and Percy Liang. 2021. Prefix- 518
tuning: Optimizing continuous prompts for gener- 519
ation. CoRR, abs/2101.00190. 520

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 521
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 522
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 523
Roberta: A robustly optimized BERT pretraining 524
approach. CoRR, abs/1907.11692. 525

Jonathan Mamou, Hang Le, Miguel Del Rio, Cory 526
Stephenson, Hanlin Tang, Yoon Kim, and SueYeon 527
Chung. 2020. Emergence of separable manifolds in 528
deep language representations. 529

John Miller, Rohan Taori, Aditi Raghunathan, Shiori 530
Sagawa, Pang Wei Koh, Vaishaal Shankar, Percy 531
Liang, Yair Carmon, and Ludwig Schmidt. 2021. Ac- 532
curacy on the line: On the strong correlation between 533
out-of-distribution and in-distribution generalization. 534
CoRR, abs/2107.04649. 535

Bonan Min, Hayley Ross, Elior Sulem, Amir 536
Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz, 537
Eneko Agirre, Ilana Heintz, and Dan Roth. 2021. 538
Recent advances in natural language processing via 539
large pre-trained language models: A survey. CoRR, 540
abs/2111.01243. 541

Pramod Kaushik Mudrakarta, Mark Sandler, Andrey 542
Zhmoginov, and Andrew G. Howard. 2018. K for the 543
price of 1: Parameter efficient multi-task and transfer 544
learning. CoRR, abs/1810.10703. 545

Matthew E. Peters, Sebastian Ruder, and Noah A. Smith. 546
2019. To tune or not to tune? adapting pretrained 547
representations to diverse tasks. arXiv:1903.05987. 548

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: 549
Sentence embeddings using siamese bert-networks. 550
CoRR, abs/1908.10084. 551

David Rolnick, Priya L. Donti, Lynn H. Kaack, Kelly 552
Kochanski, Alexandre Lacoste, Kris Sankaran, An- 553
drew Slavin Ross, Nikola Milojevic-Dupont, Natasha 554
Jaques, Anna Waldman-Brown, Alexandra Luc- 555
cioni, Tegan Maharaj, Evan D. Sherwin, S. Karthik 556
Mukkavilli, Konrad P. Körding, Carla P. Gomes, An- 557
drew Y. Ng, Demis Hassabis, John C. Platt, Felix 558
Creutzig, Jennifer T. Chayes, and Yoshua Bengio. 559
2019. Tackling climate change with machine learn- 560
ing. CoRR, abs/1906.05433. 561

8

http://arxiv.org/abs/2106.15831
http://arxiv.org/abs/2106.15831
http://arxiv.org/abs/2106.15831
http://arxiv.org/abs/1905.12784
http://arxiv.org/abs/1905.12784
http://arxiv.org/abs/1905.12784
http://arxiv.org/abs/2010.05248
http://arxiv.org/abs/2010.05248
http://arxiv.org/abs/2010.05248
https://doi.org/10.1038/s42256-023-00626-4
https://doi.org/10.1038/s42256-023-00626-4
https://doi.org/10.1038/s42256-023-00626-4
http://arxiv.org/abs/2211.15583
http://arxiv.org/abs/2211.15583
http://arxiv.org/abs/2211.15583
http://arxiv.org/abs/2002.05651
http://arxiv.org/abs/2002.05651
http://arxiv.org/abs/2002.05651
http://arxiv.org/abs/1901.09960
http://arxiv.org/abs/1901.09960
http://arxiv.org/abs/1901.09960
http://arxiv.org/abs/1902.00751
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://aclanthology.org/N03-1017
http://arxiv.org/abs/2104.08691
http://arxiv.org/abs/2104.08691
http://arxiv.org/abs/2104.08691
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2006.01095
http://arxiv.org/abs/2006.01095
http://arxiv.org/abs/2006.01095
http://arxiv.org/abs/2107.04649
http://arxiv.org/abs/2107.04649
http://arxiv.org/abs/2107.04649
http://arxiv.org/abs/2107.04649
http://arxiv.org/abs/2107.04649
http://arxiv.org/abs/2111.01243
http://arxiv.org/abs/2111.01243
http://arxiv.org/abs/2111.01243
http://arxiv.org/abs/1810.10703
http://arxiv.org/abs/1810.10703
http://arxiv.org/abs/1810.10703
http://arxiv.org/abs/1810.10703
http://arxiv.org/abs/1810.10703
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1906.05433
http://arxiv.org/abs/1906.05433
http://arxiv.org/abs/1906.05433

Mark Sandler, Andrew G. Howard, Menglong Zhu, An-562
drey Zhmoginov, and Liang-Chieh Chen. 2018. In-563
verted residuals and linear bottlenecks: Mobile net-564
works for classification, detection and segmentation.565
CoRR, abs/1801.04381.566

Victor Sanh, Lysandre Debut, Julien Chaumond, and567
Thomas Wolf. 2019. Distilbert, a distilled version568
of BERT: smaller, faster, cheaper and lighter. CoRR,569
abs/1910.01108.570

Paul-Edouard Sarlin, Daniel DeTone, Tomasz Mal-571
isiewicz, and Andrew Rabinovich. 2019. Superglue:572
Learning feature matching with graph neural net-573
works. CoRR, abs/1911.11763.574

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren575
Etzioni. 2019. Green AI. CoRR, abs/1907.10597.576

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-577
Yan Liu. 2020. Mpnet: Masked and permuted pre-578
training for language understanding.579

Emma Strubell, Ananya Ganesh, and Andrew McCal-580
lum. 2019. Energy and policy considerations for581
deep learning in NLP. CoRR, abs/1906.02243.582

Neil C. Thompson, Kristjan H. Greenewald, Keeheon583
Lee, and Gabriel F. Manso. 2020. The computational584
limits of deep learning. CoRR, abs/2007.05558.585

Eduard Tulchinskii, Kristian Kuznetsov, Laida586
Kushnareva, Daniil Cherniavskii, Serguei Baran-587
nikov, Irina Piontkovskaya, Sergey Nikolenko,588
and Evgeny Burnaev. 2023. Intrinsic dimension589
estimation for robust detection of ai-generated texts.590

Laurens van der Maaten and Geoffrey Hinton. 2008.591
Visualizing data using t-sne. Journal of Machine592
Learning Research, 9(86):2579–2605.593

Alex Wang, Amanpreet Singh, Julian Michael, Fe-594
lix Hill, Omer Levy, and Samuel Bowman. 2018a.595
GLUE: A multi-task benchmark and analysis plat-596
form for natural language understanding. In Proceed-597
ings of the 2018 EMNLP Workshop BlackboxNLP:598
Analyzing and Interpreting Neural Networks for NLP,599
pages 353–355, Brussels, Belgium. Association for600
Computational Linguistics.601

Alex Wang, Amanpreet Singh, Julian Michael, Felix602
Hill, Omer Levy, and Samuel R. Bowman. 2018b.603
GLUE: A multi-task benchmark and analysis plat-604
form for natural language understanding. CoRR,605
abs/1804.07461.606

Ran Wang, Haibo Su, Chunye Wang, Kailin Ji, and607
Jupeng Ding. 2019. To tune or not to tune? how608
about the best of both worlds? arXiv:1907.05338.609

9

http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1911.11763
http://arxiv.org/abs/1911.11763
http://arxiv.org/abs/1911.11763
http://arxiv.org/abs/1911.11763
http://arxiv.org/abs/1911.11763
http://arxiv.org/abs/1907.10597
http://arxiv.org/abs/2004.09297
http://arxiv.org/abs/2004.09297
http://arxiv.org/abs/2004.09297
http://arxiv.org/abs/1906.02243
http://arxiv.org/abs/1906.02243
http://arxiv.org/abs/1906.02243
http://arxiv.org/abs/2007.05558
http://arxiv.org/abs/2007.05558
http://arxiv.org/abs/2007.05558
http://arxiv.org/abs/2306.04723
http://arxiv.org/abs/2306.04723
http://arxiv.org/abs/2306.04723
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461

Appendix A Hyperparameter Search610

We do a hyperparameter grid search on the follow-611

ing parameters. In selecting the number of epochs,612

we do early stopping based on dev set validation613

loss for a maximum of 50 epochs. Additionally,614

we utilize the default train/dev/test splits each task615

within the GLUE benchmark.

Hyperparameter Values
Number of epochs 50
Batch size 32, 512
Initial learning rate 1× 10−2, 1× 10−3

Hidden layer size X/4, X/2, X, 2X, 4X
Number of layers 1, 3, 5
Weight decay 1× 10−2, 1× 10−4

Patience 3

Table 6: Hyperparameter grid search values. X repre-
sents the hidden layer size, equal to 768 for all of our
methods

616

Appendix B Description of GLUE tasks617

The tasks included are618

• CoLA (Corpus of Linguistic Acceptability):619

Evaluates a model’s ability to determine the620

grammatical acceptability of sentences.621

• SST-2 (Stanford Sentiment Treebank - Bi-622

nary): Involves predicting sentiment labels623

(positive or negative) for movie reviews.624

• MRPC (Microsoft Research Paraphrase Cor-625

pus): Requires identifying whether pairs of626

sentences are semantically equivalent or not.627

• QQP (Quora Question Pairs): Focuses on de-628

termining duplicate or semantically similar629

questions.630

• STS-B (Semantic Textual Similarity Bench-631

mark): Involves predicting the similarity score632

between pairs of sentences.633

• MNLI (Multi-Genre Natural Language Infer-634

ence): Requires determining the logical rela-635

tionship between a premise and a hypothesis636

in three categories: entailment, contradiction,637

or neutral.638

• QNLI (Question Natural Language Inference):639

Transforms questions from SQuAD into bi-640

nary sentence pair classification tasks that re-641

quire determining whether a certain sentence642

contains the answer to a given question.643

• RTE (Recognizing Textual Entailment): Re- 644

quires determining if a hypothesis can be in- 645

ferred from a given premise. 646

• WNLI (Winograd NLI): Tests a model’s abil- 647

ity to resolve pronouns in a sentence. 648

Appendix C Use of Scientific Artifacts 649

Our work utilizes the GLUE benchmark dataset, as 650

introduced by Wang et al. (2018a). The dataset is 651

entirely in English and consists of a collection of 652

publicly available text datasets for evaluating nat- 653

ural language understanding systems. It includes 654

tasks such as textual entailment, sentiment analysis, 655

and question answering. The GLUE benchmark en- 656

sures that any personally identifiable information 657

is removed from the dataset, making it publicly 658

available for research purposes. 659

Furthermore, FAST employs Hugging Face 660

implementations for distilroberta-base, all- 661

distilroberta-v1, MPNet, all-mpnet-base-v2, all 662

of which are made publicly available for research 663

purposes under the Apache-2.0 license. 664

Appendix D t-SNE plots 665

t-SNE plots of raw STSB embeddings: 666

Figure 4: t-SNE plot of STSB embeddings from Mean
Pooling

Figure 5: t-SNE plot of STSB embeddings from ST

10

Figure 6: t-SNE plot of STSB embeddings from CBoW

Appendix E GLUE Validation Dev Set667

CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI

CLS + FFN 43.7 87.2 77.7 / 77.7 74.3/74.2 79.7 67.5/67.5 69.9 57.4 56.3
Mean Pool + FFN 52.0 89.0 79.2/79.2 80.2/80.1 82.8/82.8 68.3/68.3 75.3 57.0 56.3
ST + FFN 21.7 87.0 75.5/75.5 88.6/88.2 80.1/85.2 66.7/66.7 75.2 55.2 56.3

DistilRoBERTa 59.3 92.5 86.6 88.3 89.4 84.0 90.8 67.9 -
Adapters - - - - - - - - -
CBoW 0.0 80.0 73.4/81.5 61.2/58.7 79.1/51.4 56.0/56.4 72.1 54.1 65.1

Table 7: GLUE Benchmark scores (MCC, F1, accu-
racy) of the CLS, Mean Pool, and Sentence Transformer
methods, and comparisons with other methods. CoLA
is evaluated using MCC. MRPC and QQP are evalu-
ated using F1 score/accuracy. STS-B uses Spearman’s
correlation coefficient/accuracy. The other tasks use
accuracy.

11

	Introduction
	Related Work
	Method
	Feed-Forward Network
	Embeddings
	Concatenation
	Benchmarking

	Experiments and Results
	Experimental Setup
	GLUE Benchmark Results
	Energy Efficiency
	Concatenation Method
	Generalization to other Pre-Trained Models
	Dimensionality Analysis

	Discussion
	Hyperparameter Search
	Description of GLUE tasks
	Use of Scientific Artifacts
	t-SNE plots
	GLUE Validation Dev Set

